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1 Introduction: the quantum revolution

1.1 Classical instability of charged matter

Quantum mechanics is often portrayed as nonintuitive, weird, or even paradoxical. Let us start

with a retort: it is actually classical physics that is clearly incompatible with basic features

of the world we live in. We begin with the observation that if classical mechanics governed

the universe, then matter made from charged particles would necessarily be unstable against

immediate and catastrophic collapse.

Consider, for example, a classical model of the hydrogen atom, consisting of a very heavy

point-like† proton and electron, separated by a distance r. The electric potential energy is

V (r) = − Q2
e

4πǫ0 r
= −e

2

r
, (1.1.1)

where in SI metric system units, Qe = −1.60218 × 10−19C is the electronic charge and ǫ0 =

8.85419× 10−12C2/N ·m2 is the permittivity of free space. The positive quantity e, which will

appear often in this book, is equal to the proton’s charge in the Gaussian cgs metric system

units. Its square is given numerically by

e2 = 1.43996× 10−9 eV·m = 2.30708× 10−28 J·m = 2.30708× 10−19 erg·cm. (1.1.2)

Classical physics seems to have a serious problem: the potential V (r) is unbounded from below

as r approaches 0, so that the classical atom should release an arbitrarily large amount of energy

as it shrinks to zero size.

This seems dangerous (or possibly useful, depending on your imagination!), and it is certainly

not what we observe. One might suppose that safety could still be achieved if the electron is

somehow forced to travel in a fixed orbit about the much heavier proton. However, this cannot

work in a classical theory, because of energy conservation. Maxwell’s equations imply that the

classical electron will continuously lose energy in the form of electromagnetic radiation, due to

its centripetal acceleration. For a circular orbit, the acceleration is

a =
v2

r
=

F

me
=

e2

mer2
, (1.1.3)

†Protons and nuclei are not exactly point-like, being composed of quarks and gluons. However, the important
thing for the following discussion is just that they are tiny (∼ 10−15 meters) compared to atoms (∼ few ×10−10
meters). This had become apparent by 1911, before the development of the quantum theory, from the results of
Ernest Rutherford’s experiments with Hans Geiger and Ernest Marsden in which alpha particles were observed
scattering at large angles off of gold nuclei.
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whereme = 9.109390×10−31 kg = 0.510999 MeV/c2 is the electron’s mass, with c = 2.99792458×
108 m/sec, the speed of light in vacuum. The Larmor formula for the radiated power of an

accelerating charge,

P = −dE
dt

=
Q2
ea

2

6πǫ0c3
=

2e2a2

3c3
, (1.1.4)

therefore tells us that the classical electron must lose energy at a rate proportional to 1/r4,

which in turn will decrease its orbit size at an ever-increasing rate.

Just for fun, let us estimate the tragic fate of the electronic orbit in this classical model,

making some simplifying assumptions. If the orbit stays nearly circular, and non-relativistic, as

it decays, then the energy will be

E =
1

2
mev

2 − e2

r
= − e

2

2r
. (1.1.5)

Combining eqs. (1.1.4) and (1.1.5) gives

3r2
dr

dt
= −K, (1.1.6)

where K ≡ 4e4/m2
ec

3 is a constant. If r = r0 at t = 0, this integrates to r3 − r30 = −Kt, so

r = r0
(
1−Kt/r30

)1/3
. (1.1.7)

This shows that the decay of the classical electron’s orbit is even worse than asymptotic; it

collapses all the way to r = 0 in a finite time r30/K, which turns out to be very short (see

homework exercise to find out just how short). Larger atoms, and crystal structures of electrons

and nuclei, would have similar instabilities if classical physics governed them.

Quantum mechanics addresses this catastrophe, and allows matter composed of charged

particle constituents to be stable, by changing the rules. In the quantum theory, there is no

counterpart to the decaying classical orbit with unbounded negative energy. In particular, there

are no physical quantum states of the hydrogen atom with arbitrarily low energy, corresponding

to a classical electron localized arbitrarily near r = 0. Instead, as we will see, there is a

single state with the lowest possible energy (about 13.6 eV below a state of ionization), which

therefore is stable since it cannot decay by emitting electromagnetic radiation. In this way,

quantum mechanics saves the universe. More generally, in quantum mechanics the energies of

bound states turn out to be quantized (discrete). There are also unbound (ionized) states with

a continuum of allowed energies, but those energies are bounded from below.
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1.2 Black-body radiation and Planck’s constant

In the late 19th century, it became apparent that classical physics theory makes a similarly

catastrophic prediction for black-body radiation, which became the subject of detailed exper-

iments. Consider a cavity whose walls are as close as possible to idealized black (a perfect

absorber and emitter of electromagnetic radiation), heated as an oven so that it is kept in ther-

mal equilibrium at temperature T with the electromagnetic radiation inside it. The spectrum

of the electromagnetic radiation is characterized by the energy density ρE , per unit volume V

and per unit frequency ν, in terms of which the total energy inside the cavity is

Total energy = V

∫ ∞

0

dν ρE(ν, T ). (1.2.1)

The function ρE(ν, T ) can be determined experimentally by making a small hole in the walls

of the cavity and measuring the radiation that escapes, analyzed for different frequencies using

diffraction gratings, for example.

To obtain a theoretical prediction for ρE(ν, T ), we first need to quantify the density of elec-

tromagnetic modes per unit frequency. One can assume for simplicity that the cavity is a cubic

box of side L, and that the allowed electromagnetic radiation modes satisfy periodic boundary

conditions. The allowed modes then have wavelengths λ = L/|n|, where the components of n

are a triplet of integers (nx, ny, nz). The frequencies are therefore

ν = c|n|/L. (1.2.2)

Because the allowed nx, ny, and nz are integers, and each electromagnetic mode can have

two transverse polarizations, there are two modes per unit volume in the space of vectors n.

Therefore, the number of allowed modes with frequency between ν and ν + dν can be evaluated

by going to spherical coordinates in n space, using

d3n = 4πn2dn =
4πL3

c3
ν2dν, (1.2.3)

with n = |n|. This implies that the total energy per unit frequency is

2E
4πL3

c3
ν2dν, (1.2.4)

where the first factor of 2 accounts for the two polarizations, and E is the average energy of a

mode with frequency ν when in thermal equilibrium with the walls at temperature T . Setting

eq. (1.2.4) equal to L3ρE dν in accord with eq. (1.2.1), we have

ρE(ν, T ) = E
8π

c3
ν2. (1.2.5)
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We next need to evaluate E as a function of temperature.

A fundamental prediction of statistical mechanics is that for an ensemble of identical systems

in thermal equilibrium, the probability for one of the systems to have energy E is proportional

to the Boltzmann factor, named after Ludwig Boltzmann,

P (E) ∝ e−E/kBT , (1.2.6)

where T is the temperature in Kelvin, and Boltzmann’s constant

kB = 1.380649× 10−23J/K = 1.380649× 10−16erg/K = 8.617333× 10−5eV/K (1.2.7)

is the conversion factor between units of temperature and energy. If the allowed energies of

electromagnetic modes are continuous and unrestricted, we therefore have the simple classical

prediction for the average energy,

E =

(∫ ∞

0

dE e−E/kBT E

)/∫ ∞

0

dE e−E/kBT = kBT, (1.2.8)

independent of ν. Plugging this into eq. (1.2.5) gives the result

ρE(ν, T ) = 8πkBTν
2/c3. (1.2.9)

This is the Rayleigh–Jeans prediction, developed by John W. Strutt, 3rd Baron Rayleigh, and

James Jeans. Even without consulting experimental data, this formula is clearly problematic,

since it claims that the energy density grows quadratically with frequency. After integrating
∫∞
0
dν ρE(ν, T ), we would find an infinite total energy density per unit volume in black-body

radiation. This impossible prediction of classical physics is called the ultraviolet catastrophe.

In order to explain the existing data and avoid the ultraviolet catastrophe, Max Planck

proposed in 1900 that the energies of black-body modes with frequency ν actually can only

occur in integer multiples of hν, where, using modern data,

h = 4.13567× 10−15 eV·s = 6.62607× 10−34 J·s = 6.62607× 10−27 erg·s (1.2.10)

is known as Planck’s constant. In that case, the integrals in eq. (1.2.8) are replaced by sums

over only the discrete allowed energies,

E =
( ∞∑

n=0

nhν e−nhν/kBT
)/ ∞∑

n=0

e−nhν/kBT =
hν

ehν/kBT − 1
. (1.2.11)
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Figure 1.2.1: Comparison of the classical
Rayleigh–Jeans (dashed line) and Planck (solid
line) predictions for the electromagnetic radia-
tion energy per unit volume and unit frequency,
ρE , in a black-body cavity, as a function of the
frequency ν, for temperature T = 1000K.

For very small hν/kBT , this agrees with eq. (1.2.8). However, unlike that formula, it depends on

the frequency, and is exponentially suppressed in the ultraviolet limit of large hν/kBT . Putting

eq. (1.2.11) into eq. (1.2.5) yields†

ρE(ν, T ) =
8πh

c3
ν3

ehν/kBT − 1
(1.2.12)

A comparison of Planck’s formula eq. (1.2.12) with the Rayleigh–Jeans formula eq. (1.2.9) is

shown in Figure 1.2.1 for black-body radiation with T = 1000K. In the far infrared, the two

results agree, but they differ significantly in the near infrared, and the Planck prediction for ρE

decreases with frequency above ν = 5.9 × 1013 Hz. In the visible range 4 × 1014 to 8 × 1014

Hz, the Planck formula is many orders of magnitude smaller, in agreement with observation.

Furthermore, the Planck prediction for the total energy density per unit volume in the cavity,
∫ ∞

0

dν ρE(ν, T ) =
8π5(kBT )

4

15h3c3
, (1.2.13)

is finite, resolving the ultraviolet catastrophe. This established that the electromagnetic radia-

tion modes inside the cavity are quantized in energy units equal to Planck’s constant multiplied

by the frequency.

1.3 Photo-electric effect and particle-like features of light

The photo-electric effect is the ejection of electrons from the surface of a material when light

shines on it. This is observed to occur if the angular frequency ω of the light is sufficiently high.

For ω less than a certain threshold value characteristic of the materials used in the experiment,

†Historically, Planck’s derivation of this formula was different, and less compelling, but the result was correct.
The origin of eq. (1.2.11) from deeper principles is derived in section 3.5, see eq. (3.5.45).
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Figure 1.3.1: Sketch of results for the photoelectric effect. Shin-
ing electromagnetic radiation on the surface of a metal produces
a current of ejected electrons, but to a good approximation this
occurs only if the angular frequency of the light exceeds a min-
imum value ωmin. The maximum kinetic energy of the ejected
electrons then rises like h̄(ω − ωmin).

essentially no electrons are ejected, even as the intensity of the light is increased. The threshold

angular frequency typically corresponds to light in the visible and ultraviolet ranges. Above

the threshold photon angular frequency, the maximum kinetic energy of ejected electrons is as

sketched in Figure 1.3.1.

This threshold behavior was unexpected when it was first observed, because in classical

electrodynamics, the frequencies and energies of electromagnetic waves are continuous and in-

dependent of each other. One might have supposed that sufficiently increasing the intensity of

the light would result in electrons being ejected for any ω, no matter how small. To explain the

observations, Albert Einstein proposed in 1905 that light of a given angular frequency always

occurs in chunks, or quanta, which are now called photons. For each photon, the energy is

related to the angular frequency by the same formula as proposed by Planck, which can be

alternatively written as

E = h̄ω, (1.3.1)

where the reduced Planck’s constant (or just “h bar”, when speaking) is

h̄ = 6.58212× 10−16 eV·s = 1.05457× 10−34 J·s = 1.05457× 10−27 erg·s (1.3.2)

and is defined to be related to the ordinary Planck’s constant by

h = 2πh̄. (1.3.3)

Einstein’s quantization condition conceptually generalized Planck’s proposal, which was only

intended to apply to electromagnetic modes absorbed and emitted by the black-body cavity.

It follows from special relativity and wave kinematics that the momentum p and the wave-

length λ of each photon are related by

p = E/c = h̄ω/c = 2πh̄/λ. (1.3.4)
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Figure 1.3.2: The wave nature of electro-
magnetic radiation causes interference
and diffraction phenomena when light
from a coherent source passes through
holes or slits in a screen.

In the photo-electric effect, the discrete particle-like nature of light explains the existence of

ωmin, because h̄ωmin is the minimum energy jump needed for the electron to escape the metal

and be collected on another plate when it is struck by a single photon.† Experiments reported

by Robert Millikan in 1916 later verified, using sodium and lithium as the targets, that the

maximum kinetic energy of the ejected electron indeed behaves like

E = h̄(ω − ωmin). (1.3.5)

The value of ωmin depends on the collector plate material as well as the material being illumi-

nated, but the most important result of the experiment is the slope of the line in Figure 1.3.1,

which is h̄. Millikan’s measured value for h̄ was consistent with Planck’s result from black-body

radiation, but was significantly more accurate and precise.

Although light does behave like a particle in the photo-electric effect, it still has interference

properties governed by the wavelength. These effects appear in interference and diffraction

experiments like the double-slit experiment illustrated in Figure 1.3.2. A coherent light source

impacting on a screen with holes or slits yields a pattern of intensity maxima and minima,

where the interference of amplitudes is constructive and destructive, respectively. However, the

interpretation of this effect is slightly different in quantum mechanics than in the corresponding

classical theory. Classically, the detected intensity is proportional to the magnitude of the

time-averaged Poynting vector,

Classical intensity ∝ |E × B|, (1.3.6)

where E and B are the electric and magnetic fields that each obey superposition and interference

due to the linearity of Maxwell’s equations. In the quantum theory, the real quantity E × B
†Actually, two photons can team up to eject the electron, as has been observed in experiments with high-power

lasers, but the rate for this is very small except when the intensity is extremely large.
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can be replaced by the square of a complex wavefunction ψ,

Quantum intensity ∝ |ψ|2. (1.3.7)

Here ψ(x, y, z, t) is the probability amplitude to find a photon at position (x, y, z) at time t.

The intensity is proportional to a density of probability to detect a photon at a given position

and time, given by the squared magnitude of ψ.

1.4 Electron diffraction and wave-like features of matter

Inspired by the dual wave-particle nature of light, Louis de Broglie in his 1924 PhD thesis

suggested that matter particles, such as electrons, will also behave like waves. He proposed that

what is now called the de Broglie wavelength and wavenumber of the probability amplitude

wavefunction are related to the momentum in the same way as for light, given by eq. (1.3.4), or

λ = 2π/k = 2πh̄/p (1.4.1)

for a particle with mass m and energy E =
√
p2c2 +m2c4. De Broglie’s wave hypothesis for

matter was verified by the discovery of electron diffraction in a series of experiments by Clinton

Davisson and Lester Germer from 1923-1928.

In the Davisson–Germer experiments, electrons with controlled energies (of order a few

hundred eV) were made to hit a target made of a crystal of nickel,† and a detector was used

to observe the intensity of electrons scattered at various fixed angles, as shown schematically in

the top panel of Figure 1.4.1. The results as a function of varying incident electron momentum

(proportional to the inverse de Broglie wavelength) are shown in the second panel. They feature

maxima and minima of constructive and destructive interference, depending on the differences

in path lengths of the electrons scattering from the regularly spaced crystal sites, with a distance

between nuclei of order 3.5×10−10 meters. This interference effect was similar to the previously

known phenomenon of Bragg peaks in x-ray scattering. The electrons’ wavelength corresponded

to the prediction of the de Broglie relation to momentum in eq. (1.4.1). This provided the

first direct evidence that matter particles are also described by a wavefunction which can be

interpreted as a probability amplitude, with the crucial feature that this amplitude is subject to

superposition and interference. It also provided another example of the central role of Planck’s

constant in the quantum theory, through the connection between momentum, wavelength, and

h̄ in eq. (1.4.1).

†In fact, their original motivation was to study the surface of nickel, not to verify de Broglie’s idea.
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beam

detector

Figure 1.4.1: Schematic setup for the Davisson–Germer electron diffraction experiments
(top), and some of their data for intensity of electrons scattered at fixed angle, as a function
of the reciprocal of the electron’s de Broglie wavelength (bottom). Source: C.J. Davisson
and L.H. Germer, “Reflection and refraction of electrons by a crystal of nickel”, Proceedings
of the National Academy of Sciences of the United States of America, vol. 14, no. 8, p. 619
(1928).

1.5 Spin and the Stern–Gerlach experiment

In classical mechanics, angular momentum takes on continuous values, but in quantum mechan-

ics it always occurs in multiples of a fundamental unit. For angular momentum associated with

the motion of particles, called orbital angular momentum, the fundamental quantum unit

is h̄, as we will prove in section 5.3. However, quantum mechanics also allows for intrinsic

angular momentum, or spin, which has no classical counterpart. The spin of a particle is

quantized in units of h̄/2, as we will prove in section 8.1, and has a fixed magnitude that de-

pends only on the identity of the particle. Electrons, protons, and neutrons all carry this type of

intrinsic angular momentum. Since their spin angular momentum is half of the quantized unit

for orbital angular momentum, they are called spin-1/2 particles. Electrons, muons, tau leptons,

14
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Figure 1.5.1: The Stern–Gerlach experiment. Silver atoms are heated in a furnace, and passed
through an inhomogeneous magnetic field, which exerts a force on them proportional to the
ẑ component of the atomic magnetic dipole moment. The observed result is that the silver
beam splits into two “spatially quantized” components on the detection screen. In contrast, the
(incorrect) classical prediction is a continuum of deflection magnitudes.

neutrinos, and quarks are examples of particles that are currently believed to be fundamental

(not composite collections of other particles) and have spin 1/2. But even composite particles

like atoms, atomic nuclei, and mesons and baryons bound together by the strong nuclear force,

always have spin that comes in integer multiples of h̄/2.

The first experimental hints of the existence of spin came from the otherwise mysterious

doubling of certain spectral lines from atomic transitions. Wolfgang Pauli suggested in 1924

that this was due to the presence of some extra quantum number that could only take on two

values. The following year, Samuel Goudsmit and George Uhlenbeck proposed the intrinsic

angular momentum interpretation that we now know as spin. This idea took some time to

gain acceptance, and the doubters famously included Pauli. Part of the problem was that, at

first, the spin was erroneously thought to be due to some kind of internal rotational motion of

the structure of the electron, but nobody could get this idea to work in detail. Spin is now

understood to be completely distinct from mechanical angular momentum.

In 1922, Otto Stern and Walter Gerlach reported an experiment which eventually provided

profound insights into spin and the emerging quantum theory. They heated silver atoms in a

furnace to vaporize them. The atoms escaped through a narrow collimating structure to form

a beam, which then moved through a region where they were deflected by an inhomogeneous

magnetic field, and finally were collected on a measurement screen, as shown in Figure 1.5.1.

The total magnetic dipole moment for the silver atom is a vector µ whose magnitude µ is a

constant, very nearly the same as that of a single electron,† which in turn is proportional to the

†The explanation for this is as follows. Silver atoms have 47 electrons, each of them carrying a magnetic
dipole moment along that electron’s spin direction. However, 46 of the electrons pair up in such a way that their
spins are opposite, and cancel. Furthermore, there is no net orbital angular momentum of the electrons, and the
contribution of the heavy nucleus to the atomic magnetic moment is relatively small.
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electron’s spin, although Stern and Gerlach did not know this at the time. The furnace thor-

oughly randomizes the directions of the magnetic moments. As a result of the inhomogeneous

magnetic field B, there is a classical force on the atoms,

F = ∇(µ · B), (1.5.1)

causing them to deflect. For simplicity, suppose the magnetic field in the deflection region has

a cylindrically symmetric form‡

B(x, y, z) = B0

[
x̂
x

2a
+ ŷ

y

2a
+ ẑ

(
1− z

a

)]
(1.5.2)

where the coordinate system has origin at the center of the magnetic field region, with the unit

vector ẑ (up in Figure 1.5.1) perpendicular to the beam, and a is a length that is large compared

to the size of the region where the magnetic field acts on the atoms in the beam. The atomic

dipole moment experiences a torque, obeying an equation of motion of the form

dµ

dt
∝ µ× B. (1.5.3)

The dominant component B0ẑ therefore causes µ to rotate rapidly about the ẑ direction, keeping

the magnitude of µz nearly constant but causing the oscillating µx and µy components to average

to 0 over the time scale in which the atom is moving through the macroscopic magnetic field

region. This implies that µx and µy can be neglected when computing the deflection of the

atom. Since only µz contributes, eq. (1.5.1) becomes

F = µz∇Bz = ẑµz
∂Bz

∂z
= −ẑ(B0/a)µz. (1.5.4)

Because the gradient of the vertical magnetic field −B0/a is known and fixed, measuring the

deflection of a given atom is equivalent to measuring the value of the ẑ component of its magnetic

dipole moment.

Note that in the limit of a homogeneous field (a → ∞) there would be no deflection at all.

Thus, the role of the large homogeneous part of the magnetic field ẑB0 is to determine which

component of µ will be measured, by washing out the effects of the other components, while the

smaller inhomogeneous part −ẑzB0/a provides the force needed to produce the deflection and

actually make the measurement.

Since the magnetic dipole moments of silver atoms emerging from the furnace are random in

direction, classical physics reasoning suggests that the measured values of µz should have equal

‡The x̂ and ŷ components of B play no essential role here, except being necessary for consistency in order
to satisfy the magnetostatic field equations ∇ · B = 0 and ∇ × B = 0. More generally, the field need not be
cylindrically symmetric, but at least one of Bx or By must be non-zero. The B given here has the form that
would result from a fixed external dipole magnet placed a distance 3a below the beam, to linear order in 1/a.
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likelihood to be anything between −|µ| and |µ|. This in turn would imply that their deflections

as observed on the screen should form a continuum between two extremes. Instead, they form

two spots with equal numbers of atoms deposited, with a gap in between. The important

and surprising conclusion is that the result of measuring µz for silver atoms can only give two

discrete, quantized values, with equal probabilities.

The amount of deflection can be related to the spin carried by each atom, which in the case

of silver comes mostly from a single unpaired electron. The proportionality between magnetic

moment and spin for an electron is very close to

µ =
e

mec
S. (1.5.5)

The numerical magnitudes of the deflections observed in the Stern–Gerlach experiment then

turn out to imply that the measurement of Sz for an electron can only give the values

measured Sz = ±h̄/2. (1.5.6)

There is nothing special about the ẑ direction, so this also applies to n̂ ·S for any unit vector n̂.

The Stern–Gerlach experiment has been conducted for other types of atoms and nuclei,§ in

which the angular momentum (and its relationship to the magnetic moment) can be different,

resulting in more than two spots on the screen. This can be used to reveal the possible angular

momentum properties (“quantum numbers”) of the atom in question. A Stern–Gerlach appa-

ratus can even be used to isolate samples with particular desired angular momentum quantum

numbers. The results of such experiments are always consistent with quantization of the compo-

nents of any angular momentum vector in integer multiples of h̄/2. The quantum theory must

account for this property, and we will see how in Chapter 8.

One can have more general Stern–Gerlach analyzers (called SGn̂ in the following) consisting

of the inhomogeneous magnetic field element oriented in any chosen unit vector n̂ direction. The

result of analyzing silver atoms fresh from the furnace with SGn̂ is that half of them will be

found to have n̂·S = +h̄/2 and the other half will have −h̄/2, for any n̂. Stern–Gerlach analyzers

play a convenient dual role in further efforts to understand quantum mechanics. First, they are

measuring devices, if the output beams are sent directly to a detection screen. Second, because

the outgoing beams are separated (sometimes called “spatial quantization”), SGn̂ provides a

way of preparing a sample of atoms in which the spin component along n̂ is known to be either

+h̄/2 or −h̄/2. Instead of impacting a detection screen, one or both of the output beams can be

§However, the Stern–Gerlach setup does not work directly for free electrons, because the necessarily non-zero
Bx and/or By cause a Lorentz force −ev × B on the electron. This produces a large deflection due to the
electron’s small mass, washing out the magnetic moment effect. The Stern–Gerlach setup relies on the deflected
particle either being electrically neutral, or heavy, or both as in the case of silver.
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Figure 1.5.2: An experiment with two sequential Stern–Gerlach analyzers. The first analyzer
prepares a sample of atoms with Sz = +h̄/2, which are then fed into the second analyzer, which
again measures Sz = +h̄/2, with 100% probability in the idealized case.

sent off to some other component of the experiment, which could be another analyzer. Idealized

versions of the Stern–Gerlach deflection analyzers are commonly used as modular components

in experiments, real or imagined, to probe the implications of quantum theory.

For example, consider the sequence of two ideal Stern–Gerlach analyzers shown in Figure

1.5.2. The atoms in the experiment start in a furnace, which is assumed to produce completely

randomized spins. After passing through a first analyzer SGẑ, the atoms that had the result

Sz = +h̄/2 are sent into a second analyzer SGẑ, while those that had Sz = −h̄/2 are thrown

away. In this case, the prediction of quantum mechanics for the output of the second analyzer

is unlikely to surprise anyone. All of the output atoms on the far right again have Sz = +h̄/2;

the second analyzer simply confirms the measurement made by the first.

A more interesting setup is shown in Figure 1.5.3, which differs only by placing a SGx̂

analyzer between the two SGẑ analyzers. As before, the experiment uses the first analyzer to

select a pure sample of atoms with Sz = +h̄/2. However, now the second analyzer separates

the sample by measuring Sx. Since the ẑ direction has no way of preferring one of ±x̂ over the

other, it is no surprise that the output of SGx̂ is 50% for each of Sx = +h̄/2 and −h̄/2.
The experiment in Figure 1.5.3 then throws away the atoms with Sx = −h̄/2, and feeds those

with Sx = +h̄/2 into a third analyzer SGẑ. The final results for Sz can then be determined with

a detection screen (not shown). One might perhaps suppose that we should find that the final

atoms will all have Sz = +h̄/2, since the first analyzer already selected only atoms with that

property. However, this is wrong. In reality, an equal number are measured to have Sz = +h̄/2

and −h̄/2. Inserting the SGx̂ analyzer in the middle of the chain affects the atoms in such a

way as to restore the possibility of obtaining Sz = −h̄/2.
Another way of thinking about the experiment shows that the restoration of the Sz =

−h̄/2 outcomes is a logical necessity, assuming only that the spin is the only thing that makes

a difference. (Another way of stating this crucial assumption is that there are no “hidden

variables” associated with the atom that are involved in the measurements in some mysterious
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Figure 1.5.3: An experiment with three sequential Stern–Gerlach analyzers. The first analyzer
prepares a sample of atoms with Sz = +h̄/2, which are then fed into the second analyzer, which
measures Sx = +h̄/2 and −h̄/2, each with probability 0.5. The atoms with Sx = +h̄/2 are then
sent to the third analyzer, which measures Sz = +h̄/2 and −h̄/2, each with probability 0.5. The
act of measuring Sx restores the possibility of measuring Sz = −h̄/2 at the end, even though
the first analyzer had been used to select only atoms with Sz = +h̄/2.

way that we do not know how to take into account.) To see this, cover up everything in Figure

1.5.3 except the last analyzer. Feeding into it are atoms with spin known to be always aligned in

the +x̂ direction. Assuming no hidden variables containing other information, the +x̂ direction

has no reason to prefer +ẑ over −ẑ, or vice versa, so no matter what may have occurred earlier,

the only possibility is that the final probabilities for Sz = +h̄/2 and −h̄/2 are equal.

It is important that this result does not have anything to do with the fact that we threw

away the atoms that were measured to have Sx = −h̄/2 coming out of the second analyzer. We

could feed those atoms into the final analyzer as well, and they would also be measured to have

50% probability for each of Sz = +h̄/2 and −h̄/2, by the same argument. Evidently, it is the

mere act of measuring Sx that causes the restoration of the Sz = −h̄/2 outcomes. When we

give the postulates of quantum mechanics in Chapter 3.1, the act of measurement will play a

special role in one of them (Postulate 5), consistent with the preceding discussion. This also

carries with it the implication that quantum mechanics, as defined by these postulates, is an

inherently probabilistic, rather than deterministic, theory.

Readers familiar with the behavior of polarizing filters for light may recognize that the

preceding example is closely analogous to a similar experiment that is common and easy to do

in optics. Two linear polarization filters arranged with axes of polarization at right angles will

not allow any light to pass through, but a third polarizer inserted between the two, with axis

at a 45◦ angle with respect to the axes of each of the others, will restore the transmission of

a fraction of the light. This analogy carries over into the quantum regime. In fact, the most

sensitive experiments testing quantum mechanics are often done with the polarization of photons

replacing the role of the spin in Stern–Gerlach type experiments. One famous example will be

discussed in detail in section 21.4.
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2 Math tools: states, operators, and representations

From the results of many experiments, physicists have arrived at a set of postulates that govern

quantum theory. These will be given in the next chapter, but first we must introduce the

mathematical language necessary to frame these ideas. This chapter therefore contains many

definitions of key concepts, and some useful theorems. In doing so, we employ Paul A.M. Dirac’s

bra-ket notation, which is the modern standard in quantum mechanics.

2.1 Complex linear vector spaces

A complex linear vector space is a set of vectors, also known as kets, denoted for example

as |v〉 , |w〉 , . . ., such that the following properties hold:

• Additive closure: if |v〉 and |w〉 are kets, then so is their sum, or superposition, |v〉+ |w〉.

• Multiplicative closure: if |v〉 is a ket, then so is the product c|v〉, where c is any complex

number.

• There exists a null ket, |Null〉, with the properties that |v〉 + |Null〉 = |v〉 for every ket

|v〉, and c |Null〉 = |Null〉 for every complex number c. Multiplying any ket by the complex

number 0 results in the null ket: 0 |v〉 = |Null〉.

• Addition of kets and multiplication by complex numbers satisfy the usual commutative,

associative, and distributive properties. This means that we have |v〉+|w〉 = |w〉+|v〉, and
(|v〉+|w〉)+|x〉 = |v〉+(|w〉+|x〉), and c1(c2 |v〉) = (c1c2) |v〉, and (c1+c2) |v〉 = c1 |v〉+c2 |v〉,
and c(|v〉+ |w〉) = c |v〉+ c |w〉.

In quantum mechanics, the physical state of a system is completely described by a non-null

ket, known as the state ket or state vector, which we will often denote by |ψ〉. However, one
of the rules is that the ket c |ψ〉 represents the same physical state as |ψ〉, provided that c is a

non-zero complex number. This is true even though c|ψ〉 and |ψ〉 are mathematically distinct

members of the vector space; they are identified with each other physically.

The null ket, although it is part of the vector space, cannot describe any physical state.

There is also a convenient and obvious notational shortcut: if we want to write down that some

expression is equal to the null ket, we will just write “= 0” instead of “= |Null〉”. Therefore,

the null ket will not appear explicitly any more, but one should always consider the possibility

that a ket arising in some calculation might actually be the null ket. A warning: it is common

to use the notation |0〉 for some specific ket that represents a physical state and must not be
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confused with the null ket. For example, depending on the system under consideration, |0〉
might represent the lowest energy state of a system, also known as the ground state.

Let us list some examples of complex linear vector spaces, which you can check satisfy the

properties in the definition.

Example 1: The set of complex numbers z.

Example 2: The set of all ordered triples (z1, z2, z3), where z1, z2, and z3 are complex numbers.

Example 3: The set of complex 2× 3 matrices

(
z1 z2 z3
z4 z5 z6

)
.

Example 4: The set of all complex linear combinations c1 |↑〉 + c2 |↓〉 of two basic kets |↑〉 and
|↓〉. (This turns out to be the state space for a single spin-1/2 quantum system.)

Example 5: The set of all complex linear combinations of an infinite number of basic kets |0〉,
|1〉, . . . , |n〉, . . . , in one-to-one correspondence with the non-negative integers. (This turns out

to be a natural notation for the states of fixed energy for a harmonic oscillator in one dimension.)

Example 6: The set of all complex functions of a real variable, f(x), defined on the domain

−∞ < x < ∞. One can choose to add extra conditions on the functions in a variety of ways,

for example requiring that they be continuous, differentiable, or vanishing at certain points or

on specified intervals, or satisfy certain integrability conditions.

Intuitively, these vector spaces have different sizes. To make this precise, we define the

notions of linear independence and dependence, dimension, and basis. A set of kets |ψj〉 are
linearly independent (or just independent) if

∑
j cj |ψj〉 = 0 can only be satisfied by taking

all cj = 0. In other words, |ψj〉 are independent if we cannot write any of them as a complex

linear combination of the others. Otherwise, the kets are linearly dependent.

A vector space is said to have dimension N if one can choose a set of N (but not more)

linearly independent vectors. The N linearly independent vectors are then said to form a basis

for the vector space. The choice of basis is certainly not unique for N > 1; it is a common

problem that one wants to change the choice of basis, either to make some calculation easier or

to make some result simpler to interpret.

You can now check that for our six examples, the dimensions are:

Example 1 has dimension N = 1.

Example 2 has dimension N = 3.

Example 3 has dimension N = 6.

Example 4 has dimension N = 2.

Example 5 has dimension N =∞ (countable, discrete basis).

Example 6 has dimension N =∞ (uncountable, continuous basis).

However, the cardinality (countable vs. uncountable) of an infinite-dimensional vector space is
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mathematically a bit tricky, in ways that we shall find it convenient to mostly ignore. In physics,

we are interested in kets that correspond to members of a vector space with the additional

structure of a Hilbert space with an inner product, as discussed in the next section. The

requirement that all physical state vectors must have a finite inner product implies that the

basis is always countable. Despite this, we will see that it is a very convenient fiction to include

continuous and uncountable sets of vectors that are not members of the physical state space

but are nevertheless extremely useful, both as idealizations and in practical calculations. The

most common examples are the kets that describe idealized states in which either a particle’s

position or its momentum (but not both!) is perfectly known. These continuous sets of vectors

can be chosen to obey the other properties of a basis, in which case we will often simply call

them basis vectors, as a slight abuse of terminology.

Given a specific basis set {|βj〉}, any vector |v〉 can be expressed as

|v〉 =
N∑

j=1

vj |βj〉 (2.1.1)

where the N complex numbers vj are called the components of |v〉 in that basis. Using the

preceding definitions, one can show that, for a given |v〉 and a given choice of basis {|βj〉}, the
components vj are unique. In writing eq. (2.1.1) as a sum, we have implicitly assumed that the

basis vectors are discrete and countable. If the basis kets are instead continuous,† then the sum

must be replaced by an integral. For example, if the basis set is {|βq〉} where q is a continuous

real variable with domain a < q < b, then we can write any ket |v〉 as

|v〉 =
∫ b

a

dq v(q) |βq〉 . (2.1.2)

Here v(q) are the components, which in this case form a function of q. The symbol q might

represent a coordinate on ordinary space, but it could also be a momentum, or an energy, or

some other continuous quantity of interest.

A subspace of a vector space is a subset of the elements that also form a vector space by

themselves. Below, we will often work with subspaces that consist of states with some feature

in common, such as a fixed energy or angular momentum.

2.2 Inner products, Hilbert spaces, and orthonormal bases

In quantum mechanics, the vector space of states has the additional structure of a Hilbert

space, which implies that the complex linear vector space is endowed with an inner product.

Given a ket |v〉 and a second ket |w〉, the inner product (also known as a scalar product)

returns a complex number, denoted 〈w|v〉, which must satisfy the following rules:

†Note we are already engaging in the slight abuse of terminology mentioned in the previous paragraph!
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• The order matters, in such a way that exchanging the two kets gives the complex conjugate,

〈v|w〉 = (〈w|v〉)∗ . (2.2.1)

It immediately follows that 〈v|v〉 is real.

• If |v〉 is not the null ket, then 〈v|v〉 is positive.

• If either |v〉 or |w〉 is the null ket, then 〈v|w〉 = 〈w|v〉 = 0.

• Linearity is satisfied. The inner product of c1 |v〉+ c2 |w〉 and |x〉, in that order, is

〈x|
(
c1 |v〉+ c2 |w〉

)
= c1 〈x|v〉+ c2 〈x|w〉 . (2.2.2)

It follows from eqs. (2.2.1) and (2.2.2) that the inner product of the same two kets, but in the

opposite order, is

(
c∗1 〈v|+ c∗2 〈w|

)
|x〉 = c∗1 〈v|x〉+ c∗2 〈w|x〉 . (2.2.3)

The inner product should be thought of as similar to the dot product in the familiar three-

dimensional real vector space. However, because quantum mechanics uses complex linear vector

spaces, the inner product treats the two input vectors asymmetrically, and interchanging them

is the same as taking the complex conjugate.

The norm of a ket |v〉 is defined by
√
〈v|v〉. It follows from the preceding that the norm

of a non-null ket is real and positive,† and it is 0 if |v〉 is the null ket. It is often written as

‖v‖ ≡
√
〈v|v〉, when that notation is unambiguous.

Two useful inequalities that govern the inner product follow.

Theorem 2.2.1 (Schwarz inequality) For any two kets |v〉 and |w〉,

| 〈v|w〉 |2 ≤ 〈v|v〉 〈w|w〉 , (2.2.4)

Also, equality holds if and only if |w〉 and |v〉 are proportional to each other or one of them is

the null ket.

Proof: If either |v〉 or |w〉 is the null ket, then eq. (2.2.4) is trivially satisfied with equality.

Therefore, we can assume for the remainder of the proof that neither of them is null. Consider

the ket |z〉 = c1 |v〉 − c2 |w〉, where c1 and c2 are complex numbers. Since |z〉 is a ket by the

additive closure property, 〈z|z〉 must be non-negative, which gives

〈z|z〉 = |c1|2 〈v|v〉+ |c2|2 〈w|w〉 − c1c∗2 〈w|v〉 − c∗1c2 〈v|w〉 ≥ 0. (2.2.5)

†In quantum field theories with gauge invariance, it is sometimes useful, as a book-keeping trick, to modify the
rules by allowing some kets to satisfy 〈v|v〉 ≤ 0. However, these negative-norm and null kets represent fictitious
(unphysical) states, which must decouple from the true physical states. We will not encounter this issue in the
present book.
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Choosing c1 = 〈w|w〉 and c2 = 〈w|v〉, and using 〈v|w〉∗ = 〈w|v〉, eq. (2.2.5) becomes

(〈w|w〉)2 〈v|v〉 − 〈w|w〉 | 〈v|w〉 |2 ≥ 0 (2.2.6)

Now, since |w〉 is not null, we can divide by 〈w|w〉 to get eq. (2.2.4). If the equality condition

holds, then it follows that |z〉 is the null ket, which implies that |v〉 and |w〉 are proportional.

Theorem 2.2.2 (Triangle inequality) The norms of the kets |v〉 and |w〉 and their superpo-

sition |v + w〉 = |v〉+ |w〉 must obey

‖v + w‖ ≤ ‖v‖+ ‖w‖, (2.2.7)

and equality holds if and only if |w〉 and |v〉 are proportional to each other or one of them is the

null ket.

The proof can be obtained from the Schwarz inequality, and is left as an exercise. The triangle

inequality is similar to the statement in ordinary plane geometry that the sum of the lengths of

two sides of a triangle must exceed that of the third side.

Given a non-null ket |v〉, one can define a new ket by dividing it by its norm. The result

|v〉 /
√
〈v|v〉 (2.2.8)

then has norm 1, and in quantum mechanics it is physically equivalent to the original ket, in

the sense that it represents the same physical state. We say that the ket has been normalized

to unity. This still leaves the freedom to multiply the ket by a complex phase, because

eiθ |v〉 (2.2.9)

has the same norm as |v〉, for any real number θ. This freedom will appear very often as an

ambiguity in the determination of a ket that has to satisfy some other specified properties. The

resolution of such ambiguities is arbitrary, and equivalent to a choice of convention.

Although the phase of a single ket is not a physically measurable quantity, the relative phases

between different kets can be physically meaningful if one considers their sum, also known as

their superposition. This is because if we multiply two kets by different phases,

|v〉 → |v′〉 = eiθv |v〉 , |w〉 → |w′〉 = eiθw |w〉 , (2.2.10)

then their sum is replaced by

|v〉+ |w〉 → eiθv
(
|v〉+ ei(θw−θv) |w〉

)
, (2.2.11)
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which, by removing the overall phase eiθv , is then physically equivalent to

|v〉+ ei(θw−θv) |w〉 . (2.2.12)

In general, this is not proportional to, and therefore not physically equivalent to, |v〉 + |w〉,
unless |v〉 and |w〉 are proportional, or θw and θv differ by an integer multiple of 2π.

Two kets |v〉 and |w〉 are orthogonal (also known as perpendicular) if 〈w|v〉 = 0. An

orthonormal basis, which we will call an orthobasis for short, is a basis of kets {|ϕj〉} in a

Hilbert space that satisfies the additional property

〈ϕj |ϕk〉 = δj,k. (2.2.13)

Here δj,k is the Kronecker delta symbol,

δj,k =

{
1 (for j = k),

0 (for j 6= k),
(2.2.14)

and is defined only when j and k are labels that take on discrete values.

As noted in the previous section, we will also often want to deal with basis kets labeled by

one or more continuous parameters. In that case, we need a different orthonormality condition,

called Dirac orthonormality, in which the Kronecker delta symbol is replaced by a Dirac

delta function.‡ The Dirac orthonormality condition for kets |ϕq〉 labeled by a single continuous

real variable q is thus

〈ϕq|ϕq′〉 = δ(q − q′). (2.2.15)

Here q could be, for example, a position coordinate of a particle. The delta function δ(x) has

the properties that

δ(x) =

{ ∞ (for x = 0),

0 (for x 6= 0),
(2.2.16)

and
∫ ∞

−∞
dx δ(x) = 1, (2.2.17)

or, more generally, for sufficiently well-behaved functions f(x),

∫ ∞

−∞
dx δ(x− c)f(x) = f(c). (2.2.18)

‡Technically, the Dirac delta function is not a function, but a distribution in mathematical language. But,
this is not a math textbook, so we will not belabor the distinction too much.
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For most purposes, eq. (2.2.18) can be taken as the practical definition of the delta function.

An important technical note: as we have already warned in the previous section, kets satisfy-

ing the Dirac orthonormality condition eq. (2.2.15) cannot be physical states, strictly speaking.

This is because they do not have finite norm, due to δ(0) =∞. Such kets with continuous labels

are still very useful in practical calculations, where they often represent idealizations with per-

fectly known position, or momentum, or some other continuous quantity. These are sometimes

known as generalized kets or non-normalizable kets, and they act as a basis for the Hilbert

space of physical states, even though they are not themselves part of the Hilbert space. They

are so useful as idealizations that mere non-normalizability is not a good enough reason for us

to eliminate them from the discussion.

It can also be useful to think of δ(x) as the “limit” (in a sense that we will not bother to

try to make mathematically precise) of a sequence of increasingly narrow and sharply peaked

functions that have unit area, in various different ways. For example, the sequence of functions

can be taken to be just rectangular functions with width ∆ and height 1/∆,

δ(x) = lim
∆→0

{
1/∆ for |x| < ∆/2,

0 for |x| > ∆/2.
(2.2.19)

Another useful representation of δ(x) is

δ(x) =
1

2π

∫ ∞

−∞
dk eikx. (2.2.20)

To make better intuitive sense of this technically ill-defined expression, we can “cut off” the

integration over k. One way to do this is to insert a convergence factor e−k
2∆2/2 into the

integrand, and then take ∆→ 0,

δ(x) = lim
∆→0

1

2π

∫ ∞

−∞
dk e−k

2∆2/2eikx = lim
∆→0

exp[−x2/2∆2]√
2π∆

. (2.2.21)

This interprets δ(x) as the ∆ → 0 limit of Gaussian functions with height 1/
√
2π∆ and full

width at half maximum (FWHM) approximately equal to 2.35∆. Another useful way to make

sense of eq. (2.2.20) is to limit the k integration to a large but finite range −1/∆ < k < 1/∆,

δ(x) = lim
∆→0

1

2π

∫ 1/∆

−1/∆
dk eikx = lim

∆→0

sin(x/∆)

πx
. (2.2.22)

Each of the expressions in eqs. (2.2.19), (2.2.21), and (2.2.22) has the crucial properties of unit

integrated area for all ∆, and convergence to 0 at x 6= 0 in the limit ∆→ 0. They are illustrated

in Figure 2.2.1. Each of them, as well as the formal integral representation of eq. (2.2.20), can

be useful, depending on the situation.
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∆/2

1/∆

-∆/2

(2π)
1/2∆

exp[-x
2
/2∆2

] sin(x/∆)/πx

Figure 2.2.1: The Dirac delta function δ(x) can be thought of as the ∆ → 0 “limit” of a
sequence of increasingly narrow functions peaked near x = 0 with width of support pro-
portional to ∆ and unit integrated area, as in the rectangular functions in eq. (2.2.19) [left
panel], the Gaussian functions in eq. (2.2.21) [center panel], or the normalized sine functions
in eq. (2.2.22) [right panel].

