Accelerator and Beam Physics

NIU is home to one of the best university accelerator physics programs in the nation. The program benefits from the close proximity of major accelerator research facilities at Fermi National Accelerator Laboratory and Argonne National Laboratory. The faculty members associated with the program collaborate with these laboratories and with colleagues from around the world in high-priority accelerator projects and experiments. They also teach accelerator and beam physics courses at NIU.

The Accelerator and Beam Physics group is also a member of the Chicagoland Accelerator Science Traineeship (CAST) consortium, offering fellowships to engage in work performed at the nearby national laboratories.  

  • Theory and experimental verification of fundamental charged-particle beam dynamics.
  • Accelerator and beam line design and analysis.
  • High-performance beam physics computations.
  • Beam instrumentation and diagnostics.



Another mission of the group includes mapping new techniques developed for the study of nonequilibrium beams onto diverse problems in astrophysics, plasmas, fluids and engineering disciplines.

ABP Faculty
Faculty Research Topics Publications
Oksana Chubenko
  • Electron source research & development.
  • High-brightness electron beams.
  • Spin-polarized electron sources.
  • Nano-sized electron sources.
  • High-performance computing.
Bela Erdelyi
  • Beam physics.
  • Accelerator theory and design.
  • Nonlinear dynamics.
  • Applications of symplectic geometry in (and numerical methods for) Hamiltonian dynamics.
  • Medical physics and imaging.
  • High-performance computing.
Gwanghui Ha
  • Phase Space Manipulations
  • Advanced accelerator concepts
  • High-brightness injector development
  • Advanced light sources
  • Medical and industrial applications
Xueying Lu
  • Novel structures for high-gradient acceleration
  • Metamaterials and their interaction with charged particle beams
  • Advanced accelerator concepts
  • Wakefield acceleration
  • High-power microwave sources, vacuum electron devices
  • Superconducting radiofrequency technology
Philippe Piot
  • High-brightness electron beams.
  • Advanced acceleration concepts.
  • Compact coherent radiation source.

Additional Members

Adjunct Professors
  • Tanaji Sen, Fermilab.
  • Diktys Stratakis, Fermilab.

Accelerator Science

Among the largest and most expensive of all scientific instruments, particle accelerators have impacts in many areas of science and society.

Accelerator and Beam Physics Research Activities at NIU

The NIU accelerator and beam physics group focuses on diverse aspects of theoretical, computational and experimental particle beam physics:

  • Development of cross-disciplinary techniques of nonlinear dynamics and their application to charged-particle beams, including applications of symplectic geometry in (and numerical methods for) Hamiltonian dynamics leading to experimental verification.
  • Advanced developments in particle beam optics and transport, accelerator and collider design, and advanced acceleration concepts.
  • Development of coherent microwave radiation sources, beam-wave interaction dynamics in metamaterials, high-brightness electron beams and compact coherent radiation sources.
  • Applications of particle beam and accelerator systems for high-energy and nuclear experiments, basic energy science, medical use and industrial demands.

Laboratory Experiments

When founded, the group's research included laboratory experiments involving novel beam diagnostics that were performed at the Fermilab/NICADD Photoinjector Laboratory (FNPL). Collaborations with the University of Maryland in planning experiments on the fundamental dynamics of space charge in beams were performed at the University of Maryland Electron Ring (UMER).

  • Development of the Fermilab Accelerator Science and Technology (FAST) facility, including the IOTA ring, for advanced nonlinear beam dynamics experiments.
  • Formation of a research laboratory on the NIU campus with an electron gun for testing and commissioning new instrumentation.
  • Development of precision storage rings and unique beam lines.
    • High-statistical tests of fundamental symmetries and experimental verifications of the Standard Model of particle physics.
    • Examinations of future accelerator facilities for the U.S. and Europe (CERN).

Space-Charge Algorithm

Research at NIU has revealed that the hierarchies of temporal and spatial scales are critically important drivers of the evolution of beams with space charge: details do matter. Consequently, we began intensive efforts to develop a new space-charge algorithm that preserves these hierarchies while still enabling efficient computations. The underlying methodology is multiresolution analysis, e.g., the application of wavelets.

