<table>
<thead>
<tr>
<th>Student Learning Outcomes</th>
<th>Methods of Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Knowledge of the basic principles of physics</td>
<td>• Entry/exit exams (1)</td>
</tr>
<tr>
<td>2 Familiarity with the use and design of equipment to make physical measurements,</td>
<td>• Laboratory observations (2,3)</td>
</tr>
<tr>
<td>development of skills and knowledge necessary to aggregate and analyze the data from</td>
<td>• Capstone paper (1,2,3)</td>
</tr>
<tr>
<td>such measurements</td>
<td>• Capstone presentation (1,2,3)</td>
</tr>
<tr>
<td>3 Appropriate attitudes central to the practice of physics, including diligence,</td>
<td>• Alumni survey (1,2,3)</td>
</tr>
<tr>
<td>tenacity, and an appreciation for the scientific methodology used in posing and solving</td>
<td>• Employer survey (1,2,3)</td>
</tr>
<tr>
<td>problems in physics</td>
<td></td>
</tr>
</tbody>
</table>