The representation of the delta function in eq. (2.2.20) is related to the theory of Fourier

transforms. To see how this works, we can use it to write, for any sufficiently well-behaved

function f(x),

f(x) =

∫ ∞

−∞
dx′ f(x′) δ(x− x′) =

∫ ∞

−∞
dx′ f(x′)

(
1

2π

∫ ∞

−∞
dk eik(x−x

′)

)
. (2.2.23)

By rearranging the order of integrations, this becomes

f(x) =
1

2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ e−ikx

′

f(x′). (2.2.24)

Now, we define the Fourier transform of f(x) by the second integral,

F (k) ≡ 1√
2π

∫ ∞

−∞
dx′ e−ikx

′

f(x′), (2.2.25)

for −∞ < k <∞. Then eq. (2.2.24) becomes

f(x) =
1√
2π

∫ ∞

−∞
dk eikxF (k), (2.2.26)

which is the inverse Fourier transform relation.

For a finite-dimensional§ Hilbert space, there is a systematic way to find an orthobasis:

§In the infinite-dimensional case, the Gram–Schmidt algorithm cannot end in a finite number of steps, but
in cases relevant to quantum mechanics a suitable orthobasis is often easy to identify anyway. For example, the
Hilbert space may naturally split into an infinite number of mutually orthogonal finite-dimensional subspaces.
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Theorem 2.2.3 Given a finite-dimensional Hilbert space with an inner product and a known

basis {|βj〉} that is not necessarily orthonormal, one can always construct an orthobasis {|ϕj〉}
by a systematic procedure known as the Gram–Schmidt process.

We prove this constructively, by giving the steps of the Gram–Schmidt process:

Step 1. Choose any ket in the original basis; call it |β1〉. The first member of the orthobasis will

be the re-scaled version of this ket with unit norm, |ϕ1〉 = |β1〉 /
√
〈β1|β1〉.

Step 2. Choose a second ket |β2〉 from the original basis set. From it, define a new vector |ϕ̃2〉 =
|β2〉 − |ϕ1〉 〈ϕ1|β2〉, which we can describe in words as subtracting off the projection along the

vector |ϕ1〉. Thus |ϕ̃2〉 is orthogonal to |ϕ1〉 by construction. Now take |ϕ2〉 = |ϕ̃2〉 /
√
〈ϕ̃2|ϕ̃2〉,

which has norm 1. This is the second member of the orthobasis we are constructing.

Step 3. Choose a third ket |β3〉 from the original basis set. From it, define a new vector |ϕ̃3〉 =
|β3〉−|ϕ1〉 〈ϕ1|β3〉−|ϕ2〉 〈ϕ2|β3〉. In words, we are subtracting off the projections along both of the

vectors |ϕ1〉 and |ϕ2〉. This means that |ϕ̃3〉 is orthogonal to both |ϕ1〉 and |ϕ2〉 by construction,

so again we just need to re-scale it to have unit norm. Therefore, define |ϕ3〉 = |ϕ̃3〉 /
√
〈ϕ̃3|ϕ̃3〉

as the third member of the orthobasis.

. . .

Step n. Take the nth ket |βn〉 from the original basis set, and subtract off the projections along

all of the previously found orthobasis kets, by defining

|ϕ̃n〉 = |βn〉 −
n−1∑

j=1

|ϕj〉 〈ϕj|βn〉 . (2.2.27)

By construction, this is orthogonal to all of the previously found kets |ϕj〉. It is not null, because
of the linear independence of the original basis. So, to include it in the orthobasis, we only need

to re-scale it to also have unit norm,

|ϕn〉 = |ϕ̃n〉 /
√
〈ϕ̃n|ϕ̃n〉. (2.2.28)

Continuing in this way, when we are finished with Step N , where N is the dimension of the

Hilbert space, we will have constructed the full orthobasis {|ϕn〉}. This concludes the proof.

Suppose that we have chosen an orthobasis {|ϕj〉}. To obtain the components vj of an

arbitrary ket

|v〉 =
∑

j

vj |ϕj〉 , (2.2.29)

we can take the inner product with |ϕk〉, resulting in

〈ϕk|v〉 =
∑

j

vj 〈ϕk|ϕj〉 = vk, (2.2.30)
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where the last equality relies on the orthonormality property eq. (2.2.13). Thus, the components

of the ket are simply given by its inner products with the orthobasis vectors.

2.3 Dual vector spaces

Given a Hilbert space of kets with an inner product, it is useful to construct another complex

linear vector space, called the dual vector space. Dual vectors are defined mathematically

as linear maps from the space of kets to the complex numbers. For each ket |v〉, there is a

corresponding dual vector denoted 〈v|, and we write the association as

vector dual vector

|v〉 → 〈v| . (2.3.1)

Specifically, the dual vector 〈v| is defined to map each ket |w〉 to the complex number given by

the inner product of the ket |w〉 with the corresponding ket |v〉,

〈v|
(
|w〉
)
≡ 〈v|w〉 . (2.3.2)

A dual vector defined in this way is also called a bra, a silly bit of terminology devised long ago

so that the inner product is a “bra-ket”, or bracket. From the properties of the inner product,

one can easily show that the bra associated with a linear combination of kets is

vector dual vector

c1 |v〉+ c2 |w〉 → c∗1 〈v|+ c∗2 〈w| . (2.3.3)

A key thing that one must remember is to take the complex conjugates of the coefficients.

The bra 〈v| is also known as the Hermitian adjoint of the corresponding ket |v〉, and vice

versa. To understand the relation better, it is useful to consider the following linear algebra

analogy: kets are like complex N -dimensional column vectors, and bras are like complex N -

dimensional row vectors, with

v =




v1
v2
...
vN


 , v† =

(
v∗1 v∗2 · · · v∗N

)
. (2.3.4)

The fact that a dual vector maps vectors to complex numbers is just expressed as

v†w =
∑

k

v∗kwk. (2.3.5)

As we will discuss more fully in section 2.5, this is not just an analogy; if one has chosen an

orthobasis {|ϕk〉}, then wk = 〈ϕk|w〉 are the components of the ket |w〉, while v∗k = 〈v|ϕk〉 are
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the components of the bra 〈v|. However, the bra-ket notation has the great virtue of being

independent of any choice of orthobasis.

According to the dual vector definition, for each ket |w〉, there is always a unique corre-

sponding bra 〈w|. If the Hilbert space has a finite dimension, then there is also a unique ket

for every bra, and the correspondence is one-to-one. However, in the infinite-dimensional case

it is possible to construct bras that have no associated ket within the Hilbert space, although

this fact is of little practical consequence. For example, consider the generalized kets like those

that that satisfy the Dirac orthonormality condition eq. (2.2.15); as we have noted, these have

infinite norm and are therefore not part of the physical Hilbert space. The corresponding bras

are nevertheless well-defined maps from the physical Hilbert space to the complex numbers, and

so are perfectly respectable members of the dual vector space.

You may find it useful to think of kets (vectors) as representing possible states of a system,

while bras (dual vectors) represent possible questions that one may ask about the state. For

example, we can interrogate the actual state of a system |ψ〉 about its overlap with another

possible state |χ〉. Then the question that we are asking is associated with the dual vector 〈χ|.
As we will discuss further at the end of section 3.2, the answer that one receives is that the

probability of finding the system in the state |χ〉 is nothing other than |〈χ|ψ〉|2, assuming that

both |ψ〉 and |χ〉 were normalized to 1.

2.4 Operators

An operator A is a map from the space of kets to itself. This means that the result of acting

with A on any ket |v〉 must be another ket in the Hilbert space, which we can call either |Av〉, or
equivalently, A |v〉. As a notational convention, we will usually use capital letters to represent

operators.

In quantum mechanics, we are almost always interested in linear operators, which obey

A
(
c1 |v〉+ c2 |w〉

)
= c1A |v〉+ c2A |w〉 . (2.4.1)

Because there is a bra associated to each ket, a linear operator also maps the dual space to

itself. Specifically, for each bra 〈w|, the bra 〈w|A resulting from the operation of A is defined

by the relation

(
〈w|A

)
|v〉 = 〈w|

(
A |v〉

)
. (2.4.2)

Adopting this definition, it follows that the operation of A on the dual space also obeys linearity,

(
c1 〈v|+ c2 〈w|

)
A = c1 〈v|A+ c2 〈w|A. (2.4.3)
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Because of the equality of the two sides of eq. (2.4.2), we can define the matrix element of

the operator A between |v〉 and 〈w| as their common value 〈w|A|v〉, without parentheses.
Addition and subtraction of linear operators and multiplication by complex numbers are

defined in the obvious ways, such that

(
c1A + c2B

)
|v〉 = A

(
c1 |v〉

)
+B

(
c2 |v〉

)
(2.4.4)

The product of two operators A and B is defined by

(AB) |v〉 ≡ A
(
B |v〉

)
= AB |v〉 . (2.4.5)

As before, the parentheses make no difference and can be omitted, as indicated in the last

equality. Operators also obey associativity; for any three operators A, B, and C,

(AB)C = A(BC). (2.4.6)

However, the order of operators matters, so that BA and AB are different, in general. One

therefore defines the commutator of A and B as

[A,B] = AB − BA (2.4.7)

and the anticommutator by

{A,B} = AB +BA. (2.4.8)

The simplest example of a linear operator is the identity operator I, defined by

I |v〉 = |v〉 , 〈v| I = 〈v| (2.4.9)

for every |v〉. The inverse of an operator A, if it exists, is denoted A−1, and is defined by

A−1A = I, (2.4.10)

from which it follows that

AA−1 = I (2.4.11)

as well. However, it is important to recognize that not all operators A have an inverse.

There is an enormously useful way of writing the identity operator, given an orthobasis.

Equations (2.2.29) and (2.2.30) can be combined to write

|v〉 =
∑

j

|ϕj〉〈ϕj|v〉 . (2.4.12)
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Since this is true for all |v〉, one has simply

I =
∑

j

|ϕj〉〈ϕj | . (2.4.13)

This extraordinarily important identity is known as the completeness relation, or the closure

relation. We will use it very often.

If |v〉 and |w〉 are any two kets, then

A = |v〉〈w| (2.4.14)

is a linear operator, sometimes called the outer product of |v〉 and 〈w|. It is defined by its

action on any other ket |x〉,

A |x〉 =
(
|v〉〈w|

)
|x〉 = |v〉

(
〈w|x〉

)
. (2.4.15)

As a useful special case, we can form the projection operator Pv onto a ket |v〉, defined by

Pv |w〉 = |v〉
〈v|w〉
〈v|v〉 (2.4.16)

for every ket |w〉 that it acts on. This is equivalently written as

Pv =
|v〉〈v|
〈v|v〉 . (2.4.17)

If |v〉 has norm 1, then one can simply write

Pv = |v〉〈v| . (2.4.18)

Projection operators have the property

P 2
v = Pv. (2.4.19)

Intuitively, the projection operator Pv acts on a ket by throwing away the part orthogonal to

|v〉, and keeping the rest intact; doing this twice has the same effect as doing it once. As an

aside, this is a good example of an operator that has no inverse (with the trivial exception of

the case that the state space is one-dimensional). The reason is that when Pv acts on any ket

|w〉 that is orthogonal to |v〉, it yields 0 (the null ket), and then there is no way to resurrect |w〉
by acting with another linear operator, the purported inverse.

The completeness relation eq. (2.4.13) can now be equivalently expressed as the statement

that the identity operator is equal to

I =
∑

j

Pϕj
, (2.4.20)
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which is the sum over the projection operators for all of the members of an orthobasis, spanning

the whole Hilbert space. Similarly, one can project onto a subspace of the Hilbert space, by

summing over projection operators for only a subset of the orthobasis vectors.

For any linear operator A, the Hermitian adjoint (or just adjoint) A† can be defined by

the way that it acts on dual vectors,

〈v|A† = 〈Av| , (2.4.21)

where 〈Av| is the bra corresponding to the ket |Av〉 = A |v〉. Consider a generic matrix element

involving A†,

〈w|A†|v〉 = 〈Aw|v〉 = (〈v|Aw〉)∗ , (2.4.22)

where the second equality has made use of eq. (2.2.1). This we can restate as the useful relation

〈w|A†|v〉 =
(
〈v|A|w〉

)∗
. (2.4.23)

It is left as an exercise to use the definition to show the following facts. The adjoint of the

operator A = |w〉〈v| is given by

(
|w〉〈v|

)†
= |v〉 〈w| . (2.4.24)

The adjoint of the operator cI, where c is a complex number, is (cI)† = c∗I. The adjoint of a

product of operators is

(AB)† = B†A†, (2.4.25)

where the order matters.

It is useful to generalize the concept of taking the adjoint to whole expressions and equalities

involving kets, bras, and operators. Given any expression, define the adjoint of it according to

the following rules:

• Substitute A→ A† for all operators.

• Substitute c→ c∗ for all complex numbers.

• Substitute |v〉 ↔ 〈v| for all kets and bras.

• Reverse the order of kets, bras, and operators within each term.

(Of course, the complex number factors of any term can be written in any desired order.) Then

one can show that the adjoint of any valid equality will also be a valid equality. Equations (2.2.1),
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(2.4.23), (2.4.24) and (2.4.25) are examples of this. As a more random example, if one has an

equation

ABC |v〉 〈v|w〉 + B |x〉 = c |z〉 , (2.4.26)

where A, B, and C are operators and c is a complex number, then one must also have

〈w|v〉 〈v|C†B†A† + 〈x|B† = c∗ 〈z| . (2.4.27)

An operator A is called Hermitian (or self-adjoint) if it is the same as its adjoint, A† = A.

Hermitian operators are particularly important in quantum mechanics, where they are associated

with physically measurable quantities. The product of two Hermitian operators is Hermitian if,

and only if, they commute. An anti-Hermitian operator is one that satisfies A† = −A. Note

that any operator can be written as the sum of a Hermitian part and an anti-Hermitian part,

A =

(
A+ A†

2

)
+

(
A−A†

2

)
. (2.4.28)

It is also not hard to show that for two Hermitian operators A and B, the commutator is

anti-Hermitian, so that i[A,B] is Hermitian.

An operator U is unitary if its adjoint is equal to its inverse, so U † = U−1. The product of

two unitary operators is always unitary. In quantum mechanics, unitary operators are associated

with a change of orthobasis, as we will discuss in the next section. They often appear in the

context of defining or exploiting the symmetries of the physical system. The time evolution of

a system will also be associated with a unitary operator.

It is possible to define operators that are functions of other operators. The most common

example of this that we will encounter in quantum mechanics is the exponentiation of an opera-

tor. If A is an operator, then the operator exp(A) can be defined in two different but equivalent

ways, which are useful in different circumstances. Both treat A just as if it were an ordinary

number, exploiting the facts that it obviously commutes with itself, and no other operators are

involved. First, one can define it as the usual limit,

eA = lim
N→∞

(
I +

A

N

)N
. (2.4.29)

Alternatively, one can define it as a power series expansion:

eA =
∞∑

n=0

An

n!
, (2.4.30)

where of course A0 = I. Some useful results involving exponentials of operators follow.
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Theorem 2.4.1 For any two operators A and B such that [A, [A,B]] = 0,

[
eA, B

]
= eA[A,B]. (2.4.31)

The proof can be obtained by first deriving
[
An, B

]
= nAn−1[A,B], and then using the power

series representation of eA. We also have the following special case of the Baker–Campbell–

Hausdorff formula:

Theorem 2.4.2 (Baker–Campbell–Hausdorff, special case) For any two operators A and

B such that [A,B] commutes with both A and B, then

eAeB = eA+Be
1

2
[A,B]. (2.4.32)

The proof is left as an exercise. These theorems hold in particular if the commutator of A and

B is proportional to the identity operator.

From the series definition eq. (2.4.30), taking A = iB where B is Hermitian, it is also not

too difficult to show:

Theorem 2.4.3 If B is a Hermitian operator, then the operator exp(iB) is unitary.

Again the proof is left as an exercise.

2.5 Matrix representations of operators

Suppose we have selected an orthobasis {|ϕj〉}, and consider two kets |v〉 , |w〉 given as

|v〉 =
∑

j

vj |ϕj〉 , |w〉 =
∑

j

wj |ϕj〉 , (2.5.1)

where vj and wj are their components in the chosen orthobasis. The inner product can be

written as

〈w|v〉 =
∑

j,k

w∗jvk 〈ϕj|ϕk〉 =
∑

j

w∗jvj =
(
w∗1 · · · w∗N

)


v1
...
vN


 , (2.5.2)

where the second equality was obtained using the orthonormality property eq. (2.2.13). In

the case of a Hilbert space with finite dimension N , we can therefore consider the bra 〈w| as
associated with a row vector of complex numbers, and the ket |v〉 with a column vector,

〈w| ↔
(
w∗1 · · · w∗N

)
, |v〉 ↔



v1
...
vN


 . (2.5.3)
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The double arrow notation is used to indicate that the bra and ket are being represented by

the corresponding row and column vectors. However, it is important to remember that while

this representation depends on the choice of basis, the bra and ket themselves exist as abstract

objects independent of the choice of basis.

Given an operator A, one can construct a matrix representation for it corresponding to the

orthobasis {|ϕj〉}. We start with

A |v〉 = A
∑

k

vk |ϕk〉 =
∑

k

vkA |ϕk〉 . (2.5.4)

Now taking the inner product with a basis ket |ϕj〉 gives

〈ϕj|A|v〉 =
∑

k

〈ϕj|A|ϕk〉 vk. (2.5.5)

We therefore define the N ×N complex matrix with elements

Ajk = 〈ϕj|A|ϕk〉 , (2.5.6)

so that the components of

|v′〉 = A |v〉 (2.5.7)

are

v′j = 〈ϕj|v′〉 =
∑

k

Ajkvk, (2.5.8)

or, in matrix form,


v′1
...
v′N


 =



A11 · · · A1N
...

. . .
...

AN1 · · · ANN






v1
...
vN


 . (2.5.9)

Thus, we complete the correspondence of eq. (2.5.3) by writing, for any operator A, the matrix

representation

A ↔



A11 · · · A1N
...

. . .
...

AN1 · · · ANN


 , (2.5.10)

with the orthobasis matrix elements given by eq. (2.5.6).

It is often convenient to dispense with formalities by replacing the ↔ symbol in equations

like (2.5.3) and (2.5.10) with an = symbol. However, again we emphasize that the kets |v〉, bras
〈w|, and operators A are objects that are conceptually independent of the choice of orthobasis,
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while their components vj , w
∗
j , and Ajk do depend on the choice of orthobasis, and will be

different if a different orthobasis is used.

The matrix representation for a product of operators AB is given by

(AB)jk =
∑

n

AjnBnk. (2.5.11)

The proof of this is an almost trivial consequence of the completeness relation eq. (2.4.13),

because it can also be read as 〈ϕj|AB|ϕk〉 =
∑

n 〈ϕj |A|ϕn〉 〈ϕn|B|ϕk〉. It is also not difficult

to show that the orthobasis matrix elements of an operator A and its Hermitian adjoint A† are

related by (A†)jk = (Akj)
∗.

Many operator relations and properties are easiest to see by using the matrix representation

associated with an appropriately chosen orthobasis, using the tools of linear algebra. For in-

stance, a Hermitian (or unitary) operator A is represented by a Hermitian (or unitary) matrix

with elements Ajk. The matrix representation of A−1, if it exists, is equal to the inverse of the

matrix representation of A. It is a standard result in linear algebra that A−1 exists if and only

if the determinant of the matrix A is non-zero,

Det(A) 6= 0. (2.5.12)

In that case, the inverse matrix for A is

A−1 =
1

Det(A)
cof[AT ] (2.5.13)

where cof[AT ] is the so-called co-factor matrix of the transpose of the matrix A. For a general

n× n matrix B, the co-factor matrix is defined by

(cof[B])jk = (−1)j+kMjk (2.5.14)

where the minor Mjk is equal to the determinant of the (n − 1)× (n − 1) submatrix obtained

from B by deleting the jth row and the kth column.

A unitary operator, as defined in the previous section, satisfies

U †U = UU † = I. (2.5.15)

The components of the matrix representation of U in an orthobasis {|ϕk〉},

U =




U11 U12 · · · U1N

U21 U22 · · · U2N
...

...
. . .

...
UN1 UN2 · · · UNN


 , (2.5.16)
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obey the rule

Ujk = jth component of |ϕ′k〉, (2.5.17)

where

|ϕ′k〉 = U |ϕk〉 . (2.5.18)

Now, using eq. (2.5.15), it is not too difficult to show that the set {|ϕ′k〉} defined in this way is

another orthobasis. From eqs. (2.5.16) and (2.5.17), we see that the components of the elements

of the new orthobasis {|ϕ′k〉} are equal to the the columns of the matrix representation of U in

the original orthobasis. In this sense, a unitary operator U performs a change of orthobasis,

which can be thought of as a complex rotation in the Hilbert space. The operator U † performs

the inverse change of basis,

|ϕk〉 = U † |ϕ′k〉 , (2.5.19)

and the bras for the two orthobases are related by

〈ϕ′k| = 〈ϕk|U †, 〈ϕk| = 〈ϕ′k|U. (2.5.20)

Conversely, given any two orthonormal bases {|ϕk〉} and {|ϕ′k〉}, the inner products are the

elements of a unitary matrix,

〈ϕj|ϕ′k〉 = 〈ϕj|U |ϕk〉 = Ujk. (2.5.21)

To verify directly that U as defined by eq. (2.5.21) is indeed unitary, one can use the completeness

relation eq. (2.4.13) to show

∑

n

U∗njUnk = δjk, (2.5.22)

or, rewriting,

∑

n

(
U †
)
jn
Unk = δjk. (2.5.23)

This expresses the unitarity of the matrix representation of the operator U , and is equivalent to

the operator equation (2.5.15). Also,

|Det(U)| = 1, (2.5.24)

follows from the general linear algebra facts that Det(AB) = (DetA)(DetB) and Det(A†) =

(DetA)∗, for matrices A,B.
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An important feature of such a unitary change of basis is that it preserves inner products.

To see this, consider the transformation†

|v〉 → |v′〉 = U |v〉 , (2.5.25)

|w〉 → |w′〉 = U |w〉 , (2.5.26)

so that we have performed the same complex rotation on both |v〉 and |w〉. Then

〈w|v〉 → 〈w′|v′〉 = 〈w|U †U |v〉 = 〈w|v〉 , (2.5.27)

so that inner products are unaffected by a change of orthobasis.

We can also see how the unitary change of basis is realized on the matrix elements of any

operator A. For any two kets |v〉 and |w〉,

〈w′|A|v′〉 = 〈w|U †AU |v〉 . (2.5.28)

If we now define a transformation of the operator A according to

A → A′ = UAU †, (2.5.29)

to go along with eqs. (2.5.25) and (2.5.26), then

〈w′|A′|v′〉 = (〈w|U †)(UAU †)(U |v〉) = 〈w| (U †U)A(U †U) |v〉 = 〈w|A|v〉 . (2.5.30)

In words, the matrix element for the transformed states of the transformed operator A′ is the

same as the original matrix element of A.

Functions of operators are often easiest to deal with using their matrix representations. If

the operator A has a matrix representation that is diagonal in some appropriate basis,

A ↔ diag(a1, a2, . . . , aN), (2.5.31)

then immediately from the series definition of eq. (2.4.30), with A replaced by iA, one finds

exp(iA) ↔ diag(eia1 , eia2 , . . . , eiaN ). (2.5.32)

Also, if in some other basis the powers of A obey some recurrence relation, then the series for

exp(iA) can often be resummed in the matrix representation, even if it is not diagonal. As an

example, suppose A has matrix representation

A ↔ a

(
0 1
1 0

)
, (2.5.33)

†Here, the arrow “→” can be read as “transforms to”.
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then we recognize that A2 = a2I, and so the unitary operator eiA has matrix representation,

obtained by separating the even powers of A from the odd powers of A,

∞∑

n=0

(ia)2n

(2n)!

(
1 0
0 1

)
+

∞∑

n=0

(ia)2n+1

(2n+ 1)!

(
0 1
1 0

)
(2.5.34)

or, summing each series,

exp(iA) ↔
(
cos(a) i sin(a)
i sin(a) cos(a)

)
. (2.5.35)

2.6 Eigenvalues and eigenvectors

In quantum mechanics, we will often need to solve eigenvalue problems. If, for some operator

A, we can find a complex number |α〉 and a non-null ket |v〉 such that

A |v〉 = α |v〉 , (2.6.1)

then α is called the eigenvalue and |v〉 is the corresponding eigenvector or eigenket, associ-

ated to the eigenstate of A. When eq. (2.6.1) holds, then it follows immediately that

〈v|A† = α∗ 〈v| , (2.6.2)

or, in words, 〈v| is an eigenbra of A†, with eigenvalue α∗.

The eigenvalue problem is to find all solutions for both α and |v〉 as a pair, given A.

Rewriting eq. (2.6.1) as

(A− αI) |v〉 = 0, (2.6.3)

we see that for a solution with a particular α to exist, the operator (A− αI)−1 must not exist;

otherwise, we could act with it on both sides to discover that |v〉 could only be the null ket, in

contradiction of the assumption.

If the Hilbert space is finite dimensional, we can go to the matrix representation to find that

a solution for α must satisfy

Det(A− αI) = 0. (2.6.4)

This is called the characteristic equation, and the left side is a polynomial of degree N , the same

as the dimension of the Hilbert space. The fundamental theorem of algebra states that this

always has exactly N complex solutions, α1, . . . , αN , but some of them may be repeated. The

integer number of times a particular eigenvalue αn is repeated in the list is called its degeneracy,

and we will denote it gαn .
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After the eigenvalues αn have been found, for each of them we can then solve

(A− αnI) |vn〉 = 0 (2.6.5)

for the corresponding eigenkets |vn〉. If a particular eigenvalue αn has degeneracy gαn , then

there will be a set of gαn linearly independent eigenkets |vn〉 with that eigenvalue. Sometimes

the solution of eq. (2.6.5) can be done by inspection, sometimes it will require linear algebra,

and in still other cases it will involve solving some differential equation(s). It is often not feasible

to solve it exactly, which makes life interesting and necessitates approximation methods. In any

case, note that if |vn〉 satisfies the equation, then so does c |vn〉 for every complex constant c.

That constant can always be chosen, for each eigenket, to normalize it as desired. Even after

doing so, the complex phase of each eigenket remains an arbitrary choice.

The most trivial example is the case that A = I, the identity operator. Since I |v〉 = |v〉,
every non-null ket |v〉 is an eigenket, and the corresponding eigenvalue is 1.

Another simple case is the projection operator for a ket |w〉, as introduced in eq. (2.4.17):

Pw =
|w〉〈w|
〈w|w〉 . (2.6.6)

Then the equation Pw |v〉 = α |v〉 becomes

〈w|v〉
〈w|w〉 |w〉 = α |v〉 . (2.6.7)

There are two ways that this eigenvalue equation can be satisfied. If 〈w|v〉 6= 0, then |v〉 must

be proportional to |w〉. Indeed, any |v〉 = c |w〉, where c is any non-zero complex number, is a

solution, and the corresponding eigenvalue is α = 1. The second way to satisfy the equation is

if 〈w|v〉 = 0, which then implies α = 0. So, any ket |v〉 orthogonal to |w〉 is an eigenket, with

α = 0 as the eigenvalue. These are the only solutions to the eigenvalue problem for Pw.

As another example, take a Hilbert space that is spanned by an orthobasis of three kets,

which we will call |a〉, |b〉, and |c〉. Consider an operator Rθ, which depends on a continuous

parameter θ, and is defined by

Rθ |a〉 = cos(θ) |a〉+ sin(θ) |b〉 , (2.6.8)

Rθ |b〉 = − sin(θ) |a〉+ cos(θ) |b〉 , (2.6.9)

Rθ |c〉 = |c〉 . (2.6.10)

Because we have specified how Rθ acts on each member of the orthobasis, it is completely

defined. We can now adopt a representation associated with this orthobasis, so that

|a〉 ↔



1
0
0


 , |b〉 ↔



0
1
0


 , |c〉 ↔



0
0
1


 , (2.6.11)
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and

〈a| ↔
(
1 0 0

)
, 〈b| ↔

(
0 1 0

)
, 〈c| ↔

(
0 0 1

)
. (2.6.12)

The matrix representation of Rθ in this orthobasis is,† by applying eqs. (2.5.6) and (2.5.10),

Rθ ↔



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1


 . (2.6.13)

This is a unitary matrix, and R−1θ = R†θ = R−θ = RT
θ , where the last equality follows because it

is a real matrix. The change of basis produced by Rθ is a rotation in the |a〉 , |b〉 subspace.
To find the eigenvalues and eigenkets, first note that the characteristic equation is

Det(Rθ − αI) = (1− 2 cos(θ)α+ α2)(1− α) = 0, (2.6.14)

which has eigenvalue solutions

α = eiθ, e−iθ, 1. (2.6.15)

These are non-degenerate, and it is not hard to solve (Rθ − Iα) |V 〉 = 0 in matrix form for the

corresponding eigenvectors. The results are

1√
2




1
−i
0


 ↔ 1√

2
(|a〉 − i |b〉) for α = eiθ, (2.6.16)

1√
2




1
i
0



 ↔ 1√
2
(|a〉+ i |b〉) for α = e−iθ, (2.6.17)



0
0
1


 ↔ |c〉 for α = 1. (2.6.18)

We have chosen the multiplicative constants in front of these so that each eigenket has norm 1.

There remains a freedom to choose each of the phases of the eigenkets; this can only be resolved

by arbitrary choice.

We will now discuss several theorems regarding eigenvalues and eigenkets that are important

for quantum mechanics.

Theorem 2.6.1 (Superposition principle) If a linear operator A has some eigenkets |vn〉
with a common eigenvalue α, then any complex linear combination of them,

∑
n cn |vn〉, is also

an eigenket of A, with the same eigenvalue α, unless it is the null ket.

†Beware of a common mistake: it is tempting to scan the form of eqs. (2.6.8)–(2.6.10) and incorrectly write
down the transpose of the matrix representation eq. (2.6.13). For similar examples, see eqs. (2.6.34) and (2.6.57).
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The proof is an immediate consequence of the definitions, including the assumed linearity of A.

Theorem 2.6.2 (Common eigenvectors for commuting operators) If operators A and

B commute, and |v〉 is an eigenket of A with eigenvalue α, then (i) B |v〉 is also an eigenket of

A with the same eigenvalue α, and (ii) if α is non-degenerate, then |v〉 is also an eigenket of B.

Proof: To establish (i) takes only one line,

A(B |v〉) = AB |v〉 = BA |v〉 = Bα |v〉 = α(B |v〉). (2.6.19)

The second equality is where we used that A and B commute. To prove (ii), note that the

assumption that α is non-degenerate simply means that the corresponding eigenket is unique up

to a multiplicative constant. So, from (i), B |v〉 = β |v〉 for some constant β, which is therefore

the eigenvalue of B for |v〉.

Theorem 2.6.3 All eigenvalues α of a Hermitian operator A are real.

Proof: Let A |v〉 = α |v〉. Taking the inner product with |v〉, we have 〈v|A|v〉 = α 〈v|v〉 . However,
we also have 〈v|A|v〉 = 〈v|A†|v〉 = (〈v|A|v〉)∗ = α∗ 〈v|v〉 , where the first equality made use of

the assumption that A is Hermitian, and the second employs eq. (2.4.23). Combining these

expressions gives

(α− α∗) 〈v|v〉 = 0, (2.6.20)

which establishes that α = α∗, because |v〉, being an eigenket, is not null.

In general, a selection rule is a statement that some matrix element vanishes under certain

specified conditions. The following theorem is an example.

Theorem 2.6.4 (Matrix element selection rule) If A is a Hermitian operator and B is an

operator that commutes with A, and A has eigenkets |v1〉 and |v2〉 with respective eigenvalues

α1 6= α2, then 〈v1|B|v2〉 = 0.

Proof: Since A and B commute, AB and BA are the same operator, so

〈v1|AB|v2〉 − 〈v1|BA|v2〉 = 0. (2.6.21)

Now we can use A |v2〉 = α2 |v2〉 on the second term, and use eq. (2.6.2), which says 〈v1|A =

α∗1 〈v1|, on the first term, to get

(α1 − α2) 〈v1|B|v2〉 = 0, (2.6.22)

where we have also used Theorem 2.6.3 which implies α∗1 = α1, since A is Hermitian. Now, since

α1 6= α2 by assumption, the matrix element 〈v1|B|v2〉 must vanish.
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Theorem 2.6.5 (Inner product selection rule) If A is a Hermitian operator with eigenkets

|v1〉 and |v2〉 with different eigenvalues α1 6= α2, then the eigenkets are orthogonal, 〈v1|v2〉 = 0.

The proof follows immediately as a special case of Theorem 2.6.4, by taking B = I.

The next result establishes a useful connection between a Hermitian operator and a corre-

sponding orthobasis for the Hilbert space:

Theorem 2.6.6 (Orthobasis of eigenkets of a Hermitian operator) If A is a Hermitian

operator on a Hilbert space with finite dimension N , then one can find a set of its eigenkets

that form an orthobasis. The resulting orthobasis elements corresponding to non-degenerate

eigenvalues of A are unique (up to multiplication by complex phases).

Proof: The characteristic equation for the eigenvalue problem for A (using its matrix represen-

tation in any orthobasis) has N solutions, according to the fundamental theorem of algebra.

The eigenkets corresponding to non-degenerate eigenvalues are orthogonal (according to The-

orem 2.6.5) and non-null (from the definition of an eigenket), and so can be normalized to be

orthonormal. For each eigenvalue α with degeneracy gα > 1, one can use the Gram–Schmidt

process to construct (non-uniquely) a set of orthonormal kets which have the same eigenvalue

α due to the linearity of the eigenvalue problem, and which are all orthogonal to the kets cor-

responding to the other eigenvalues (again using Theorem 2.6.5). The union of all of the kets

found in this way are orthonormal with each other, and there are N of them, so they form an

orthobasis for the whole Hilbert space.

Let us make some important comments on Theorem 2.6.6. First, it is often convenient to

adopt a notation such that the orthobasis eigenkets of A are named by using the corresponding

eigenvalue as a label. However, if the eigenvalue α is degenerate, then we need to introduce

another label uα, which we refer to as a degeneracy label, to distinguish the orthobasis kets

that have the same α. Thus, the eigenkets can be called |α, uα〉, and the eigenvalue equation is

written as

(A− αI) |α, uα〉 = 0, (2.6.23)

while the orthonormality condition reads

〈α′, u′α′|α, uα〉 = δα,α′ δuα,u′
α′ . (2.6.24)

In the orthobasis of eigenkets of A, the matrix representation of A will be diagonal, as follows

immediately from eq. (2.6.23), so that

A ↔ Adiag =




α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αN


 (2.6.25)
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in that basis.

Another useful comment on Theorem 2.6.6 is that if we form the matrix whose columns are

the components of the orthobasis eigenkets of A, then the result is a unitary matrix U . This

follows from the general discussion surrounding eqs. (2.5.16)–(2.5.23), if in that discussion we

let {|ϕk〉} be the “original” basis we are working in, and let the set {|ϕ′k〉} = {|α, uα〉} be the

orthobasis of eigenkets of A. Thus, we define the components of the matrix U according to the

rule that, in the original basis,

Ujk = 〈ϕj|U |ϕk〉 = 〈ϕj|ϕ′k〉
= jth component of (kth orthonormal eigenvector of A). (2.6.26)

The eigenvalue equation (2.6.23) can then be written as, by taking the inner product with 〈ϕn|,
∑

j

AnjUjk = αkUnk =
∑

l

Unl(δlkαl), (2.6.27)

or, in index-free matrix notation,

AU = UAdiag. (2.6.28)

Now, multiplying from the left by U †, we obtain

Theorem 2.6.7 (Diagonalization of Hermitian operators) The matrix representation of

a Hermitian operator A in an arbitrary orthobasis {|ϕk〉} is diagonalized by a unitary matrix U ,

according to

U †AU = Adiag, (2.6.29)

where U is specified in eq. (2.6.26), and Adiag is the matrix representation of the operator A in

the new orthobasis {|ϕ′k〉} consisting of its eigenvectors.

The trace of an operator in a finite-dimensional Hilbert space can be defined to be equal

to the trace of its matrix representation. For an operator A and any orthobasis {|ϕk〉},

Tr[A] =
∑

k

〈ϕk|A|ϕk〉 =
∑

k

Akk. (2.6.30)

It is left as a short exercise to show that the trace of an operator is independent of the choice

of orthobasis, and in particular is equal to the sum of its eigenvalues.

Let us do an extended example to illustrate some of the preceding results. Consider a Hilbert

space of dimension 3 with an operator A defined by its action on an orthobasis {|ϕ1〉, |ϕ2〉, |ϕ3〉},

A |ϕ1〉 = 3 |ϕ1〉 , (2.6.31)

A |ϕ2〉 = 4 |ϕ2〉 − i |ϕ3〉 , (2.6.32)

A |ϕ3〉 = i |ϕ2〉+ 4 |ϕ3〉 . (2.6.33)
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The matrix representation of A in this original orthobasis is, using eqs. (2.5.6) and (2.5.10),

A ↔




3 0 0
0 4 i
0 −i 4



 . (2.6.34)

Since the matrix representation is Hermitian, A is a Hermitian operator. The characteristic

equation for the eigenvalues α of A is Det(A− αI) = (3− α)(15− 8α+ α2) = 0, which yields

α = 3, 3, 5. (2.6.35)

These eigenvalues are real, as guaranteed by Theorem 2.6.3. For the non-degenerate eigen-

value α = 5, the solution of the matrix equation for the corresponding eigenvector gives, after

normalization and choice of an arbitrary phase, and conversion to ket language,

|5〉 = 1√
2
(|ϕ2〉 − i |ϕ3〉) . (2.6.36)

Note that we have named the eigenket after its eigenvalue. For the eigenvalue α = 3, the

degeneracy is 2, so there are two linearly independent eigenkets, which can be chosen to be

|3, 1〉 =
1√
2
(|ϕ2〉+ i |ϕ3〉) , (2.6.37)

|3, 2〉 = |ϕ1〉 . (2.6.38)

The second entry (1 or 2) on each α = 3 ket is a degeneracy label. These kets are automatically

orthogonal to |5〉, as promised by Theorem 2.6.5, but we had to make a choice of linear combina-

tion to make them orthonormal, since arbitrary linear combinations of |3, 1〉 and |3, 2〉 would not

be orthogonal to each other and would not have norm 1. In this example, the linear combination

that makes an orthobasis is not hard to find, but given any other (non-orthonormal) basis for

the degenerate eigenvalue subspace, the Gram–Schmidt procedure of Theorem 2.2.3 can be used

to construct an orthobasis.

Our orthobasis of eigenkets of A is related to the original orthobasis by a unitary transfor-

mation. Let us define an operator U by

U |ϕ1〉 = |5〉 , (2.6.39)

U |ϕ2〉 = |3, 1〉 , (2.6.40)

U |ϕ3〉 = |3, 2〉 . (2.6.41)

Now using eqs. (2.6.36)–(2.6.38), and applying eqs. (2.5.6) and (2.5.10) again, one finds the

matrix representation in the {|ϕ1〉 , |ϕ2〉 , |ϕ3〉} basis,

U ↔




0 0 1

1/
√
2 1/

√
2 0

−i/
√
2 i/

√
2 0


 , (2.6.42)
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which is indeed a unitary matrix.

Acting on eqs. (2.6.39)–(2.6.41) with U †, and using U †U = I, we get

U † |5〉 = |ϕ1〉 = |3, 2〉 , (2.6.43)

U † |3, 1〉 = |ϕ2〉 = (|5〉+ |3, 1〉) /
√
2, (2.6.44)

U † |3, 2〉 = |ϕ3〉 = i (|5〉 − |3, 1〉) /
√
2. (2.6.45)

The second equality in each of these equations follows by inverting eqs. (2.6.36)–(2.6.38) to solve

for |ϕ1〉, |ϕ2〉, and |ϕ3〉. The results provide the matrix representation of U † in the orthobasis

{|5〉 , |3, 1〉 , |3, 2〉}, by using eqs. (2.5.6) and (2.5.10),

U † ↔




0 1/

√
2 i/

√
2

0 1/
√
2 −i/

√
2

1 0 0



 . (2.6.46)

As a check, this matrix is indeed equal to the transpose conjugate of eq. (2.6.42). As promised

by eq. (2.6.29),

U †AU = Adiag =




5 0 0
0 3 0
0 0 3



 , (2.6.47)

where A, U , and U † on the left side are taken to be the matrices given by eqs. (2.6.34), (2.6.42),

and (2.6.46), respectively. Note that Adiag on the right side is the matrix representation of the

operator A in the orthobasis {|5〉 , |3, 1〉 , |3, 2〉}.
The choice of orthobasis made in eqs. (2.6.36)–(2.6.38) is not the unique one composed of

eigenkets of A, due to the superposition principle of Theorem 2.6.1. The most general orthonor-

mal pair of basis kets with A eigenvalue α = 3 is obtained using the freedom to do unitary

transformations within the degenerate eigenvalue subspace, and so is parameterized by two

complex numbers c, s, subject to the constraint |c|2 + |s|2 = 1,

|3, 1′〉 = c |3, 1〉+ s |3, 2〉 , (2.6.48)

|3, 2′〉 = −s∗ |3, 1〉+ c∗ |3, 2〉 . (2.6.49)

These kets have new degeneracy labels (1′, 2′) to distinguish this orthobasis from the unprimed

one with c = 1, s = 0. The change in orthobasis is brought about by another unitary operator

V , defined by

V |5〉 = |5〉 , (2.6.50)

V |3, 1〉 = |3, 1′〉 , (2.6.51)

V |3, 2〉 = |3, 2′〉 , (2.6.52)
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or, in a matrix representation in the basis {|5〉 , |3, 1〉 , |3, 2〉}, applying eqs. (2.5.6) and (2.5.10)

yet again,

V ↔



1 0 0
0 c −s∗
0 s c∗


 , (|5〉 , |3, 1〉 , |3, 2〉 basis). (2.6.53)

By combining the information in eqs. (2.6.36)–(2.6.38) and (2.6.48)–(2.6.52), one can also write

V |ϕ1〉 = c∗ |ϕ1〉 −
s∗√
2
|ϕ2〉 − i

s∗√
2
|ϕ3〉 , (2.6.54)

V |ϕ2〉 =
s√
2
|ϕ1〉+

1

2
(1 + c) |ϕ2〉+

i

2
(c− 1) |ϕ3〉 , (2.6.55)

V |ϕ3〉 = −i s√
2
|ϕ1〉+

i

2
(1− c) |ϕ2〉+

1

2
(1 + c) |ϕ3〉 , (2.6.56)

so that the matrix representation of V in the original orthobasis is

V ↔




c∗ s/
√
2 −is/

√
2

−s∗/
√
2 (1 + c)/2 i(1− c)/2

−is∗/
√
2 i(c− 1)/2 (1 + c)/2


 (|ϕ1〉 , |ϕ2〉 , |ϕ3〉 basis). (2.6.57)

The comparison of eqs. (2.6.53) and (2.6.57) illustrates the point that even though V is unam-

biguous as a Hilbert space operator, its matrix representation looks very different depending on

the orthobasis used.

We conclude this section by stating two useful theorems involving unitary operators, omitting

the proofs (which are not too difficult).

Theorem 2.6.8 The eigenvalues of a unitary operator U have magnitude 1.

Note that eq. (2.6.15) illustrates this.

Theorem 2.6.9 If an operator A has eigenvectors |αn〉 with eigenvalues αn, and U is a unitary

operator, then UAU † has eigenvectors U |αn〉 with the same eigenvalues αn.

This implies the important result that the eigenvalues of an operator do not depend on the

choice of basis we use to calculate them.

2.7 Observables

An operator A is an observable if it is Hermitian and its eigenkets form an orthobasis |α, uα〉,
which satisfies the orthonormality relation eq. (2.6.24), and the completeness relation

∑

α

gα∑

uα=1

|α, uα〉〈α, uα| = I. (2.7.1)
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Here, α are the eigenvalues with degeneracies gα, and uα are the degeneracy labels. For a

Hilbert space of finite dimension, the completeness part of this definition is redundant, following

automatically from Theorem 2.6.6. However it is not automatic for a Hermitian operator in an

infinite-dimensional Hilbert space; that is one reason why it must be included in the definition

here. The other reason is that we will later find it convenient to slightly generalize our definition

of an observable to include ordered sets of Hermitian operators, so that its eigenvalues can be

not just numbers, but ordered sets of numbers. (An example is the vector position operator in

three-dimensional space, which is really an ordered triple of three Hermitian operators X , Y ,

and Z.) In such cases, eq. (2.7.1) is again certainly not automatic. From a physical point of

view, the crucial requirement we are ensuring with eq. (2.7.1) is that if A is really supposed

to be an observable, then every state in the Hilbert space can always be expressed as a linear

combination of its eigenstates.

The way that eq. (2.7.1) is written assumes that the eigenvalues of A are countable and dis-

crete. If instead they are uncountable and continuous, then the orthonormality and completeness

conditions are of the Dirac type [compare to eq. (2.2.15)],

〈α′, u′α′|α, uα〉 = δ(α− α′) δuα,u′
α′ , (2.7.2)

∫
dα

gα∑

uα=1

|α, uα〉〈α, uα| = I, (2.7.3)

where the integral is over the range or ranges of α that occur as eigenvalues. Similarly, it is

also possible for the degeneracy label uα to be continuous, in which case the Kronecker δuα,u′
α′

is replaced by a Dirac delta function δ(uα − u′α′) and

gα∑

uα=1

is replaced by

∫
duα.