Symplectic Dynamics

The study of Hamiltonian systems in general led to the development of two seemingly different branches of mathematics: the theory of dynamical systems and symplectic geometry. Both fields have undergone dramatic development, and it is becoming clear that there is a common core which could lead to a new field called "symplectic dynamics." One of the best test beds of this new field is the accelerator (or particle beams in general), and this connection is being investigated at NIU.

The NIU Department of Physics offers graduate-level courses and degree programs in accelerator and beam physics. Candidates for the degrees of Master of Science in physics and Doctor of Philosophy in physics with an accelerator and beam physics emphasis must meet the general requirements set forth by the Department of Physics for these degrees. They're expected to take accelerator/beam-related coursework as a major part of their electives.

Courses Offered

Elective courses relevant to accelerator and beam physics include:

  • PHYS 659 Special Problems (1-10 credits).
  • PHYS 673 Beam Physics I (3 credits).
  • PHYS 683 Beam Physics II (3 credits).
  • PHYS 790 Special Topics in Physics (1-6 credits).

Accelerator and beam physics students often attend the U.S. Particle Accelerator School (USPAS), which is held twice annually. USPAS offers many higher-level graduate physics courses in the discipline. NIU credit for participation in USPAS courses can be arranged through the Department of Physics with sufficient notice.

Chicagoland Accelerator Science Traineeship (CAST)

Qualified students may also apply for support through the CAST program, providing tuition reimbursment and research assistantships at local national laboratories or industrial partners.

Ph.D. Program Graduates

  • Wei Hou Tan, June 2022
  • Tianzhe Xu, June 2022
  • Afnan Al Marzouk, June 2021
  • Osama Mohsen, June 2021
  • Christina Sarosiek, May 2021
  • Sebastian Szustkowski, October 2020
  • Jeremiah Mitchell, September 2020
  • Anusorn Lueangaramwong, June 2019
  • Alexander Malyzhenkov, September 2018.
  • Matthew Andorf, June 2018.
  • Aliaksei Halavanau, May 2018.
  • Anthony Gee, March 2018.
  • Sumana Abeyratne, October 2016.
  • Francois Lemery, June 2015.
  • SriHarsha Panuganti, June 2015.
  • Christopher Prokop, May 2014.
  • James Maloney, April 2013.
  • Timothy Maxwell, May 2012.
  • Edward Nissen, August 2011.
  • Marwan Rihaoui, August 2011.
  • Laura Bandura, August 2009.

M.S. Program Graduates

  • Benjamin Simons, October 2021
  • Brendan Leung, October 2021
  • Aaron Fetterman, December 2020
  • Kevin Hamilton, September 2020
  • Christopher Marshall, August 2020
  • Prudhvi Raj Varma Chintalapati, June 2019
  • Nick Amato, June 2019
  • Aaron McKeown, March 2019
  • Srujana Valluri, December 2018
  • Jinlong Wang, March 2018.
  • Andrew Fiedler, April 2017.
  • Alexander Malyzhenkov, October 2016.
  • Andrew Green, June 2016.
  • Andrew Palm, April 2015.
  • Saroj Raj Rai, April 2015.
  • Ben Blomberg, May 2014.
  • Ivan Viti, August 2013.
  • Danairis Hernandez, May 2012.
  • Josh Ernst, August 2010.
  • Christopher Prokop, December 2009.
  • Kent Wong, August 2009.
  • Tim Maxwell, December 2007.
  • Shafaq Moten, August 2007.
  • Marwen Rihaoui, August 2007.
  • James Maloney, December 2006.
  • Greg Betzel, December 2005.
  • Dan Bollinger, May 2005.
  • Laura Bandura, August 2003.

Both the NICADD Compute Cluster as well as the NIU Center for Research Computing and Data are available to NICADD staff, students and researchers for high performance computing needs.