It is even possible for the eigenvalue α or the degeneracy label uα to have a spectrum that

includes both discrete (countable) and continuous (uncountable) components. In that case, the

orthonormality relations will include both Kronecker and Dirac deltas, and the completeness

relation will include both a sum and an integral. We will see an example of this when we study

the bound and unbound states of the hydrogen atom, in eqs. (10.2.11)-(10.2.13) and (10.2.22).

A particularly useful consequence of completeness follows from acting with A on both sides

of eq. (2.7.1). Then, evaluating A = α when acting on its eigenkets, we obtain the spectral

decomposition of an observable operator A,

A =
∑

α

gα∑

uα=1

α |α, uα〉〈α, uα| , (2.7.4)

with an obvious counterpart for continuous eigenvalues by replacing summation with integra-

tion. Solving problems in quantum mechanics is often the art of turning expressions involving
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operators into numbers. The spectral decomposition idea allows us to do this in a systematic

way. When we see an observable operator A appearing in a matrix element, a standard trick is

to insert a completeness sum directly before or after it, so as to replace A by a sum (or integral)

over its eigenvalues, as in eq. (2.7.4). Of course, a prerequisite for using this trick is to solve the

eigenvalue problem for A.

At the end of section 2.4, we mentioned that it is possible to define functions of operators,

and gave the most common example, that of an exponential of an operator. If we have solved

the eigenvalue problem for an observable A, completeness now gives us yet another way to define

a completely general function of it, F (A). For the case of discrete eigenvalues α, the spectral

decomposition of F (A) is

F (A) =
∑

α

gα∑

uα=1

F (α) |α, uα〉〈α, uα| , (2.7.5)

again with an obvious counterpart for the continuous case involving integration rather than

summation.

We next state a very useful theorem about commuting observables, which we will prove only

in the case of a Hilbert space of finite dimension.

Theorem 2.7.1 (Compatible Observables) If A and B are observables, and [A,B] = 0,

then there exists an orthobasis of kets that are eigenkets of both A and B. In other words, for

commuting observables A and B, there is an orthobasis in which their matrix representations

are both diagonal.

Proof: From the definition of an observable, we already know that we can find an orthobasis

of kets |α, uα〉 that are eigenkets of A. Furthermore, since [A,B] = 0, we know from Theorem

2.6.4 that whenever α 6= α′,

〈α′, u′α′|B|α, uα〉 = 0. (2.7.6)

Therefore, the matrix representation of B has a block-diagonal form,




Bα1
0 0 · · · 0

0 Bα2
0 · · · 0

0 0 Bα3
· · · 0

...
...

...
. . .

...
0 0 0 0 BαM



, (2.7.7)

where M ≤ N is the number of distinct eigenvalues αj of A, and the blocks Bαj
along the

diagonal represent the possibly non-zero entries, which are confined to the subspaces of the
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Hilbert space that have the same eigenvalues αj. Each Bαj
is a Hermitian gαj

× gαj
matrix,

where gαj
is the degeneracy† of αj , and has entries

〈αj , u′αj
|B|αj, uαj

〉 , (uαj
, u′αj

= 1, . . . , gαj
). (2.7.8)

Therefore, according to Theorem 2.6.7, each of the matrices Bαj
can be diagonalized by a change

of basis corresponding to a unitary operator. Each of these unitary operators acts non-trivially

only within the corresponding Bαj
block, and is the identity operator outside of that block.

After doing these basis transformations, we will be left in an orthobasis in which the operators

A and B are represented by diagonal matrices of the form

A = diag(α1, . . . , α1︸ ︷︷ ︸
gα1

times

, α2, . . . , α2︸ ︷︷ ︸
gα2

times

, · · · , αM , . . . , αM︸ ︷︷ ︸
gαM

times

) (2.7.9)

and

B = diag(βα1,1, . . . , βα1,gα1
, βα2,1, . . . , βα2,gα2

, · · · , βαM ,1, . . . , βαM ,gαM
), (2.7.10)

where the βαj ,n with n = 1, . . . , gαj
are the eigenvalues of the Bαj

sub-matrix. This is the desired

orthobasis that achieves the requirements of the theorem.

Even with two observables A and B, there can be unresolved degeneracies, by which we mean

that there can be more than one orthobasis ket with the same eigenvalues α and β. This raises the

question of how to tell apart the corresponding degenerate states. From a physics perspective, if

two states are genuinely distinct, then there must be some observable that distinguishes them.

This leads to the important concept of aComplete Set of Commuting Observables, called a

CSCO from here on. For any Hilbert space of states, a CSCO is a set of observables A,B,C, . . .

that all commute with each other, and whose common eigenkets form an orthobasis with no

degeneracies. Thus, we can write

A |α, β, γ, . . .〉 = α |α, β, γ, . . .〉 , (2.7.11)

B |α, β, γ, . . .〉 = β |α, β, γ, . . .〉 , (2.7.12)

C |α, β, γ, . . .〉 = γ |α, β, γ, . . .〉 , (2.7.13)

etc., where each of the eigenkets |α, β, γ, . . .〉 is uniquely determined by specifying its CSCO

eigenvalues. The eigenvalues of a CSCO are sometimes known as good quantum numbers.

For each one of the eigenvalue labels α, β, γ, . . ., the others can be viewed as degeneracy labels.

†Note that j = 1, . . . ,M , and

M∑

j=1

gαj
= N is the dimension of the Hilbert space.
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If we have a set of commuting observables, but the degeneracy in the eigenkets is not fully

eliminated, it means that we have not actually found a CSCO yet, and at least one more

observable (commuting with all of the others) can be found to add to the list. Conversely, if the

degeneracy has been fully eliminated by a list of commuting observables, then we have a CSCO;

there is no need to add more observables to the list, even if it is easy to find more observables

that commute with all of the others. As we will see in many examples, the number of observables

needed to form a CSCO is always finite and typically not enormous for quantum systems with

a fixed number of particles, even if the Hilbert space is infinite dimensional.

For a given quantum system, the choice of which operators to include in a CSCO is not

unique. For example, even in the case of a spin-less free particle moving in 3 dimensions, there

are an infinite number of different choices we can make for the CSCO, all of which must have

3 members. One CSCO choice turns out to be just the three spatial coordinates that specify

the position of the particle. Another CSCO choice consists of the three momentum components

of the particle. In some cases (those with rotational symmetry about some choice of origin),

still another CSCO choice is the Hamiltonian (total energy) of the particle together with two

operators associated with its angular momentum with respect to the origin. In general, the best

choice of CSCO depends on what physics questions we would like to answer. Furthermore, it is

often useful to be able to translate between the orthobases defined by different CSCOs.

Note that the word “complete” in CSCO does not have the same meaning as in the com-

pleteness relation. For a CSCO it is the operators that are complete, while for the completeness

relation it is the orthobasis that is complete. Also, the second C in CSCO can equivalently be

interpreted as standing for the word “compatible”. Observables are called compatible if they

commute with each other, and are called incompatible if they have a non-zero commutator.

2.8 Wavefunctions

In the preceding, we have been mainly concerned with matrix representations in a finite di-

mensional Hilbert space. Let us now consider in more detail the case of an observable with

a continuous spectrum of eigenvalues. A quintessential example is the position coordinate op-

erator X for a particle moving in one dimension. The eigenvalues and eigenkets of X will be

labeled as x and |x〉, respectively, so that the eigenvalue equation is

X |x〉 = x |x〉 . (2.8.1)

The physical interpretation of this is that if the state is |x〉, then the position of the particle is

known to be x, probably because it has just been measured to be there. The allowed values of

x form an uncountable, continuous set, perhaps −∞ < x <∞, or more generally a < x < b to
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take into account that the particle might be confined to some range. In the following, we will

assume the latter, in order to be more general, and reserve the option to take a → −∞ and

b→∞.

Since a particle measured to be at position x is not at any other position x′ at that precise

moment, the states |x〉 and |x′〉 are orthogonal. Furthermore, a measurement of the particle’s

position must return one of the allowed values. These two statements are made precise as a

special case of eqs. (2.7.2) and (2.7.3),

〈x|x′〉 = δ(x− x′), (2.8.2)
∫ b

a

dx |x〉〈x| = I. (2.8.3)

To check that this is consistent, and that δ(x−x′) in eq. (2.8.2) should really be the Dirac delta

function, consider an arbitrary ket |ψ〉 in the Hilbert space. Then we define

ψ(x) ≡ 〈x|ψ〉 (2.8.4)

to be the position wavefunction. The wavefunction ψ(x) can also be viewed as comprising

the components of the vector |ψ〉 in the position representation. Using the completeness

relation, we have

ψ(x) = 〈x|ψ〉 =
∫ b

a

dx′ 〈x|x′〉〈x′|ψ〉 =
∫ b

a

dx′ δ(x− x′)ψ(x′). (2.8.5)

The fact that this should hold for every function ψ(x) is just the definition of the Dirac delta

function δ(x− x′); see eq. (2.2.18).

Note that the kets |x〉 do not have finite norm, since 〈x|x〉 = δ(0) is not finite. This

means that they are really generalized kets in the sense defined earlier [see the paragraph after

eq. (2.2.18)], and are not associated with physical states in the Hilbert space, strictly speaking.

However, eqs. (2.8.3)–(2.8.5) show that they do satisfy the requirements of orthonormality and

completeness in the Dirac sense. Therefore, we will refer to the uncountable continuous set {|x〉}
as the position eigenstate orthobasis, despite the fact that they are only idealized limits of

physical states.

The inner product of two kets can be written in terms of an integral of the wavefunctions,

using the completeness relation, as

〈φ|ψ〉 =

∫ b

a

dx 〈φ|x〉〈x|ψ〉 =

∫ b

a

dx φ∗(x)ψ(x). (2.8.6)

In particular, the norm of a state can be written in the manifestly non-negative form

〈ψ|ψ〉 =

∫ b

a

dx |ψ(x)|2. (2.8.7)

53



For valid physical states, both of eqs. (2.8.6) and (2.8.7) should be finite, and the latter must be

non-zero. In other words, physical states correspond to wavefunctions that are normalizable.

This set of functions forms a Hilbert space. However, for physics purposes, there is a further

constraint that the wavefunctions must also be continuous. The reason for this is as follows.

The norm of a ket is not physically significant, but it is often most convenient to choose the

normalization of it so that it has norm 1. In particular, if the wavefunction for a single particle

is chosen to have unit norm,
∫ b
a
dx |ψ(x)|2 = 1, then |ψ(x)|2 can be interpreted as the probability

density, in the sense that the probability to find the particle between x and x+ dx is

dP(x) = |ψ(x)|2dx. (2.8.8)

This is known as the Born rule† for the probabilistic interpretation of the wavefunction. On

physical grounds, this probability density must be unambiguous, which means that it must be

the same for any limiting procedure to approach a given point x, implying continuity.

There is a one-to-one correspondence between kets |ψ〉 and their wavefunctions ψ(x) = 〈x|ψ〉.
Now consider the ket corresponding to the derivative of the wavefunction, dψ/dx. Let us write

|dψ/dx〉 = D |ψ〉 , (2.8.9)

which defines an operator D on the Hilbert space. We then have

〈x|D|ψ〉 = 〈x|dψ/dx〉 = dψ/dx. (2.8.10)

Using completeness gives a condition satisfied by the position-eigenket matrix elements of D,

dψ/dx =

∫ b

a

dx′ 〈x|D|x′〉〈x′|ψ〉 =
∫ b

a

dx′ 〈x|D|x′〉ψ(x′). (2.8.11)

We also have

dψ/dx =
d

dx

(∫ b

a

dx′ ψ(x′)δ(x− x′)
)

=

∫ b

a

dx′ ψ(x′)
d

dx
δ(x− x′). (2.8.12)

Comparing the final results in eqs. (2.8.11) and (2.8.12), we find

〈x|D|x′〉 =
d

dx
δ(x− x′). (2.8.13)

To check this, plug in ψ(x′) = δ(x′ − x′′), do the integrations, and then relabel x′′ → x′.

We now see that D cannot be an observable, because it is certainly not Hermitian, since

〈x′|D†|x〉 =
(
〈x|D|x′〉

)∗
=

d

dx
δ(x− x′) = − d

dx′
δ(x′ − x) = −〈x′|D|x〉 . (2.8.14)

†Max Born also came up with the Born approximation for scattering, which we will study in section 20.4. More
importantly, he was the grandfather of 1970’s and 1980’s pop music superstar and actress Olivia Newton-John.
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To obtain the third equality, we used the fact that δ(x−x′) is an even function of its argument.

Although D is not Hermitian, the minus sign at the end of eq. (2.8.14) suggests that it is

anti-Hermitian, and we can simply multiply by a factor of i or −i to make an observable. We

therefore define‡ the momentum operator,

P = −ih̄D, (2.8.15)

which could be Hermitian and thus a candidate to be an observable. However, since this is an

infinite-dimensional Hilbert space, and eq. (2.8.14) was derived using the technically ill-defined

derivatives of the Dirac delta function, it is prudent to be suspicious about the Hermiticity of

P . So, let us check.

From eq. (2.8.9), we have

P |ψ〉 = −ih̄ |dψ/dx〉 . (2.8.16)

Therefore, given any two kets |f〉 and |g〉, with wavefunctions 〈x|f〉 = f(x) and 〈x|g〉 = g(x),

〈g|P |f〉 =
∫ b

a

dx 〈g|x〉〈x|P |f〉 = −ih̄
∫ b

a

g(x)∗
d

dx
f(x), (2.8.17)

where the first equality uses completeness. Interchanging the roles of f and g, we also have

〈f |P |g〉 = −ih̄
∫ b

a

f(x)∗
d

dx
g(x). (2.8.18)

Therefore, the difference between P † and P , in an arbitrary matrix element, is

〈f |P †|g〉 − 〈f |P |g〉 = (〈g|P |f〉)∗ − 〈f |P |g〉 (2.8.19)

= ih̄

∫ b

a

dx g(x)
d

dx
f(x)∗ + ih̄

∫ b

a

dx f(x)∗
d

dx
g(x) (2.8.20)

= ih̄

∫ b

a

dx
d

dx
[f(x)∗g(x)] (2.8.21)

= ih̄[f(b)∗g(b)− f(a)∗g(a)]. (2.8.22)

So, for P to be a Hermitian operator, we must have

f(b)∗g(b) = f(a)∗g(a). (2.8.23)

This can be considered a condition on allowed wavefunctions (and their corresponding kets) in

the physical Hilbert space of states if P is to be an observable.

‡The sign and the h̄ normalization in the definition of P are mysteriously arbitrary at this point, but will
be justified in what follows; see the discussions following eq. (2.8.39) and surrounding eqs. (3.4.15) and (3.4.16).
For now, note that the presence of h̄ at least has the correct units to make P a momentum.
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For example, for a particle confined to a box with impenetrable walls at x = a and x = b,

eq. (2.8.23) is satisfied because all wavefunctions are required to obey ψ(a) = ψ(b) = 0. It is also

satisfied if all wavefunctions satisfy the weaker condition ψ(b) = eiϕψ(a), where ϕ is any fixed

constant. This can occur if X is interpreted to be some kind of periodic or angular coordinate

θ, defined for example on the interval 0 ≤ θ ≤ 2π; then if ϕ = 0 it amounts to the requirement

that wavefunctions are single-valued at the point θ = 0 which is identified with θ = 2π.

If the domain of x is infinite, with a = −∞ and b =∞, then things are trickier. In practical

solutions for wavefunctions, one sometimes finds that the condition ψ(x) → 0 at large spatial

distances is naturally satisfied. States with this property are called bound states. If either |f〉
or |g〉 is one of these, then eq. (2.8.23) is satisfied. However, there may also be other solutions that

do not obey this property, called unbound states or scattering states. These are very useful

idealized solutions to simple problems, but strictly speaking they are generalized ket states rather

than physical ones, since they cannot have finite norm. In fact, finiteness of the inner product

between true physical states |f〉 and |g〉 ensures that the products f(x)∗g(x) must approach 0 for

large |x|. The resolution is that in a more precise formulation that maintains Hermiticity of P ,

the idealized unbound or scattering states should be replaced by more complicated states whose

wavefunctions vanish outside of some very large region. Fortunately, this region can simply be

taken so ridiculously large (say, a box with sides several light-years in length, to be safe) as to

have a completely negligible effect on any physical results of interest, so that for most purposes

one can use the idealized unbound states with impunity.

Next, consider the eigenvalue problem for the momentum operator. The eigenkets with

definite and constant momentum p, corresponding to a free particle, satisfy

P |p〉 = p |p〉 . (2.8.24)

Similarly to the case of position eigenstates, these are taken to obey Dirac orthonormality and

completeness conditions, again as a special case of eqs. (2.7.2) and (2.7.3),

〈p|p′〉 = δ(p− p′), (2.8.25)∫ ∞

−∞
dp |p〉〈p| = I. (2.8.26)

Here the allowed range of continuous p is taken to be from −∞ to∞. As should now be familiar,

the generalized kets |p〉 are strictly speaking not associated with physical states, because they do

not have finite norm, but are still very useful as idealizations, because they satisfy the properties

of an orthobasis in the Dirac sense. For any ket |ψ〉, we define the momentum wavefunction

ψ̃(p) ≡ 〈p|ψ〉 , (2.8.27)
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which can be viewed as the components of the ket |ψ〉 in the momentum representation.

Using the completeness relation eq. (2.8.26), the inner product of any two states can be written

〈φ|ψ〉 =

∫ ∞

−∞
dp φ̃∗(p) ψ̃(p). (2.8.28)

If one has chosen the ket |ψ〉 to have norm 1, then
∫ ∞

−∞
dp |ψ̃(p)|2 = 1, (2.8.29)

and we can interpret

dP(p) = |ψ̃(p)|2 dp (2.8.30)

as the probability for the particle described by the state |ψ〉 to have momentum between p and

p+ dp.

Consider the position wavefunctions of the free-particle momentum eigenstates, defined by

φp(x) ≡ 〈x|p〉 . (2.8.31)

Now we have

〈x|P |p〉 = p 〈x|p〉 = pφp(x), (2.8.32)

but also, using the completeness relation for position eigenkets,

〈x|P |p〉 =

∫ ∞

−∞
dx′ 〈x|P |x′〉〈x′|p〉 =

∫ ∞

−∞
dx′
(
−ih̄ d

dx
δ(x− x′)

)
φp(x

′) (2.8.33)

= −ih̄ d
dx

(∫ ∞

−∞
dx′ δ(x− x′)φp(x′)

)
= −ih̄ d

dx
φp(x). (2.8.34)

Therefore, the momentum eigenvalue equation in the position representation is a linear first-

order differential equation,

d

dx
φp(x) = i

p

h̄
φp(x), (2.8.35)

with the solution

φp(x) = cpe
ipx/h̄, (2.8.36)

where cp is a non-zero complex number. To fix the magnitude of cp, we use completeness in x

to obtain

〈p′|p〉 =

∫ ∞

−∞
dx 〈p′|x〉〈x|p〉 =

∫ ∞

−∞
dx φp′(x)

∗φp(x) = c∗p′cp

∫ ∞

−∞
dx eix(p−p

′)/h̄ (2.8.37)

= |cp|2 2πh̄ δ(p− p′), (2.8.38)
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where the last equality makes use of eq. (2.2.20). Now, in order to enforce the Dirac orthonor-

mality condition of eq. (2.8.25), we choose cp = 1/
√
2πh̄, and so

〈x|p〉 = φp(x) =
1√
2πh̄

eipx/h̄, (2.8.39)

up to an unavoidably arbitrary choice of constant phase. From the physical consideration

that the wavefunctions φp(x) should not blow up at large |x|, p must be a real eigenvalue,

corresponding to a Hermitian operator P . The position dependence of the momentum eigenstate

is seen to have the form of a plane wave, with wavenumber p/h̄, and therefore wavelength 2πh̄/p.

Comparison with de Broglie’s result in eq. (1.4.1) confirms that we made the correct choice of

magnitude of normalization of the momentum operator P in eq. (2.8.15).

As a further check of eq. (2.8.26), take the matrix element of it between two arbitrary position

eigenkets,

〈x′|x〉 =

∫ ∞

−∞
dp 〈x′|p〉〈p|x〉 = 1

2πh̄

∫ ∞

−∞
dp eip(x

′−x)/h̄ = δ(x− x′). (2.8.40)

In particular, this confirms that we must integrate over the whole range −∞ < p < ∞ in the

momentum completeness relation eq. (2.8.26).

We can also use completeness to find formulas that convert between the momentum wave-

function and the position wavefunction. Using completeness in x,

ψ̃(p) = 〈p|ψ〉 =
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉 = 1√

2πh̄

∫ ∞

−∞
dx e−ipx/h̄ψ(x). (2.8.41)

Conversely, given ψ̃(p), we can reconstruct ψ(x) using completeness in p,

ψ(x) = 〈x|ψ〉 =
∫ ∞

−∞
dp 〈x|p〉〈p|ψ〉 = 1√

2πh̄

∫ ∞

−∞
dp eipx/h̄ψ̃(p). (2.8.42)

In words, the position and momentum wavefunctions are Fourier transforms of each other, with

some h̄’s included. It is also easy to check that

〈x|X|ψ〉 = xψ(x), 〈x|P |ψ〉 = −ih̄ d
dx
ψ(x), (2.8.43)

〈p|P |ψ〉 = p ψ̃(p), 〈p|X|ψ〉 = ih̄
d

dp
ψ̃(p). (2.8.44)

These are analogous to matrix representations of observables in a finite dimensional Hilbert

space. If one works in the position representation, with wavefunctions of x, then the observable

X is represented by x and the observable P is represented by −ih̄d/dx, and inner products are

accomplished by integration over all x, with complex conjugation for the wavefunction of the bra

vector. If, instead, one works in the momentum representation with wavefunctions of p, then P

58



Representation |ψ〉 〈ψ| X P 〈ψ1|ψ2〉

position ψ(x) ψ(x)∗ x −ih̄ d
dx

∫
dx ψ1(x)

∗ψ2(x)

momentum ψ̃(p) ψ̃(p)∗ ih̄ d
dp

p
∫
dp ψ̃1(p)

∗ψ̃2(p)

Table 2.8.1: Summary of the position and momentum representations for a particle moving
in one dimension. The position and momentum wavefunctions are related to each other as
in eqs. (2.8.41) and (2.8.42).

is represented by p and X is represented by ih̄d/dp, and inner products are done by integration

over all p, again with complex conjugation for the bra vector. These results are summarized in

Table 2.8.1.

For example,

〈ψ1|X|ψ2〉 =

∫ ∞

−∞
dx ψ1(x)

∗ xψ2(x) =

∫ ∞

−∞
dp ψ̃1(p)

∗
(
ih̄
d

dp

)
ψ̃2(p), (2.8.45)

〈ψ1|P |ψ2〉 =

∫ ∞

−∞
dx ψ1(x)

∗
(
−ih̄ d

dx

)
ψ2(x) =

∫ ∞

−∞
dp ψ̃1(p)

∗ p ψ̃2(p). (2.8.46)

The position representation provides a convenient way to find the commutator of X and P .

We have

〈x|XP |ψ〉 = x
(
−ih̄ d

dx

)
ψ(x) = −ih̄xdψ

dx
, (2.8.47)

〈x|PX|ψ〉 = −ih̄ d
dx

(
xψ(x)

)
= −ih̄xdψ

dx
− ih̄ψ(x), (2.8.48)

Therefore, for every ket |ψ〉,

〈x|[X,P ]|ψ〉 = ih̄ 〈x|ψ〉 , (2.8.49)

so we can conclude that

[X,P ] = ih̄, (2.8.50)

where the identity operator on the right side is understood. This position-momentum commuta-

tion relation was derived after defining the operator P by its action on the orthobasis of position

eigenkets, but one could just as easily have worked in the other direction, taking eq. (2.8.50) to

be the fundamental definition, and then deriving the operation of P on the kets.

The preceding can all be generalized in a straightforward way to three position and three

momentum observables. We define position and momentum operators that are vectors in real

space (not the Hilbert vector space, in which they are Hermitian operators), by

R = x̂X + ŷY + ẑZ, (2.8.51)

P = x̂Px + ŷPy + ẑPz. (2.8.52)
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They satisfy commutation relations:

[X,Px] = ih̄, [Y, Py] = ih̄, [Z, Pz] = ih̄, (2.8.53)

with all other relevant commutators vanishing. It is convenient to adopt a notation in which

the components of R and P are given an index a = 1, 2, 3 corresponding to x, y, z respectively,

so that R1 = X , R2 = Y , R3 = Z, and P1 = Px, P2 = Py, P3 = Pz. Then the commutation

relations take the form

[Ra, Pb] = ih̄δab, [Ra, Rb] = 0, [Pa, Pb] = 0. (2.8.54)

The operators R and P have eigenkets |r〉 and |p〉 with§ eigenvalues r = x̂x + ŷy + ẑz and

p = x̂px + ŷpy + ẑpz,

R |r〉 = r |r〉 , P |p〉 = p |p〉 , (2.8.55)

which satisfy completeness relations

I =

∫
d3r |r〉〈r| , (2.8.56)

I =

∫
d3p |p〉〈p| , (2.8.57)

and have inner products realizing Dirac orthonormality,

〈r ′|r〉 = δ(3)(r − r ′), 〈p′|p〉 = δ(3)(p− p′), (2.8.58)

where the three-dimensional delta function is given in rectangular coordinates by

δ(3)(r − r ′) = δ(x− x′)δ(y − y′)δ(z − z′), (2.8.59)

and in spherical coordinates (r, θ, φ) by

δ(3)(r − r ′) =
1

r2
δ(r − r′)δ(cos θ − cos θ′)δ(φ− φ′), (2.8.60)

with a practical, operational definition that, when integrating over a volume V ,
∫

V

d3r ′ f(r ′) δ(3)(r − r ′) =

{
f(r) if r is inside the volume V ,

0 if r is outside the volume V .
(2.8.61)

The wavefunction for a free particle with momentum eigenvalue p is a plane wave,

〈r|p〉 =
1

(2πh̄)3/2
ei~p·~r/h̄. (2.8.62)

§Here we have stretched the previous notion of eigenvalue slightly, as foreshadowed after eq. (2.7.1), because
our eigenvalues here are actually not just numbers, but vectors in real space, or equivalently ordered triples of
numbers (x, y, z) or (px, py, pz). This was a sneaky thing to do, but it is convenient, and works perfectly well
provided that the components are compatible observables, as here. This will be discussed further in section 3.2.
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The position and momentum wavefunctions for a general state |ψ〉 are

ψ(r) = 〈r|ψ〉 , ψ̃(p) = 〈p|ψ〉 , (2.8.63)

and they are related by Fourier transforms,

ψ̃(p) =
1

(2πh̄)3/2

∫
d3r e−i~p·~r/h̄ ψ(r), (2.8.64)

ψ(r) =
1

(2πh̄)3/2

∫
d3p ei~p·~r/h̄ ψ̃(p), (2.8.65)

as can be established using eq. (2.8.62) and the completeness relations (2.8.56) and (2.8.57). The

norm of the state can be written in terms of either the position or momentum wavefunction, as

〈ψ|ψ〉 =

∫
d3r |ψ(r)|2 =

∫
d3p |ψ̃(p)|2. (2.8.66)

The interpretation of the integrands is that the probability for the particle described by the

state |ψ〉 to be found in an infinitesimal volume d3r near r is given by the Born rule,

dP(r) = d3r |ψ(r)|2, (2.8.67)

while the probability for it to have momentum in a volume d3p in momentum space near p is

dP(p) = d3p |ψ̃(p)|2. (2.8.68)

The last claims are based on postulates that will be stated more generally in section 3.1.

The rules for the position and momentum representations for a particle moving in three

dimensions are summarized in Table 2.8.2. We also note, for future reference, that in the

position representation, the operator P 2 is −h̄2∇2.

Representation |ψ〉 〈ψ| R P 〈ψ1|ψ2〉

position ψ(r) ψ(r)∗ r −ih̄∇
∫
d3r ψ1(r)

∗ψ2(r)

momentum ψ̃(p) ψ̃(p)∗ ih̄∇p p
∫
d3p ψ̃1(p)

∗ψ̃2(p)

Table 2.8.2: Summary of the position and momentum representations for a particle moving in
three dimensions. The position and momentum wavefunctions are related as in eqs. (2.8.64)
and (2.8.65). In rectangular coordinates, ∇p = x̂∂/∂px + ŷ∂/∂py + ẑ∂/∂pz .

2.9 Tensor product Hilbert spaces

We will often want to consider state spaces that are combinations of simpler state spaces. For

example, consider a particle moving in three dimensions. In the previous subsection, we worked
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with a Hilbert space spanned by an orthobasis of kets that are eigenkets of all three position

coordinates. An equivalent way to proceed is to first define three separate Hilbert spaces that

only describe the x, y, and z degrees of freedom, and then combine them to form the Hilbert

space that describes all three degrees of freedom. As another example, a Hilbert space for a

system of two particles can be constructed from the Hilbert spaces of the two particles separately.

The formal construction of Hilbert spaces from simpler components is called a tensor prod-

uct Hilbert space. Consider two distinct Hilbert spaces H1 and H2, spanned respectively by

orthobases {|ϕj〉} with dimension N1 and {|vk〉} with dimension N2. Then the tensor product

Hilbert space H = H1 ⊗ H2 is defined to be a complex linear vector space with inner product

with the following properties:

• There is an orthobasis for H denoted |ϕj〉 ⊗ |vk〉 for j = 1, . . . , N1 and k = 1, . . . , N2.

Thus, H has dimension N = N1N2, and any ket in H can be written in a unique way as

a linear combination of the N kets |ϕj〉 ⊗ |vk〉.

• Tensor product kets satisfy linearity and distributive properties. This means that if |Φ〉
and |Ψ〉 are any kets in H1, and |V 〉 and |W 〉 are kets in H2, and a, b, c, d are complex

numbers, then

(a |Φ〉+ b |Ψ〉)⊗ (c |V 〉+ d |W 〉) = ac |Φ〉 ⊗ |V 〉+ ad |Φ〉 ⊗ |W 〉
+bc |Ψ〉 ⊗ |V 〉+ bd |Ψ〉 ⊗ |W 〉 . (2.9.1)

• The dual tensor product Hilbert space has an orthobasis 〈ϕj | ⊗ 〈vk|.

• The inner product of orthobasis kets in H is inherited from the inner products of the H1

and H2 orthobasis kets, according to

(
〈ϕj | ⊗ 〈vk|

)(
|ϕl〉 ⊗ |vm〉

)
= δj,l δk,m. (2.9.2)

• Given an operator A that acts on H1 and an operator B that acts on H2, the tensor

product operator A⊗B is defined to act on H according to

(A⊗ B)(|Ψ〉 ⊗ |V 〉) = (A |Ψ〉)⊗ (B |V 〉), (2.9.3)

for any kets |Ψ〉 in H1 and |V 〉 in H2. In the very common case that B is the identity

operator, we simply write A instead of A⊗ I. Thus, if it is understood that the operator

A acts non-trivially only on H1, then we write A(|Ψ〉 ⊗ |V 〉) = (A |Ψ〉)⊗ |V 〉. Similarly, if

A is the identity operator, then we simply write B instead of I ⊗B.
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Even though an orthobasis of kets for H can be chosen so that their elements are tensor

products |ϕj〉⊗ |vk〉, the same is not true for all kets in H. Only special kets, called separable,

can be written as a tensor product of kets,

|Φ〉 ⊗ |W 〉 . (2.9.4)

A ket in a tensor product Hilbert space that cannot be written in this form, for any choice of |Φ〉
and |W 〉, is said to be an entangled state, a concept first highlighted by Erwin Schrödinger in

1935. For example,

|Ψ1〉 ⊗ |V1〉+ |Ψ2〉 ⊗ |V2〉 (2.9.5)

is certainly† an element of H, but (assuming all the kets involved are not null) it cannot be

written as a tensor product of kets |Φ〉 ⊗ |W 〉 unless either |Ψ1〉 = c |Ψ2〉 or |V1〉 = c |V2〉 for
some complex constant c.

One of the major uses of the tensor product formalism is as a divide-and-conquer strategy for

solving problems. This includes situations where we can make use of an already-solved problem

for one or more components of the tensor product. As a simple example, the Hilbert space for

a free particle moving in three dimensions can be written as a tensor product of Hilbert spaces

that would describe a particle moving in the three rectangular coordinates separately,

Hthree−dimensional = Hx ⊗Hy ⊗Hz. (2.9.6)

An orthobasis for this Hilbert space is

|r 〉 = |x〉 ⊗ |y〉 ⊗ |z〉 , (2.9.7)

where |x〉 describes a state in which a particle is known to have X eigenvalue x. In this example,

as in many other cases, the tensor product notation |x〉 ⊗ |y〉 ⊗ |z〉 has no real advantage over

just writing the simpler

|r〉 = |x, y, z〉 , (2.9.8)

so that is what we will do from now on. Then,

X |x, y, z〉 = x |x, y, z〉 , Y |x, y, z〉 = y |x, y, z〉 , (2.9.9)

etc. This is similar to the separation-of-variables strategy for solving partial differential equations

problems with several independent variables.

†Because H is defined to be a vector space, all linear combinations of its elements must also be included in it.
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Of course, one need not choose rectangular coordinates. For example, one could write the

same Hilbert space as a different tensor product space appropriate for spherical coordinates,

Hthree−dimensional = Hr ⊗Hθ ⊗Hφ, (2.9.10)

with an orthobasis

|r〉 = |r, θ, φ〉 = |r〉 ⊗ |θ〉 ⊗ |φ〉 , (2.9.11)

and, depending on the problem, this might be much more convenient.

The idea of tensor product Hilbert spaces also applies in situations where a major part of the

analysis of a problem really involves only one of the components of the tensor product and the

others are just a distraction. For example, we will study the orbital angular momentum eigen-

value problem by isolating only the relevant angular (θ, φ) component of the three-dimensional

particle Hilbert space, and then apply the results more generally to the whole Hilbert space.

Schematically, we use an orthobasis that is a tensor product of the form

|radial part〉 ⊗ |angular momentum part〉 , (2.9.12)

although it is not necessarily notationally convenient to write it that way explicitly. This

will be made more precise in section 8.6 after we develop the theory of angular momentum.

In fact, the angular momentum component of the tensor product often splits up further into

separate components corresponding to different types of angular momenta, for example orbital

and intrinsic, and/or the angular momenta for different particles.

Another important use of tensor product spaces is to describe systems of more than one

particle. For example, we can construct a Hilbert space that describes two distinct spin-less

particles labeled 1 and 2, with an orthobasis of kets

|r1, r2〉 = |r1〉 ⊗ |r2〉 . (2.9.13)

Here, each |rn〉 is the Hilbert space for just one particle n = 1, 2 moving in three dimensions.

This construction can naturally be generalized to a tensor product Hilbert space for N spin-less

particles with orthobasis kets

|r1, . . . , rN〉 = |r1〉 ⊗ · · · ⊗ |rN〉 . (2.9.14)

However, when the particles have spin (intrinsic angular momentum) or are identical, things are

more complicated, as we will discuss in Chapter 16.
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3 The core principles of quantum mechanics

3.1 The basic postulates

We are now ready to present the six basic postulates that define quantum mechanics. Although

they are not postulates in the traditional formal and rigorous mathematical sense, they constitute

the key principles that should govern all quantum systems and can be used to make physical

predictions. Some sources give versions that differ from the ones presented here, by combining

two or all three of Postulates 2, 3, and 4, or by leaving out the controversial Postulate 5, or by

including statements about subsystems. Others include a postulate governing identical particles,

which we do not include for reasons discussed in Chapter 16.

Postulate 1: States. The state of a quantum system is specified by a non-null ket |ψ〉, a
vector in a Hilbert space (a complex linear vector space with an inner product). For a physical

state, the norm 〈ψ|ψ〉 is real and positive and finite, but is not otherwise physically significant;

two state kets |ψ〉 and c |ψ〉 are physically equivalent if c is any non-zero complex number.

Postulate 2: Observables. Physically measurable quantities, called observables, correspond

to Hermitian operators whose eigenstates can be chosen to be a complete orthonormal basis

(orthobasis) of the state space. This means that for an observable A there is a basis |α, uα〉
satisfying A |α, uα〉 = α |α, uα〉, where α are the eigenvalues, and uα are the degeneracy labels

for each α, with

〈α′, u′α′ |α, uα〉 = δα,α′δuα,u′
α′ , (3.1.1)

and the completeness relation

I =
∑

α

∑

uα

|α, uα〉 〈α, uα| . (3.1.2)

The preceding assumes that α and uα have discrete values. If instead α has continuous values,

then Dirac orthonormality and completeness are used: δα,α′ is replaced by δ(α− α′) and ∑α is

replaced by a definite integral
∫
dα over the range of allowed α. Similarly, if uα is continuous,

then δuα,u′
α′ is replaced by δ(uα−u′α′), and

∑
uα

is replaced by a definite integral
∫
duα. In some

cases α and/or uα can have both some discrete and some continuous values, which are then

summed and integrated over the possible values.

Postulate 3: Allowed results of measurements. The result of the measurement of an

observable A is always one of its eigenvalues, α. This rule is sensible and consistent because the

eigenvalues of a Hermitian operator do not depend on the arbitrary choice of orthobasis used to

calculate them, as we observed following Theorem 2.6.9.
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Postulate 4: Probabilities of results of measurements. If a system is in a state given by

a ket |ψ〉 which has been normalized so that 〈ψ|ψ〉 = 1, and an observable A is measured, then

the probability of getting a particular discrete result α is

P(α) = 〈ψ|Pα|ψ〉 =
∑

uα

|〈α, uα|ψ〉|2 , (3.1.3)

where |α, uα〉 are normalized as in eq. (3.1.1), and

Pα =
∑

uα

|α, uα〉〈α, uα| (3.1.4)

is the projection operator to the subspace of states with eigenvalue α for A. If instead α is

continuous, then the probability of getting a result between α and α + dα is

dP(α) = dα 〈ψ|Pα|ψ〉 = dα
∑

uα

|〈α, uα|ψ〉|2 . (3.1.5)

This postulate generalizes the Born rule for the probabilistic interpretation of the position

wavefunction, eq. (2.8.8) and its three-dimensional version (2.8.67), and the corresponding rules

for momentum, eqs. (2.8.30) and (2.8.68). Note that eq. (3.1.3) ensures that the probabilities

are always positive,

P(α) > 0, (3.1.6)

and the completeness relation (3.1.2) ensures the sum of the probabilities for all possible out-

comes for a measurement must be unity,

∑

α

P(α) = 1. (3.1.7)

Thus, these important consistency requirements demanded by any sensible theory of probability

are built into the postulates of quantum mechanics.

Postulate 5: Collapse of the state due to measurement. If a system is in a state |ψ〉 and
an observable A is measured and found to have the value α, then the state immediately after

the measurement will be an eigenstate of A with eigenvalue α, specifically,

Pα |ψ〉 , (3.1.8)

where Pα is the projection operator given by eq. (3.1.4). This ket has a norm that is typically

less than 1, but positive; in fact, from eq. (3.1.3) and the projection operator rules P †α = Pα

and P 2
α = Pα, we see that the norm is simply equal to the probability P(α). Therefore, one can

always divide the ket by the square root of its norm, to obtain

Pα |ψ〉√
〈ψ|Pα|ψ〉

, (3.1.9)
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a physically equivalent ket with norm 1.

Postulate 6: Time evolution of the quantum state. Between measurements described by

Postulate 5, the time dependence of a state obeys the Schrödinger differential equation,

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (3.1.10)

where the Hamiltonian H is a Hermitian observable operator whose eigenvalues are the allowed

energies of the system.

3.2 Valid and invalid questions

Scientific advances often reveal not just how to answer certain difficult questions, but that other

seemingly sensible questions do not need to be answered or even considered. From the theory of

special relativity, we learn that it makes no sense to ask questions about collisions of particles

with relative speed larger than the speed of light in vacuum c; these are not valid questions

because the very structure of the theory implies that such collisions do not occur. One also

learns not to ask questions concerning events that are supposedly simultaneous in two different

reference frames that are moving with respect to each other, because this also is not meaningful

in special relativity. Even though our experience with non-relativistic systems might make such

questions seem legitimate, they are in fact invalid.

Similarly, in quantum mechanics, there are questions that have no good answer because they

are not valid to begin with. A prominent example is “what are the position and momentum of

this particle at time t?”. In classical mechanics this question makes perfect sense, and we learn

to calculate the answer given some initial conditions and the equations of motion. However, in

quantum mechanics, even in the most idealized case, we can only ask for the probability that the

measurement of an observable has a specific result from among the allowed list of eigenvalues.

In any particular measurement, that observable could be the position of a particle, or it could

be the momentum, but it cannot be both.

To see why, suppose we attempt to define a clever new multi-component operator

Ω = (R, P ), (3.2.1)

which is the ordered pair whose components are the position and momentum vectors of a par-

ticle. If one could measure Ω, the result would be the answer to the simultaneous position and

momentum of a particle. Since R and P are each Hermitian, Ω may indeed be defined as a

Hermitian operator. However, it is not an observable, because it fails the part of the definition

that calls for the eigenstates to form an orthobasis that satisfies the completeness relation. In

fact, Ω has no eigenstates at all; this is directly related to the fact that R and P do not commute.
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Notice that if they had a vanishing commutator, then Theorem 2.7.1 says that they would have

had a whole orthobasis of simultaneous eigenstates, and so would Ω, which could therefore have

been an acceptable observable. But, as things are, Ω is not an observable, and the postulates

of quantum mechanics do not allow for its measurement.

More generally, we can ask whether a set of observables can be measured simultaneously

(as a multi-component operator), and whether it makes sense to ask what the results of such a

measurement are. This depends on the commutation relations of the observable operators.

First suppose that the operators A,B,C, . . . all commute with each other (are compatible).

Then the simultaneous measurement can be performed, and can be defined as a sequence

of consecutive measurements, performed immediately after one another so that there is no time

for the system to evolve between the measurements. It is left as an exercise to show, using

Postulates 4 and 5, that for compatible observables the final results for the probabilities of the

different outcomes (α, β, γ, . . .) and for the corresponding final state do not depend on which

order one performs the measurements, as long as they are all performed with no intervening

time delay, so that Postulate 6 does not come into play.

Next, suppose that two of the operators are incompatible, with a commutator [A,B] that

is an operator with no vanishing eigenvalues. This includes the case that [A,B] is a non-zero

constant, notably if A and B are a position operator and the corresponding momentum. In this

case, Postulate 5 tells us that after measuring B the system will be left in some state |β〉 that
is an eigenstate of B, but it is definitely not an eigenstate of A. (Otherwise, it would be an

eigenstate of [A,B] with eigenvalue 0, which we are assuming does not exist.) Similarly, if A is

measured, the system will be left in a state that is definitely not an eigenstate of B. Therefore,

the order of making the measurements certainly makes a difference, and one cannot define their

simultaneous measurement.

A third case is that [A,B] is an operator that has some vanishing but also some non-vanishing

eigenvalues. In this case, one might measure A, and find a result that leaves the state in an

eigenstate of B, but this will not always happen. The same is true if B is measured first. An

evaluation using Postulates 4 and 5 will be necessary on a case-by-case basis to decide what the

outcomes are that might leave A and B simultaneously determined in the final state.

Consider a classical observable, for example f(a, b, c, . . .) where a, b, c, . . . are quantities that

have quantum observable counterparts A,B,C, . . .. Then, there is always at least one quantum

operator F (A,B,C, . . .) which is also an observable. However, one must be careful in defining it if

A,B,C, . . . do not all commute, due to quantum ordering ambiguities. For example, if f(x, p) =

xp where x and p are the position and momentum of a particle moving in one dimension,

we could try quantum operator versions F (X,P ) = XP or F (X,P ) = PX or F (X,P ) =

68



(XP + PX)/2. The first two of these are not Hermitian. However, the last is Hermitian, and

is an observable. More generally, by completely symmetrizing each term of F (A,B,C, . . .), we

can always systematically construct a Hermitian version of it, as can easily be proved using

eq. (2.4.25).

For the converse, there can be quantum observables that have no classical counterpart; the

quintessential example of this is spin, or intrinsic angular momentum. The magnitude of the

spin of a particle is a fixed multiple of h̄/2. In particular, unlike ordinary angular momentum,

there are no states in which it can take on classical values arbitrarily large compared to h̄.

A perhaps unexpected example of a valid question in quantum mechanics is: “Given a system

in a state |ψ〉, what is the probability of finding it in another state |χ〉?”. (Such a question has

a valid counterpart in classical physics, but there it is somewhat trivial since all information

about the state of a classical system is, in principle, more directly accessible.) The observable

operator corresponding to this question is the projection operator

Pχ = |χ〉〈χ| . (3.2.2)

It is Hermitian, and has eigenvalues 1 (with eigenstate |χ〉) and 0 (with eigenstates consisting

of all states orthogonal to |χ〉). The result of the measurement of Pχ will therefore always be

either 1 (“yes, we are in the state |χ〉”) or 0 (“no, we are not in the state |χ〉”), even though

the state |ψ〉 before the measurement need not have had either of these definite attributes. The

probability of obtaining the result 1 is |〈χ|ψ〉|2, assuming both kets are normalized. If we do

measure Pχ and obtain the result 1, then the state after the measurement will be Pχ |ψ〉, which
is simply the same as |χ〉, up to normalization. If we obtain the result 0, then the state after

the measurement will be (I − Pχ) |ψ〉. A crucial feature of quantum mechanics, as embodied in

the collapse Postulate 5, is that making the measurement changes the state; it is not the same

after the measurement as it was before, unless the system was already in an eigenstate of Pχ.

3.3 Expectation values and uncertainties

In addition to the quantities directly associated to single measurements of an observable, there

are statistical quantities that result from making many measurements. Consider an idealized

situation in which we have access to an arbitrarily large number N of copies of a system in the

same state |ψ〉. This mythical group of identical and independent quantum systems is called

a pure ensemble. The expectation value of an operator A in the state |ψ〉 is defined to

be the average value obtained by measuring A in these independent experiments, as N → ∞.

According to the frequentist interpretation of probabilities, this is the same as the sum of the

possible outcomes for each experiment multiplied by their respective probabilities, which can be
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evaluated using Postulate 4 as

∑

α

αP(α) =
∑

α

∑

uα

α 〈ψ|α, uα〉〈α, uα|ψ〉 =
∑

α

∑

uα

〈ψ|A|α, uα〉〈α, uα|ψ〉 = 〈ψ|A|ψ〉 . (3.3.1)

Here, the first equality assumed that |ψ〉 is normalized to unity, the second equality used the

fact that |α, uα〉 are eigenstates of A with eigenvalue α, and the completeness relation was used

to get the last equality. In cases where the state |ψ〉 is understood by context, it is customary

to denote the expectation value by

〈A〉 ≡ 〈ψ|A|ψ〉 , (3.3.2)

still assuming that |ψ〉 is normalized to unity. If that is not convenient for some reason, one has

the more general relation

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉 . (3.3.3)

The expectation value of an observable is easily shown to be a real number.

Another quantity defined through measurements on a large pure ensemble of identical states

|ψ〉 is the uncertainty of an observable A, denoted ∆A. Here again the notation assumes that

|ψ〉 is understood by context. It is defined by

(∆A)2 = 〈(A− 〈A〉)2〉 = 〈ψ|(A− 〈ψ|A|ψ〉)2|ψ〉 . (3.3.4)

Intuitively, the uncertainty tells us how much the measurement of the observable is expected to

fluctuate about its expectation value, over the course of many independent measurements each

performed starting in the same state |ψ〉. It is the same as the concept of standard deviation

in statistics. By expanding eq. (3.3.4), one obtains the equivalent form that is most commonly

used in practical calculations,

(∆A)2 = 〈ψ|A2|ψ〉 − (〈ψ|A|ψ〉)2 . (3.3.5)

There is a fundamental obstacle to having states with arbitrarily small uncertainties for

incompatible observables, imposed by the following result due to Howard P. Robertson and

Schrödinger:

Theorem 3.3.1 (Uncertainty relation) In any state |ψ〉, the uncertainties of two observables

A and B obey

(∆A)(∆B) ≥ 1

2

∣∣〈[A,B]〉
∣∣. (3.3.6)
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Proof: Define observables Ã = A − 〈A〉 and B̃ = B − 〈B〉. These are Hermitian, because 〈A〉
and 〈B〉 are real numbers. It follows from the definition of uncertainty that

(∆A)2 (∆B)2 = 〈ψ|Ã2|ψ〉 〈ψ|B̃2|ψ〉 = 〈Ãψ|Ãψ〉 〈B̃ψ|B̃ψ〉 ≥
∣∣〈Ãψ|B̃ψ〉

∣∣2, (3.3.7)

where the Schwarz inequality eq. (2.2.4) was used at the end. Therefore, we have

(∆A)2 (∆B)2 ≥
∣∣〈ψ|ÃB̃|ψ〉

∣∣2 =
∣∣∣
1

2
〈ψ|[Ã, B̃]|ψ〉+ 1

2
〈ψ|{Ã, B̃}|ψ〉

∣∣∣
2

. (3.3.8)

Using the Hermiticity of Ã and B̃ yet again, 〈ψ|[Ã, B̃]|ψ〉 is a pure imaginary number and

〈ψ|{Ã, B̃}|ψ〉 is a pure real number. Therefore, the squared magnitude of the sum is equal to

the sum of the square magnitudes, and

(∆A)2 (∆B)2 ≥ 1

4

∣∣〈ψ|[Ã, B̃]|ψ〉
∣∣2 + 1

4

∣∣〈ψ|{Ã, B̃}|ψ〉
∣∣2. (3.3.9)

Now, because the last term is certainly non-negative, we can drop it without affecting the validity

of the inequality. Furthermore, [Ã, B̃] is just equal to [A,B]. So, eq. (3.3.6) follows from taking

the square root of both sides of eq. (3.3.9).

A famous special case is obtained for a particle moving in one dimension, when A = X

and B = P . Because [X,P ] = ih̄, the uncertainties must satisfy the Heisenberg position-

momentum uncertainty relation, named after Werner Heisenberg (who originally proposed

a weaker version of it) and derived rigorously first by Earle H. Kennard and shortly after by

Hermann Weyl,

(∆X) (∆P ) ≥ h̄/2, (3.3.10)

in any state. It might seem that an even stronger version might be possible, since we simply

discarded the non-negative last term in eq. (3.3.9). However, for the case of position and

momentum, we will show later, in section 6.1, that there do exist states (those with Gaussian

wavefunctions), in which eq. (3.3.10) is saturated, in other words equality holds. The same

wavefunctions will reappear in section 7.4. So, eq. (3.3.10) is the strongest possible general

version of the position-momentum uncertainty relation.

For a particle moving in three dimensions, one finds in the same way that each of (∆X)(∆Px)

and (∆Y )(∆Py) and (∆Z)(∆Pz) cannot be less than h̄/2. However, since X and Py commute,

there is no uncertainty relation for the product (∆X)(∆Py). This means that, in principle, one

could simultaneously specify the exact values of a particle’s coordinate along some direction and

the momentum component in an orthogonal direction.
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3.4 How states change

According to Postulate 6, the time evolution of a quantum state obeys a linear first-order

differential equation, the Schrödinger equation. Let the initial condition for the state at time

t = t0 be |ψ(t0)〉. We then define the time-evolution operator U(t, t0) such that the state ket

at time t is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (3.4.1)

It follows from this definition, and Schrödinger’s eq. (3.1.10), that the operator U(t, t0) satisfies

ih̄
d

dt
U(t, t0) = HU(t, t0). (3.4.2)

Our goal is to solve this differential equation for U(t, t0) as a function of t, subject to the

boundary condition U(t0, t0) = I. As we will see, it is a unitary operator if H(t) is Hermitian.

First, consider the case that the Hamiltonian does not have any dependence on t. In that

case, the solution is simply

U(t− t0) ≡ U(t, t0) = e−i(t−t0)H/h̄, (3.4.3)

which only depends on the time difference t− t0, not the individual times. To check this claim,

note that it clearly satisfies the initial condition at t = t0, and

ih̄
d

dt
|ψ(t)〉 = ih̄

d

dt

[
e−i(t−t0)H/h̄ |ψ(t0)〉

]
= ih̄

[
(−iH/h̄)e−i(t−t0)H/h̄

]
|ψ(t0)〉

= H |ψ(t)〉 (3.4.4)

recovers the Schrödinger equation, as required. It is crucial in the preceding derivation that

the operator H does not depend on time, so that it can be treated just like a number in the

exponential, as it obviously commutes with itself.

The unitarity of U(t− t0) in eq. (3.4.3) is simple to prove, given that H is Hermitian. From

the rules for taking adjoints,

U(t− t0)† =
[
e−i(t−t0)H/h̄

]†
= ei(t−t0)H

†/h̄ = ei(t−t0)H/h̄ = U(t− t0)−1 = U(t0 − t). (3.4.5)

The last equality is a bonus, which shows that evolving a state backward in time is the inverse

operation of evolving it forward in time by the same amount, as one might expect. Since U(t−t0)
is a unitary operator, time evolution can be regarded as equivalent to a change of orthobasis.

While eq. (3.4.3) is a neat formal solution of the Schrödinger equation, in practice it leaves

more to do, because the exponential of an operator as an infinite series can be non-trivial to
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evaluate in matrix elements. To make further progress, we can apply the spectral decomposi-

tion trick of eq. (2.7.5) to the operator U(t − t0) as given by eq. (3.4.3). To accomplish this,

first consider the eigenvalue problem for the Hamiltonian, which we are still assuming is Hermi-

tian and does not depend on time. This eigenvalue equation is called the time-independent

Schrödinger equation, and is written as

H |E, uE〉 = E |E, uE〉 , (3.4.6)

where uE is a degeneracy label, and the kets |E, uE〉 do not depend on t. Suppose that this

equation has been solved for the energy eigenvalues E and corresponding orthobasis eigenstates

|E, uE〉. Then, using completeness of the energy orthobasis,

U(t− t0) =
∑

E

∑

uE

e−i(t−t0)E/h̄ |E, uE〉〈E, uE| , (3.4.7)

where we have turned the operator H into the number E when acting on each of its eigenstates.

Applying this to eq. (3.4.1) gives

|ψ(t)〉 =
∑

E

∑

uE

e−i(t−t0)E/h̄ |E, uE〉〈E, uE|ψ(t0)〉 , (3.4.8)

the spectral decomposition of the state with respect to energy.

Note that eq. (3.4.7) is different from the identity operator only because the phases e−i(t−t0)E/h̄

are different for the eigenstates with different energies. As a special case, acting on a state that

is already an eigenstate of energy, time evolution just multiplies by a global phase (that is, a

single phase that multiplies the whole state ket). Because such a global phase is not physically

significant, the state has not really changed. For this reason, an eigenstate of the Hamiltonian

is also known as a stationary state.

To illustrate this, consider the time evolution of a stationary state, starting from t = 0,

|ψE(t)〉 = e−itE/h̄ |ψE(0)〉 , (3.4.9)

and suppose that at time t we measure some observable A, which is assumed to have no explicit

time dependence built into it.† Recall from Postulate 4 that the probability of getting a particular

measurement result α is

P(α, t) =
∑

uα

| 〈α, uα|ψE(t)〉 |2 =
∑

uα

|e−itE/h̄ 〈α, uα|ψE(0)〉 |2 =
∑

uα

| 〈α, uα|ψE(0)〉 |2

= P(α, 0). (3.4.10)

†By “explicit time dependence”, we just mean an explicit appearance of t in the definition of the operator.
For example, the position operator X has no explicit time dependence, but A = X sin(ωt) does depend explicitly
on time, which we write as ∂A/∂t = ωX cos(ωt).
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In a stationary state, the probability of measuring each particular possible result α stays the

same for all time, as long as the time evolution is not interrupted by a measurement.

Returning to the case of a general state |ψ(t)〉 and a general observable A, the time depen-

dence of the expectation value obeys

d

dt
〈ψ|A|ψ〉 = 〈ψ|A

(
d

dt
|ψ〉
)
+

(
d

dt
〈ψ|
)
A |ψ〉+ 〈ψ|∂A

∂t
|ψ〉 , (3.4.11)

where ∂A/∂t is the derivative of the explicit time dependence of A. Applying Schrödinger’s

equation and its Hermitian conjugate to the first two terms on the right, respectively, gives

d

dt
〈ψ|A|ψ〉 = − i

h̄
〈ψ|[A,H ]|ψ〉+ 〈ψ|∂A

∂t
|ψ〉 , (3.4.12)

or, in the more compact notation of expectation values, just

d

dt
〈A〉 = − i

h̄
〈[A,H ]〉+

〈∂A
∂t

〉
, (3.4.13)

in which the state |ψ〉 should be given by context. This general result is known as Ehrenfest’s

Theorem, after Paul Ehrenfest.

In the special case that |ψ〉 is a stationary state, H |ψ〉 = E |ψ〉 and 〈ψ|H = E 〈ψ|, so

〈[A,H ]〉 evaluates to (E − E) 〈A〉 = 0. In that case, d
dt
〈A〉 = 〈∂A

∂t
〉. The only change in an

expectation value in a stationary state is due to the explicit dependence of the observable on

time.

As an example, suppose that the Hamiltonian is that of a particle moving in a potential in

one dimension, with

H =
1

2m
P 2 + V (X), (3.4.14)

and consider A = P , the momentum operator. Here, ∂P/∂t = 0, as there is no explicit

dependence of the operator P on time. Also, [P,H ] = [P, V (X)] = −ih̄dV/dX . Therefore,

d

dt
〈P 〉 = −

〈 dV
dX

〉
, (3.4.15)

which is the quantum mechanical version of Newton’s second law. Similarly, for A = X , using

∂X/∂t = 0 and [X,H ] = [X,P 2]/2m = ih̄P/m, we get

d

dt
〈X〉 = 〈P 〉/m. (3.4.16)

Ehrenfest’s Theorem says that the momentum and position expectation values in quantum

mechanics obey the same equations of motion as the corresponding quantities in classical me-

chanics. Equations (3.4.15) and (3.4.16) therefore confirm the choices of sign and magnitude in

our definition of the momentum operator P in eq. (2.8.15).
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We now turn to the more difficult case that the Hamiltonian operator depends on time.

First, consider time evolution over an infinitesimal interval from time t0 to time t0 +∆t. Then,

from the Schrödinger equation,

|ψ(t0 +∆t)〉 =

[
1− i

h̄
∆tH(t0)

]
|ψ(t0)〉 . (3.4.17)

Note that because ∆t is infinitesimal, it does not matter here whether we use H(t0), or H(t), or

H evaluated at some intermediate time, because the difference will be higher order in ∆t. Up

to terms of order (∆t)2, we can rewrite this as an exponential,

|ψ(t0 +∆t)〉 = exp
[
− i
h̄
∆tH(t0)

]
|ψ(t0)〉 . (3.4.18)

An advantage of writing it this way is that the exponential is a unitary operator if H(t0) is

Hermitian, so that |ψ(t0 +∆t)〉 has the same norm as |ψ(t0)〉. Now, if we evolve the state

further from time t0 +∆ to t0 + 2∆t in the same way, we have

|ψ(t0 + 2∆t)〉 = exp
[
− i
h̄
∆tH(t0 +∆t)

]
exp
[
− i
h̄
∆tH(t0)

]
|ψ(t0)〉 . (3.4.19)

Here, the exponentials cannot easily be combined into a single exponential, because H(t0 +∆t)

and H(t0) are different operators, and need not commute. Continuing in this way,

|ψ(t0 +N∆t)〉 =

(
N−1∏

n=0

exp

[
− i
h̄
∆tH(t0 + n∆t)

])
|ψ(t0)〉 , (3.4.20)

where it is important that the terms in the product, are understood to be arranged from higher

to lower n, reading from left to right. Since each of the terms in the product is a unitary

operator, the whole product is a unitary operator as well. Now we can take N → ∞ with

∆t = (t− t0)/N , to obtain

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (3.4.21)

where the unitary time-evolution operator is

U(t, t0) = lim
N→∞

N−1∏

n=0

exp
[
− i
h̄
∆tH(t0 + n(t− t0)/N)

]
. (3.4.22)

From its construction, it satisfies

[U(t2, t1)]
† = [U(t2, t1)]

−1 = U(t1, t2), (3.4.23)

U(t3, t2)U(t2, t1) = U(t3, t1). (3.4.24)

This time evolution operator can depend on both arguments separately; in general U(t, t0) 6=
U(t− t0) if the Hamiltonian depends on time.
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Formally, one can also write for eq. (3.4.22)

U(t, t0) = T exp
[
− i
h̄

∫ t

t0

dt′H(t′)
]
, (3.4.25)

where the T is a time-ordering symbol, an instruction to rearrange the Hamiltonians in the

expansion of the exponential so that each H(tj) appears to the right of H(tk) whenever tj < tk.

More explicitly, it takes the form of a Dyson series, named after Freeman J. Dyson,

U(t, t0) = I +

∞∑

N=1

(
− i
h̄

)N ∫ t

t0

dtN

∫ tN

t0

dtN−1 · · ·
∫ t2

t0

dt1H(tN)H(tN−1) · · ·H(t1), (3.4.26)

where each tk integration has lower limit t0 and upper limit tk+1, for k = 1, . . . , N , with tN+1

interpreted as t. Note that the nested upper limits of integration have neatly removed the need

for the 1/N ! usually present in the series expansion of the exponential function. In eq. (3.4.26)

the ordering of the Hamiltonians is again important because in general they do not commute at

different times. In the special case that they do all commute, one can write

U(t, t0) = exp

[
− i
h̄

∫ t

t0

dt′H(t′)

]
, (3.4.27)

which agrees with the result eq. (3.4.3) when H does not depend on time at all. You can also

check that eq. (3.4.26) satisfies the differential equation (3.4.2), by plugging it in. Another Dyson

series, based on the interaction picture of quantum mechanics and useful for time-dependent

perturbation theory, will be discussed in section 17.2.

We have seen that there are two very different ways that a state can change in quantum

mechanics: Schrödinger time evolution governed by the Hamiltonian, and collapse of the state

ket due to measurement. It is natural to ask whether the latter might be a special case of

the former. At least within the standard formulation of quantum mechanics, as given by the

postulates listed in section 3.1, the answer is “No!”. Hamiltonian time evolution is accomplished

by multiplying the state by a unitary operator, while collapse of the state due to measurement

is associated with multiplying by a projection operator, which is instead Hermitian. Thus, there

is a fundamental difference between Hamiltonian time evolution and measurement collapse.

The time evolution due to the Hamiltonian is perfectly causal and deterministic; the state

at a given time is uniquely determined by the state at earlier times, just as in classical physics,

provided that a measurement of the type described in Postulates 4 and 5 has not taken place

in the interim. In contrast, the collapse of the wavefunction associated with measurement is

inherently probabilistic, rather than deterministic. This means that, unlike in classical physics,

you cannot predict the future with certainty, even in principle. But, even worse: you cannot even

predict the past. Given complete knowledge of the present state of a quantum system, the past
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state of the system before the most recent measurement cannot be known, because Postulate

5 says that the act of measurement changes the state in a way that destroys information. If

you measured an observable A and got a result α, leaving the system in a state |α〉, then you

know that the state of the system |ψ〉 before the measurement must have had a non-zero matrix

element 〈α|ψ〉, but that is all. This is clearly very incomplete information.

The insistence on a fundamental distinction between the measuring agent and the quantum

system being measured, as required by Postulate 5, was developed and promoted by Niels Bohr

and collaborators, and is often referred to as the Copenhagen interpretation of quantum

mechanics. According to the Copenhagen interpretation, the measuring apparatus apparently

can be thought of in classical terms, or at least we do not ask questions about its quantum

behavior. This may seem troubling, as one can always imagine treating any particular measuring

apparatus as itself a quantum system undergoing unitary time evolution. For this reason, many

people have proposed changing the postulates of quantum mechanics to eliminate or replace

Postulate 5 dealing with the collapse of the state due to measurement. It is difficult not to be

sympathetic to this view. Indeed, we could draw a big sphere of radius several million light

years around the Earth, and think of the contents (including us, all other known observers, and

all of our measuring devices) as one big quantum system evolving strictly according to unitary

time evolution. In any case, there seems to be no reasonable principle that tells us where we

should put the boundary between the quantum system and the measuring apparatus.

However, from a practical point of view, Postulate 5 is indispensable, because it provides a

straightforward and reliable way of making predictions for the actual experiments that we do in

the real world. No matter how philosophically attractive it might be to banish the measurement

collapse of the wavefunction, it is not scientifically necessary, with the possible exception of

some interesting attempts to treat the quantum dynamics of the universe as a whole. So far, the

postulates of quantum mechanics as given in section 3.1 have stood the test of time, successfully

providing accurate predictions of every experimental phenomenon with which they have been

confronted.

3.5 Mixed ensembles and the density matrix operator

The expectation value and uncertainty for an operator were defined for a single quantum state in

section 3.3, using the concept of a pure ensemble. However, it is often more realistic to suppose

that in a large ensemble of quantum systems of the same type, some fraction of them p1 will

be in a state |ψ1〉, a fraction p2 will be in a different state |ψ2〉, etc. Such a large collection of

systems of the same type, but in different states, is called a mixed ensemble. If we choose one

of the systems at random from a mixed ensemble, there is a probability pI that it will be in the
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state |ψI〉, with pI > 0 for each I, and

∑

I

pI = 1. (3.5.1)

In the following, the kets |ψI〉 are assumed to have unit norm, but there is no reason why they

must be linearly independent or orthogonal to each other. There is not even any constraint

on the number of distinct states |ψI〉 that are found in the ensemble. The mixed ensemble

generalizes the concept of a pure ensemble, for which one of the pI is equal to 1 and all others

are 0.

Suppose we choose one system of the mixed ensemble at random, and measure an observable

A with eigenvalues α and orthonormal eigenstates |α, uα〉. Then, applying Postulate 4, the

probability of getting a particular result α is equal to the sum over |ψI〉 of the product of the

probability of choosing a system in that state and the probability that a measurement in that

state will give α,

P(α)mixed =
∑

I

pI
∑

uα

| 〈α, uα|ψI〉 |2. (3.5.2)

We can similarly compute the average result obtained by measuring the observable A many

times on systems chosen at random from the mixed ensemble,

A =
∑

I

pI 〈ψI |A|ψI〉 . (3.5.3)

We use an overline notation to denote this mixed ensemble average, to distinguish it from

the expectation value associated with measuring A in a single state in a pure ensemble.

Note that there are two very different types of probabilities at work in eqs. (3.5.2) and

(3.5.3). First, there are the ensemble probabilities pI , which simply reflect the fact that

the mixed ensemble is populated by different states. These ensemble probabilities would exist

even if our systems were classical. Second, we have the probabilities associated with the in-

herently non-deterministic nature of measurement in quantum systems, which are manifested

in
∑

uα
| 〈α, uα|ψI〉 |2 and in the expectation value 〈ψI |A|ψI〉. The results for P(α)mixed and A

incorporate both types of probabilities.

One should not confuse the concepts of a pure ensemble based on a superposition of quantum

states and a mixed ensemble containing a population of the same quantum states. A simple

example will illustrate the distinction. Consider a state space with two orthobasis kets |1〉 and
|2〉. Suppose that initially we have a pure ensemble, with all systems in the superposition state

|ψ〉 = c1|1〉+ c2|2〉 , (3.5.4)

78



where c1 and c2 are complex numbers subject to |c1|2 + |c2|2 = 1. Now we can conduct a

measurement to ask if a system is in the state |1〉. The probability of finding the result 1 (yes)

is |c1|2, and the probability of finding the result 0 (no) is |c2|2. If we do this measurement on

each and every system in the pure ensemble, but disregard the results, we will afterwards have a

mixed ensemble, with p1 = |c1|2 for the state |1〉, and p2 = |c2|2 for the state |2〉. This illustrates
that one way to prepare a mixed ensemble is to conduct measurements on the members of a

pure ensemble.

Continuing with this example, if we now make the same measurement again on the mixed

ensemble, we will get the same results as for the pure ensemble; the probability is still |c1|2 to

find the state |1〉. But now consider instead the probability that measurement of some other

observable A will yield the result α, with corresponding eigenket |α〉. For the pure ensemble

with state |ψ〉, this is

P(α)pure = |〈α|ψ〉|2 =
∣∣c1 〈α|1〉+ c2 〈α|2〉

∣∣2, (3.5.5)

but for the mixed ensemble, we find instead, from eq. (3.5.2),

P(α)mixed = |c1|2|〈α|1〉|2 + |c2|2|〈α|2〉|2. (3.5.6)

The key difference is that in the pure ensemble result there are interference terms that are absent

for the mixed ensemble.

There is an elegant way of encoding all of the physical information about a mixed ensemble,

called the density matrix operator, or just the density operator, due to John von Neumann.

It is defined by

ρ =
∑

I

pI |ψI〉 〈ψI | . (3.5.7)

In the special case of a pure ensemble, ρ is simply the projection operator for the state |ψ〉.
More generally, it is a sum of projection operators weighted by the frequencies of occurrence of

states within the ensemble. In terms of the density operator, the result of eq. (3.5.2) for the

probability of getting the result α for a single measurement of A becomes

P(α)ensemble =
∑

uα

〈α, uα| ρ |α, uα〉 . (3.5.8)

We can rewrite this by choosing an arbitrary orthobasis of kets {|φk〉}, and then using com-

pleteness followed by a rearrangement,

P(α)ensemble =
∑

uα

〈α, uα|
(∑

k

|φk〉 〈φk|
)
ρ |α, uα〉 =

∑

k

〈φk|ρPα|φk〉 = Tr[ρPα], (3.5.9)
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where Pα is the projection operator for the result α, defined in eq. (3.1.4), and at the end we used

the definition of the trace of an operator in eq. (2.6.30). Recall that the trace is independent of

the choice of orthobasis.

The average of the results of many measurements of A in a mixed ensemble, as computed in

eq. (3.5.3), can also be re-expressed in terms of the density operator. Again using completeness

followed by a rearrangement,

A =
∑

I

pI 〈ψI |A
(∑

k

|φk〉 〈φk|
)
|ψI〉 =

∑

k

〈φk|ρA|φk〉 = Tr[ρA]. (3.5.10)

As a special case,

Tr[ρ] = 1, (3.5.11)

which simply re-expresses the conservation of probability from eq. (3.5.1). It is also straightfor-

ward to show Tr[ρ2] ≤ 1, with equality only in the special case that the ensemble is a pure one,

in which case one also has ρ2 = ρ.

From its definition in eq. (3.5.7), ρ is clearly a Hermitian operator. So, according to Theorem

2.6.6, one can find a special orthobasis consisting of its eigenkets, call them |ϕk〉, with eigenvalues

pk that are real because of Theorem 2.6.3. Therefore, no matter what states |ψI〉 were involved

in the original preparation of the mixed ensemble, or how many such states there were, we can

always rewrite the density operator as

ρ =
∑

k

pk |ϕk〉〈ϕk| , (3.5.12)

where the index k now takes on a limited number of values up to the dimension of the state

space, and the pk can be interpreted as ensemble probabilities. This illustrates the more general

fact that the density operator is not tied to any specific set of states |ψI〉, even if we used one

when preparing the mixed ensemble. The density operator can also be used to summarize our

(incomplete) information about a single system chosen at random from the mixed ensemble,

called a mixed state.

A pure ensemble is one extreme special case of a mixed ensemble, in which all systems are

in the same state. The opposite extreme is the completely random ensemble, which we can

define by choosing any orthobasis |φk〉 with k = 1, . . . , n, where n is the dimension of the state

space, and writing

ρ =
1

n

n∑

k=1

|φk〉〈φk| . (3.5.13)
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Here 1/n is the ensemble probability for each of the orthobasis states. This density operator is

proportional to the identity operator, so it is actually independent of the choice of orthobasis,

and is the unique one associated with maximum randomness of states in the ensemble.

The extent to which an ensemble of quantum systems is randomized can more generally be

quantified by the von Neumann entropy,

σ = −Tr[ρ ln ρ] = −
∑

k

pk ln pk, (3.5.14)

where the final result is in terms of the orthobasis ensemble probabilities in eq. (3.5.12), which

are defined to be the eigenvalues of ρ. This is equivalent to the Shannon entropy introduced by

Claude E. Shannon in the study of information and communication theory. It is also equivalent,

up to a multiplicative constant factor, to the Gibbs entropy defined by Josiah Willard Gibbs

in statistical mechanics and thermodynamics,

S = kBσ = −kBTr[ρ ln ρ], (3.5.15)

where kB is Boltzmann’s constant. In our two extreme cases,

σ = 0 (pure ensemble), (3.5.16)

σ = −n
[
1

n
ln(1/n)

]
= ln(n) (completely random ensemble), (3.5.17)

where n is the number of orthobasis states available to the systems in the ensemble, generally the

same as the dimension of the state space. In the case of a mixed state, the entropy is a measure

of our ignorance, and it is always between 0 and ln(n). The result S = kB ln(n) obtained for

the special case of the completely random ensemble is the Boltzmann entropy.

In general, the density operator for a mixed state or a mixed ensemble depends on time.

From the general form in eq. (3.5.7), we have

dρ

dt
=

∑

I

[( d
dt
|ψI〉

)
〈ψI |+ |ψI〉

( d
dt
〈ψI |

)]
, (3.5.18)

and evaluating the time derivatives using the Schrödinger equation, we obtain

dρ

dt
= − i

h̄
[H, ρ]. (3.5.19)

Note that this vanishes in the special case of a completely random ensemble. It also vanishes in

the case of a pure ensemble if the state is an energy eigenstate, but not if it is a superposition

of states with different energies. The historical reason for the name “density operator” is that

this equation is analogous to Liouville’s Theorem in classical mechanics, which says that for an
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ensemble of classical systems, the phase-space density ρclassical (the number of classical ensemble

members per unit position and momentum) obeys

∂ρclassical
∂t

= {H, ρclassical}PB, (3.5.20)

which has a Poisson bracket (and a factor of ih̄) on the right-hand side replacing the commutator.

This is an example of the classical–quantum correspondence principle to be discussed further in

section 4.1.

Equation (3.5.19) gives the instantaneous change in the density operator as the ensemble

of systems undergoes time evolution. More generally, in terms of the unitary time evolution

operator that we defined in eq. (3.4.1),

ρ(t) = U(t, t0) ρ(t0)U(t, t0)
†, (3.5.21)

with a short proof left as an exercise. Since ρ(t) and ρ(t0) are related by a unitary transformation,

they have the same eigenvalues, according to Theorem 2.6.9. It follows, from the expression in

eq. (3.5.14) in terms of the eigenvalues pk, that

σ(t) = σ(t0) (unitary time evolution), (3.5.22)

in the absence of external measurements or other influences. So, we have found that the entropy

of a closed system does not change with time.

Let us now work out what the density operator will be after a measurement on a mixed state.

Suppose we have a density operator ρ as given in eq. (3.5.12) in terms of orthobasis states |ϕk〉
with ensemble probabilities pk, and we make a measurement on a randomly chosen ensemble

state of an observable A and obtain the result α. For each of the ensemble states |ϕk〉, Postulate
5 tells us that the state after the measurement will be

Pα |ϕk〉√
〈ϕk|Pα|ϕk〉

, (3.5.23)

where Pα is the projection operator for the result α. Therefore, we can write the post-measurement

density operator as

ρα =
∑

k

P(k|α)
(

Pα |ϕk〉√
〈ϕk|Pα|ϕk〉

)(
〈ϕk|Pα√
〈ϕk|Pα|ϕk〉

)
, (3.5.24)

where P(k|α) is the conditional probability that the state selected from the ensemble was |ϕk〉,
given that the result α was obtained for A. To evaluate this, we use Bayes’ Theorem, the

fundamental result in the theory of conditional probabilities, which says

P(k|α) =
P(α|k) pk
P(α) . (3.5.25)
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Here, as given by Postulate 4,

P(α|k) = 〈ϕk|Pα|ϕk〉 (3.5.26)

is the conditional probability that the result of a measurement of A is α, assuming that the state

was |ϕk〉, while P(α) = Tr[ρPα] is the probability, obtained in eq. (3.5.9), that a measurement

of A in the ensemble resulted in α. Putting these results together, eq. (3.5.24) for the density

operator after the measurement becomes

ρα =
PαρPα
Tr[ρPα]

. (3.5.27)

This is the density operator version of Postulate 5.

We have now succeeded in finding the rules for measurement probabilities and averages,

post-measurement collapse, and time evolution for a mixed state in terms of the density matrix

operator ρ, in eqs. (3.5.9), (3.5.10), (3.5.19), (3.5.21), and (3.5.27). Since each of these results

only depends on ρ, and not on the individual ensemble states or probabilities, we have justi-

fied the assertion that all of the physical properties of the mixed ensemble or mixed state are

contained in the density operator.

A common situation is that a measurement of A has been made, but we do not know the

result. Perhaps we were not looking, or we lost the data, or the measurement was made by

something or someone else who is unwilling or unable to communicate with us. In that case,

the density operator describing the mixed state after the measurement will be

ρ′ =
∑

α

P(α) ρα =
∑

α

PαρPα. (3.5.28)

We can now show that the entropy always increases when this occurs, except in the trivial

special case ρ′ = ρ. To do so, we will use the following fact from linear algebra about traces of

functions of matrices, due to Oskar Klein, the proof of which is omitted.

Theorem 3.5.1 (Klein’s inequality, general) Suppose that the function f(x) is differentiable

and strictly convex (f ′′(x) > 0) for all 0 < x < ∞, and that A and B are Hermitian matrices

with non-negative eigenvalues. Then

Tr[f(A)− f(B) + (B −A)f ′(B)] ≥ 0, (3.5.29)

with equality if and only if A = B.

We now apply this to the case f(x) = x ln x, and let A = ρ and B = ρ′ be any two density

operators; we are not yet assuming the special form of eq. (3.5.28). Then, using Tr[ρ] = Tr[ρ′] =

1, we obtain:

83



Theorem 3.5.2 (Klein’s inequality for density operators) Suppose that ρ and ρ′ are any

two density operators on a common state space. Then

Tr[ρ(ln ρ− ln ρ′)] ≥ 0, (3.5.30)

with equality if and only if ρ = ρ′.

Now consider the case of ρ′ given by eq. (3.5.28), which arose from having made a measure-

ment of A on a mixed state described by ρ. The entropy after the measurement is

σ′ = −Tr[ρ′ ln ρ′] = −
∑

α

Tr[Pα ρPα ln ρ
′] = −

∑

α

Tr[ρPα ln ρ
′Pα], (3.5.31)

where the cyclic property of the trace was used at the end. Since P 2
α = 1, eq. (3.5.28) shows that

Pα commutes with ρ′, which implies that Pα also commutes with ln ρ′. Therefore, Pα ln ρ
′Pα =

P 2
α ln ρ

′ = Pα ln ρ
′. Then, using completeness in the form

∑
α Pα = I, we obtain

σ′ = −Tr[ρ ln ρ′]. (3.5.32)

Using σ = −Tr[ρ ln ρ] and Klein’s inequality (3.5.30), we finally obtain the claimed result,

σ′ ≥ σ. (3.5.33)

The entropy increases whenever a non-trivial measurement is made but the result is unknown.

Note that this increase of the von Neumann entropy does not apply to a situation in which

we made a measurement on a single mixed state and the result is known. In fact, if the known

result of the measurement α is a non-degenerate eigenvalue, then the resulting density operator

describing the system will be that of a pure state, with vanishing entropy.

As a very important example, consider an ensemble consisting of a bottle of, say, ∼1024 gas

molecules, each of which can be in states characterized by energy eigenvalues E and degeneracy

labels uE. The molecules interact with each other and with the bottle walls, but weakly enough

that they can be considered an ensemble of independent quantum states of the same type.

Intuitively, each interaction can be thought of as a sort of external measurement on the gas

molecule, but the results of these measurements remain unknown, so that eq. (3.5.33) applies so

as to make the entropy as large as it can be, subject to the constraint of energy conservation.

Thus, when the molecules reach thermal equilibrium, the ensemble probability to find one of

them in a particular orthobasis state |E, uE〉 can be determined by the statistical principle that

the entropy should be maximized, subject to the constraint that the ensemble average energy

has a fixed value E.
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To see the implications of this, we write the density operator in the form

ρ =
∑

E

∑

uE

pE |E, uE〉〈E, uE| . (3.5.34)

Here, we have already implemented the idea that maximizing the entropy will require the density

operator to correspond to complete randomization within each subspace of fixed energy eigen-

value E, but the relative probabilities pE for each energy level remain to be found. Equation

(3.5.34) gives

σ = −
∑

E

gE pE ln pE , (3.5.35)

where gE is the degeneracy of the energy eigenvalue E. Now, to maximize σ subject to the

constraints 1 = Tr[ρ] =
∑

E gE pE and fixed E =
∑

E gE pEE, it is simplest to use the method

of Lagrange multipliers. The function to be extremized is

f(pE, α, β) = −
∑

E

gE pE ln pE + α
(
1−

∑

E

gE pE

)
+ β

(
E −

∑

E

gE pEE
)
, (3.5.36)

where α and β are the Lagrange multipliers for the trace constraint and the energy constraint,

respectively, and E is fixed. We then obtain, for each E,

0 =
∂f

∂pE
= −gE(ln pE + 1)− αgE − βgEE, (3.5.37)

which has the solution

pE = e−(βE+α+1). (3.5.38)

The e−(α+1) factor is independent of E, and so can be absorbed into a common normalization

factor; the important point is that we have derived that the canonical ensemble probabilities

that maximize the entropy must be proportional to the Boltzmann factor,

pE ∝ e−βE . (3.5.39)

The Lagrange multiplier β is related to temperature by the definition

β =
1

kBT
. (3.5.40)

Since β has units of 1/energy, this definition shows that Boltzmann’s constant is really just a

conversion factor between energy and temperature. If we agreed to measure temperature in

units of energy, then Boltzmann’s constant would be 1.
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The result of eq. (3.5.34) with pE ∝ e−βE is called the canonical ensemble, with density

operator

ρ =
1

Z

∑

E

∑

uE

e−βE |E, uE〉〈E, uE| , (3.5.41)

where the normalization factor Z is called the partition function. Thus, the canonical en-

semble is completely randomized at each fixed energy level E, but with relative probabilities

between energy levels determined by the Boltzmann factor. The partition function can be

computed using the requirement Tr[ρ] = 1, which gives

Z =
∑

E

∑

uE

e−βE =
∑

E

gE e
−βE . (3.5.42)

Equation (3.5.41) can be recognized as the spectral decomposition form [see eq. (2.7.5)] of

ρ =
1

Z
e−βH . (3.5.43)

This obviously commutes with H , so according to eq. (3.5.19), ρ is constant in time. For any

observable A defined for each molecule, the canonical ensemble average is

A =
1

Z
Tr
[
e−βHA

]
=

1

Z

∑

E

∑

uE

e−βE 〈E, uE|A|E, uE〉 . (3.5.44)

In particular, the average energy for states in the canonical ensemble is

E =
1

Z

∑

E

gE E e
−βE = − ∂

∂β
lnZ. (3.5.45)

It is left as an exercise to check that, with the entropy definition S = kBσ,

E − TS = −β lnZ = F, (3.5.46)

where F is called the Helmholtz free energy after Hermann von Helmholtz. Let us stop

our discussion of the canonical ensemble here, before this book accidentally turns into one on

statistical mechanics.

In all of the preceding, we have assumed for notational simplicity that the states |ψI〉 ap-
pearing in the ensemble are discrete and countable. As usual, one can also consider a continuum

of states, which entails turning summations into integrals. If the ensemble states are labeled by

some continuous parameter q, then the density operator is

ρ =

∫
dq p(q) |ψq〉〈ψq| , (3.5.47)

where p(q) is a probability density subject to the constraint
∫
dq p(q) = 1, but otherwise arbi-

trary.
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4 Canonical variables and the Hamiltonian

4.1 Quantum observables from classical dynamics

The postulates of quantum mechanics refer to observable operators with time evolution governed

by a Hamiltonian, but do not specifically identify these objects. This is intentional, in order to

be general. In many physical situations, one can determine the appropriate Hamiltonian and

observables by considering a classical version, but this is not always true. Indeed, one should

think of classical physics as an approximate limit obtained from quantum mechanics, and not

the reverse. Still, in favorable circumstances the classical properties of a system can be used to

infer the basic observable operators, including the Hamiltonian, and their algebraic commutator

properties in the quantum theory.

In the Lagrangian formulation of classical mechanics, one starts with some dynamical vari-

ables qn, often called generalized coordinates, which we will label by an index n. The Lagrangian

is a function of the qn and their first time derivatives q̇n = dqn/dt,

L(qn, q̇n, t). (4.1.1)

The classical equations of motion for the system are then

∂L

∂qn
=

d

dt

∂L

∂q̇n
, (4.1.2)

for each n. A short calculation, found in any good classical physics textbook, shows that this

follows from a variational principle involving the action obtained by integrating the Lagrangian

with respect to time. However, we will postpone our own discussion of that until section 22.4.

Our reason for doing so is that rather than accept the variational principle as a postulate of

classical mechanics, we will be able to derive it as a consequence of the path integral formulation

of quantum mechanics.

The Hamiltonian formulation of classical mechanics recasts the Lagrangian formulation by

defining a canonical momentum conjugate to each generalized coordinate,

pn =
∂L

∂q̇n
. (4.1.3)

Now one defines the Hamiltonian as

H(qn, pn, t) =
∑

n

pnq̇n − L(qn, q̇n, t), (4.1.4)

where it is important that the q̇n are to be completely eliminated in favor of the pn using

eq. (4.1.3). This implies that H is a function only of the generalized coordinates and their

canonical conjugate momenta, and not their time derivatives. The qn and pn are collectively
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called the phase-space coordinates. As shown in the same good textbook on classical mechan-

ics, the Lagrangian equations of motion eq. (4.1.2) are equivalent to the Hamiltonian equations

of motion,

q̇n =
∂H

∂pn
, ṗn = −∂H

∂qn
. (4.1.5)

The generalized coordinates qn need not be the rectangular coordinates of a particle, but rather

could be any quantities that fully specify the classical state of the system at a given time.

Likewise, the canonical momenta need not coincide with mechanical momenta (equal to the

product of mass and velocity for particles).

Consider any quantity a(qn, pn, t), built out of the generalized coordinates and their conjugate

momenta. According to the same good classical physics textbook, the time evolution of a is

da

dt
=

{
a,H

}
PB

+
∂a

∂t
, (4.1.6)

where the Poisson bracket for any two functions on phase space a and b is defined as

{
a, b
}
PB
≡

∑

n

(
∂a

∂qn

∂b

∂pn
− ∂b

∂qn

∂a

∂pn

)
. (4.1.7)

Dirac noted that the Poisson brackets
{
a, b
}
PB

of classical mechanics are closely analogous

to the commutators [A,B] for the corresponding observables in the quantum theory. Both are

antisymmetric under interchange of the observables, and at least for the position and momentum

observables, one has the exact correspondence

classical quantum
{
qn, pk

}
PB

= δnk ←→
[
Qn, Pk

]
= ih̄δnk (4.1.8)

Commutators obtained in this way are called canonical commutation relations. Further-

more, eq. (4.1.6) has a striking resemblance to Ehrenfest’s Theorem in quantum mechanics,

which we found in eq. (3.4.13). Indeed, one finds from the latter equation that

d

dt
〈Qn〉 =

〈 ∂H
∂Pn

〉 d

dt
〈Pn〉 = −

〈 ∂H
∂Qn

〉
, (4.1.9)

directly analogous to the Hamiltonian equations of motion (4.1.5).

For a single particle of mass m moving in three dimensions in a potential V , it is natural

to choose the Qn to be the usual rectangular coordinates X = Rx, Y = Ry, and Z = Rz, and

their conjugate canonical momenta Px, Py, Pz, defined to satisfy the commutation relations

already given in eq. (2.8.54),

[Ra, Pb] = ih̄δab, [Ra, Rb] = 0, [Pa, Pb] = 0, (4.1.10)
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for a, b = x, y, z. The Hamiltonian operator is then

H =
P 2

2m
+ V (R), (4.1.11)

where P 2 ≡ P · P .
The connection between classical and quantum physics just described is often called the

correspondence principle, but it has some weaknesses. First, there are some quantum ob-

servables that do not have a classical counterpart at all, for example spin, also known as intrinsic

angular momentum. Second, there is no guarantee that every generalized coordinate and its

canonical momentum will obey a canonical commutation relation. Although it is valid for the

rectangular coordinates of a particle, or a collection of particles, in more complicated cases

one might encounter higher order corrections in h̄, or ambiguities in connecting the classical

observables to the quantum ones. This is why we preferred to derive the position-momentum

commutation relations by the method given in section 2.8. More generally, the most logical (but

perhaps not the simplest) way to draw the connection is to derive the classical theory as an ap-

proximation to the quantum theory, as we will do using the Feynman sum-over-paths approach

in section 22.4.

4.2 The two-body problem

An important special case is that of two particles that are free except for a potential energy of

interaction that depends only on their separation. This occurs, for example, in the hydrogen

atom to be treated in Chapter 10, where the two particles are the electron and the (much

heavier) proton. Another example is neutron-proton scattering, to be studied in section 20.8,

where the masses are almost the same.

In general, the two-body Hamiltonian has the form

H =
P 2
1

2m1
+

P 2
2

2m2
+ V (R1 − R2), (4.2.1)

where we have allowed for the possibility that the potential energy depends on the vector dis-

placement (not just its magnitude), and the two particles have masses m1 and m2 and canonical

position and momentum operators (R1, P1) and (R2, P2). The components of these observables

satisfy commutation relations [R1a, P1b] = ih̄δab and [R2a, P2b] = ih̄δab, for a, b = x, y, z, with

other combinations vanishing. In particular, each of the observables for particle 1 commutes

with those of particle 2. As an orthobasis, one can choose a tensor product of the eigenkets of

R1 and R2,

|r1, r2〉 = |r1〉 ⊗ |r2〉 , (4.2.2)
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defined to satisfy the eigenvalue equations

R1 |r1, r2〉 = r1 |r1, r2〉 , R2 |r1, r2〉 = r2 |r1, r2〉 . (4.2.3)

However, the solution of the Hamiltonian eigenvalue problem is complicated by the fact that

the potential couples the two particle degrees of freedom together.

Fortunately, as in classical mechanics, such cases can be reduced to a simpler problem that is

effectively the same as for two decoupled particles, by making a change of variables to separate

the relative motion from that of the center of mass. The relative motion is described by

R = R1 − R2, P =
m2P1 −m1P2

m1 +m2

, (4.2.4)

and the motion of the center of mass by

Rcm =
m1R1 +m2R2

m1 +m2
, Ptot = P1 + P2. (4.2.5)

It is a short exercise to show that the pairs (R,P ) and (Rcm, Ptot) each satisfy canonical com-

mutation relations, and do not interfere with each other. Furthermore, if one defines the total

mass M and the reduced mass µ according to

M = m1 +m2, µ =
m1m2

m1 +m2

, (4.2.6)

then the Hamiltonian eq. (4.2.1) can be rewritten in the decoupled form

H = Hcm +Hrel (4.2.7)

where

Hcm =
P 2
tot

2M
, Hrel =

P 2

2µ
+ V (R). (4.2.8)

The center-of-mass degrees of freedom have the same Hamiltonian as that of a completely free

particle with mass M , whose eigenvalue problem is easy to solve (plane waves). The dynamics

of Hrel are the same as for a single particle with mass equal to the reduced mass µ, moving in

the potential V (R). One can now rewrite the orthobasis eq. (4.2.2) as the tensor product of

eigenkets of R and Rcm,

|r, rcm〉 = |r〉 ⊗ |rcm〉 , (4.2.9)

and look for stationary-state wavefunction solutions of the form

Ψ(r, rcm) = 〈r, rcm|Ψ〉 =
1

(2πh̄)3/2
ei
~ktot·~rcm ψ(r), (4.2.10)
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where ptot = h̄ktot is the eigenvalue of Ptot, and the relative coordinate wavefunction satisfies

[
− h̄

2∇2

2µ
+ V (r)−E

]
ψ(r) = 0, (4.2.11)

and the total energy eigenvalue is E+ h̄2k2tot/2M . The second contribution to the energy can be

treated as a constant by noting that the center of mass of the particles acts like a free particle. We

can then solve the eigenvalue problem in eq. (4.2.11) for E and ψ(r) as if it were a single particle.

If one of the particles is much heavier than the other, as in the case of electrons compared to

atomic nuclei, then µ is equal to the mass of the lighter particle, to a good approximation.

If the number of particles N is three or more, and fixed, then one can construct appropriate

Jacobi coordinates, and their canonical momenta, by iteration. First one chooses two of the

particles and defines their relative and center-of-mass coordinates and momenta, just as in the

preceding. The two-particle center-of-mass coordinates and momenta are then combined in the

same way with those of a third particle, to give another relative coordinate/momentum pair

and a three-particle center-of-mass coordinate and momentum. The three-particle center-of-

mass coordinate and momentum are combined with those of a fourth particle, etc. In the end

one will have a single center-of-mass coordinate and momentum for the whole system with total

mass M =
∑N

i=1mi,

Rcm =
1

M

N∑

i=1

miRi, Ptot =

N∑

i=1

Pi, (4.2.12)

and N −1 translationally invariant coordinate/momentum pairs, each satisfying canonical com-

mutation relations. The kinetic energy terms for these momenta are all decoupled from each

other, but with the complication that they have different effective masses even if the particle

masses mi are all the same. If there are no external forces, so that the potential energy is

translationally invariant, then Rcm will not appear in the Hamiltonian at all. The energy eigen-

states will therefore have the form of a tensor product, of plane-wave free particle wavefunctions

that are eigenstates of Ptot, and eigenstates of the remaining, more complicated, part of the

Hamiltonian. In the case of multi-electron atoms, where one of the particles is a nucleus that is

much more massive than the electrons, it is much more common to make the simple and good

approximation that the nucleus is infinitely massive and fixed at the origin in the center-of-mass

frame, and the remaining coordinates and momenta are simply those of the individual electrons.

4.3 Charged particle in external electromagnetic fields

We now turn our attention to the dynamics of charged particles in external electromagnetic

fields. We will follow the example of most quantum mechanics books by using Gaussian cgs
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unit normalizations for electrodynamics quantities, rather than the SI units that you may be

more familiar with. This means that Maxwell’s equations for the electric and magnetic fields

are (with the SI versions indicated parenthetically, for comparison)

∇ · E = 4πρ (SI: ρ/ǫ0), (4.3.1)

∇ · B = 0 (SI: 0), (4.3.2)

∇×E = −1
c

∂B

∂t
(SI: −∂B

∂t
), (4.3.3)

∇× B =
1

c

∂E

∂t
+

4π

c
j (SI:

1

c2
∂E

∂t
+ µ0j ), (4.3.4)

which imply that the charge density ρ and the current density j obey local charge conservation,

∇ · j +
∂ρ

∂t
= 0. (4.3.5)

The electromagnetic energy density and Poynting vector (power per unit area) are

uEM =
1

8π
(E2 +B2) (SI:

ǫ0
2
E2 +

1

2µ0
B2), (4.3.6)

S =
c

4π
E ×B (SI:

1

µ0

E × B). (4.3.7)

The electromagnetic fields are obtained as derivatives of the scalar and vector potentials,

E = −∇Φ− 1

c

∂A

∂t
, (4.3.8)

B = ∇× A. (4.3.9)

It follows that E and B remain unchanged if one makes a simultaneous change in Φ and A,

called a gauge transformation,

Φ → Φ− 1

c

∂Λ

∂t
, A → A+∇Λ. (4.3.10)

Here Λ(r, t) is an arbitrary function of position and time.

In classical electrodynamics, the Lagrangian for a non-relativistic particle with mass m and

charge† q and position r(t), moving in the potentials Φ and A, is

L =
1

2
m

(
dr

dt

)2

+
q

c

dr

dt
· A(r, t)− qΦ(r, t). (4.3.11)

†The convention in this book is that the electric charge for a particle is given by q = Qe, where Q is a
dimensionless number, while e is the proton’s charge, numerically given in Gaussian cgs units by eq. (1.1.2), and
therefore always positive. (Some other sources take e to be negative when referring to the electron.) Thus, for
the electron, Q = −1 and q = −e, and for the proton, Q = 1 and q = e. All known particles have Q equal
to integer multiples of 1/3, and the ones unconfined by the strong nuclear force have integer Q. For example
Q = 2/3 for up, charm, and top quarks, and Q = −1/3 for down, strange, and bottom quarks, and Q = −1 for
the electron, muon, and tau lepton. Within the assumed structure of the Standard Model of particle physics,
this remarkable charge quantization can be understood as a requirement of anomaly cancellation, a consistency
constraint on quantum field theories with gauge interactions. Grand Unified Theories (based on non-Abelian
gauge groups like SU(5), SO(10), or E6) go further, elegantly explaining why all particles, known or unknown,
must have integer values of 3Q, but it is not presently known if these theories are correct.
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The equation of motion resulting from applying eq. (4.1.2) is the Lorentz force law,

m
d2r

dt2
= q

(
E +

1

c

dr

dt
×B

)
. (4.3.12)

The motion of the particle is thus determined only by E and B. This illustrates that, even

though the Lagrangian is written in terms of the potentials Φ(r, t) and A(r, t), they also contain

unphysical information, since the physics is equally well described by the potentials modified by

the gauge transformation in eq. (4.3.10). Unlike E and B, which have unambiguous physical

meaning, quantities like Φ and A that have gauge dependence are useful book-keeping tools,

but cannot be physical observables.

Applying the procedure in section 4.1 to eq. (4.3.11), the classical canonical momentum

conjugate to r is

p = m
dr

dt
+
q

c
A, (4.3.13)

and the classical Hamiltonian is

H =
1

2m

[
p− q

c
A(r, t)

]2
+ qΦ(r, t). (4.3.14)

Like the Lagrangian, the Hamiltonian and canonical momentum are not written directly in

terms of the fields E and B, but rather in terms of the potentials Φ and A, even though the

latter are gauge-dependent. One must be careful to distinguish the canonical momentum p of

the particle from the kinetic momentum (also known as mechanical momentum), defined

as the product of mass and velocity,

π ≡ m
dr

dt
= p− q

c
A. (4.3.15)

The kinetic momentum π is a gauge-invariant observable, since dr/dt does not depend on the

choice of gauge. In contrast, the canonical momentum p is not a gauge-invariant observable,

due to the appearance of A in eq. (4.3.13).

In quantum mechanics, we promote the classical position r and canonical momentum p to

operators, and thus the electromagnetic potentials become operators Φ(R, t) and A(R, t) that

are functions of R. So, naively, the quantum Hamiltonian should be

H =
1

2m

[
P − q

c
A(R, t)

]2
+ qΦ(R, t), (4.3.16)

where R and P satisfy the usual canonical commutation relations of eq. (2.8.54). This implies

that in the position representation, these canonical operators are represented by

R ↔ r, P ↔ −ih̄∇, (4.3.17)
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as in Table 2.8.2. Therefore, one must be careful with the ordering of P and A, so that [P −
q
c
A(R, t)]2 is interpreted as the symmetrized form P 2− q

c
(P ·A+A ·P )+ q2

c2
A2, in order that H

is Hermitian. However, eq. (4.3.16) is still not complete, because it does not include the (purely

quantum!) effect of intrinsic angular momentum, or spin.

We will discuss spin more thoroughly in 8.2, but for the present discussion we only need to

know that the spin for a particle is an observable vector operator S. The intrinsic magnetic

moment of a particle is always proportional to its spin (since, in the rest frame of the particle,

there is no other special direction in which it could point):

µ = γS. (4.3.18)

The constant of proportionality γ is a property of the particle type, called the gyromagnetic

ratio. For the electron, the gyromagnetic ratio is often written as

γe = − gee

2mec
, (4.3.19)

where the dimensionless quantity ge is called the g-factor. The Dirac equation of relativistic

quantum mechanics predicts ge = 2, but there are small corrections to this coming from the

quantum field theory of relativistic quantum electrodynamics (QED). It has been predicted

very precisely in perturbation theory in QED, and measured experimentally with comparable

accuracy, with the results

ge = 2.00231930436321(46) (QED prediction, 5th-order perturbation theory), (4.3.20)

ge = 2.00231930436182(52) (experiment), (4.3.21)

a famous agreement of better than 12 significant digits between theory and experiment. The

quantity (ge− 2)/2 is called the anomalous magnetic moment of the electron. In this book,

we will simply use the approximation ge = 2.

For the proton and the neutron, the gyromagnetic ratios are often written as

γp =
gpe

2mpc
, (4.3.22)

γn =
gne

2mpc
, (4.3.23)

which again define dimensionless g-factors. Note that the neutron has a magnetic moment,

even though it has no net charge, because it is a composite particle with charged constituents

(quarks). The conventional definition of gn for the neutron in eq. (4.3.23) uses the proton’s

charge and mass. The nucleon g-factors are also very accurately known experimentally:

gp = 5.5856946893(16), (4.3.24)

gn = −3.82608545(90), (4.3.25)
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but the theoretical predictions of these quantities are not nearly as accurate. The reason is

that, unlike the electron, the proton and neutron are complicated composite particles made up

of quarks and gluons (and virtual quark/antiquark pairs) held together by the strong nuclear

force, (quantum chromodynamics, or QCD) for which perturbation theory does not converge,

and non-perturbative methods are highly advanced but limited by finite computing power.

For electrons, protons, and neutrons, the magnitude of S is always the same, h̄/2. The

magnitude of the electron’s intrinsic magnetic moment is therefore within about 0.1% of the

Bohr magneton,

µB =
eh̄

2mec
= 5.78838× 10−5

eV

Tesla
= 9.27401× 10−21

ergs

gauss
, (4.3.26)

and the proton and neutron have magnetic moment magnitudes equal to about 2.79 and 1.91

times the nuclear magneton,

µN =
eh̄

2mpc
= 3.15245× 10−8

eV

Tesla
= 5.05078× 10−24

ergs

gauss
. (4.3.27)

Because µB/µN = mp/me ≈ 1836 is a large number, electronic and atomic magnetic moments

are typically 3 orders of magnitude larger than nuclear magnetic moments.

The classical energy of interaction of a magnetic moment µ with an external magnetic field

is −µ · B. So, we add this to the quantum Hamiltonian for a non-relativistic particle, to get

H =
1

2m

[
P − q

c
A(R, t)

]2
+ qΦ(R, t)− γS · B, (4.3.28)

where q is the electric charge and γ is the appropriate gyromagnetic ratio for the particle. Even

this Hamiltonian is not complete, for it does not include relativistic effects suppressed by further

powers of 1/c. These will be discussed when needed for the fine and hyperfine contributions to

the hydrogen atom, in sections 15.1 and 15.2.

If the Hamiltonian eq. (4.3.28) is written in terms of the kinetic momentum operator

Π = P − q

c
A, (4.3.29)

it will appear simpler, since it then does not depend on the vector potential A,

H =
1

2m
Π2 + qΦ(R, t)− γS · B. (4.3.30)

However, it is important to recognize that the kinetic momentum does not satisfy canonical

commutation relations. While one still has

[Ra,Πb] = ih̄δab, (a, b = x, y, z), (4.3.31)
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one can show from its definition‡ that [Πa,Πb] = i qh̄
c
(∇aAb − ∇bAa). This can be rewritten

directly in terms of the magnetic field as

[Πx,Πy] = i
qh̄

c
Bz, [Πy,Πz] = i

qh̄

c
Bx, [Πz,Πx] = i

qh̄

c
By. (4.3.32)

This should be contrasted with the canonical commutator [Pa, Pb] = 0. If one chooses to write

the Hamiltonian in terms of the kinetic momentum, the simplicity comes with a cost; the

information about the vector potential and the magnetic field is hidden in the commutation

relations for Π. Since Π is the product of mass and velocity for the particle, we see that in

the presence of a magnetic field one cannot simultaneously specify the three components of the

velocity of a charged particle, because they are not compatible observables.

The freedom to make gauge transformations as in eq. (4.3.10) always allows us to select

Coulomb gauge (also known as transverse gauge), defined by

∇ · A = 0. (4.3.33)

Since P is given in the position representation by −ih̄∇ acting on everything to its right, the

Coulomb gauge condition implies

P · A = A · P, (4.3.34)

with the consequent advantage that (unlike other gauge choices) there is no operator ordering

issue with the cross-terms in the Hamiltonian, of the type mentioned after eq. (4.3.17). Thus,

in Coulomb gauge, one is free to write

H =
P 2

2m
− q

mc
A · P +

q2

2mc2
A2 + qΦ− γS · B. (4.3.35)

This form will be useful to us when we discuss absorption and emission of light, in Chapter 19.

‡Note that in the position representation, P ↔ −ih̄∇, so that Π↔ −ih̄∇− q
cA(r).
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5 Transformations, symmetries, and conservation laws

5.1 Continuous unitary transformations and symmetries

As we saw in section 2.5, a unitary operator can be viewed as implementing a change of orthobasis

for the space of states. Certain unitary operators also have the interpretation of physical changes,

or transformations on a system. Notable examples include translations, rotations, inversion

of the coordinate system, and displacements in time.

If a transformation leaves the Hamiltonian unchanged, then we say, as a definition, that

the transformation is a symmetry of the quantum system. In this section we will show, in

a general way, that there is always a conserved quantity corresponding to each continuous

symmetry. As special cases, we will see that the conserved quantities associated with time

translation, spatial translation, and rotation symmetries are, respectively, energy, momentum,

and angular momentum.

Consider a set of transformation operators

U(α) = exp (−iαaGa) , (5.1.1)

where theGa areN Hermitian operators, typically observables without explicit time dependence,

called the generators of the transformations, and the αa are N real numbers that parameterize

the transformations. Here, and in the following, repeated indices a = 1, . . . , N are implicitly

summed over. Theorem 2.4.3 confirms that since the Ga are Hermitian, U(α) is a unitary

operator. Following the discussion surrounding eqs. (2.5.25)-(2.5.30), the transformations for

the state ket and all observables A are defined by

|ψ〉 → |ψ′〉 = U |ψ〉 , (5.1.2)

A → A′ = UAU †, (5.1.3)

so that matrix elements are invariant under the transformation, because U †U = I. The inverse

of the transformation parameterized by αa is parameterized by −αa,

U(α)† = U(α)−1 = U(−α). (5.1.4)

A complete set of transformations have the closure property, which says that the combination

of two transformations αa and βa should always be another transformation, parameterized by

some real numbers γa,

U(β)U(α) = U(γ). (5.1.5)

A continuous set of transformations obeying these properties has the structure of a Lie group,

named after the mathematician Marius Sophus Lie.
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Consider the following combination of unitary transformations that are infinitesimally close

to the identity,

U(ǫ)U(δ)U(ǫ)†U(δ)† = (I − iǫaGa + · · · )(I − iδbGb + · · · )(I + iǫcGc + · · · )(I + iδdGd + · · · )
= I − ǫaδb[Ga, Gb] + · · · , (5.1.6)

where terms of higher order in either ǫa or δb have been dropped. The closure property says

that this must also be a unitary transformation infinitesimally close to the identity, so [Ga, Gb]

must be a linear combination of generators. Therefore,

[Ga, Gb] = ifabcGc (5.1.7)

for some set of numbers fabc, called the structure constants of the Lie group of transformations.

Equation (5.1.7) is called the Lie algebra of the group. Since the commutator of any two

Hermitian operators [Ga, Gb] is anti-Hermitian, and the Gc are Hermitian, the quantities fabc

must all be real. If they are all 0, so that the generators all commute, then the group is said

to be Abelian, otherwise it is non-Abelian. The mathematical study and classification of Lie

groups is a rich and beautiful subject that we will not delve into further here.

For the remainder of this section, let us consider unitary transformations that are symmetries

of a quantum system. According to our definition, this means that H does not change, so

eq. (5.1.3) gives

U(α)HU(α)† = H. (5.1.8)

Taking the special case that the parameters αa = ǫa are infinitesimal, we have

(I − iǫaGa + · · · )H (I + iǫbGb + · · · ) = H, (5.1.9)

which implies ǫa[H,Ga] = 0. Since this is supposed to hold for any ǫa, we learn that

[H,Ga] = 0. (5.1.10)

It follows from Theorem 2.7.1 that an orthobasis of energy eigenstates can also be chosen to be

eigenstates of any subset of the symmetry generators Ga that are mutually commuting (called

a Cartan subalgebra by mathematicians, after Élie Cartan).

Consider an eigenstate |ga〉 of one of the symmetry generators Ga, labeled by its eigenvalue

ga. Since the symmetry generators Ga commute with the Hamiltonian, |ga〉 will remain an

eigenstate of Ga at later times, because

Ga

(
e−itH/h̄ |ga〉

)
= e−itH/h̄Ga |ga〉 = ga

(
e−itH/h̄ |ga〉

)
. (5.1.11)
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This holds even if the Hamiltonian depends on time, provided that [H(t), Ga] = 0 for all t, as one

can see by replacing the factors e−itH/h̄ by the time-evolution operator U(t, t0) from eq. (3.4.26).

Furthermore, the symmetry generators Ga are conserved quantities, also known as con-

stants of the motion. The meaning of this is given by the following result.

Theorem 5.1.1 (Noether’s principle) Suppose that an observable Ga has no explicit time

dependence, and that it commutes with the Hamiltonian, which may be time-dependent. Then,

for an arbitrary state, the probability of each possible outcome ga for a measurement of Ga is

independent of time.

Proof: The key point is that [H(t), Ga] = 0 implies that, for any particular time t = t0, one can

find an orthobasis of common eigenkets |ga, E, u〉, defined such that Ga |ga, E, u〉 = ga |ga, E, u〉
and H(t0) |ga, E, u〉 = E |ga, E, u〉. Here u = uga,E are possible degeneracy labels for ga and

E, with the subscripts dropped for typographical simplicity. These orthobasis kets are fixed,

determined by the Hamiltonian at the time t0. Now, Postulate 4 tells us that if the system is in

a state |ψ(t)〉, then the probability of measuring Ga at time t and getting the result ga is

P(ga, t) =
∑

E,u

〈ga, E, u|ψ(t)〉 〈ψ(t)|ga, E, u〉 . (5.1.12)

Here E and u are summed over, as the degeneracy labels for ga. Taking the time derivative,

and then using the time-dependent Schrödinger equation d
dt
|ψ〉 = − i

h̄
H(t) |ψ〉 and its adjoint

d
dt
〈ψ| = i

h̄
〈ψ|H(t), we get

d

dt
P(ga, t) = − i

h̄

∑

E,u

(
〈ga, E, u|H(t)|ψ(t)〉 〈ψ(t)|ga, E, u〉

− 〈ga, E, u|ψ(t)〉 〈ψ(t)|H(t)|ga, E, u〉
)
. (5.1.13)

Since H(t0) |ga, E, u〉 = E |ga, E, u〉 and 〈ga, E, u|H(t0) = E 〈ga, E, u|, the two terms on the

right side of eq. (5.1.13) simply cancel if we evaluate them at t = t0. Thus, we obtain

d

dt
P(ga, t)

∣∣∣
t=t0

= 0. (5.1.14)

This shows that, for an arbitrary state, P(ga, t) has a vanishing time derivative at any given

t = t0, so it must be constant in time, as claimed.

The expectation value of an operator in a state is the sum of its measurement outcomes

weighted by the probabilities; see eq. (3.3.1). Therefore, Theorem 5.1.1 immediately implies

a weaker but still interesting and important result, that the expectation value of a symmetry

generator Ga in an arbitrary state does not depend on time:

d

dt
〈Ga〉 = 0. (5.1.15)
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This also follows directly from Ehrenfest’s Theorem eq. (3.4.13) with Ga playing the role of A.

Theorem 5.1.1 and eq. (5.1.15) are quantum mechanical versions of Emmy Noether’s celebrated

1918 theorem in classical mechanics, that every continuous symmetry implies a conservation law;

the observables Ga that generate the symmetries of the Hamiltonian are conserved quantities.

The most straightforward special case is that of time translation symmetry, for which the

generator is the Hamiltonian itself, as expressed by the Schrödinger equation (3.1.10) in Postulate

6. If the Hamiltonian does not depend explicitly on time, then the energy is a conserved quantity,

since [H,H ] = 0 is trivially satisfied. In that case, for any state the probability of measuring

the energy to be any particular value is independent of time, and the expectation value of the

energy does not change in time.

5.2 Translations

For a particle moving in one dimension with position operator X and momentum operator P ,

consider the operator

T (a) = e−iaP/h̄, (5.2.1)

where a is a constant length. Because P is Hermitian, Theorem 2.4.3 tells us that T (a) is a

unitary operator,

T (a)† = T (a)−1 = T (−a). (5.2.2)

Using [X,P ] = ih̄, one can compute the commutator using Theorem 2.4.1,

[X, T (a)] = aT (a). (5.2.3)

From this we get, acting on a position eigenstate |x〉,

X (T (a) |x〉) = T (a)(X + a) |x〉 = (x+ a) (T (a) |x〉) , (5.2.4)

This shows that T (a) |x〉 is an eigenstate of X with eigenvalue x+ a, which means that it must

be equal to |x+ a〉 up to a multiplicative constant. If |x〉 is normalized according to the Dirac

condition, then so will be T (a) |x〉, since T (a) is unitary. Therefore, the constant is just a phase,

and T (a) |x〉 = eiθ |x+ a〉 for some θ. The only way to resolve the ambiguity represented by θ

is to arbitrarily choose a value for it, and θ = 0 is as good as any, so we define

|x+ a〉 = T (a) |x〉 . (5.2.5)

In words, T (a) operates by changing a state in which the particle is known to be at x into a

state where it is known to be at x+ a. We therefore call T (a) a translation operator.

100



Together, eqs. (5.2.5) and (5.2.2) imply

〈x|T (a) = 〈x− a| , (5.2.6)

so that for any state |ψ〉, the wavefunction obeys

ψ(x− a) = 〈x|T (a)|ψ〉 . (5.2.7)

This can be interpreted as shifting the particle’s position to the right by a (the “active view”),

or equivalently as leaving the particle’s position unchanged but shifting the coordinate system

to the left by a (the “passive view”).

If we do a translation on any normalized state |ψ〉,

|ψ〉 → T (a) |ψ〉 , (5.2.8)

then the expectation value of the position is changed according to

〈ψ|X|ψ〉 → 〈ψ|T (a)†XT (a)|ψ〉 = 〈ψ|(X + a)|ψ〉 = 〈ψ|X|ψ〉+ a. (5.2.9)

The effect of T (a) on momentum eigenstates is just to multiply by a phase,

T (a) |p〉 = e−iap/h̄ |p〉 , (5.2.10)

and the expectation value of momentum is unaffected by the transformation,

〈ψ|P |ψ〉 → 〈ψ|T (a)†PT (a)|ψ〉 = 〈ψ|P |ψ〉 . (5.2.11)

Following the general example of a unitary transformation of an operator given in eq. (5.1.3),

we can also define the translated version of an arbitrary observable A,

A′ = T (a)AT (a)†, (5.2.12)

so that if we do a simultaneous transformation of both states and operators,

|ψ〉 → |ψ′〉 = T (a) |ψ〉 , (5.2.13)

A → A′ = T (a)AT (a)†, (5.2.14)

then matrix elements are unaffected. From eq. (5.2.3), the translated position operator is

X ′ = T (a)XT (a)† = X − a, (5.2.15)

while the momentum operator does not change,

P ′ = T (a)PT (a)† = P. (5.2.16)
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From eq. (5.2.5), it follows that translations simply add,

T (a)T (b) = T (a+ b). (5.2.17)

One consequence of this is that any finite translation can be viewed as the combination of many

infinitesimal translations. For an infinitesimal translation, the exponential can be truncated to

linear order,

T (ǫ) = 1− i ǫ
h̄
P. (5.2.18)

This is described in words by saying that the momentum operator is the generator of translations.

Since the momentum operator commutes with itself, in the general language of section 5.1 where

T (a) plays the role of U(α) and P plays the role of Ga, the Lie algebra for translations is simply

[P, P ] = 0. (5.2.19)

This is an Abelian algebra; the antisymmetric structure constants defined in general by eq. (5.1.7)

trivially vanish in this case, because there is only one generator, P .

Now suppose that a quantum mechanical system has translations as a symmetry, by which

we mean that the Hamiltonian is invariant. In particular, for infinitesimal translations, we

require T (ǫ)HT (ǫ)† = H , from which it follows that

(
1− i ǫ

h̄
P
)
H
(
1 + i

ǫ

h̄
P
)
−H = i

ǫ

h̄
[H,P ] +O(ǫ2) (5.2.20)

must vanish, so

[H,P ] = 0. (5.2.21)

In general, this requires the potential V to have no dependence on X . The Hamiltonian could

be that of a free particle with H = P 2/2m, but it could also have some extra terms that may

involve other functions of P or other degrees of freedom (for example, spin), but not X . In any

case, eq. (5.2.21) implies that there must be an orthobasis of common eigenstates of P and H .

An eigenstate of P with momentum p remains so at later times, since

P
(
e−itH/h̄|p〉

)
= p

(
e−itH/h̄|p〉

)
. (5.2.22)

Also, Ehrenfest’s Theorem eq. (3.4.13) says

d

dt
〈P 〉 = 0, (5.2.23)

and Theorem 5.1.1 says even more, that the probability to measure the momentum within

any given range will be constant in time. Note that these statements are true for any state,
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including an arbitrary superposition of free particle eigenstates with different momenta, provided

that [H,P ] = 0. A non-trivial illustration will be provided at the end of section 6.2.

For a particle moving in three dimensions, the preceding discussion can be adapted in a

straightforward way. The translation operator for a vector distance a is

T (a) = e−i~a·
~P/h̄, (5.2.24)

and it satisfies

T (a)T (~b) = T (a+~b), (5.2.25)

T (a)−1 = T (a)† = T (−a). (5.2.26)

The operation on position and momentum eigenkets is

T (a) |r〉 = |r + a〉 , 〈r|T (a) = 〈r − a| , (5.2.27)

T (a) |p〉 = e−i~a·~p/h̄ |p〉 , 〈p|T (a) = ei~a·~p/h̄ 〈p| , (5.2.28)

and the remaining discussion for the one-dimensional case likewise follows through for the three-

dimensional case with P replaced by P . Although there are now three generators Px, Py, and

Pz, they all commute with each other, so the structure constants are all 0, and the Lie group

is Abelian. Note that in the case of a charged particle moving in an electromagnetic field as

discussed in section 4.3, it is the canonical momentum P that generates translations, not the

kinetic momentum Π.

Consider a quantum system describing two distinguishable particles labeled 1 and 2. Then

one can have translation invariance even with a non-zero potential, provided that the Hamilto-

nian has the form considered in our discussion of the two-body problem in section 4.2,

H =
P 2
1

2m1
+

P 2
2

2m2
+ V (R1 − R2). (5.2.29)

Now, one can define individual translation operators for particles 1 and 2, by

T1(a) = e−i~a ·
~P1/h̄, T2(a) = e−i~a ·

~P2/h̄. (5.2.30)

These are not symmetries of the Hamiltonian unless the potential V (R1 − R2) is neglected.

However, defining the total momentum operator Ptot = P1 + P2 as in section 4.2, one can check

that each component of Ptot commutes with each component of R1 − R2, so

[
H, Ptot

]
= 0. (5.2.31)

Therefore, the total translation operator

T (a) = exp
[
−ia · Ptot/h̄

]
(5.2.32)
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leaves the full Hamiltonian eq. (5.2.29) invariant,

T (a)HT (a)† = H, (5.2.33)

and is therefore a symmetry of the system. [Note that this would not be true if one added

individual potentials V1(R1) or V2(R2) to the Hamiltonian.] Equation (5.2.33) simply reflects

the feature that the total translation moves both particles 1 and 2 by the same amount, and so

does not change the separation between them, nor either of their momenta. It follows that one

can find an orthonormal basis of simultaneous eigenstates of H and Ptot = P1 + P2, and that

an eigenstate of Ptot remains so at later times, and that in an arbitrary state the probability of

measuring a given result for Ptot does not change in time, and its expectation value is conserved.

5.3 Rotations

In this section, we will explore the connection between rotations and the angular momentum

operators that generate them. Classically, the angular momentum of a particle about the point

chosen as the origin is defined by

~l = r × p. (5.3.1)

In quantum mechanics, we promote this to a vector operator, and define the orbital angular

momentum operator for a particle as

L = R× P = x̂Lx + ŷLy + ẑLz, (5.3.2)

where the components

Lx = Y Pz − ZPy, Ly = ZPx −XPz, Lz = XPy − Y Px. (5.3.3)

are each observables. There is no problem with operator ordering to worry about here, because

[Y, Pz] = [Z, Py] = [Z, Px] = [X,Pz] = [X,Py] = [Y, Px] = 0.

The commutator algebra for the angular momentum components Lx, Ly, and Lz can be

computed using the commutators of the position and momentum operators that they are built

out of. For example,

[Lx, Ly] = [Y Pz, ZPx] + [ZPy, XPz] = ih̄(XPy − Y Px) = ih̄Lz. (5.3.4)

Similarly,

[Ly, Lz] = ih̄Lx, [Lz, Lx] = ih̄Ly. (5.3.5)
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The last three equations can be summarized as†

[La, Lb] = ih̄ǫabcLc, (a, b, c = x, y, z). (5.3.6)

Here, ǫabc is the totally antisymmetric Levi-Civita symbol, with

ǫxyz = ǫyzx = ǫzxy = 1, ǫxzy = ǫyxz = ǫzyx = −1, (5.3.7)

and all other components ǫabc = 0. It obeys the identities

ǫabcǫdec = δadδbe − δaeδbd, (5.3.8)

ǫabcǫdbc = 2δad, (5.3.9)

ǫabcǫabc = 6. (5.3.10)

In the general language of section 5.1, the role of the generators Ga is taken by La/h̄ for

rotations, as we are about to show. Comparing to eq. (5.1.7), we see that the Lie algebra of

angular momentum operators is non-Abelian, with structure constants fabc = ǫabc. Note that

there is always an arbitrary normalization in the definition of the generators; it was convenient

to include the factor of 1/h̄ here so that the structure constants are dimensionless.

Rotations are defined by the property that, as changes in coordinates, they leave invariant

the distances of points from the origin. The composition of two rotations is another rotation;

in mathematical language, rotations correspond to the Lie group called SO(3). In quantum

mechanics, we can think of rotations as a unitary change of basis corresponding to the change in

coordinates; a rotation by an angle α about the axis defined by a unit vector n is implemented

by a unitary operator U(α), where α = n̂α. The fact that rotations form a group means that

for any α and β,

U(β)U(α) = U(γ), (5.3.11)

for some γ. In particular, arbitrary finite rotations can be constructed from the limit of a large

number of infinitesimal rotations.

Let us now show that (for the case of a single spin-less particle) Lz is the generator of

rotations about the z-axis (analogously to how Pz is the generator of translations along the z

direction). For such a rotation by an angle α, the coordinates transform as


x
y
z


→



cosα − sinα 0
sinα cosα 0
0 0 1





x
y
z


 (5.3.12)

†Here, and from now on, we use the repeated index summation convention, which says that repeated
indices are implicitly summed over, except when they appear on both sides of an equation. Thus, in this case, c
is summed over, but a and b are not.
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If α = ǫ is infinitesimal, then this becomes x→ x− ǫy and y → y+ ǫx, and of course z → z. We

therefore define an infinitesimal unitary rotation operator by its action on the position eigenkets,

U(ǫẑ) |x, y, z〉 = |x− ǫy, y + ǫx, z〉 , (5.3.13)

which implies

〈x, y, z|U(ǫẑ)† = 〈x− ǫy, y + ǫx, z| (5.3.14)

and U(ǫẑ)† = U(ǫẑ)−1 = U(−ǫẑ). It follows that

〈x, y, z|U(ǫẑ)|ψ〉 = 〈x+ ǫy, y − ǫx, z|ψ〉 = ψ(x+ ǫy, y − ǫx, z)

= ψ(x, y, z) + ǫy
∂

∂x
ψ(x, y, z)− ǫx ∂

∂y
ψ(x, y, z), (5.3.15)

where the last equality is the result of the Taylor series expansion to linear order in ǫ. Now,

since ∂/∂x↔ iPx/h̄ and ∂/∂y ↔ iPy/h̄ in the position representation, we have

〈x, y, z|U(ǫẑ)|ψ〉 = 〈x, y, z|
[
I − i ǫ

h̄
(XPy − Y Px)

]
|ψ〉 , (5.3.16)

for every state |ψ〉, so comparing with eq. (5.3.3), we get

U(ǫẑ) = I − i

h̄
ǫLz . (5.3.17)

This establishes that Lz generates rotations about the z axis, and

Lz ↔ −ih̄
(
x
∂

∂y
− y ∂

∂x

)
(5.3.18)

in the position wavefunction representation.

There is nothing special about the z-axis in the preceding discussion, so repeating the pre-

ceding process for infinitesimal rotations about the x and y axes, one obtains

U(ǫx̂) = I − i

h̄
ǫLx, U(ǫŷ) = I − i

h̄
ǫLy, (5.3.19)

with Lx and Ly given by eqs. (5.3.3), and position representations

Lx ↔ −ih̄
(
y
∂

∂z
− z ∂

∂y

)
, Ly ↔ −ih̄

(
z
∂

∂x
− x ∂

∂z

)
. (5.3.20)

Thus Lx, Ly, and Lz are generators for rotations about the x, y, and z axes, respectively

(assuming that there is no intrinsic angular momentum).

The unitary rotation operator for a non-infinitesimal angle α can be built from the limit of

a large number N of infinitesimal operators with ǫ = α/N , acting sequentially, so

U(αẑ) = lim
N→∞

(
I − i

h̄

α

N
Lz

)N
= exp

(
− i
h̄
αLz

)
, (5.3.21)
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where we have used the definition of the exponential of an operator in eq. (2.4.29). For a rotation

by an angle α about an arbitrary axis n̂, this generalizes to

U(αn̂) = exp

(
− i
h̄
α · L

)
, (5.3.22)

where α = n̂α.

For the position representation, we could also use cylindrical or spherical coordinates instead

of rectangular coordinates, so that the position eigenkets are |r, φ, z〉 or |r, θ, φ〉, respectively.
For spherical coordinates in particular, this has the advantage that one of the coordinates, r,

is not involved in the differential operators that represent the angular momenta. In spherical

coordinates, eq. (5.3.15) becomes

〈r, θ, φ|U(ǫẑ)|ψ〉 = ψ(r, θ, φ) + ǫ
∂

∂φ
ψ(r, θ, φ), (5.3.23)

so that as an equivalent to eq. (5.3.18),

Lz ↔ −ih̄ ∂
∂φ

(5.3.24)

in the position representation. For the special case of rotations about the z axis, this also holds

in cylindrical coordinates.

Let us now solve the eigenvalue problem for the operator Lz , using the position representa-

tion. Because eq. (5.3.24) only involves the coordinate φ, the following derivation works equally

well in spherical or cylindrical coordinates. We start with

Lz|lz〉 = lz|lz〉, (5.3.25)

where lz is the eigenvalue, also used as a label for the eigenstate, and we have suppressed any

degeneracy labels. In the position representation, this becomes

−ih̄ ∂

∂φ
ψ(φ) = lzψ(φ), (5.3.26)

also suppressing the dependence on other coordinates. The solutions are

ψ(φ) = ceilzφ/h̄, (5.3.27)

where c is a non-zero normalization constant. The range of φ is the continuous interval 0 ≤ φ ≤
2π. Therefore, for Lz to be a Hermitian operator, by following exactly the same derivation that

led to eq. (2.8.23) with P replaced by Lz, we find that

[ψ1(2π)]
∗ψ2(2π) = [ψ1(0)]

∗ψ2(0) (5.3.28)
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must hold for any wavefunctions ψ1 and ψ2. A sufficient condition for this to be satisfied is that

all wavefunctions obey ψ(2π) = ψ(0), and more generally ψ(φ + 2π) = ψ(φ). It is necessary to

impose this periodic boundary condition anyway, in order for the wavefunction to have a unique

expansion in terms of position eigenstate kets. It follows that eilz2π/h̄ = 1, which requires that

lz = h̄m, (5.3.29)

where m is an integer. The use of the letter m is traditional in this role, and it is sometimes

called the magnetic quantum number. We therefore use it as a label for the corresponding

eigenstates of Lz , and write, from now on,

Lz|m〉 = h̄m|m〉. (5.3.30)

All of the preceding was derived with the assumption that the angular momentum was

associated with the motion of a single particle. More generally, a Hilbert space can describe

more than one particle. Furthermore, each of the particles may also have an intrinsic angular

momentum, or spin, which has no classical counterpart, and is not associated at all with the

quantum mechanical position wavefunction of the particle. These distinct types of angular

momenta can also be combined to form new angular momenta.

In general, we define an angular momentum operator

J = x̂Jx + ŷJy + ẑJz (5.3.31)

to be one that satisfies a commutator algebra that has the same form as for orbital angular

momentum. Specifically,

[Jx, Jy] = ih̄Jz [Jy, Jz] = ih̄Jx [Jz, Jx] = ih̄Jy, (5.3.32)

or equivalently

[Ja, Jb] = ih̄ǫabcJc. (5.3.33)

Because the components of an angular momentum operator J do not commute with each other,

they are not compatible, and one cannot find an orthobasis of J eigenstates. The only solution

to the eigenvalue equation

J |j 〉 = j |j 〉 (5.3.34)

has j = 0. Thus, an angular momentum vector J is not an observable, although each of its

components is. If we choose eigenstates of Jz, they cannot also be eigenstates of Jx or Jy, except
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in the very special case that all of the eigenvalues are 0. However, you can check that the

angular momentum squared operator

J2 = J2
x + J2

y + J2
z (5.3.35)

does commute with Jz. This means that one can find common eigenkets for J2 and Jz, and they

can be part of a CSCO. We will work out the the details of the simultaneous eigenvalue problem

for J2 and Jz in Chapter 8.

For each particle, the intrinsic angular momentum, or spin S, is the part of the angular

momentum that is inseparable from the identity of the particle, and is distinct from the orbital

angular momentum. The operator S is a special case of J defined by the property that it has

fixed magnitude, in the sense that all particles of a given type have the same eigenvalue of S2,

which can never change. For any single particle, the total angular momentum operator is simply

the sum of the orbital and spin parts, J = L+ S. (Note that we use the same symbol J as for

a generic angular momentum operator defined in the previous paragraph.)

For the two-body problem of section 4.2, you can check that the total orbital angular mo-

mentum operator (not including the spins) can be written in two equivalent ways as

Ltot = L1 + L2 = L+ Lcm, (5.3.36)

where L1 = R1 × P1 and L2 = R2 × P2 for the individual particles, and

L = R× P, Lcm = Rcm × Ptot, (5.3.37)

define the relative and center-of-mass contributions to the angular momenta. It is often sensible

to restrict to the subspace of the Hilbert space consisting of eigenstates of Ptot with eigenvalue

0, corresponding to vanishing total momentum in the center-of-mass frame. If we do so, then

Lcm vanishes identically, and the relative angular momentum L is equal to the total angular

momentum Ltot.

More generally, for a given choice of origin, every three-dimensional physical system has a

total angular momentum operator J , which adds both orbital and spin angular momentum

contributions for all of the particles that are present. By definition, J is the operator that acts

on the full Hilbert space of states to generate rotations about an axis n̂ by an angle α, with

U(α) = exp
(
−iαn̂ · J/h̄

)
, (5.3.38)

where α = n̂α. To rotate a state |ψ〉, the unitary transformation is

|ψ〉 → |ψ′〉 = U(α) |ψ〉 . (5.3.39)
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We also define rotated operators

A → A′ = U(α)AU(α)†, (5.3.40)

so that, due to the unitarity of U(α), matrix elements of the rotated operators between rotated

states are the same as the original matrix elements, 〈χ′|A′|ψ′〉 = 〈χ|A|ψ〉.
Suppose that the Hamiltonian for a system has the symmetry of invariance under rotations

generated by an angular momentum component n̂ · J , so that rotations about the unit vector

axis n̂ are a symmetry of the system, and

[H, n̂ · J ] = 0. (5.3.41)

(It is traditional to choose the coordinate system so that n̂ = ẑ, unless there is a good reason not

to, but let us be more general.) One can then choose an orthobasis of simultaneous eigenstates

of H and n̂ · J , and as shown on general grounds in section 5.1, n̂ · J is a conserved quantity.

This means that eigenstates of n̂ · J will remain so under time evolution, and for an arbitrary

state the probability to obtain a given outcome for a measurement of n̂ · J is constant, and

d

dt
〈n̂ · J 〉 = 0. (5.3.42)

If the Hamiltonian is invariant under all rotations, it is convenient to choose a CSCO to include

H, J2, Jz, (5.3.43)

since these observables commute with each other.

5.4 Parity

Another kind of coordinate transformation is parity (also known as space inversion), defined

as the operation of replacing each rectangular position coordinate by minus itself. Unlike trans-

lations and rotations, parity is a discrete group known as Z2; acting twice with parity gives back

the identity operation, and there are no infinitesimal parity transformations.

Let us start by defining the parity operator Π for a particle moving in one dimension by

giving its action on the position-eigenstate orthobasis kets,

Π |x〉 = |−x〉 . (5.4.1)

(Note that |−x〉 is the ket that describes a particle known to be at the point −x, and is not

the same thing as −|x〉, which still describes a particle known to be at the point x.) Since

Π (Π |x〉) = |x〉, we have ΠΠ = I, so that so parity is its own inverse,

Π−1 = Π. (5.4.2)
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Also, taking the Hermitian adjoint of eq. (5.4.1) gives 〈x|Π† = 〈−x|, so

〈x′|Π†|x〉 = 〈−x′|x〉 = δ(x+ x′) = 〈x′| −x〉 = 〈x′|Π|x〉 . (5.4.3)

Since this is true for every |x〉 and |x′〉 in the position orthobasis, it must be that

Π† = Π. (5.4.4)

Comparing eqs. (5.4.2) and (5.4.4), we see that the parity operator is both unitary (a map

from an orthobasis to another orthobasis) and Hermitian (an observable). Since all Hermitian

operators have real eigenvalues, and all unitary operators have eigenvalues with magnitude 1,

the only possible eigenvalues of Π are 1 and −1.
Given a wavefunction for an arbitrary state 〈x|ψ〉 = ψ(x), we have

〈x|Π|ψ〉 = 〈−x|ψ〉 = ψ(−x). (5.4.5)

Applying this to the case of a momentum eigenstate,

〈x|Π|p〉 = 〈−x|p〉 = 1√
2πh̄

e−ipx/h̄ = 〈x|−p〉 , (5.4.6)

from which we learn that

Π|p〉 = |−p〉. (5.4.7)

Similarly, it is easy to show that

ΠXΠ = −X, ΠP Π = −P, (5.4.8)

so that the position and momentum operators are both said to be odd under parity. More

generally, one defines the parity of an operator A as

πA = ±1, if ΠAΠ = ±A. (5.4.9)

However, not all operators have definite parity in this sense.

If A is even under parity, it follows that

ΠA−AΠ = 0, (5.4.10)

so that Π and A are compatible operators, and can have common eigenstates. For example, the

Hamiltonian H = P 2/2m+ V (X) is parity-even if, and only if, V (X) is an even function of X .
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In the special case of a free particle with V = 0, the corresponding simultaneous eigenstates of

H and Π are

|E, +1〉 =
1√
2
(|p〉 + |−p〉) , (5.4.11)

|E, −1〉 =
1√
2
(|p〉 − |−p〉) , (5.4.12)

where p =
√
2mE/h̄. However, since P does not commute with Π, one cannot find simultaneous

eigenstates of them, and indeed the parity eigenstates |E,±1〉 are not eigenstates of momentum.

As in the case of translations, parity generalizes straightforwardly to three dimensions. By

definition,

Π|r〉 = |−r 〉 , (5.4.13)

from which it follows that

Π|p〉 = |−p 〉 (5.4.14)

and position and momentum operators carry odd parity,

ΠRΠ = −R, ΠP Π = −P. (5.4.15)

Angular momentum operators, as defined in the previous section, always have even parity,

ΠJ Π = J. (5.4.16)

In the case of orbital angular momentum, ΠLΠ = L follows directly from the definition in

eq. (5.3.3). For more general angular momentum operators (including spin), the even parity can

be inferred from the general commutator algebra structure in eq. (5.3.33). If the potential energy

depends only on the radial coordinate, so that the Hamiltonian has the formH = P 2/2m+V (R),

then this H commutes not only with L2 and Lz, but also with Π. Such a system therefore admits

simultaneous eigenstates of all four operators. In that case, parity is a symmetry of the system,

and eigenstates of parity will remain so under time evolution.

A powerful application of parity is to the identification of selection rules for matrix elements.

Suppose that an operator A has definite parity πA as defined by eq. (5.4.9), and that the states

|ψ〉 and |φ〉 are parity eigenstates with eigenvalues πψ and πφ, respectively. Now we note that

〈φ|A|ψ〉 = πA 〈φ|ΠAΠ|ψ〉 = πAπφπψ 〈φ|A|ψ〉 . (5.4.17)

The product πAπφπψ is either +1 or −1. In the former case, eq. (5.4.17) tells us nothing, but in

the latter case, we obtain:
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Theorem 5.4.1 (Parity selection rule) If states |ψ〉 and |φ〉 and an operator A all have

definite parities, and πAπφπψ = −1, then the matrix element 〈φ|A|ψ〉 must vanish.

This result has many practical applications, including elegantly explaining the absence of certain

atomic transitions. Before investing your valuable time in calculating a quantity, it is always a

good idea to consider first whether it must vanish due to a matrix element selection rule.

5.5 Gauge transformations

Physical systems that involve electromagnetic interactions with charged particles can be formu-

lated in terms of potentials, subject to gauge transformations of the form

Φ → Φ− 1

c

∂

∂t
Λ, A → A+∇Λ. (5.5.1)

As discussed in section 4.3, the physical situation described by a pair of potentials (Φ, A) is

equally well described by any pair (Φ′, A′) related to them by a gauge transformation parame-

terized by some arbitrary function Λ(r, t).

Before proceeding, we pause to emphasize that gauge transformations have a completely

different character than the other transformations discussed in the preceding sections. If we do

a translation or rotation on a system, we have transformed the system into a physically distinct

one. A particle that has been translated by 1 centimeter is in a different place, distinguishable

by experiment. To say that a system has translation symmetry means that we can physically

move the whole system in an experimentally measurable way without changing the Hamiltonian

that describes its time evolution. In contrast, the whole point of gauge transformations is that

although they change the Hamiltonian, they do so without changing the actual physical situation

at all. There is no way an experiment can tell whether you have chosen Coulomb gauge or not!

Although it is common to refer to “gauge symmetries”, the freedom to do a gauge transformation

really is not a symmetry in the same way that translations or rotations can be, but rather is a

manifestation of the fact that our description in terms of potentials has an arbitrariness, in the

form of redundancies that can be eliminated by fixing the gauge.

Consider a classical charged particle in an electromagnetic field. Clearly, if we do a gauge

transformation the position and the velocity of the charged particle are unaffected, since they

can be measured experimentally. However, the classical canonical momentum p defined in

eq. (4.3.13) does change with a gauge transformation, because it involves not just the velocity

but also the gauge-dependent potential A.

In the quantum description, the state ket used to describe the system is similarly gauge-

dependent. Naively, this might seem like a problem, but it is not, because the state ket by

itself is not a physically measurable observable. For example, we already have pointed out that
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multiplying a ket by a constant complex phase does not change probabilities. In the following,

we will show that the gauge transformation of the ket describing a single particle of charge q is

realized as a unitary transformation

UΛ = exp
[
i
q

h̄c
Λ(R, t)

]
, (5.5.2)

with

|ψ〉 → |ψ′〉 = UΛ |ψ〉 , (5.5.3)

Φ(R, t) → Φ(R, t)′ = Φ(R, t)− 1

c

∂

∂t
Λ(R, t), (5.5.4)

A(R, t) → A(R, t)′ = A(R, t) +∇Λ(R, t). (5.5.5)

Thus, a gauge transformation in quantum mechanics is defined as the simultaneous changes in

eqs. (5.5.3)–(5.5.5) with the same Λ. Primes are used to indicate the state ket and operators

after the gauge transformation. For every operator Ω, the definition of the gauge transformation

Ω → Ω′ (5.5.6)

is obtained by applying eq. (5.5.4) and (5.5.5) to the explicit dependence of Ω on the potentials.

We now need to show that physical predictions are unaffected by such a transformation.

We start by noting that a prerequisite for an operator Ω to be a physical gauge-invariant

observable is that its expectation values should be the same before and after the gauge trans-

formation,

〈ψ|Ω|ψ〉 = 〈ψ′|Ω′|ψ′〉 . (5.5.7)

Requiring this to be true for all state kets |ψ〉, and using eq. (5.5.3), we obtain the defining

property of a gauge-invariant observable,

Ω′ = UΛΩU
†
Λ. (5.5.8)

Not all Hermitian operators that would otherwise satisfy the requirements of being an observable

will have this property.

For example, consider the canonical operators R and P . Since they do not depend explicitly

on the potentials, we have

R′ = R, P ′ = P. (5.5.9)

Meanwhile, using the definition of UΛ in eq. (5.5.2), we find

UΛRU
†
Λ = R, (5.5.10)

UΛP U
†
Λ = P − q

c
∇Λ. (5.5.11)
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The first equation is an immediate consequence of the fact that UΛ involves only R and not P ,

and the second follows from applying Theorem 2.4.1. Comparison of eqs. (5.5.9)–(5.5.11) with

eq. (5.5.8) shows that R is a gauge-invariant observable, but the canonical momentum operator

P is not. In contrast, it follows from eq. (5.5.5) that the gauge transformation of the kinetic

momentum Π = P − q
c
A is Π′ = P − q

c
(A+∇Λ). From eq. (5.5.11), it follows that

Π′ = UΛΠU
†
Λ. (5.5.12)

This establishes that the kinetic momentum Π is a gauge-invariant observable, according to our

defining requirement of eq. (5.5.8).

Since this was perhaps somewhat tricky and unexpected, we reiterate. Even though the

canonical momentum operator P does not change when we do a gauge transformation, its

expectation values do change, so it is not a gauge-invariant observable. And, although the

kinetic momentum operator Π changes when we do a gauge transformation, its expectation

values do not, so it is a gauge-invariant observable. These are the quantum versions of the

statements made about the gauge dependences of the classical quantities p and π following

eq. (4.3.15).

The Hamiltonian operator certainly changes when we do a gauge transformation, since it

depends explicitly on the potentials Φ and A. Using eqs. (5.5.4) and (5.5.5) in eq. (4.3.28) gives

the gauge transformation of H ,

H → H ′ =
1

2m

[
P − q

c
A− q

c
∇Λ
]2

+ qΦ− q

c

∂Λ

∂t
− γS · B. (5.5.13)

Equations (5.5.10) and (5.5.11) allow us to rewrite this in the convenient form

H ′ = UΛHU
†
Λ + ih̄

(
∂UΛ

∂t

)
U †Λ. (5.5.14)

Now, given the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉, (5.5.15)

it is straightforward to use |ψ(t)′〉 = UΛ|ψ(t)〉 and eq. (5.5.14) to obtain

ih̄
d

dt
|ψ(t)′〉 = H ′ |ψ(t)′〉. (5.5.16)

This shows the key result that the Schrödinger equation for time evolution is also satisfied if H

and |ψ(t)〉 are replaced by their gauge-transformed counterparts.

Another consequence of eq. (5.5.14) is that the Hamiltonian is not, in general, a gauge-

invariant observable, due to the presence of the last term. However, the requirement H ′ =
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UΛHU
†
Λ is satisfied for the subset of gauge transformations such that ∂Λ/∂t = 0. Thus, if

we limit the gauge transformations to those that do not depend explicitly on time, then H is

a gauge-invariant observable in that restricted sense. Also, if the potentials Φ and A do not

depend on time, then according to the results at the end of section 5.1, H is a conserved quantity,

the total energy of the particle.

The defining requirement for gauge-invariant observables, eq. (5.5.8), was obtained by requir-

ing that expectation values do not depend on the choice of gauge. Now we will use eq. (5.5.8) to

prove the stronger result that all probabilities for measurements of such observables are gauge

independent. Consider a gauge-invariant observable Ω, and choose an orthobasis of its eigenkets

with degeneracy labels uω, so that

Ω|ω, uω〉 = ω|ω, uω〉. (5.5.17)

According to Postulates 3 and 4, the probabilities for allowed results of the measurement of Ω

in a state |ψ〉 are

P(ω) =
∑

uω

|〈ω, uω|ψ〉|2. (5.5.18)

Now, we observe that

Ω′ UΛ|ω, uω〉 = UΛΩU
†
Λ UΛ|ω, uω〉 = UΛΩ|ω, uω〉 = ωUΛ|ω, uω〉, (5.5.19)

which shows that the states UΛ|ω, uω〉 are eigenkets of Ω′, with the same eigenvalues ω and the

same degeneracies. Therefore, we can compute the probability to obtain the result ω from a

measurement of Ω′ in the gauge-transformed description as

P(ω)′ =
∑

uω

|〈ω, uω|U †Λ|ψ′〉|2 =
∑

uω

|〈ω, uω|U †ΛUΛ|ψ〉|2 =
∑

uω

|〈ω, uω|ψ〉|2 = P(ω). (5.5.20)

Thus, we have succeeded in our goal of showing that the predictions for measurements of gauge-

invariant observables are not changed by the gauge transformation. This is in accord with the

general principle that gauge transformations affect our equations in intermediate steps, but do

not change physical reality.

For simplicity, in the preceding we have treated the case of a single particle with charge q.

In the case of more than one particle, with charges qn and masses mn, the same discussion goes

through, with Hamiltonian

H =
∑

n

(
1

2mn

[
Pn −

qn
c
A(Rn, t)

]2
+ qnΦ(Rn, t)− γnSn · B(Rn, t)

)
, (5.5.21)
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subject to gauge transformations as given by eqs. (5.5.3)–(5.5.5), but with

UΛ = exp

[
i

h̄c

∑

n

qnΛ(Rn, t)

]
. (5.5.22)

The gauge transformation of the wavefunction in the position representation, ψ(r1, . . . , rn) =

〈r1, . . . , rn|ψ〉, is therefore given by

ψ(r1, . . . , rn) → exp

[
i

h̄c

∑

n

qnΛ(rn, t)

]
ψ(r1, . . . , rn). (5.5.23)

This consists of multiplication by a phase that may depend on time and the particle positions,

but not in an arbitrary way when there is more than one particle, since there is only one

function Λ(r, t). Thus, gauge invariance can be viewed as the statement that multiplying the

wavefunction for a system of charged particles by a phase of this special form can be compensated

by a redefinition of the electromagnetic potentials. In practice, one may avoid this redundancy

in the description of the physical system by fixing the gauge. This just means that one chooses

a specific form of the potentials, or at least imposes some condition on them that will not be

satisfied if one does an arbitrary gauge transformation.

5.6 Currents and local conservation of probability

From Postulate 4, and the completeness of position eigenstates, we know that the probability

to find a particle within an infinitesimal volume d3r is given by the Born rule,

dP = ρ(r, t) d3r, (5.6.1)

where the probability density per unit volume is

ρ(r, t) = |〈r |ψ(t)〉|2 = |ψ(r, t)|2. (5.6.2)

Assuming the total probability of finding the particle somewhere is fixed and equal to 1, there

must be a law of conservation of probability. The local form of this law is a differential equation

∂ρ

∂t
= −∇ · J, (5.6.3)

where J is a probability current density. The left side of this equation is the rate at which

probability density is accumulating at a point, which the right side tells us is the negative of a

source for the vector field J .

To prove eq. (5.6.3), and identify the current density, start with the Schrödinger equation in

the position representation, and multiply by −iψ∗/h̄,

ψ∗
∂

∂t
ψ =

ih̄

2m
ψ∗∇2ψ − i

h̄
V ψ∗ψ. (5.6.4)
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Adding this to its complex conjugate, we get

∂ρ

∂t
=

ih̄

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
, (5.6.5)

in which the contribution proportional to V (r) has canceled due to the fact that the potential

is real. Now if we define the probability current density by

J ≡ ih̄

2m

(
ψ∇ψ∗ − ψ∗∇ψ

)
, (5.6.6)

then

∇ · J =
ih̄

2m

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
, (5.6.7)

where two terms proportional to ∇ψ∗ ·∇ψ have canceled. Comparison of eqs. (5.6.5) and (5.6.7)

establishes the local conservation of probability, eq. (5.6.3).

In the case of a charged particle, an important modification is needed if the vector potential

A is non-zero. Starting with the Hamiltonian in eq. (4.3.28), one can show by steps similar to

those followed in eqs. (5.6.4)–(5.6.7) that the current density satisfying ∇ · J = −∂ρ/∂t is

J =
1

m
Re
[
ψ∗
(
−ih̄∇− q

c
A
)
ψ
]
, (5.6.8)

generalizing eq. (5.6.6). Here, −ih̄∇− q
c
A is the position representation of the kinetic momentum

operator, Π, which was introduced in eq. (4.3.29) of section 4.3. This expression for J is invariant

under gauge transformations, and is related to the electric current density j by j = qJ , where

q is the electric charge of the particle.

As an example, consider a free particle in a plane-wave simultaneous eigenstate of momentum

and energy with eigenvalues p = h̄k and E = h̄2k2/2m,

ψ(r, t) = Cei
~k·~r−iEt/h̄. (5.6.9)

In terms of the complex normalization constant C, the probability and current densities are just

constants in both time and position,

ρ = |C|2, (5.6.10)

J =
ih̄

2m
(−ik − ik)|C|2 =

p

m
ρ. (5.6.11)

If the domain of the particle is all space, then the wavefunction is not normalizable to unity

for any finite C, but at least the ratio of the current density to the probability density is well-

defined and equal to the velocity eigenvalue of the particle. Although the probability density is

constant, it is constantly flowing in the direction of v = p/m. So, in the case of a free particle,

∂ρ

∂t
= 0, −∇ · J = 0, (5.6.12)
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satisfying the local conservation of probability in the most trivial possible way.

In the case of one-dimensional problems, the probability density and current are

ρ = |ψ(x, t)|2, J =
ih̄

2m

(
ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)
, (5.6.13)

and the statement of local conservation of probability is

∂ρ

∂t
= −∂J

∂x
. (5.6.14)

The current density vector is just a number in the one-dimensional case, and is positive for

probability density flowing to the right, and negative for flow to the left.

In some cases, one can think of probability as not being conserved. Suppose, for example,

that we are using quantum mechanics to model the behavior of an unstable particle. If our

Hilbert space only describes the unstable particle, and not the other particles that it decays

into, then we should expect that the total integrated probability to find it somewhere should

decrease with time. To describe situations like this, we can break the law for a good cause, by

taking the Hamiltonian to be non-Hermitian.

To see how this works, suppose that we defy the authority of Postulate 6 by taking H to

have complex eigenvalues, with corresponding normalized eigenkets |φn〉, so that

H |φn〉 = (En − iΓn/2) |φn〉 , (5.6.15)

where En and Γn are real numbers. Of course, this is only possible if H is not Hermitian, due

to Theorem 2.6.3. If the state of the system at time t = 0 is one of them, |ψ(0)〉 = |φn〉, with
unit norm, then the time evolution predicted by the Schrödinger equation will be non-unitary,

|ψ(t)〉 = e−i(En−iΓn/2)t/h̄ |φn〉 . (5.6.16)

The norm of this ket as a function of time is therefore

〈ψ(t)|ψ(t)〉 = e−Γnt/h̄. (5.6.17)

We can then interpret the norm of the ket as the probability that the particle exists at time

t > 0, given that it existed at time t = 0. The mean lifetime of our unstable state |φn〉 is thus
τ = h̄/Γn, where Γn/2 is the negative of the imaginary part of the Hamiltonian eigenvalue.

The unstable states could correspond to particles that undergo spontaneous decay, such as

the neutron, the muon, or many atomic nuclei. The formalism could also be applied to a set

of atomic states, if we imagine that our quantum treatment does not include the complete set

of states to which they could decay, including photons released in the process. It could even
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apply in a description of a single absolutely stable particle like the electron, if it can be removed

from the system under discussion by a process like electron-capture inverse beta decay, which

in some nuclei occurs as e−p→ nνe. This would correspond to an effective potential V (r) with

negative imaginary parts localized at the nuclei. By repeating the steps of eqs. (5.6.4)-(5.6.7),

one can see that, in the case of a non-Hermitian potential, the equation that governs the local

probability density and current is

∂ρ

∂t
= −∇ · J +

2

h̄
Im[V ]ρ. (5.6.18)

In all such cases of particles decaying to other particles, or interacting in such a way as to

change their numbers, the use of a non-Hermitian Hamiltonian is really a sign of an incomplete

description. There is always a more fundamental description in which the full Hamiltonian will

be Hermitian. Quantum field theories provide the natural way to incorporate processes that

change the numbers of particles, in such a way that the postulates of quantum mechanics hold,

including unitary time evolution as predicted by Postulate 6.
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6 Particle moving in one dimension

6.1 Gaussian wavefunctions

Consider a particle moving in one dimension in the domain −∞ < x < ∞. Suppose that at

some moment in time, the position wavefunction has a Gaussian form,

〈x|ψ〉 = ψ(x) = N exp
[
−(x− a)2/4σ2

]
. (6.1.1)

Here a and σ are constants with units of [length], corresponding respectively to the center and

the width of the probability density |ψ(x)|2. More precisely, the full width at half maximum

(FWHM) of the Gaussian peak of the probability density is 2
√
2 ln 2σ ≈ 2.35σ. The factor N is

a normalization. If we require the ket |ψ〉 to have unit norm, we need

1 = |N |2
∫ ∞

−∞
dx exp

[
−(x− a)2/2σ2

]
= |N |2

√
2πσ, (6.1.2)

so we can choose N = eiθ/(2πσ2)1/4, where θ is any phase. If θ is a constant, then it is a global

phase and has no physical significance at all, so let us choose the next simplest possibility, that

θ depends linearly on x. The Gaussian wavefunction that we choose to study is thus

ψ(x) =
1

(2πσ2)1/4
eikx exp

[
−(x− a)2/4σ2

]
(6.1.3)

for some constant k, whose interpretation will become clear soon. We will not need to assume

anything in particular about the Hamiltonian of the system in this section.

According to Postulate 4, the probability of finding the particle between x and x+ dx is

dP(x) = |〈x|ψ〉|2 dx =
1√
2πσ

exp
[
−(x− a)2/2σ2

]
dx. (6.1.4)

Therefore, the probability of finding the particle in a range b < x < c is

P(b < x < c) =
1√
2πσ

∫ c

b

dx exp
[
−(x− a)2/2σ2

]
. (6.1.5)

We can also find the expectation value of X in the state |ψ〉,

〈X〉 = 〈ψ|X|ψ〉 =
∫ ∞

−∞
dx 〈ψ|X|x〉〈x|ψ〉 =

∫ ∞

−∞
dx x|ψ(x)|2

=
1√
2πσ

∫ ∞

−∞
dx x exp

[
−(x− a)2/2σ2

]
=

1√
2πσ

∫ ∞

−∞
du (u+ a) exp

[
−u2/2σ2

]

= a. (6.1.6)

The second equality uses the completeness relation, the third uses X|x〉 = x|x〉, and the fourth

uses the common trick of “completing the square”, which means that we define a new integration
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variable u so that the exponential in the integrand depends only on u2 (with no linear term in

u). Here, the change of variable was x = u+ a. Similarly, we have

〈X2〉 =
1√
2πσ

∫ ∞

−∞
du (u+ a)2 exp

[
−u2/2σ2

]
= a2 + σ2. (6.1.7)

Therefore, the uncertainty of X for this state is

∆X =

√
〈X2〉 − 〈X〉2 = σ. (6.1.8)

So far, the constant k has not made any difference at all.

The momentum wavefunction for the same state is

ψ̃(p) = 〈p|ψ〉 =
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉 = 1√

2πh̄(2πσ2)1/4

∫ ∞

−∞
dx e−ipx/h̄eikxe−(x−a)

2/4σ2 , (6.1.9)

where we have used the complex conjugate of eq. (2.8.39). We now use the completing-the-

square trick again; this time the appropriate change of variables is x = u+ b, where we choose

b = a+ i2σ2(k − p/h̄), so
∫ ∞

−∞
dx e−ipx/h̄eikxe−(x−a)

2/4σ2 = e(b
2−a2)/4σ2

∫ ∞

−∞
du e−u

2/4σ2 = 2
√
πσ e(b

2−a2)/4σ2 . (6.1.10)

It follows that

ψ̃(p) =

(
2σ2

πh̄2

)1/4

eia(k−p/h̄)e−σ
2(p/h̄−k)2 . (6.1.11)

The last factor shows that a state with a Gaussian position wavefunction also has a Gaussian

momentum wavefunction, centered at p = h̄k. The momentum wavefunction also contains a

phase that depends on p; this factor encodes the information about the center of the position

wavefunction Gaussian peak, a.

It is now clear that our state depends on three physically significant parameters: the average

momentum h̄k, the position center a, and the position width σ, which is also the uncertainty in

X . There is a duality between the position and momentum wavefunctions, for if one of them

has a Gaussian magnitude with a linear phase, then so does the other, with parameters that

are related by comparing eqs. (6.1.3) and (6.1.11). In particular, the widths of the position and

momentum Gaussian wavefunctions are inversely proportional.

Using eq. (6.1.11), one can now obtain

〈P 〉 = 〈ψ|P |ψ〉 =
∫ ∞

−∞
dp 〈ψ|P |p〉〈p|ψ〉 =

∫ ∞

−∞
dp p|ψ̃(p)|2 = h̄k. (6.1.12)

Similarly,

〈P 2〉 =

∫ ∞

−∞
dp p2|ψ̃(p)|2 = h̄2(k2 + 1/4σ2). (6.1.13)
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It follows that the momentum uncertainty in the state with a Gaussian position wavefunction is

∆P =

√
〈P 2〉 − 〈P 〉2 = h̄/2σ, (6.1.14)

and so the product of the position and momentum uncertainties is

(∆X)(∆P ) = h̄/2. (6.1.15)

This result does not depend on the center of the Gaussian a, or its width σ, or its average

momentum h̄k. Thus, Gaussian wavefunctions always realize the minimum possible product of

uncertainties consistent with the general position-momentum uncertainty relation, eq. (3.3.10).

6.2 Time evolution of free-particle state in one dimension

For a free particle with mass m moving in one dimension, the Schrödinger equation is

ih̄
d

dt
|ψ〉 = H |ψ〉 = P 2

2m
|ψ〉 , (6.2.1)

where P is the momentum operator. Since [H,P ] = 0, we know that there is an orthobasis

of stationary states that are also eigenstates of P with eigenvalue p. Acting on such states,

E = P 2/2m = p2/2m. Therefore, for a given E there are exactly two solutions, p = ±
√
2mE,

and the plane-wave stationary states can be labeled

|E,R〉 = |p=
√
2mE〉, |E,L〉 = |p=−

√
2mE〉, (6.2.2)

where R,L is a degeneracy label that tells us whether the particle is moving right or left.

The time-dependent wavefunction for a stationary state with momentum p is, combining

eq. (2.8.39) with the time-evolution phase factor,

ψp(x, t) =
1√
2πh̄

ei(kx−ωt), (6.2.3)

where k = p/h̄ and ω = E/h̄. The position of constant phase is x = ωt/k = Et/p = pt/2m, so

the phase velocity of one of these waves is

vphase = ω/k = p/2m, (6.2.4)

which is half of the classical velocity p/m.

To understand the classical speed of propagation, one must consider the group velocity for

wave-packet superpositions of states with a continuous distribution of k. It is a general feature

of wave kinematics in the presence of dispersion that the group velocity for wavepackets is not

vphase, but instead

vgroup = ∂ω/∂k. (6.2.5)
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In the present case, with ω = E/h̄, we have

vgroup =
∂

∂k

(
h̄k2

2m

)
= h̄k/m = p/m, (6.2.6)

which is the classical value. For wave-packets in quantum mechanics with momentum sharply

peaked near p, this group velocity corresponds to the motion of the expectation value of the

position, as can be seen in general from eq. (3.4.16). Before the end of this section, we will verify

this for the particular case of a Gaussian superposition of plane waves.

Using eq. (3.4.7), the unitary time evolution operator is

U(t) =

∫ ∞

−∞
dp |p〉〈p| e−itp2/2mh̄. (6.2.7)

The matrix element of this operator between different position eigenstates is therefore

〈x|U(t)|x′〉 =

∫ ∞

−∞
dp 〈x|p〉〈p|x′〉 e−itp2/2mh̄ =

1

2πh̄

∫ ∞

−∞
dp eip(x−x

′)/h̄e−itp
2/2mh̄. (6.2.8)

This integral is again done by the completing-the-square trick, this time by changing the inte-

gration variable to p′ = p−m(x− x′)/t, with the result

〈x|U(t)|x′〉 =
( m

2πh̄it

)1/2
eim(x−x′)2/2h̄t. (6.2.9)

By now applying the completeness relation, the time dependence of the wavefunction for a free

particle reduces to an integral involving the wavefunction at time t = 0,

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|U(t)|ψ(0)〉 =
∫ ∞

−∞
dx′ 〈x|U(t)|x′〉〈x′|ψ(0)〉

=
( m

2πh̄it

)1/2 ∫ ∞

−∞
dx′ eim(x−x′)2/2h̄tψ(x′, 0). (6.2.10)

In principle, the time evolution of an arbitrary free-particle state has therefore been solved.

As a good example for which the integral can be done analytically, consider the motion and

spreading with time of a Gaussian wavefunction. We start at time t = 0 with a state |ψ(0)〉
that has

ψ(x′, 0) =
1

(2πσ2)1/4
eip0x

′/h̄e−x
′2/4σ2 , (6.2.11)

which as we saw in the previous section can be interpreted as having center at x′ = 0, width σ,

and average momentum p0. At time t, eq. (6.2.10) gives

ψ(x, t) =
( m

2πh̄it

)1/2 1

(2πσ2)1/4

∫ ∞

−∞
dx′ exp

[
− x

′2

4σ2
+ i

m(x − x′)2
2h̄t

+ i
p0x

′

h̄

]
. (6.2.12)
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By the usual completing-the-square integration variable change trick, this becomes, after some

algebraic manipulation,

ψ(x, t) =
1√√

2π(σ + ih̄t/2mσ)
exp

[
− (x− p0t/m)2

4σ2 + 2ih̄t/m

]
exp

[
i
p0
h̄

(
x− p0t

2m

)]
, (6.2.13)

or, after further rearrangement,

ψ(x, t) =
eiθ(x,t)√√

2π(σ + ih̄t/2mσ)
exp

[
− (x− p0t/m)2

4σ2 + h̄2t2/m2σ2

]
, (6.2.14)

where

θ(x, t) =
p0
h̄

(
x− p0t

2m

)
+

h̄t(x− p0t/m)2

2m(4σ2 + h̄2t2/m2)
. (6.2.15)

The probability density at time t is therefore

|ψ(x, t)|2 =
1√

2π(σ2 + h̄2t2/4m2σ2)
exp

[
− (x− p0t/m)2

2(σ2 + h̄2t2/4m2σ2)

]
. (6.2.16)

This is a Gaussian function of x whose peak moves to the right at exactly the constant speed

p0/m of naive classical expectation, but whose width grows with time t. Using the results of

the previous section, we obtain

〈X〉 = p0t/m, (6.2.17)

∆X =

√
σ2 + h̄2t2/4m2σ2. (6.2.18)

The speed at which the expectation value 〈X〉 moves is also the group velocity vgroup = ∂ω/∂k.

At large t, ∆X ≈ h̄t/2mσ grows linearly with time, and ironically is larger for smaller σ; the

more we try to confine the wavefunction initially, the more spread out the particle’s probability

density support will be at late times. The explanation is that, due to the uncertainty relation

eq. (3.3.10), a highly constrained particle position has a larger amplitude for momenta that

deviate from the central value.

One can also compute the momentum wavefunction as a function of time, by applying

eq. (2.8.41) to eq. (6.2.13). After another integration and more algebraic juggling, one finds

ψ̃(p, t) =

(
2σ2

πh̄2

)1/4

exp
[
−σ2(p− p0)2/h̄2

]
eip

2t/2h̄m. (6.2.19)

This is remarkably simple; the time dependence is entirely in the complex phase, so

∣∣ψ̃(p, t)
∣∣2 =

√
2

π

σ

h̄
exp

[
−2σ2(p− p0)2/h̄2

]
(6.2.20)
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does not depend on time at all, despite the fact that the width of the support of the position

wavefunction grows with time. This is an illustration of Theorem 5.1.1; because the momentum

is a conserved quantity for a free particle Hamiltonian, the probability density to measure the

momentum between p and p+ dp is a constant in time.

6.3 Properties of stationary states in one-dimensional potentials

Consider a particle moving in one dimension in a potential that is given classically by V (x), so

that the Hamiltonian operator is

H =
P 2

2m
+ V (X). (6.3.1)

In general, we want to find stationary states,

H |ψE〉 = E |ψE〉 . (6.3.2)

To accomplish this, consider the position representation, in which X → x and P → −ih̄d/dx,
by multiplying on the left by 〈x|. Then the wavefunction ψE(x) = 〈x|ψE〉 obeys the eigenvalue

differential equation

d2

dx2
ψE(x) =

2m

h̄2
[V (x)− E]ψE(x). (6.3.3)

This is the time-independent Schrödinger equation for a spin-less particle in one dimension.

Before doing some special cases, we make some general statements about this problem. First,

it may be that the potential V (x) has some special points where it may not be smooth, or may

even diverge. We would like to know what can be said about the behavior of the wavefunction

ψ(x) at such special points. Consider a particular special point x0. We can integrate eq. (6.3.3)

with respect to x over a small neighborhood of that point (dropping the subscript E on the

wavefunction) to get

∫ x0+ǫ

x0−ǫ
dx

d

dx

(
dψ

dx

)
= ψ′(x0 + ǫ)− ψ′(x0 − ǫ) =

2m

h̄2

∫ x0+ǫ

x0−ǫ
dx [V (x)− E]ψ(x), (6.3.4)

where the first equality follows from the fundamental theorem of calculus.

Suppose that V (x) is bounded near x = x0. Then the right side of eq. (6.3.4) tends to 0 as

ǫ→ 0, so we can conclude that the first derivative of ψ(x) must be continuous at x0. Note that

this holds even if V (x) is discontinuous, as long as it stays finite in the neighborhood of x = x0.

It follows that ψ(x) itself is also continuous at x = x0.

Another possibility is that V (x) = Cδ(x− x0) + · · · , where C is a constant, and the ellipses

represent a contribution that is possibly discontinuous but bounded near x = x0. In that case,
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eq. (6.3.4) reveals that

lim
ǫ→0

[ψ′(x0 + ǫ)− ψ′(x0 − ǫ)] =
2m

h̄2
Cψ(x0), (6.3.5)

so that the derivative of the wavefunction at x0 is discontinuous by an amount that we now

know. Equation (6.3.5) is consistent with ψ′(x) being bounded in a neighborhood of x = x0,

even if it is not continuous. Then, integrating
∫ x0+ǫ
x0−ǫ dxψ

′(x), we obtain the continuity of the

wavefunction,

lim
ǫ→0

[ψ(x0 + ǫ)− ψ(x0 − ǫ)] = 0. (6.3.6)

More generally, continuity of the wavefunction is a requirement that we always impose on

physically sensible states. The idea is that because |ψ(x)|2 represents the probability density,

its value at x = x0 must not depend on how one approaches the point x0.

Yet another possibility is that V (x) =∞ for a whole range x < x0 but it is finite for x > x0.

In that case, the particle is forbidden to enter the region of infinite potential, and so ψ(x) = 0

for x ≤ x0. Now, continuity of the probability density tells us that ψ(x0) = 0, which acts as

a boundary condition for the solution in the range x ≥ x0. Of course, the same holds if the

inequalities are reversed: if V (x) = ∞ for x > x0 but it is finite for x < x0, then ψ(x) = 0 for

x ≥ x0.

A bound state is a stationary state whose wavefunction vanishes at large distances. A useful

result is that bound states in one-dimensional potentials in quantum mechanics never have

degenerate energy eigenvalues. To prove it, suppose there are two states |ψ1〉 and |ψ2〉 with the

same energy eigenvalue E. In the position representation, the wavefunctions satisfy

− h̄2

2m
ψ′′1 + V ψ1 = Eψ1, − h̄2

2m
ψ′′2 + V ψ2 = Eψ2. (6.3.7)

Multiplying the first equation by ψ2 and the second by ψ1 and taking the difference gives

ψ2ψ
′′
1 − ψ1ψ

′′
2 = 0, or

d

dx
(ψ2ψ

′
1 − ψ1ψ

′
2) = 0, (6.3.8)

so that integrating with respect to x gives

ψ2ψ
′
1 − ψ1ψ

′
2 = C (6.3.9)

where C is a constant of integration. Now, by definition the bound states have ψ1 = ψ2 = 0

when x = ±∞, so evaluating eq. (6.3.9) at x = ∞, we learn that C must be 0. Therefore

ψ′1/ψ1 = ψ′2/ψ2, or

d

dx
(lnψ1) =

d

dx
(lnψ2), (6.3.10)
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which integrates to

ln(ψ1) = ln(ψ2) +K (6.3.11)

where K is another constant of integration. So, ψ1 = eKψ2, and since eK is a non-zero constant,

ψ1 and ψ2 are proportional and therefore represent the same state. Note that in this proof it is

crucial that we are working in one dimension. In two or three dimensions, bound states certainly

can have degenerate energies, as we will see by finding examples in Chapter 9.

6.4 Particle in a one-dimensional box

Consider a particle of mass m confined to a box of length L, so that its potential energy as a

function of x is

V (x) =

{
0 for |x| < L/2,

∞ for |x| > L/2.
(6.4.1)

Since this is an even function of x, we know from the discussion in section 5.4 that there should

be simultaneous eigenstates of energy and parity. Let us find them.

In the region |x| < L/2, eq. (6.3.3) becomes

ψ′′ = −2mE
h̄2

ψ. (6.4.2)

The general solution to this differential equation is

ψ(x) = Aeikx +Be−ikx, (6.4.3)

where A and B are constants and

k =
√
2mE/h̄. (6.4.4)

Because the particle is completely confined to the box region, one must have ψ(x) = 0 for

|x| ≥ L/2, and so by continuity of the wavefunction, ψ(L/2) = 0 and ψ(−L/2) = 0, or

AeikL/2 +Be−ikL/2 = 0, (6.4.5)

Ae−ikL/2 +BeikL/2 = 0. (6.4.6)

This system of equations will have a non-trivial solution for A and B if and only if the matrix

M =

(
eikL/2 e−ikL/2

e−ikL/2 eikL/2

)
(6.4.7)

is not invertible, which means Det(M) = eikL − e−ikL = 2i sin(kL) = 0. The solutions to the

particle-in-a-box eigenvalue problem therefore must have k = nπ/L, where n is an integer. It

follows that B = −eikLA = (−1)n+1A.
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For odd n, we have B = A, and so for −L/2 ≤ x ≤ L/2,

ψn(x) = 2A cos(nπx/L). (6.4.8)

To normalize the states to unity, we require

1 =

∫ ∞

−∞
dx |ψn(x)|2 = 4|A|2

∫ L/2

−L/2
dx cos2(nπx/L) = 2|A|2L, (6.4.9)

and so we can choose A = 1/
√
2L, yielding the even-parity solutions

ψn(x) =

√
2

L
cos(nπx/L) (n = 1, 3, 5, . . .). (6.4.10)

Note that we do not need to include negative n, because those just have the same wavefunction

up to a physically irrelevant sign, and are therefore the same states. Similarly, for even n, one

finds the odd-parity solutions

ψn(x) =

√
2

L
sin(nπx/L) (n = 2, 4, 6, . . .). (6.4.11)

Here, not only do we not need negative n, but also the case n = 0 is excluded, because it would

result in ψ0(x) = 0, which would correspond to the null ket, which is not a physical state. For

both odd and even n, eq. (6.4.4) gives the allowed energy levels:

En =
h̄2π2n2

2mL2
(n = 1, 2, 3, . . .). (6.4.12)

These are non-degenerate and discrete, as is true for any bound-state solutions in one dimension.

The ground state energy for the particle in a box, E1 = h̄2π2/2mL2, becomes very large

as the confining box is taken smaller (L → 0). This can be seen to be in accord with the

uncertainty relation eq. (3.3.10), as follows. First, note that 〈P 〉 = 0 for each of the stationary

states; this can be obtained either by direct computation in terms of the wavefunction, or seen

as a consequence of the parity selection rule discussed at the end of section 5.4. It follows that

〈H〉 = 1

2m
〈P 2〉 = 1

2m
(∆P )2. (6.4.13)

Now the uncertainty relation eq. (3.3.10) says that (∆P )2 ≥ (h̄/2∆X)2, and it is also clear that

〈X〉 = 0, again either by direct computation or as a consequence of the parity selection rule.

Therefore, (∆X)2 = 〈X2〉, and we have a bound

〈H〉 ≥ h̄2

8m2 〈X2〉 . (6.4.14)

Since the particle is confined to a box of length L, a crude, conservative estimate valid for any

state is that 〈X2〉 ≤ (L/2)2. Using this to compare our estimate of the lower bound on 〈H〉
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from the uncertainty relation to eq. (6.4.12) with n = 1, we see that the latter is a factor of π2

larger. For the ground state, a much better estimate of 〈X2〉 comes from actually computing it,

with the result

〈X2〉 = L2

(
1

12
− 1

2π2

)
, (6.4.15)

so

〈H〉 ≥ h̄2π2

2mL2

(
3

π2 − 6

)
. (6.4.16)

Comparing again with eq. (6.4.12) with n = 1, we see that the ground state energy is a factor of

π2/3− 2, or about 1.29, larger than the estimate eq. (6.4.16) of its lower bound following from

the uncertainty relation.

6.5 Bound states for the one-dimensional square well

As a generalization of the previous section, consider a particle of mass m in a finite square-well

potential with linear width L and energy depth V0:

V (x) =





V0 for x ≤ −L/2 (region I),

0 for −L/2 < x < L/2 (region II),

V0 for x ≥ L/2 (region III).

(6.5.1)

Before proceeding, we note that the special case V0 →∞ should give the results of the previous

section. Again, we expect to find energy eigenstate solutions with definite parity, because the

potential is invariant under x→ −x.
The strategy for finding the stationary states is to first solve the differential equation (6.3.3)

separately in each of the three regions I, II, and III, and then stitch these solutions together

using eqs. (6.3.5) and (6.3.6) as boundary conditions at the points x = ±L/2.
In region II, the differential equation is exactly the same as for the particle in a box,

ψ′′ = −2mE
h̄2

ψ, (6.5.2)

and so the general solution is an arbitrary linear combination of eikx and e−ikx, where k =√
2mE/h̄, as before. So, we can write

ψII(x) = A cos(kx) +B sin(kx). (6.5.3)

In regions I and III, the differential equation is

ψ′′ =
2m(V0 − E)

h̄2
ψ. (6.5.4)
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Assume that E < V0, so that we will have a bound state. Then, defining

κ =
√

2m(V0 − E)/h̄, (6.5.5)

the general solutions in regions I and III are

ψI(x) = Ceκx +De−κx, (6.5.6)

ψIII(x) = Feκx +Ge−κx. (6.5.7)

The coefficient D must be 0, because otherwise ψI(x) would blow up for x → −∞, giving a

non-normalizable unphysical solution. Similarly, from requiring ψIII(x) to be well-behaved at

x →∞, we get F = 0. It remains to solve for A, B, C, and G, using the boundary conditions

at the points x = −L/2 and L/2.

Let us first look for wavefunction solutions that are even under the parity transformation

x→ −x. It follows that B = 0 and G = C, and they must have the form

ψ(x) =






Ceκx for x ≤ −L/2,
A cos(kx) for −L/2 ≤ x ≤ L/2,

Ce−κx for x ≥ L/2.

(6.5.8)

Now we can apply the requirements that the wavefunction and its first derivatives are both

continuous at x = L/2, as proved on general grounds in eqs. (6.3.5) and (6.3.6). In the present

case, these conditions amount to

A cos(kL/2) = Ce−κL/2, (6.5.9)

−Ak sin(kL/2) = −Cκe−κL/2. (6.5.10)

By taking the ratio of these equations, one obtains k tan(kL/2) = κ. It is convenient to define

dimensionless quantities X = kL/2 and Y = κL/2, so that

X tanX = Y, (even parity), (6.5.11)

X2 + Y 2 = mV0L
2/2h̄2, (6.5.12)

where eq. (6.5.12) follows from eq. (6.5.5) and E = h̄2k2/2m.

It is not possible to solve the simultaneous transcendental equations (6.5.11) and (6.5.12)

analytically, but one can use graphical methods to understand the solutions and then obtain

numerical results. In Figure 6.5.1 we graph in the X, Y plane the curves Y = X tanX (darker

solid curves) and the circle eq. (6.5.12) (dashed), for some sample values (1.4, 4, and 8) of the

dimensionless radius R =
√
mV0L2/2h̄2. For a given value of R, the intersections provide the

numerical eigenvalue solutions for X and Y , and thus for k and κ. We only need to consider

positive X and Y , because κ is positive, and k can be taken positive without loss of generality.
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Figure 6.5.1: Graphical solutions for
the bound energy eigenstates of a par-
ticle of mass m in a one-dimensional
square well potential with depth V0 and
width L. The dashed circles are X2 +
Y 2 = R2 = mV0L

2/2h̄2, for sample
values R = 1.4, 4, 8. Even-parity so-
lutions are the intersections with Y =
X tanX (darker, green, solid curves) and
odd-parity solutions are the intersections
with Y = −X cotX (lighter, red, solid
curves). The energy eigenvalues for each
solution are E = 2h̄2X2/mL2. The cases
R = 1.4, 4, and 8 are seen to have 1, 3,
and 6 bound state solutions, respectively.

The graphical approach makes clear that there is always at least one bound-state solution,

no matter how small V0 (and thus R) is. The ground state, which we will call |ψ1〉 with energy

eigenvalue E1, is the solution with smallest X , which always has even parity and occurs for

0 < X < π/2, or 0 < k < π/L, and so

0 < E1 < h̄2π2/2mL2. (6.5.13)

The lower bound corresponds to small R, which means the limit of small V0 ≪ h̄2/mL2. Con-

versely, the upper bound is relevant for large R and thus V0 ≫ h̄2/mL2, the limit of the particle

completely confined to a box as treated in the previous section. As V0 is increased (for fixed

m,L), the radius of the dashed circle grows, so the number of solutions increases, but for any

finite V0 the number of bound state solutions is always finite.

Consider the lone bound state solution in the limit of small V0, which means X and Y are

also very small. By expanding X tanX to quadratic order in X2, and solving eqs. (6.5.11) and

(6.5.12) in that limit, we obtain

E1 =
h̄2k2

2m
≈ V0

(
1− mV0L

2

2h̄2
+ · · ·

)
. (6.5.14)

Because this energy is only slightly lower than V0, the state is very weakly bound, but it always

exists, no matter how small V0 is.

Now consider the stationary states that are odd under parity (x→ −x), with wavefunctions

that are therefore of the form

ψ(x) =





−Ceκx for x ≤ −L/2,
B sin(kx) for −L/2 ≤ x ≤ L/2,

Ce−κx for x ≥ L/2.

(6.5.15)
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The continuity of the wavefunction and its derivative give

B sin(kL/2) = Ce−κL/2, (6.5.16)

Bk cos(kL/2) = −Cκe−κL/2. (6.5.17)

Defining X and Y in exactly the same way as before, we now have

−X cotX = Y, (odd parity) (6.5.18)

in place of eq. (6.5.18), with the same equation forX2+Y 2 = R2. The graph of Y = −X cotX is

shown in Figure 6.5.1 as the lighter solid lines. This time, we see that if V0 is small enough, there

will not be any odd-parity bound-state solution. In order for there to exist at least one bound-

state solution with an odd wavefunction, the dashed circle must have a large enough radius to

intersect with the curve Y = −X cotX for positive X and Y , specifically,
√

mV0L2

2h̄2
> π/2,

so that V0 > π2h̄2/2mL2. In this case, the first excited state will have π/2 < X < π, so

h̄2π2/2mL2 < E2 < 2h̄2π2/2mL2.

Combining the information for even and odd parity states (which have odd and even n,

respectively) from Figure 6.5.1 we can see that the energy levels alternate between even and

odd parity, and the bound state |ψn〉 exists if and only if the potential well is deep enough,

which requires that R2 is sufficiently large,

mV0L
2

2h̄2
>
π2

4
(n− 1)2. (6.5.19)

If |ψn〉 does exist as a bound state, then it has π(n− 1)/2 < Xn < πn/2, which implies

h̄2π2(n− 1)2

2mL2
< En <

h̄2π2n2

2mL2
(n = 1, 2, 3, . . .). (6.5.20)

Here En will approach its upper bound in the limit of large V0, in agreement with the result

found in section 6.4.

The square well potential also has a continuum of unbound states with energies E ≥ V0,

with wavefunctions whose magnitudes approach a constant for large distances |x|. These are also
known as scattering states. We will discuss the problem of scattering from the one-dimensional

square well in section 6.6.

6.6 Scattering problems in one dimension

Scattering theory deals with unbound quantum states with continuous energy eigenvalues.

The particles described by these states can be thought of as originating far away, in a measured

or controlled configuration, typically a superposition of free plane waves moving in a common
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Figure 6.6.1: A generic one-dimensional scattering potential of the type in eq. (6.6.1). The
potential V0 on the far right can be either positive or negative.

direction. In a localized region of space, the particles then interact with a potential, or with

another group of particles, after which they escape to large distances again where they can be

measured. In practice, one can learn about the potential, or interactions between particles, by

studying the asymptotic forms of the unbound states. In this section we will consider poten-

tial scattering problems in the simplified realm of one dimension, and turn to the problem of

scattering in three dimensions in Chapter 20.

Consider two asymptotic regions I and II with constant potentials, and an intermediate

region III where the potential can be arbitrary, so

V (x) =





0 region I (x < a),

U(x) region III (a < x < b),

V0 region II (x > b),

(6.6.1)

as illustrated in Figure 6.6.1. The constant potential in region I, which will contain the incident

particles, is taken to be 0, by subtraction from V (x) if necessary. This entails no loss of generality,

because as usual the effect of a constant contribution to the energy can be absorbed into a global

phase that is the same for all states. The potential V0 in region II can be either positive or

negative. We will be interested only in unbound states with energy E > 0, although there may

also be bound states if the potential U(x) in region III goes negative for some x.

The stationary states for this potential have wavefunctions that might be complicated in

region III, but they are definitely simple in regions I and II. Assuming that E > V0, one class

of such stationary states is

ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iEt/h̄, (region I), (6.6.2)

ψ(x, t) = Ceik
′xe−iEt/h̄, (region II). (6.6.3)

Here the component A corresponds to an initial beam of particles moving to the right in region

I from x = −∞, and B corresponds to a reflected component going back to x = −∞. In region
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II, there is only a transmitted component moving to the right; as a boundary condition we are

imposing that there is no left-moving component that would correspond to incident particles

arriving from x = +∞.

Now, for a given energy E and normalization A treated as known inputs characteristic of

the incident beam of particles, we can solve for k, k′ and then, in principle, for B and C. The

easy part is that from the Schrödinger equation,

h̄2k2

2m
= E,

h̄2k′2

2m
= E − V0. (6.6.4)

To solve for B and C requires the scattering potential U(x) to be specified. Once B and C are

known, eq. (5.6.13) can be used to find the probability and current densities in each region. In

region I, the probability density is

ρ = |A|2 + |B|2 + 2Re[A∗B] cos(2kx) + 2Im[A∗B] sin(2kx). (6.6.5)

The last two terms will each give 0 after averaging over a range of x that is large compared to

1/k. The current density in region I is

J =
h̄k

m
(|A|2 − |B|2), (6.6.6)

where the cross-terms between A and B canceled completely, even without doing any averaging.

Meanwhile, in region II, the probability density and current are

ρ = |C|2, (6.6.7)

J =
h̄k′

m
|C|2. (6.6.8)

The interpretation of the probability densities of eqs. (6.6.5) and (6.6.7) is

density of particles in




incident
reflected

transmitted


beam =



|A|2
|B|2
|C|2


 , (6.6.9)

while the interpretation of the current densities of eqs. (6.6.6) and (6.6.8) is

flux = particles/time in




incident
reflected

transmitted



 beam =




h̄k|A|2/m
−h̄k|B|2/m
h̄k′|C|2/m



 =




JA
JB
JC



 . (6.6.10)

The effect of the scattering potential on the incident mono-energetic beam can therefore be

given in terms of reflection and transmission ratios, reminiscent of quantities in classical optics,

R =
|JB|
|JA|

=
|B|2
|A|2 , T =

|JC |
|JA|

=
k′|C|2
k|A|2 . (6.6.11)
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In specific problems, we can always set A = 1 at the beginning, since only the ratios B/A and

C/A are needed, and B and C will always be proportional to A due to the linearity of the

wavefunction in the Schrödinger equation.

We cannot find R or T without specifying the scattering potential U(x). However, in general,

probability conservation implies that they are related by

R + T = 1. (6.6.12)

To prove this, we note that for a stationary state,

∂J

∂x
= −∂ρ

∂t
= − ∂

∂t
|ψ(x, t)|2 = − ∂

∂t
|ψ(x, t0)e−i(t−t0)E/h̄|2 = 0, (6.6.13)

so, by the fundamental theorem of calculus,

0 =

∫ ∞

−∞
dx

∂J

∂x
= J(∞)− J(−∞). (6.6.14)

This can be rewritten as

JC = |JA| − |JB|, (6.6.15)

from which eq. (6.6.12) follows immediately.

To find R and T in specific examples, it is necessary to solve the Schrödinger equation in

region III and to apply boundary conditions in the form of continuity of the wavefunction,

and its derivative if the potential is finite, at the boundaries between adjacent regions. If the

potential at a boundary has a delta function, then eq. (6.3.5) can be used to obtain the boundary

condition for the first derivative of the wavefunction.

As a first example, consider a step-function potential

V (x) =

{
0 region I (x < 0),

V region II (x > 0),
(6.6.16)

for which region III does not exist, and regions I and II meet at x = 0. Continuity of the

wavefunction eq. (6.6.3) and its first derivative at x = 0 give

1 +B = C, (6.6.17)

ik + (−ik)B = ik′C. (6.6.18)

Here we have taken the opportunity to set A = 1, since we will be interested in the ratios R

and T . The solutions for B and C are

B =
k − k′
k + k′

, C =
2k

k + k′
. (6.6.19)
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The reflection and transmission coefficients are therefore

R =

∣∣∣∣
1− k′/k
1 + k′/k

∣∣∣∣
2

, T =
4k′/k

(1 + k′/k)2
, (6.6.20)

where

k′/k =
√

1− V/E. (6.6.21)

Note that we need E > V in order for k′ and T to be real. Otherwise, the wavefunction for

x > 0 is instead an exponential of the form ψII(x) = Ce−κx with h̄2κ2/2m = V − E, and one

finds R = 1. Since the flux decreases exponentially in region II rather than maintaining constant

magnitude, T = 0 in that case; the particles are all reflected, although they still have a non-zero

probability to be found at any point x > 0, proportional to e−2κx. Region II in this case is said

to be a classically forbidden region.

As a second example, consider the symmetric rectangular barrier potential

V (x) =





0 region I (x < −a/2),
V region III (|x| < a/2),

0 region II (x > a/2),

(6.6.22)

as illustrated in Figure 6.6.2.

V (x)

x

−a/2 a/2

V

region I region IIregion III

Figure 6.6.2: A one-dimensional scattering potential of the type in eq. (6.6.22). The po-
tential can be either a barrier (if V > 0, as shown) or a well (if V < 0).

Let us first consider the case that E > V > 0, so that classically, transmission past the

barrier is possible. Then we can write the wavefunctions in the three regions as

ψI(x) = eikx +Be−ikx, (6.6.23)

ψIII(x) = Deik
′x + Fe−ik

′x, (6.6.24)

ψII(x) = Ceikx, (6.6.25)

where k′ =
√

2m(E − V )/h̄ and k =
√
2mE/h̄ are real numbers, and again we choose A = 1.

There are four remaining unknowns, B,C,D, F , and only two of these enter into the measurable
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quantities R = |B|2 and T = |C|2. Continuity of the wavefunction and its first derivative at

x = −a/2, using ψI and ψIII, give us

e−ika/2 +Beika/2 = De−ik
′a/2 + Feik

′a/2, (6.6.26)

ike−ika/2 − ikBeika/2 = ik′De−ik
′a/2 − ik′Feik′a/2, (6.6.27)

Also, at x = a/2 we find from ψII and ψIII,

Ceika/2 = Deik
′a/2 + Fe−ik

′a/2, (6.6.28)

ikCeika/2 = ik′Deik
′a/2 − ik′Fe−ik′a/2. (6.6.29)

It is convenient to first solve eqs. (6.6.28) and (6.6.29) for D and F in terms of C, and plug

the results into eqs. (6.6.26) and (6.6.27) which then involve only B and C as unknowns. The

resulting eq. (6.6.26) and eq. (6.6.27) then combine to give

B = i
k′2 − k2
2kk′

sin(k′a)C. (6.6.30)

Now, since we also know R + T = |B|2 + |C|2 = 1, we can solve to get

T = |C|2 =

[
1 +

(
k′2 − k2
2kk′

)2

sin2(k′a)

]−1
(6.6.31)

for the transmission coefficient. Then, R is just 1− T .
To express the result directly in terms of the incident energy and the height of the potential

barrier, we can now plug in k′ = k
√
1− V/E, to get

T =

[
1 +

V 2

4E(E − V )
sin2

(a
h̄

√
2m(E − V )

)]−1
, (E ≥ V ). (6.6.32)

As a check, if V = 0, then there is no barrier, and T = 1 and R = 0. In the high-energy limit,

E ≫ V gives T ≈ 1, and the barrier is almost transparent, as the potential is too weak to have

much effect on the incident particles. It is perhaps more surprising that even if V and E are

comparable, we also get T = 1 whenever sin(k′a) = 0, which occurs if k′ = nπ/a for any integer

n. This shows that the barrier is transparent to the incident mono-energetic particle beam if its

width a is equal to an integer times half of the de Broglie wavelength 2π/k′ inside the barrier.

The discrete energies at which this occurs, called scattering resonances, are

E = En + V, En =
h̄2π2n2

2ma2
, (n = 1, 2, 3, . . .). (6.6.33)

These En coincide with the energy eigenvalues for a particle in a box of width a, but with walls

of infinite potential height, as found in section 6.4. Finally, note that if E ≈ V , then we have
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sin2
(
a
√

2m(E − V )/h̄
)
≈ 2a2m(E − V )/h̄2, so

T ≈
(
1 +

mV a2

2h̄2

)−1
, (E ≈ V ). (6.6.34)

This is the transmission coefficient for the case that classical transmission past the barrier is

just barely possible; for h̄→∞ it approaches 1.

Now we turn to the case that E < V , so that classically the particle would not be expected

to make it past the barrier. Then, within the barrier region III, we have instead of eq. (6.6.24),

ψIII(x) = De−κx + Feκx, (6.6.35)

where

κ =
√

2m(V −E)/h̄. (6.6.36)

All of the subsequent algebra is the same, but with k′ → iκ, so that the sine function is replaced

by a hyperbolic sine, and

T =

[
1 +

V 2

4E(V − E) sinh
2
(a
h̄

√
2m(V − E)

)]−1
, (E ≤ V ). (6.6.37)

In this case, T < 1 always, but it is never 0. This is an example of quantum tunneling.

Classically, there would be no transmission at all, but the Schrödinger equation gives a non-zero

probability for the particle to enter the classically forbidden region and emerge on the right side

of the barrier. For E ≪ V , one finds that T → 0; the transmission due to tunneling becomes

exponentially small in the limit of an incident energy much smaller than the barrier potential

height. The results for the transmission coefficient T are shown as a function of the incident

particle energy E in Figure 6.6.3, for two different values of the barrier height V .

So far we have assumed that the potential barrier height in Figure 6.6.2 is positive, with

V > 0. Now let us consider the case of scattering from a potential well, so that V < 0 in

eq. (6.6.22). In that case, all of the same algebra goes through as before, with V = −|V |. So,

we have

T =

[
1 +

V 2

4E(E + |V |) sin
2
(a
h̄

√
2m(E + |V |)

)]−1
, (E > 0 > V ). (6.6.38)

Classically, there would never be reflection, as the particle incident from the left would have

enough momentum and energy to follow a trajectory that takes it ineluctably to x = +∞. The

prediction of quantum mechanics in the low-energy limit is very different, as eq. (6.6.38) gives

T → 0 for E → 0. In the high-energy limit, one finds T → 1 for E →∞, in agreement with the
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Figure 6.6.3: Transmission ratio T for scattering from a one-dimensional rectangular barrier
of width a and height V = 5h̄2/ma2 (left) or V = 50h̄2/ma2 (right), as a function of the
energy E of the incident particles of mass m. For E/V < 1, the transmission is classically
forbidden, and the non-zero T is an example of quantum tunneling. For E/V > 1, the
barrier is perfectly transparent if its width is equal to an integer multiple of half of the
particle’s de Broglie wavelength inside the barrier. Transparency also occurs in the limit
E ≫ V .

classical expectation. Just as we found for V > 0, there are scattering resonances that occur

when E = En−|V | where En = h̄2π2n2/2ma2 are the binding energies of bound states in a box

(with walls at infinite potential) of width a. The results for the transmission coefficient T are

shown as a function of the incident particle energy E in Figure 6.6.4, for two different values of

the well depth |V |. For larger negative V , the resonance energies are more sharply defined.

More generally, including in three-dimensional problems, an attractive potential can become

almost transparent to scattering for certain resonance energies, which are determined by the

geometry of the potential and the de Broglie wavelengths of the incident particles. This phe-

nomenon is known as the Ramsauer–Townsend effect, as it was first observed independently

by Carl Ramsauer and John S. Townsend in 1921, before its subsequent explanation by quantum

mechanics, in the scattering of electrons from noble gas atoms Ar, Kr, and Xe. The qualitative

explanation for this is that close to the positively charged nucleus, the scattering electrons see a

spherically symmetric attractive potential well that is cut off at larger distances by the screening

of the nuclear charge due to the atomic electrons. This geometry leads to a strong suppression

of the scattering cross-section, corresponding to near transparency for incident electron energies

E ≈ 0.7 eV. The preceding results for the first peak in T in the one-dimensional well scattering

problem with large negative V are a rough qualitative model for this phenomenon.
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Figure 6.6.4: Transmission ratio T for scattering from a one-dimensional well of width a and
V = −50h̄2/ma2 (left) or V = −5 × 104 h̄2/ma2 (right). In the very low energy limit, the
particles are entirely reflected. Transparency occurs in the limit of large E, and also when E
is equal to a resonance energy, given by the eigenvalues En = h̄2π2n2

2ma2
of a particle confined to a

box of width a.
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7 The harmonic oscillator

7.1 The reasonable effectiveness of the harmonic oscillator

A harmonic oscillator is any system in which the restoring force is proportional to the displace-

ment from equilibrium. Consider the case of a particle of mass m moving in one dimension. In

terms of energy, the classical harmonic oscillator is defined by

kinetic energy =
p2

2m
, potential energy = V (x) =

1

2
mω2x2, (7.1.1)

where the angular frequency ω has units of 1/time and parameterizes the strength of the restoring

force, according to

force = −∂V
∂x

= −mω2x = −kx, (7.1.2)

with ω =
√
k/m. The classical Hamiltonian is the sum of kinetic and potential energies,

H =
p2

2m
+

1

2
mω2x2, (7.1.3)

which leads to the phase-space equations of motion

ẋ =
∂H

∂p
= p/m, ṗ = −∂H

∂x
= −mω2x, (7.1.4)

with the general solution

x(t) = x0 cos(ωt+ φ0), p(t) = −mωx0 sin(ωt+ φ0), (7.1.5)

where x0 and φ0 are constants determined by the initial conditions.

A wise theorist, Sidney Coleman, was fond of remarking that the job of a physicist consists

of “treating the harmonic oscillator in ever-increasing levels of abstraction”.

This may be a slight exaggeration, but there are at least two reasons why the quantum

harmonic oscillator is particularly worthy of study.

First, the harmonic oscillator is a problem that can actually be solved exactly in closed form

in quantum mechanics. Most problems in quantum mechanics do not have this property.

Second, it arises quite often as a good approximation to more complicated problems. To

understand this, consider a more general potential V (x), which is assumed to have a local

minimum at some point x = x0, and to be smooth in a neighborhood of that point. Then we

can expand it in a Taylor series for small x− x0,

V (x) = V (x0) + (x− x0)
dV

dx

∣∣∣∣
x=x0

+
1

2
(x− x0)2

d2V

dx2

∣∣∣∣
x=x0

+
1

6
(x− x0)3

d3V

dx3

∣∣∣∣
x=x0

+ · · · . (7.1.6)
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The first term is a constant, and so can be absorbed into a redefinition of the zero point of energy;

as a constant part of the Hamiltonian, it gives the same overall phase to all states, and therefore

can be ignored. The second term is zero, since by definition dV/dx vanishes at a minimum of

the potential. Thus, if the terms in the expansion are getting smaller, the leading behavior is

captured by the quadratic term. After redefining coordinates according to x→ x+ x0, we can

hope to approximate

V (x) ≈ x2

2

(
d2V

dx2

∣∣∣∣
x=0

)
(7.1.7)

where the constant quantity in parentheses is defined to be mω2.

The same argument generalizes to a particle moving in a three dimensional potential. Let

us suppose that the x, y, z coordinates have already been redefined so that the minimum of the

potential is at the origin (x, y, z) = (0, 0, 0). Then we have

V (x, y, z) = V (0, 0, 0) +
1

2
xaxbVab + · · · , (7.1.8)

where by convention repeated indices a, b, . . . are implicitly summed over 1, 2, 3, with x1 = x,

x2 = y, x3 = z, and

Vab =
∂2V

∂xa∂xb

∣∣∣∣
xc=0

(7.1.9)

is a real symmetric matrix. A linear term involving ∂V
∂xa

∣∣
xb=0

vanishes because we are at the

minimum of the potential. A theorem in linear algebra says that a real symmetric matrix can

always be diagonalized by some orthogonal matrix O, according to

V = OT Ṽ O, (7.1.10)

where Ṽ = diag(Ṽ1, Ṽ2, Ṽ3), so that

Vab = OcaṼcOcb, (7.1.11)

and the orthogonality of O is written as

OacObc = OcaOcb = δab. (7.1.12)

Dropping the constant V (0, 0, 0), and assuming the higher-order terms in the expansion can be

neglected, the quantum mechanical Hamiltonian can be approximated as

H =
1

2m
(P 2

x + P 2
y + P 2

z ) +
1

2
OcaṼcOcbXaXb. (7.1.13)
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Now we can do a change of variables, by defining

X̃c = OcbXb, P̃c = OcbPb. (7.1.14)

A key feature of this change of variables is that X̃a and P̃a have canonical commutators, since

[X̃c, P̃d] = OcbOda[Xb, Pa] = ih̄OcaOda = ih̄δcd, (7.1.15)

where the second equality used the canonical commutation relation for the original variables,

[Xb, Pa] = ih̄δab, and eq. (7.1.12) was used to get the last equality. Also,

P̃aP̃a = OcaPaOcbPb = δabPaPb = PaPa = P 2
x + P 2

y + P 2
z . (7.1.16)

Therefore, the Hamiltonian in terms of the new canonical variables is

H =
3∑

a=1

(
P̃ 2
a

2m
+

1

2
mω2

aX̃
2
a

)
, (7.1.17)

where mω2
a = Ṽa. This shows that H is the sum of three independent harmonic oscillator Hamil-

tonians, with possibly different natural frequencies. The general case is called the anisotropic

three-dimensional harmonic oscillator. The special case ωx = ωy = ωz is called the isotropic

three-dimensional harmonic oscillator; we will study it in more detail later in section 9.5, using

its spherical coordinate wavefunction.

The preceding illustrates why many systems can be treated as if they were, effectively,

systems of harmonic oscillators, with various higher-order effects that one may hope to either

neglect or treat as perturbations. Of course, there are some important problems that are not

approximated well by the harmonic oscillator. The free particle has no restoring force at all.

The potential of a particle in a box or a square well is not close to its Taylor series expansion.

The hydrogen atom has a potential with minimum −∞ at r = 0, and again the Taylor series

expansion fails. Fortunately, these three cases are also exactly solvable, and one can say that

together with the harmonic oscillator they are the four important examples of potential problems

in non-relativistic quantum mechanics that should be familiar to a well-educated physicist.

The three-dimensional harmonic oscillator energy eigenvalue problem can be solved as the

tensor product of three one-dimensional harmonic oscillators. In the following two sections,

we will use two very different methods to derive the solutions of the one-dimensional harmonic

oscillator with Hamiltonian

H =
P 2

2m
+

1

2
mω2X2. (7.1.18)

But first, we make a general observation: the eigenstates of this H must all have positive

energy. This should be intuitively plausible, since both contributions to the classical energy are
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manifestly positive. To prove it formally in the quantum theory, note that in a stationary state

|ψ〉 with energy E,

E = 〈ψ|H|ψ〉 =
1

2m
〈ψ|P 2|ψ〉+ 1

2
mω2 〈ψ|X2|ψ〉 (7.1.19)

=
1

2m
〈Pψ|Pψ〉+ 1

2
mω2 〈Xψ|Xψ〉 > 0. (7.1.20)

Here we have applied the fact that P and X are Hermitian, so that for example 〈ψ|P = 〈P †ψ| =
〈Pψ|, and then used the positivity of the inner product for non-null kets.

7.2 Position and momentum representations: the differential equa-

tions approach

In this section, we will solve for the energy eigenstates of the harmonic oscillator in the posi-

tion representation using the differential equations approach. It must be admitted that this is

more difficult and less elegant than the algebraic (energy representation) approach given in the

following section. The position representation differential equation method for the harmonic

oscillator is nevertheless important to learn, because it can be generalized to more complicated

Hamiltonians, for which algebraic approaches are often not available.

The position-representation version of the time-independent Schrödinger equation for the

harmonic oscillator H |ψ〉 = E |ψ〉 is

〈x|
(
P 2

2m
+

1

2
mω2X2

)
|ψ〉 = E 〈x|ψ〉 , (7.2.1)

or, in terms of the wavefunction ψ(x) = 〈x|ψ〉, after using X → x and P → −ih̄d/dx,

d2ψ

dx2
+

2m

h̄2

(
E − 1

2
mω2x2

)
ψ = 0. (7.2.2)

It is convenient to introduce dimensionless variables corresponding to the position and energy,

y = x/b, E = E/h̄ω, (7.2.3)

where

b =
√
h̄/mω (7.2.4)

is a constant length scale. In terms of y and E , eq. (7.2.2) becomes

d2ψ

dy2
+ (2E − y2)ψ = 0, (7.2.5)

which we will now solve as an eigenvalue problem for both E and ψ(y). Since H commutes with

the parity operator Π, we know that we can find simultaneous eigenstates of energy and parity.
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To help us understand the character of the solutions, first consider the behavior at large |y|,
where we can neglect the constant E compared to y2, so that d2ψ/dy2 ≈ y2ψ. Let us try a

solution of the form

ψ = Ayne−αy
2

, (7.2.6)

where n and α are constants. Then

dψ

dy
= A

(
nyn−1 − 2αyn+1

)
e−αy

2 ≈ −2αyψ, (7.2.7)

where at large |y| the first term in parentheses is neglected compared to the second. Repeating

this yields

d2ψ

dy2
≈ (2αy)2ψ. (7.2.8)

Therefore the guess eq. (7.2.6) indeed works for large y, with α = ±1/2, regardless of the value

of the constant n. We can reject α = −1/2 on physical grounds, since the wavefunction would

blow up at large |y| and would not be normalizable. A purported wavefunction that grows

exponentially with |y| must be unphysical because it would imply that no matter how far from

the origin you look, the probability that the particle would be found farther way would be

infinitely larger, defying the fact that the potential is attractive.

This motivates trying a solution of the form

ψ = u(y) e−y
2/2, with u =

∞∑

j=0

cjy
j, (7.2.9)

where the cj are constants to be determined. No negative powers are included in this guess,

because we expect that ψ will be well-behaved as y → 0, where the potential smoothly vanishes.

Plugging eq. (7.2.9) into eq. (7.2.5) gives

∞∑

j=0

cj
[
j(j − 1)yj−2 + (2E − 1− 2j)yj

]
= 0. (7.2.10)

Now we use a trick on the first term. Since it vanishes for j = 0 and j = 1, we can rewrite it as
∑∞

j=2 cjj(j − 1)yj−2, and then let j = k + 2 so that it becomes
∑∞

k=0 ck+2(k + 2)(k + 1)yk, and

finally rename k → j, so that it becomes
∑∞

j=0 cj(j+2)(j+1)yj. Now it can be nicely combined

with the second term, combining like powers of y,

∞∑

j=0

yj
[
cj+2(j + 1)(j + 2) + cj(2E − 1− 2j)

]
= 0. (7.2.11)

146



Because each power yj in the sum is independent, their coefficients must vanish separately for

each j, so we have a recurrence relation,

cj+2 =
2j + 1− 2E
(j + 1)(j + 2)

cj . (7.2.12)

This shows that we only need to know two constants c0 and c1, because if c0 is known, then so

are c2, c4, c6, . . . , and if c1 is known, then so are c3, c5, c7, etc. So, the solution is

u(y) = c0

[
1 +

(
1− 2E

2

)
y2 +

(
1− 2E

2

)(
5− 2E
12

)
y4 + · · ·

]

+c1

[
y +

(
3− 2E

6

)
y3 +

(
3− 2E

6

)(
7− 2E
20

)
y5 + · · ·

]
, (7.2.13)

which, naively, appears to be an infinite series.

However, there is something horribly wrong with the solution if it is really an infinite series.

For sufficiently large |y|, the series will be dominated by terms with large powers j, where

eq. (7.2.12) appears to give

cj+2

cj
≈ 2

j + E + 5/2
, (7.2.14)

up to contributions to the denominator that vanish as j →∞. If arbitrarily large powers j are

present, the function u(y) will necessarily grow too fast as |y| → ∞. To see this, consider for

comparison the function f(y) = ypey
2

, with series expansion

f(y) =

∞∑

k=0

y2k+p/k!. (7.2.15)

Now, writing j = 2k+ p, this series has terms Cjy
j where Cj+2/Cj = 1/(k+1) = 2/(j − p+2).

Comparing to eq. (7.2.14), we see that if u(y) is really a non-terminating series in powers of y,

then u(y) ∼ ypey
2

for p = −E − 1/2, and the wavefunction behaves for large |y| like

ψ(y) ∼ (ypey
2

)e−y
2/2 = ypey

2/2. (7.2.16)

These are recognized as the unphysical solutions with α = −1/2 that we had already rejected.

For a sensible physical solution, there is only one way out: the series for u(y) must terminate.

To find a basis of such solutions, we can first consider c0 6= 0 but c1 = 0, so that only even-index

coefficients are present. If one of them vanishes, c2k = 0 for some k, then all higher coefficients cj

with j > 2k will also vanish, according to the recurrence relation. Likewise, we can take c1 6= 0

but c0 = 0, so that only odd-index coefficients are present. If one of them vanishes, c2k+1 = 0

for some k, then all cj with j > 2k + 1 will also vanish.

147



In either case, the condition for the series in u(y) to terminate, yielding a physical solution,

is that the numerator in the recurrence relation eq. (7.2.12) must vanish for some non-negative

integer j = n. Therefore, the allowed energy eigenvalues are E = n + 1/2, or

En = (n+ 1/2)h̄ω, (n = 0, 1, 2, . . .). (7.2.17)

It follows that u(y) will be a polynomial of degree n in y, and contains only even (odd) powers

of y if n is even (odd). For any given n, they can be constructed from the recurrence relation,

eq. (7.2.12), up to an overall multiplicative constant given by either c0 or c1. The resulting

u(y) = Hn(y) for a given n are called Hermite polynomials. From eqs. (7.2.5) and (7.2.9)

with E = n+ 1/2, they satisfy the differential equation

(
d2

dy2
− 2y

d

dy
+ 2n

)
Hn = 0. (7.2.18)

An explicit expression for the Hermite polynomials is

Hn(y) = ey
2/2

(
y − d

dy

)n
e−y

2/2. (7.2.19)

This can be verified by plugging it into the differential equation (7.2.18), but an even nicer

derivation will be found near the end of the section 7.3.

The first few Hermite polynomials are

H0(y) = 1, H1(y) = 2y, (7.2.20)

H2(y) = −2 + 4y2, H3(y) = −12y + 8y3, (7.2.21)

H4(y) = 12− 48y2 + 16y4, H5(y) = 120y − 160y3 + 32y5. (7.2.22)

In general, they also obey the identities

Hn(−y) = (−1)nHn(y), (7.2.23)

d

dy
Hn(y) = 2nHn−1(y), (7.2.24)

Hn+1(y) = 2yHn(y)− 2nHn−1(y), (7.2.25)

and satisfy a generating function relation

∞∑

n=0

Hn(y)
tn

n!
= exp(2yt− t2). (7.2.26)

They can be shown to satisfy an orthonormality condition
∫ ∞

−∞
dy Hn(y)Hm(y)e

−y2 = δn,m
√
π 2n n!. (7.2.27)
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The orthonormal energy basis wavefunctions for the harmonic oscillator can now be written

ψn(x) =
(mω
πh̄

)1/4√ 1

2nn!
Hn(y)e

−y2/2, (7.2.28)

where y = x/b = x
√
mω/h̄, so that

∫ ∞

−∞
dx [ψn(x)]

∗ψm(x) = δn,m. (7.2.29)

(In this case, the wavefunctions are all real, so the complex conjugation does nothing.) In

particular, the normalized ground state wavefunction is just a pure Gaussian,

ψ0(x) =
(mω
πh̄

)1/4
exp(−mωx2/2h̄). (7.2.30)

The wavefunctions ψn and the corresponding probability densities |ψn|2 are shown for n =

0, 1, 2, 3, 4, and 16 in Figure 7.2.1.

The wavefunctions are related to the energy eigenstate kets |n〉 of the harmonic oscillator by

〈x|n〉 = ψn(x), (7.2.31)

with

H|n〉 = h̄ω(n+ 1/2)|n〉. (7.2.32)

This shows that the energy levels of the one-dimensional harmonic oscillator are equally spaced

and non-degenerate, with a quantum of energy given by ∆E = h̄ω. There is also a zero-point

energy of the ground state, E0 = h̄ω/2, in agreement with our earlier proof that the energies

had to be positive. From eq. (7.2.23), the states with even (odd) n have even (odd) parity.

Another interesting relation satisfied by the harmonic oscillator wavefunctions, and thus the

Hermite polynomials, is

∞∑

n=0

ψn(x
′)ψn(x) = δ(x− x′). (7.2.33)

This can be derived immediately from 〈x|x′〉 = δ(x− x′) by applying the completeness relation
∑∞

n=0 |n〉 〈n| = 1.

Having found the position wavefunctions for the harmonic oscillator, we now turn to the

momentum representation. One way to evaluate the momentum wavefunctions of the energy

eigenstates |n〉 is to use the completeness relation:

ψ̃n(p) = 〈p|n〉 =
∫ ∞

−∞
dx 〈p|x〉 〈x|n〉 =

∫ ∞

−∞
dx

1√
2πh̄

e−ipx/h̄ ψn(x), (7.2.34)
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Figure 7.2.1: Harmonic oscillator stationary-state wavefunctions ψn in units of (mω/h̄)1/4 (left
column) and probability densities |ψn|2 in units of

√
mω/h̄ (right column) for n = 0, 1, 2, 3, 4,

and 16, as functions of y = x
√
mω/h̄.
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but it may not be immediately obvious how to evaluate the integral for general n. Fortunately,

we can gain some insight into the result by noting that the Hamiltonian in eq. (7.1.18) has the

very special property of being invariant under the simultaneous substitutions

X ↔ P, mω ↔ 1

mω
. (7.2.35)

Since the energy eigenstates are non-degenerate, their momentum wavefunctions must be given,

up to a phase eiϕn to be determined, by making these same substitutions in eq. (7.2.28). There-

fore, defining a dimensionless variable proportional to momentum,

v = p/
√
h̄ωm, (7.2.36)

it must be that

ψ̃n(p) = eiϕn
1

(πh̄ωm)1/4

√
1

2nn!
Hn(v)e

−v2/2. (7.2.37)

The phase factor eiϕn is needed to maintain consistency with the phase convention of the ket |n〉
that has already been fixed by eqs. (7.2.28) and (7.2.31). For the lowest few n = 0, 1, 2, 3, . . .,

you can do the integral in eq. (7.2.34) to check that eq. (7.2.37) is indeed true with

eiϕn = (−i)n, (7.2.38)

and we will prove it for general n at the end of the next section.

7.3 Energy representation: the algebraic approach

In this section, we will use a different, and more elegant, method to solve for the stationary

states of the harmonic oscillator. In this approach, due to Dirac, we use algebraic methods

rather than differential equations, working directly in the energy basis.

We begin by defining dimensionless creation and annihilation operators (also known as raising

and lowering or destruction operators, or together as ladder operators) by

a =

√
mω

2h̄
X + i

1√
2h̄ωm

P, (7.3.1)

a† =

√
mω

2h̄
X − i 1√

2h̄ωm
P. (7.3.2)

As the notation indicates, these are not Hermitian operators and so are not observables, but

rather are Hermitian adjoints of each other. Equivalently, one can write the relationship as

X =

√
h̄

2mω
(a† + a), (7.3.3)

P = i

√
h̄ωm

2
(a† − a). (7.3.4)
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Using the canonical commutation relations [X,P ] = ih̄, we find that

[a, a†] = 1. (7.3.5)

We also can compute

a†a =
mω

2h̄
X2 +

1

2h̄ωm
P 2 +

i

2h̄
[X,P ] = H/h̄ω − 1/2,

so that the Hamiltonian is simply†

H = h̄ω(a†a + 1/2). (7.3.6)

Using eq. (7.3.5), one then obtains

[H, a] = −h̄ω a, [H, a†] = h̄ω a†. (7.3.7)

Now suppose that we have an energy eigenstate |E〉, with energy eigenvalue E. Then consider

the Hamiltonian acting on the state a†|E〉:

H
(
a†|E〉

)
= a†H|E〉+ [H, a†]|E〉 = (E + h̄ω)a†|E〉. (7.3.8)

This shows that a†|E〉 is an eigenstate of H with energy E + h̄ω. Repeating this n times, the

state (a†)n|E〉 must be an energy eigenstate with energy E + nh̄ω. Similarly,

H (a|E〉) = (E − h̄ω) a|E〉, (7.3.9)

so the state an|E〉 is apparently an energy eigenstate with energy E − nh̄ω.
Thus, naively it might appear that we can construct an infinite chain of energy eigenstates

with both arbitrarily low and arbitrarily high energies,

· · · , |E−2h̄ω〉 , |E−h̄ω〉 , |E〉 , |E+h̄ω〉 , |E+2h̄ω〉 , · · · . (7.3.10)

But this cannot be true, since we proved at the end of section 7.1 that all of the energy eigenvalues

of the harmonic oscillator are positive. The only way out is that all of the kets in the chain with

negative energy are actually the null ket. In other words, one of the states in the chain, call it

the ground state |0〉, must be the one with lowest energy, and must satisfy

a|0〉 = 0, (7.3.11)

†One could also write the equivalent form H = h̄ω(a†a + aa†)/2. In choosing to write eq. (7.3.6), we have
followed the systematic protocol known as normal ordering. To “normal order” an operator means to rewrite
it by moving all a operators to the right and all a† operators to the left, using aa† = a†a+1 (which is equivalent
to the commutation relation) as many times as necessary.
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so that all of the kets an|0〉 = 0 for n ≥ 1 do not actually exist as physical states. Since

a†a|0〉 = 0, we have

(H/h̄ω − 1/2) |0〉 = 0, (7.3.12)

so the ground state must have E0 = h̄ω/2, a result that we had also found in the previous

section using the differential equation approach.

In section 6.3, we proved that bound states in one-dimensional quantum mechanics never have

degenerate energies. This implies that there is a unique state |0〉 with E0 = h̄ω/2, and unique

states with En = h̄ω(n + 1/2) for n = 0, 1, 2, . . ., given up to normalization by |n〉 ∝ (a†)n|0〉.
Since they are non-degenerate eigenkets of a Hermitian operator (H), they can be normalized

to form an orthobasis,

〈k|n〉 = δn,k. (7.3.13)

Let |0〉 have norm 1. Then we can define the other orthobasis kets by recurrence using

|n〉 = cna
†|n−1〉, (7.3.14)

where cn are constants to be determined. We have

〈n|n〉 = |cn|2 〈n−1|aa†|n−1〉 = n|cn|2 〈n−1|n−1〉 , (7.3.15)

where the second equality makes use of

aa† = a†a + 1 = H/h̄ω + 1/2 (7.3.16)

and then H |n−1〉 = h̄ω(n − 1/2) |n− 1〉. The norms in eq. (7.3.15) will both be equal to 1

provided that cn = 1/
√
n, where we have made an arbitrary choice of phase. From this, we use

eqs. (7.3.14) and (7.3.16) to deduce that

a†|n〉 =
√
n + 1 |n+1〉, (7.3.17)

a|n〉 =
√
n |n−1〉, (7.3.18)

so that a† raises the energy of the state (or creates an energy quantum), and a lowers the energy

(or destroys an energy quantum). Taking the Hermitian conjugate gives

〈n| a =
√
n+ 1 〈n+1| , (7.3.19)

〈n| a† =
√
n 〈n−1| . (7.3.20)

An equivalent way to express these results is in terms of the matrix elements of the a† and a

operators in the energy eigenstate orthobasis,

〈k|a†|n〉 =
√
n + 1 δk,n+1, 〈k|a|n〉 =

√
n δk,n−1. (7.3.21)

153



Another consequence is that the nth excited state can be written in terms of n creation operators

acting on the ground state,

|n〉 = (a†)n√
n!
|0〉. (7.3.22)

The Hamiltonian is sometimes written as H = h̄ω(N+1/2), where N = a†a is called the number

operator. It is clearly Hermitian, and satisfies

N |n〉 = n|n〉, (7.3.23)

and so is an observable that just measures the number of energy quanta in the state.

To illustrate the power of the algebraic method used in this section, suppose for example

that we wanted to evaluate the matrix element 〈3|X3|2〉. We have, using eq. (7.3.3),

〈3|X3|2〉 =

(
h̄

2mω

)3/2

〈3|(a† + a)3|2〉 (7.3.24)

=

(
h̄

2mω

)3/2

〈3|
(
✚✚a†3 + a†2a + a†aa† + aa†2 +✟✟✟a†a2 +✟✟✟aa†a +✟✟✟a2a† +��a

3
)
|2〉 . (7.3.25)

Here, we have crossed out terms that can be immediately seen to give no contribution by simply

counting quanta created and destroyed. For the first term, we start in the ket on the far right

with 2 quanta, and create 3 more, so it is proportional to |5〉, which by orthonormality has

vanishing inner product with the bra 〈3| on the left. Likewise, the fifth, sixth, and seventh

terms cannot contribute because we start with 2 quanta and then (in various orders) create 1

more but destroy 2, resulting in a state with 1, which again has vanishing inner product with

the 3-quanta bra. And, the last term immediately vanishes because a3|2〉 = 0. The remaining

three terms do not vanish, but can be easily evaluated with nothing but simple arithmetic, by

applying eqs. (7.3.17) and (7.3.18) repeatedly.

In contrast, evaluation of the same matrix element in the position representation approach

of section 7.2 would read

〈3|X3|2〉 =

∫ ∞

−∞
dx

(
mω

πh̄26(3!)2

)1/4

H3

(
x
√
mω/h̄

)
e−mωx

2/2h̄ x3

(
mω

πh̄24(2!)2

)1/4

H2

(
x
√
mω/h̄

)
e−mωx

2/2h̄. (7.3.26)

This is certainly doable, but less pleasant.

Let us see how to connect the energy and position representations, by writing a and a† as

differential operators in the latter. In the position representation, X → x and P → −ih̄d/dx,
so from eqs. (7.3.1) and (7.3.2) we get

a =
1√
2

(
y +

d

dy

)
, a† =

1√
2

(
y − d

dy

)
, (7.3.27)
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where y = x/b = x
√
mω/h̄ as before. Therefore, the condition a|0〉 = 0 gives

(
y +

d

dy

)
ψ0(y) = 0. (7.3.28)

This implies dψ0/ψ0 = −ydy, or d(lnψ0) = −d(y2/2), so that upon integration, lnψ0 = −y2/2+
lnA0, where lnA0 is a constant of integration. Thus,

ψ0(y) = A0e
−y2/2 = A0e

−mωx2/2h̄, (7.3.29)

in agreement with eq. (7.2.30) after fixing the normalization constant A0 = (mω/πh̄)1/4. Now,

combining eqs. (7.3.22) and (7.3.27), we have

ψn(x) = 〈x|n〉 = 1√
n!

[
1√
2

(
y − d

dy

)]n (mω
πh̄

)1/4
e−y

2/2. (7.3.30)

Comparing this with eq. (7.2.28) yields the general form for the Hermite polynomials given in

eq. (7.2.19), as promised.

The energy and momentum representations can be connected in a similar way. The momen-

tum representations are P → p and X → ih̄d/dp, from which one finds

a =
i√
2

(
v +

d

dv

)
, a† = − i√

2

(
v − d

dv

)
, (7.3.31)

where v = p/
√
h̄ωm is the dimensionless rescaled momentum, as in eqs. (7.2.36) and(7.2.37).

Evaluating eq. (7.2.34) for the special case n = 0, we then find

ψ̃0(p) =
1

(πh̄ωm)1/4
e−v

2/2 (7.3.32)

for the ground state. Using eq. (7.3.31) in eq. (7.3.22), we obtain

ψ̃n(p) = 〈p|n〉 = 1√
n!

[
− i√

2

(
v − d

dv

)]n
1

(πh̄ωm)1/4
e−v

2/2. (7.3.33)

Now comparing to eq. (7.2.19), we obtain eq. (7.2.37) with eiϕn = (−i)n, as promised.

7.4 Coherent states of the harmonic oscillator

Consider a macroscopic harmonic oscillator of the type one might encounter in a lab experiment

in an introductory physics course, with mass m = 0.5 kg, ω = 4 radians/second, and amplitude

x0 = 0.1 meters. Classically, the energy can be obtained as the potential energy at the extremum

of the displacement, when p = 0 and x = x0, so that E = mω2x20/2 = 0.04 J. The energy

quantum associated with the oscillator is h̄ω = 4.22×10−34 J. Therefore, we expect macroscopic
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oscillator states to have enormous numbers of energy quanta, something like n = E/h̄ω ≈ 1032

in this example.

Is the energy eigenstate |n = 1032〉 classical-like? The answer is clearly no, since in any

energy eigenstate, 〈X(t)〉 = 0 and 〈P (t)〉 = 0 for all times t, while the classical trajectory,

eq. (7.1.5), involves macroscopic oscillations. We would like to find quantum states that are

approximately classical, by which we mean that 〈X(t)〉 ≈ xcl(t) and 〈P (t)〉 ≈ pcl(t) should be

as close as possible to the solutions in eq. (7.1.5). The states that accomplish this are called

coherent (or quasi-classical) states, and the argument just given ensures that they cannot be

energy eigenstates.

Instead of energy eigenstates, with the wisdom of foresight, let us try kets |α〉 that are

eigenstates of the lowering operator a with eigenvalue α,

a |α〉 = α |α〉 . (7.4.1)

Since a is not Hermitian, we have no reason to expect that the allowed eigenvalues α will be

real, and indeed it will turn out to be very important that they are complex in general. For

the same reason, we also cannot expect that the set of all states |α〉 for different α will form an

orthobasis or even be orthogonal, and again they are not.

To construct such coherent states, try an arbitrary linear combination of energy eigenstates,

|α〉 =
∞∑

n=0

cn |n〉 , (7.4.2)

with coefficients cn to be determined. Then,

a |α〉 =
∞∑

n=0

cna |n〉 =
∞∑

n=1

cn
√
n |n−1〉 , (7.4.3)

where in the second equality we have used eq. (7.3.18), and started the sum from n = 1 by

exploiting the fact that the n = 0 term vanishes. If we now relabel n→ n+ 1, and require that

the result

a |α〉 =
∞∑

n=0

cn+1

√
n+ 1 |n〉 (7.4.4)

is equal to α
∑∞

n=0 cn|n〉, we obtain the recurrence relation

cn+1 =
α√
n+ 1

cn. (7.4.5)

Starting with c0, we get c1 = αc0, c2 = α2c0/
√
2, etc., or in general cn = αnc0/

√
n!. Therefore,

up to normalization,

|α〉 = c0

∞∑

n=0

αn√
n!
|n〉 . (7.4.6)
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To fix c0, we require 〈α|α〉 = 1, or

1 =

∞∑

m=0

∞∑

n=0

c∗0
α∗m√
m!
c0
αn√
n!
〈m|n〉 = |c0|2

∞∑

n=0

|α|2n
n!

= |c0|2e|α|
2

, (7.4.7)

where the second equality uses the orthonormality 〈m|n〉 = δn,m to collapse the sum over m.

Therefore, c0 = e−|α|
2/2 (up to the usual arbitrary global phase), and the normalized coherent

state with complex eigenvalue α is

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉. (7.4.8)

Using eq. (7.3.22), this can be rewritten as

|α〉 = e−|α|
2/2

∞∑

n=0

(αa†)n

n!
|0〉 = e−|α|

2/2eαa
† |0〉. (7.4.9)

If a harmonic oscillator is in a coherent state |α〉, and the energy is measured, all results

En = h̄ω(n+ 1/2) can occur, with probabilities

Pn = |〈n|α〉|2 =
|α|2n
n!

e−|α|
2

. (7.4.10)

This is a Poisson distribution with mean |α|2, and does not depend on the phase of α. Since

Pn =
|α|2
n
Pn−1, (7.4.11)

we see that the probability increases with n as long as n < |α|2, but decreases thereafter.

Therefore, the most probable result of an energy measurement is of order h̄ω|α|2. This shows that
for a macroscopic oscillator like the one posed at the beginning of this section, |α| ∼ √n ∼ 1016

in a coherent state. The expectation value of the energy is

〈α|H|α〉 = h̄ω
[
(〈α| a†)(a |α〉) + 1/2

]
= h̄ω

[
(〈α|α∗)(α |α〉) + 1/2

]
=
(
|α|2 + 1

2

)
h̄ω, (7.4.12)

giving a similar measure of the average energy.

Next let us compute the uncertainty in the energy. First, we need

〈α|H2|α〉 = (h̄ω)2
[
〈α|a†aa†a|α〉+ 〈α|a†a|α〉+ 1

4
〈α|α〉

]
(7.4.13)

= (h̄ω)2
(
|α|4 + 2|α|2 + 1/4

)
. (7.4.14)

Therefore

∆H =

√
〈H2〉 − 〈H〉2 = h̄ω|α|. (7.4.15)
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This is a very small energy uncertainty compared to the energy expectation value,

∆H/〈H〉 = 1/|α| ≪ 1, (7.4.16)

since we found 1/|α| of order 10−16 in our numerical example. Thus, the energy distribution is

peaked extremely sharply about the classical value.

We can likewise compute the expectation value and uncertainty of the position. First,

〈α|X|α〉 =
√

h̄

2mω
〈α|(a† + a)|α〉 =

√
h̄

2mω
(α∗ + α) =

√
2h̄

mω
Re[α]. (7.4.17)

Also, one has

〈α|X2|α〉 =
h̄

2mω
〈α|(a† + a)2|α〉 = h̄

2mω
〈α|(a†2 + 2a†a + a2 + 1)|α〉 (7.4.18)

=
h̄

2mω

[
(α∗ + α)2 + 1

]
. (7.4.19)

It follows that

∆X =

√
〈α|X2|α〉 − 〈α|X|α〉2 =

√
h̄

2mω
. (7.4.20)

Remarkably, this does not depend on α at all, and in fact is exactly the same as for the ground

state, making it ridiculously tiny by macroscopic standards. The interpretation of ∆X/ 〈X〉 ≪ 1

is that the position wavefunction is extremely sharply peaked about its expectation value. In a

similar way, one can compute the expectation value and the uncertainty of the momentum:

〈α|P |α〉 =
√
2mh̄ω Im[α], (7.4.21)

∆P =

√
mh̄ω

2
. (7.4.22)

The latter is again independent of α and is the same as in the ground state. Putting these

results together, the product of uncertainties in position and momentum is

(∆X)(∆P ) = h̄/2, (7.4.23)

which is exactly as small as it could possibly be, consistent with the uncertainty relation.

The preceding results suggest that there is some close relation between the ground state and

the coherent states, since they have exactly the same uncertainties in position and momentum.

To see this, let us work out the wavefunction of the coherent state |α〉. We start with

ψα(x) = 〈x|α〉 = e−|α|
2/2 〈x|eαa† |0〉 (7.4.24)

from eq. (7.4.9). Next, we write

αa† = A +B (7.4.25)
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where, from the definition of a† in eq. (7.3.2),

A = α

√
mω

2h̄
X, B = −i α√

2h̄ωm
P. (7.4.26)

Since [A,B] = α2/2 is a constant, we can use the Baker–Campbell–Hausdorff formula eq. (2.4.32),

repeated here for convenience as eA+B = eAeBe−[A,B]/2, to obtain

ψα(x) = e−|α|
2/2e−α

2/4 exp

(√
mω

2h̄
αx

)
〈x| exp

(
−i α√

2h̄ωm
P

)
|0〉 . (7.4.27)

The next step is to notice that the exponential operator inside the matrix element has the same

form as the translation operator T (a) defined in eq. (5.2.1), with a replaced by the (complex, in

general) number α
√
h̄/2ωm. Therefore, we can invoke eq. (5.2.7) to find

〈x| exp
(
−i α√

2h̄ωm
P

)
|0〉 = ψ0

(
x− α

√
h̄

2ωm

)
, (7.4.28)

where ψ0(x) is the ground state wavefunction, found in eq. (7.2.30). Using this in eq. (7.4.27),

and rearranging the exponentials, gives

ψα(x) = e−(|α|
2+α2)/2

(mω
πh̄

)1/4
exp

[
−mω

2h̄

(
x− α

√
2h̄

ωm

)2]
. (7.4.29)

Now, writing α in terms of its real and imaginary parts, and then expressing them in terms of the

position and momentum expectation values using eqs. (7.4.17) and (7.4.21), the wavefunction

takes the simple form

ψα(x) = eiθei〈P 〉x/h̄ψ0(x− 〈X〉), (7.4.30)

where θ = −Re[α]Im[α]. Up to the physically irrelevant global phase provided by θ, the coherent

state wavefunction is the same as the ground state, but displaced by the position expectation

value and multiplied by the position-dependent phase factor that encodes the momentum ex-

pectation value.

So far, we have considered a coherent state |α〉 at a fixed time t. Now let us investigate the

time evolution of the state and its properties. Since the Hamiltonian is independent of time,

the solution of the Schrödinger equation tells us that at time t the state is

e−iHt/h̄|α〉 = e−iHt/h̄e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 = e−|α|

2/2

∞∑

n=0

αn√
n!
e−iω(n+1/2)t|n〉 (7.4.31)

= e−iωt/2e−|α|
2/2

∞∑

n=0

(αe−iωt)n√
n!

|n〉 (7.4.32)

= e−iωt/2|αe−iωt〉. (7.4.33)

159



This shows that the coherent state just evolves to another coherent state in which α has changed†

to αe−iωt. Thus, in the time-dependent coherent state, the magnitude of α does not change,

and the phase of α rotates linearly with time, at the natural angular frequency of the harmonic

oscillator.

Suppose that at time t = 0, we start with α = |α|e−iφ0, so that at a general time t,

α = |α|e−i(ωt+φ0) (7.4.34)

Then, using the results from eqs. (7.4.17) and (7.4.21), we get

〈X〉(t) =

√
2h̄

mω
Re
[
|α|e−i(ωt+φ0)

]
= x0 cos(ωt+ φ0), (7.4.35)

〈P 〉(t) =
√
2mh̄ω Im

[
|α|e−i(ωt+φ0)

]
= −mωx0 sin(ωt+ φ0), (7.4.36)

where we have defined

x0 =

√
2h̄

mω
|α|. (7.4.37)

This establishes the connection between the classical trajectory of the harmonic oscillator and

the parameter α of the coherent state that most closely resembles it. Not only is the coherent

state for a harmonic oscillator as close as possible to the classical limit, but we see, by comparing

to eq. (7.1.5), that the expectation values of the position and momentum evolve in exactly the

same way as their classical counterparts. The uncertainties do not change with time. To

summarize the properties of a coherent state,

〈H〉 = h̄ω(|α|2 + 1/2) ∆H = h̄ω|α|, (7.4.38)

〈X〉(t) = xcl(t), ∆X =
√
h̄/2mω, (7.4.39)

〈P 〉(t) = pcl(t), ∆P =
√
mh̄ω/2. (7.4.40)

The harmonic oscillator potential evidently has a remarkable “focusing” property, such that the

coherent state wavefunctions do not spread out at all as they evolve in time, unlike the case for

the free particle Gaussian states as seen in section 6.2.

There is a simple way to prepare a coherent state for the harmonic oscillator. Suppose we

temporarily apply a constant (position-independent) force f , acting in the positive x direction,

so that the new Hamiltonian is

Hf =
P 2

2m
+

1

2
mω2X2 − fX. (7.4.41)

†The state ket has also acquired an irrelevant global phase e−iωt/2. In contrast, the complex phase e−iωt

multiplying α (inside the ket symbol) is certainly physically relevant, as is clear from eqs. (7.4.17) and (7.4.21).
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By defining a shifted position operator

X ′ = X − f

mω2
, (7.4.42)

the Hamiltonian can be rewritten as

Hf =
P 2

2m
+

1

2
mω2X ′2 − f 2

2mω2
. (7.4.43)

The constant shift in the position operator does not affect the commutation relation,

[X ′, P ] = ih̄, (7.4.44)

so the solution of the eigenvalue problem for Hf proceeds exactly as for the Hamiltonian with

f = 0. The energy eigenvalues will be the same, but lowered by the constant amount −f 2/2mω2.

More importantly for our present purposes, the ground state |0〉f ofHf is defined by the property

that it is annihilated by the operator

a′ =

√
mω

2h̄
X ′ + i

1√
2h̄ωm

P = a− f√
2h̄ω3m

, (7.4.45)

where a is the annihilation operator for H with f = 0. This implies that the state |0〉f is exactly
a coherent state of the original Hamiltonian H :

a |0〉f = α |0〉f , (7.4.46)

where

α =
f√

2h̄ω3m
(7.4.47)

is a real number.

To summarize, we can prepare a coherent state of the harmonic oscillator as follows. First,

apply a constant force f , shifting the equilibrium position of the mass to the point x0 = f/mω2.

Next, allow the oscillator to settle into the ground state of the new Hamiltonian Hf , with the

same uncertainties in position and momentum as the ground state of H . Finally, we release the

mass by removing the force f . At the instant that the mass is released, it will find itself in a

coherent state of H , with α initially real and given by eq. (7.4.47). It will therefore evolve in time

as we have already seen, remaining in a coherent state as α acquires a non-trivial phase e−iωt.

The subsequent behavior is as close as possible to what would happen in classical mechanics if

we displaced the oscillator and then released it from rest.
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7.5 Three-dimensional harmonic oscillator

We now return to the case of a three-dimensional harmonic oscillator, with Hamiltonian given

by eq. (7.1.17). Rewriting it without the tildes (which just denoted a particular choice of

rectangular coordinates), this can be rewritten as

H = Hx +Hy +Hz, (7.5.1)

where

Hx =
P 2
x

2m
+

1

2
mω2

xX
2 = h̄ωx(a

†
xax + 1/2), (7.5.2)

with exactly analogous expressions for Hy and Hz. Here, we have made use of the experience of

section 7.3 to write

ax =

√
mωx
2h̄

X + i
1√

2h̄ωxm
Px, (7.5.3)

ay =

√
mωy
2h̄

Y + i
1√

2h̄ωym
Py, (7.5.4)

etc. Now Hx and Hy and Hz all commute with each other, and are Hermitian. One can therefore

find an orthobasis consisting of their common eigenstates, denoted |nx, ny, nz〉, where operators

with the x subscript just ignore the ny and nz labels, and similarly for operators with the y and

z subscripts. Thus,

Hx |nx, ny, nz〉 = Ex |nx, ny, nz〉 , Hy |nx, ny, nz〉 = Ey |nx, ny, nz〉 , (7.5.5)

Hz |nx, ny, nz〉 = Ez |nx, ny, nz〉 . (7.5.6)

(This can also be viewed as the tensor product of three one-dimensional harmonic oscillators.)

From section 7.3, we have already solved the eigenvalue problem for each Hj , and so we know

that the allowed energies for each of j = x, y, z are

Ej = h̄ωj(nj + 1/2), nj = 0, 1, 2, . . . , (7.5.7)

and that the corresponding eigenkets satisfy, for example:

ax |nx, ny, nz〉 =
√
nx |nx−1, ny, nz〉 , (7.5.8)

a†x |nx, ny, nz〉 =
√
nx + 1 |nx+1, ny, nz〉 , (7.5.9)

ay |nx, ny, nz〉 =
√
ny |nx, ny−1, nz〉 , (7.5.10)

etc. Since the labels nx, ny, and nz uniquely specify the states of an orthobasis, Hx, Hy, and

Hz form a CSCO for this problem.
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The state |nx, ny, nz〉 has total energy eigenvalue

E = Ex + Ey + Ez = h̄ωx(nx + 1/2) + h̄ωy(ny + 1/2) + h̄ωz(nz + 1/2), (7.5.11)

and its wavefunction is just a product of the wavefunctions for the one-dimensional harmonic

oscillator,

ψnx,ny,nz(r) = 〈r |nx, ny, nz〉 = ψnx,ωx(x)ψny,ωy(y)ψnz,ωz(z), (7.5.12)

where each of the ψnj ,ωj
functions can be obtained from eq. (7.2.28) in the obvious way.

In the special case of the isotropic 3-dimensional harmonic oscillator, ωx = ωy = ωz = ω, the

system is invariant under arbitrary rotations about the origin. This symmetry is reflected in a

degeneracy of the energy spectrum, which is now

En = h̄ω(n+ 3/2), (7.5.13)

for states |n, un〉, where n = nx+ny+nz and un = 1, . . . , gn is a degeneracy label for the energy

eigenvalue En. To find the degeneracy gn of each energy level, we need to know how many ways

there are to choose three non-negative integers that add up to n. The ground state with n = 0

is unique, as it can only be achieved with the lone combination nx = ny = nz = 0, so g0 = 1.

The first excited energy level can be achieved in three different ways, by taking one of nx, ny, nz

to be 1, and the others 0, so g1 = 3. Similar straightforward counting reveals that g2 = 6, and

g3 = 10. More generally, this combinatorics problem can be solved using the dots and lines

trick: one arranges n dots in a row, and splits them into three groups by placing two vertical

lines as shown below.

• • · · · •︸ ︷︷ ︸
nx

|• • · · · •︸ ︷︷ ︸
ny

|• • · · · •︸ ︷︷ ︸
nz

(7.5.14)

The degeneracy of the energy eigenvalue En is therefore the number of ways of arranging a row

of n+ 2 objects, of which n are identical and 2 are identical,

gn =
(n+ 2)!

n! 2!
=

1

2
(n+ 1)(n+ 2). (7.5.15)

There is another natural choice of CSCO that one can use for the isotropic three-dimensional

harmonic oscillator, consisting of the total Hamiltonian H and two observables associated with

the angular momentum about the minimum of the potential. We will discuss this method in

section 9.5.
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8 Angular momentum and its representations

8.1 The eigenvalue problem for angular momentum

At the end of section 5.3, we introduced the commutation relation algebra for the components

of a generic angular momentum operator J = x̂Jx + ŷJy + ẑJz, defined to satisfy

[Ja, Jb] = ih̄ǫabcJc, (a, b, c = x, y, z), (8.1.1)

with c implicitly summed over. Let us now find the simultaneous eigenvectors and the corre-

sponding eigenvalues of the compatible observables J2 = J2
x + J2

y + J2
z and Jz.

We start by observing that the eigenvalues of J2 must be non-negative. To see this, note

that for any non-null ket |ψ〉,

〈ψ|J2|ψ〉 = ‖Jx |ψ〉‖2 + ‖Jy |ψ〉‖2 + ‖Jz |ψ〉‖2 ≥ 0, (8.1.2)

where the possibility of equality exists only because each of the kets Jx |ψ〉, Jy |ψ〉, and Jz |ψ〉
could be null. Now, if

J2 |ψ〉 = λ |ψ〉 , (8.1.3)

then 〈ψ|J2|ψ〉 = λ 〈ψ|ψ〉 ≥ 0, so λ ≥ 0. For reasons to become clear shortly, it turns out to be

convenient to give λ the name h̄2j(j + 1), by defining j =
√
λ/h̄2 + 1/4 − 1/2. Since λ ≥ 0, it

follows that j ≥ 0 also.

Because J2 and Jz are compatible observables, Theorem 2.7.1 says that there must be an

orthobasis consisting of common eigenstates, |j,m, uj,m〉, which satisfy orthonormality and com-

pleteness relations

〈j′, m′, u′j′,m′ |j,m, uj,m〉 = δj,j′ δm,m′ δu ′
j′,m′ ,uj,m

, (8.1.4)
∑

j

∑

m

∑

uj,m

|j,m, uj,m〉〈j,m, uj,m| = I. (8.1.5)

Here uj,m is a possible degeneracy label† that will be important in particular cases, but plays

no role in the following discussion and so will be suppressed for simplicity. We therefore seek to

solve the eigenvalue problem

J2 |j,m〉 = h̄2j(j + 1) |j,m〉 , (8.1.6)

Jz |j,m〉 = h̄m |j,m〉 . (8.1.7)

†Soon [just before eq. (8.1.28)], we will learn that the orthobasis can actually always be chosen in such a way
that the uj,m do not depend on m. But we do not know that yet.
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for the allowed eigenvalues j and m, recognizing that there may be more than one sector of

such states, distinguished by the suppressed degeneracy label. In the special case of orbital

angular momentum, we have already found, by requiring the position wavefunction to be single-

valued (in particular, for φ = 0 and 2π), that the allowed eigenvalues of Lz are h̄m, where m

is an integer. However, spin (intrinsic) angular momentum is not associated with a position

wavefunction, so that argument does not apply, and m need not be an integer, as we will see.

It is very useful (and not just for the present purpose of solving the eigenvalue problem) to

define the angular momentum raising and lowering operators, also sometimes known as

ladder operators for angular momentum,

J+ = Jx + iJy, J− = Jx − iJy, (8.1.8)

which will play a role similar to a† and a for the harmonic oscillator. They are not Hermitian,

but can easily be shown to satisfy the useful identities,

(J+)
† = J−, (8.1.9)

[Jz, J+] = h̄J+, (8.1.10)

[Jz, J−] = −h̄J−, (8.1.11)

[J+, J−] = 2h̄Jz, (8.1.12)

J+J− = J2 − J2
z + h̄Jz, (8.1.13)

J−J+ = J2 − J2
z − h̄Jz. (8.1.14)

From the last two equations, we get

J2 =
1

2
J+J− +

1

2
J−J+ + J2

z . (8.1.15)

Each of J+, J−, and Jz commute with the total angular momentum squared,

[J2, J+] = [J2, J−] = [J2, Jz] = 0. (8.1.16)

We now derive some useful facts by studying the ket J+|j,m〉. Since J2 commutes with J+,

J2 (J+|j,m〉) = h̄2j(j + 1) (J+|j,m〉) . (8.1.17)

Also,

Jz (J+|j,m〉) = [Jz, J+]|j,m〉 + J+Jz|j,m〉 = h̄J+|j,m〉+ h̄mJ+|j,m〉 (8.1.18)

= h̄(m+ 1) (J+|j,m〉) . (8.1.19)

Thus, J+|j,m〉 is an eigenstate of both J2 and Jz, with eigenvalues h̄2j(j + 1) and h̄(m + 1),

respectively. Due to the fact that the |j,m, uj,m〉 were chosen as an orthobasis, we can conclude
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that either J+|j,m〉 is proportional to |j,m+ 1〉 within each sector labeled by uj,m, or else it is

the null ket. This is why J+ is called a raising operator; it raises the Jz eigenvalue. To find out

whether J+|j,m〉 is the null ket, we compute its squared norm,

‖J+|j,m〉‖2 = 〈j,m|J−J+|j,m〉 = 〈j,m|
(
J2 − J2

z − h̄Jz
)
|j,m〉

= 〈j,m|
[
h̄2j(j + 1)− (h̄m)2 − h̄(h̄m)

]
|j,m〉

= h̄2[j(j + 1)−m(m+ 1)]. (8.1.20)

From this we learn two useful things. First, the general properties of the inner product require

that the squared norm is non-negative, so allowed j,m must satisfy j(j + 1) − m(m + 1) =

(j −m)(j +m + 1) ≥ 0, and since we learned at the beginning of this section that j ≥ 0, we

can conclude that for every non-null ket |j,m〉,

m ≤ j. (8.1.21)

The second useful result from eq. (8.1.20) is the constant of proportionality between J+|j,m〉
and the unit-normalized ket |j,m+1〉,

J+|j,m〉 = h̄
√
j(j + 1)−m(m+ 1) |j,m+1〉. (8.1.22)

Here we had to make an arbitrary and unavoidable choice of phase; eq. (8.1.22) can be taken

as the definition of the relative phase between |j,m〉 and |j,m+1〉. It follows from eq. (8.1.22)

that J+|j, j〉 is actually the null ket.

Everything in the previous paragraph can be repeated for J−|j,m〉. We learn that, for every

non-null ket |j,m〉,

m ≥ −j (8.1.23)

due to the requirement of positive squared norm, and that J−|j,−j〉 is the null ket, and that

J−|j,m〉 = h̄
√
j(j + 1)−m(m− 1) |j,m−1〉. (8.1.24)

This justifies calling J− the lowering operator for (the z component of) angular momentum.

In eq. (8.1.24), we have made another choice of phase, and we should be careful to make

sure that it is consistent with the phase choice made in eq. (8.1.22). This can be checked by

using eqs. (8.1.22) and (8.1.24) to compute J+J−|j,m〉 and J−J+|j,m〉, and noting that they

are equivalent to the results obtained using eqs. (8.1.13) and (8.1.14), respectively. A nice

feature of eqs. (8.1.22) and (8.1.24) is that the coefficients on the right-hand sides are real and

non-negative.
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Combining eqs. (8.1.21) and (8.1.23) tells us that, for any given j, the only possible values

of m for physical states |j,m〉 are in the range

−j ≤ m ≤ j. (8.1.25)

We are now ready to prove that j = n/2 for some integer n. If we compute (J+)
p|j,m〉, it must

be proportional to |j,m + p〉, according to eq. (8.1.22). For some finite p, this must be the

ket |j, j〉, because otherwise we could keep acting with J+ to find non-null kets with arbitrarily

large Jz eigenvalue, which would contradict of eq. (8.1.25). (Here, we are relying on the fact that

eq. (8.1.22) tells us that |j, j〉 is the unique non-null ket that is annihilated by J+.) Therefore,

j = m + p for some non-negative integer p. Similarly, if we compute (J−)
q|j,m〉, it must be

proportional to |j,m − q〉, according to eq. (8.1.24). For some finite q, this must be the ket

|j,−j〉; otherwise, we would again contradict eq. (8.1.25). Therefore, −j = m − q for some

non-negative integer q. Putting the results together gives 2j = p + q, a non-negative integer.

The allowed values are

j = 0, 1/2, 1, 3/2, 2, . . . . (8.1.26)

The fact that j = m+ p for some integer p, together with eq. (8.1.25), also tells us which values

of m can give non-null kets |j〉. For each j, they are the 2j + 1 values

m = −j, −j+1, . . . , j−1, j. (8.1.27)

For the special case that J = L, we already had found that m must be an integer, so in the case

of orbital angular momentum the allowed values of j = l are also restricted to the non-negative

integers 0, 1, 2, . . .. The case of half-integer‡ j must correspond to something other than orbital

angular momenta.

For a given state |j,m, uj,m〉, the operations of J2, Jz, J+, and J−, given by eqs. (8.1.6),

(8.1.7), (8.1.22), and (8.1.24) are independent of uj,m, and can change m, but not j. This has

two important implications.

First, if we have a single representative state with a certain j and uj,m, then all other states

with the same j and uj,m but other values of m are obtained by acting repeatedly with J+ or

J−. Therefore, the degeneracy label uj,m does not actually depend on m, as foreshadowed in

the footnote following eq. (8.1.5). Thus, for any quantum system, the orthobasis of common

eigenstates of J2 and Jz can be labeled as |j,m, uj〉, with a slight simplification of eqs. (8.1.4)

‡The standard term “half-integer” means an odd integer divided by 2. It might be more logical to call this
“half-odd-integer” or “integer-plus-half”, but it is difficult to fight tradition.
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and (8.1.5),

〈j′, m′, u′j′|j,m, uj〉 = δj,j′ δm,m′ δu ′
j′
,uj
, (8.1.28)

∑

j

∑

m

∑

uj

|j,m, uj〉〈j,m, uj| = I. (8.1.29)

Typically, uj corresponds to the eigenvalue(s) of some observable(s) that, together with J2 and

Jz, form a CSCO for the quantum system. If the Hamiltonian is invariant under rotations, then

H can be taken to be one of those observables. The group of 2j + 1 orthobasis states with

common j and uj and varying m = −j, . . . , j is called an angular momentum multiplet.

The second observation is that, because the operations of the angular momentum operators

J2, Jz, J+, and J− (and Jx, Jy) in the orthobasis |j,m, uj〉 do not depend on uj at all, we can

work out their matrix representations and operations on kets for each relevant value of j just

once, and the results will be applicable to any quantum system with that j.

For a j = 0 subspace, we have J2 = 0 and Jz = J+ = J− = Jx = Jy = 0, so the state

space has only one non-null ket |j = 0, m = 0〉. All angular momentum operators acting on

|j = 0, m = 0〉 give the null ket, so that they are all represented by the 1× 1 matrix 0.

8.2 j = 1/2 representation and spin

For a j = 1/2 subspace, the orthobasis consists of two states withm = ±1/2, with corresponding

two-component vector representations

|j=1/2, m=1/2〉 ↔
(
1
0

)
, |j=1/2, m=−1/2〉 ↔

(
0
1

)
. (8.2.1)

The matrix representations of the angular momentum operators can now be constructed from

eqs. (8.1.6)–(8.1.8), (8.1.22), and (8.1.24), with the results

J2 ↔ 3h̄2

4

(
1 0
0 1

)
, Jz ↔

h̄

2

(
1 0
0 −1

)
, (8.2.2)

Jx ↔
h̄

2

(
0 1
1 0

)
, Jy ↔

h̄

2

(
0 −i
i 0

)
. (8.2.3)

J+ ↔ h̄

(
0 1
0 0

)
, J− ↔ h̄

(
0 0
1 0

)
, (8.2.4)

Some special operator identities that hold only in the j = 1/2 case are

J2
x = J2

y = J2
z = h̄2/4, J2

+ = J2
− = 0, (j = 1/2). (8.2.5)

As noted after eq. (8.1.27), the fact that m = ±1/2 is not an integer implies that J cannot be

a pure orbital angular momentum.
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The case of purely intrinsic angular momentum for a single particle is called spin, and we

write J = S and j = s in that case. For s = 1/2, we say that the particle is (or has) spin-1/2,

and we often rewrite eq. (8.2.1) using a simplified notation for the Sz eigenstates,

|↑〉 ↔
(
1
0

)
, |↓〉 ↔

(
0
1

)
, (8.2.6)

referred to as spin-up and spin-down, with eigenvalues ms = 1/2 and −1/2, respectively.
From eqs. (8.2.2) and (8.2.3), one can deduce that the components of the spin operator

written in ket-bra form are

Sx =
h̄

2

(
|↓〉 〈↑|+ |↑〉 〈↓|

)
, (8.2.7)

Sy =
ih̄

2

(
|↓〉 〈↑| − |↑〉 〈↓|

)
, (8.2.8)

Sz =
h̄

2

(
|↑〉 〈↑| − |↓〉 〈↓|

)
, (8.2.9)

and a standard notation for their matrix representation is

S ↔ h̄

2
σ, (8.2.10)

where the components of the vector σ are known as the Pauli matrices, defined by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8.2.11)

The Pauli matrices obey the commutation and anticommutation relations

[σa, σb] = 2iǫabcσc, (8.2.12)

{σa, σb} = 2δab (8.2.13)

for a, b = x, y, z, and

Tr[σa] = 0, (8.2.14)

Det[σa] = −1. (8.2.15)

For any spatial vector v = x̂vx + ŷvy + ẑvz, we have

v · σ =

(
vz vx − ivy

vx + ivy −vz

)
, (8.2.16)

and a formula useful for simplifications,

(v · σ)(~w · σ) = v · ~w + i(v × ~w) · σ, (8.2.17)
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with the 2× 2 identity matrix understood in the first term on the right side. In particular,

(v · σ)(v · σ) = v · v = v2x + v2y + v2z = v2 (8.2.18)

is proportional to the identity matrix.

For a spin-1/2 particle like an electron, the complete state can be written as a linear combi-

nation of kets with Sz eigenvalues ms = h̄/2 and −h̄/2, as

|ψ〉 = |ψ↑, ↑〉 + |ψ↓, ↓〉 , (8.2.19)

where ψ↑ and ψ↓ represent the non-spin degrees of freedom corresponding to the classical motion

of the particle in three dimensions. This state can also be represented as a two-component

column vector of kets, called a spinor,

|ψ〉 =
(
|ψ↑〉
|ψ↓〉

)
. (8.2.20)

Acting on these two-component spinor kets, the spin operator is again represented by S ↔ h̄
2
σ.

The bra corresponding to eq. (8.2.20) is a two-component row spinor,

〈ψ| =
(
〈ψ↑| 〈ψ↓|

)
. (8.2.21)

The inner product of two states |ψ〉 and |χ〉 is

〈χ|ψ〉 =
(
〈χ↑| 〈χ↓|

)
(
|ψ↑〉
|ψ↓〉

)
= 〈χ↑|ψ↑〉+ 〈χ↓|ψ↓〉 , (8.2.22)

and unit normalization means

1 = 〈ψ|ψ〉 = 〈ψ↑|ψ↑〉+ 〈ψ↓|ψ↓〉 . (8.2.23)

For example, the two-component spinor position wavefunction for an electron is

〈r|ψ〉 =
(
〈r|ψ↑〉
〈r|ψ↓〉

)
=

(
ψ↑(r)

ψ↓(r)

)
. (8.2.24)

These correspond to orthobasis eigenstates of the CSCO consisting of the observables (R, Sz).

If we impose the usual unit normalization condition for the state, the two spin-component

wavefunctions are required to satisfy

1 =

∫
d3r |ψ↑(r)|2 + |ψ↓(r)|2, (8.2.25)

but they are otherwise independent, in general.
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8.3 Matrix representation for j = 1

For a j = 1 subspace, the orthobasis of Jz eigenstates consists of three states |j,m〉 with j = 1

and m = 1, 0,−1, with corresponding vector representations

|1, 1〉 ↔



1
0
0


 , |1, 0〉 ↔



0
1
0


 , |1,−1〉 ↔



0
0
1


 . (8.3.1)

The matrix representations of the angular momentum operators can now be constructed from

eqs. (8.1.6)–(8.1.8), (8.1.22), and (8.1.24), with the results

J2 ↔ 2h̄2




1 0 0
0 1 0
0 0 1



 , Jz ↔ h̄




1 0 0
0 0 0
0 0 −1



 , (8.3.2)

J+ ↔
√
2h̄



0 1 0
0 0 1
0 0 0


 , J− ↔

√
2h̄



0 0 0
1 0 0
0 1 0


 , (8.3.3)

Jx ↔
h̄√
2



0 1 0
1 0 1
0 1 0


 , Jy ↔

h̄√
2



0 −i 0
i 0 −i
0 i 0


 . (8.3.4)

As an example of the use of these matrices, suppose that a system is in an eigenstate of Jz,

and we want to know the possible results and their probabilities if Jx is measured. To answer

this question, we first find the eigenvalues and eigenstates of Jx, expressed in the orthobasis of

Jz eigenvectors of eq. (8.3.1). Since there is nothing special about the x direction as opposed

to the z direction, we know even without computing the characteristic equation for Jx that its

eigenvalues must be the same as Jz, namely h̄, 0, and −h̄. Then, solving for the eigenvectors of

the matrix representation for Jx, one finds the normalized kets

|Jx = h̄〉 =
1

2
|1, 1〉+ 1√

2
|1, 0〉+ 1

2
|1,−1〉 , (8.3.5)

|Jx = 0〉 =
1√
2
|1, 1〉 − 1√

2
|1,−1〉 , (8.3.6)

|Jx = −h̄〉 =
1

2
|1, 1〉 − 1√

2
|1, 0〉+ 1

2
|1,−1〉 . (8.3.7)

As a check, these kets are mutually orthogonal, as required (Theorem 2.6.5) by the fact that

they are eigenkets of a Hermitian operator with different eigenvalues. Then, for example, the

probabilities that a measurement in the state |1, 1〉 will yield the results Jx = h̄, Jx = 0, and

Jx = −h̄ are, by applying Postulate 4,

PJx=h̄ = | 〈Jx = h̄|1, 1〉 |2 = 1/4, (8.3.8)

PJx=0 = | 〈Jx = 0|1, 1〉 |2 = 1/2, (8.3.9)

PJx=−h̄ = | 〈Jx = −h̄|1, 1〉 |2 = 1/4. (8.3.10)
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8.4 Matrix representation for arbitrary j

For a subspace with arbitrary j, the orthobasis of Jz eigenstates consists of 2j + 1 states |j,m〉
with m = j, j−1, . . . , −j+1, −j. The corresponding column vector representations of these

states, in that order, are

|j, j〉 ↔




1
0
...
0


 , |j, j−1〉 ↔




0
1
...
0


 , · · · , |j, −j〉 ↔




0
0
...
1


 . (8.4.1)

Again, eqs. (8.1.6), (8.1.7), (8.1.22), and (8.1.24) provide the matrix elements of the angular

momentum operators. The (2j + 1)× (2j + 1) matrix representations have the forms

J2 ↔ h̄2j(j + 1)




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , Jz ↔ h̄




j 0 . . . 0
0 j−1 . . . 0
...

...
. . .

...
0 0 . . . −j


 , (8.4.2)

J+ ↔ h̄




0 • 0 . . . 0 0
0 0 • . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 •
0 0 0 . . . 0 0




, J− ↔ h̄




0 0 0 . . . 0 0
• 0 0 . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . • 0




, (8.4.3)

where the • represent the only non-zero elements, which lie just above and below the main

diagonal for J+ and J−, respectively. The operators Jx and Jy have matrix elements

(Jx)m′,m =
h̄

2

[√
j(j + 1)−m(m− 1) δm,m′+1 +

√
j(j + 1)−m(m+ 1) δm,m′−1

]
, (8.4.4)

(Jy)m′,m = i
h̄

2

[√
j(j + 1)−m(m− 1) δm,m′+1 −

√
j(j + 1)−m(m+ 1) δm,m′−1

]
, (8.4.5)

and so have the forms

Jx ↔ h̄




0 • 0 . . . 0 0
• 0 • . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 •
0 0 0 . . . • 0




, Jy ↔ ih̄




0 −• 0 . . . 0 0
• 0 −• . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 −•
0 0 0 . . . • 0




, (8.4.6)

where each pair of •’s on opposite sides of the main diagonal are equal, consistent with the

Hermiticity of these operators. Note that the •’s are also all real and positive in the phase

convention we have chosen.
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8.5 Matrix representations for unitary rotation operators

In section 5.3, we discussed the unitary operators that act on the Hilbert space to generate

rotations parameterized by α = n̂α, where the unit vector n̂ is the axis of rotation, and α is the

magnitude of the rotation angle,

U(α) = exp
(
−iα · J/h̄

)
. (8.5.1)

The matrix representations for these unitary operators are called Wigner functions, after

Eugene P. Wigner, and traditionally denoted as D(j)(α). They are defined by

〈j′, m′|U(α)|j,m〉 = δj,j′D
(j)
m′m(α) (m,m′ = −j, . . . , j). (8.5.2)

By completeness of the angular momentum eigenstates,

U(α) |j,m〉 =
j∑

m′=−j
|j,m′〉D(j)

m′m(α). (8.5.3)

Note that each D(j) is a (2j+1)× (2j+1) dimensional matrix, which can mix different m values

but keeps j fixed.

The set of matrices D
(j)
m′m for fixed j form an irreducible representation of the rotation

group, with the following consequence. If you do one rotation ~α followed by another ~β, the

result is always some other rotation ~γ,

U(γ) = U(β)U(α). (8.5.4)

Then, applying completeness gives

D
(j)
m′m(γ) =

j∑

m′′=−j
D

(j)
m′m′′(β)D

(j)
m′′m(α). (8.5.5)

The unitarity of the operator U(α) and the fact that U(α)−1 = U(−α) implies

D
(j)
m′m(−α) =

[
D

(j)
mm′(α)

]∗
. (8.5.6)

For small j, the exponentiation in eq. (8.5.1) can be done explicitly in the matrix represen-

tation. For the trivial j = 0 case, we have D(0)(α) = e0 = 1, the unit 1× 1 matrix, independent

of α. This corresponds to the fact that states with 0 angular momentum are invariant under

rotations.

For j = 1/2,

D(1/2)(α) = exp(−iα · σ/2) =

∞∑

k=0

1

k!

(
−iα · σ/2

)k
. (8.5.7)
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Using eq. (8.2.18), we have (α ·σ)2 = α2, so that the terms in eq. (8.5.7) have a recurring matrix

structure, which allows us to resum the even and odd terms of the infinite sum separately,

D(1/2)(α) = cos(α/2)I − in̂ · σ sin(α/2), (8.5.8)

where I is the 2× 2 unit matrix.

As an example, suppose we have a spin-1/2 that has been measured to be along the ẑ

direction, so that the state ket is |ψ〉 = |↑〉, or in the matrix representation,

|ψ〉 ↔
(
1
0

)
. (8.5.9)

Now let us rotate this state by an angle θ about the ŷ axis. The matrix representation of the

rotation is

D(1/2)(ŷθ) = cos(θ/2)I − iσy sin(θ/2) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (8.5.10)

and so the rotated state has

|ψ′〉 ↔
(
cos(θ/2)

sin(θ/2)

)
, (8.5.11)

or |ψ′〉 = cos(θ/2) |↑〉 + sin(θ/2) |↓〉. You can check that this is indeed an eigenstate of the

rotated operator

J ′z = cos θJz + sin θJx ↔
h̄

2

(
cos θ sin θ
sin θ − cos θ

)
, (8.5.12)

with eigenvalue +h̄/2. If we prepare the system in a spin eigenstate, then the probability to

find the spin oriented in a direction at an angle θ with respect to the original direction is

P = |〈ψ′|ψ〉|2 = cos2(θ/2). (8.5.13)

As a check, this is 1 for θ = 0 or 2π, and 0 for θ = π. The probability to find the spin oriented

in some particular direction at a right angle to the original spin direction is cos2(π/4) = 1/2.

A surprising feature of eq. (8.5.8) is that a rotation about any axis by an angle α = 2π gives,

instead of the identity matrix:

D(1/2)(n̂2π) = −I (8.5.14)

for a spin-1/2 system. Thus, the j = 1/2 state always acquires a minus sign when continuously

rotated by an angle α = 2π, even though such a 2π rotation corresponds to no change at all for

rotations of classical objects. If the state was in an eigenstate of a particular component m̂ · J ,
then it will still be after the 2π rotation, but with a minus sign phase change.
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For general j, the unitary matrix for a rotation about the z axis is easy to obtain, because

Jz has a diagonal matrix representation, making the exponentiation easy,

D(j)(ẑα) = exp


−iα




j 0 · · · 0
0 j−1 · · · 0
...

...
. . .

...
0 0 · · · −j





 =




e−iαj 0 · · · 0
0 e−iα(j−1) · · · 0
...

...
. . .

...
0 0 · · · eiαj


 . (8.5.15)

For example, in the j = 1 case,

D(1)(ẑα) = diag(e−iα, 1, eiα). (8.5.16)

The special case of a rotation through an angle 2π gives

D(j)(ẑ2π) = (−1)2jI, (8.5.17)

which is equal to the identity matrix for integer j, but is equal to −I for half-integer j, gener-

alizing what was found for j = 1/2. For this reason, it is impossible to define a single-valued

continuous position wavefunction (like the spherical harmonics introduced in the next section)

for non-integer j.

For rotations about other axes n̂ 6= ẑ, the algebraic form of matrices D(j)(α) for general j

can be considerably more complicated. The resummation of the infinite sum in the exponential

may depend on matrix recurrence relations of higher order. For an example of a harder case

that can still be done straightforwardly in closed form, one can evaluate D(1)(x̂α) by using



0 1 0
1 0 1
0 1 0




3

= 2



0 1 0
1 0 1
0 1 0


 (8.5.18)

to resum the exponential series, with the result:

D(1)(x̂α) =




cos2(α/2) − i√
2
sin(α) − sin2(α/2)

− i√
2
sin(α) cos(α) − i√

2
sin(α)

− sin2(α/2) − i√
2
sin(α) cos2(α/2)


 . (8.5.19)

Similar expressions for rotations about the ŷ and ẑ axis for j = 1 are left as an exercise.

For general j, the numerical value of any D(j)(α) can always be obtained by exponentiation

of the (2j+1)×(2j+1) matrix corresponding to eq. (8.5.1). There is also a remarkable formula,

due to Wigner, for rotations about the y-axis,

D
(j)
m′m(ŷβ) =

∑

k

(−1)k−m+m′

[cos(β/2)]2j−2k+m−m
′

[sin(β/2)]2k−m+m′

[(j +m)! (j −m)! (j +m′)! (j −m′)!]1/2
k! (k −m+m′)! (j +m− k)! (j −m′ − k)! , (8.5.20)
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where the sum is over integers k for which all of the factorials in the denominator have non-

negative arguments, in other words k is summed from max(0, m −m′) to min(j +m, j −m′).
The proof is omitted here.

The Wigner formula for the matrix D(j)(ŷβ) is especially useful because it can be used to

construct a general rotation matrix. The reason is that a general rotation can always be built

up as a product of three sequential rotations about two fixed orthogonal axes. Suppose that we

first rotate by an angle α about the ẑ axis, then about the ŷ axis by an angle β, and finally by

an angle γ about the ẑ axis again.† The change in coordinates induced by this rotation is



x′

y′

z′


 =



cγ −sγ 0
sγ cγ 0
0 0 1






cβ 0 sβ
0 1 0
−sβ 0 cβ





cα −sα 0
sα cα 0
0 0 1





x
y
z


 , (8.5.21)

where cα = cosα, sα = sinα, etc. The components of vector operators including R, P , and J

rotate in the same way as eq. (8.5.21). The corresponding unitary rotation operator is

U(α, β, γ) = U(ẑγ)U(ŷβ)U(ẑα), (8.5.22)

so that the Wigner rotation matrix for a multiplet with angular momentum j is

D(j)(α, β, γ) = D(j)(ẑγ)D(j)(ŷβ)D(j)(ẑα). (8.5.23)

The matrices for the first and last rotations about the fixed z axis are simple, being just given

by eq. (8.5.15).

8.6 Orbital angular momentum representation in spherical coordi-
nates

The orbital angular momentum operators Lx, Ly, and Lz were introduced in section 5.3. We

now consider the representation of these operators in terms of the position wavefunctions in

spherical coordinates. Recall that in the position orthobasis,

ψ(r, θ, φ) = 〈r, θ, φ|ψ〉 . (8.6.1)

†There are different conventional ways of defining the three Euler angles needed for a general rotation. In
classical mechanics, it is traditional to choose the middle rotation to be about the x̂ axis. In quantum mechanics
it is preferable to use the ŷ axis, because D(j)(ŷβ) has purely real entries, as exhibited in eq. (8.5.20). There are
also differing conventions for whether the axes of rotations are absolutely fixed, or whether the second and third
rotation axes are the “body” axes, obtained by the previous rotations of the original (fixed) y and z axes. Here,
our rotation axes are the absolutely fixed ones.
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Using the definitions of Lx, Ly, and Lz in eqs. (5.3.3), we get the rectangular coordinate repre-

sentations of these as differential operators:

Lx ↔ −ih̄
(
y
∂

∂z
− z ∂

∂y

)
, (8.6.2)

Ly ↔ −ih̄
(
z
∂

∂x
− x ∂

∂z

)
, (8.6.3)

Lz ↔ −ih̄
(
x
∂

∂y
− y ∂

∂x

)
, (8.6.4)

which can be converted into spherical coordinate differential operators, with the results

Lx ↔ ih̄

(
sinφ

∂

∂θ
+

cos φ cos θ

sin θ

∂

∂φ

)
, (8.6.5)

Ly ↔ ih̄

(
− cosφ

∂

∂θ
+

sin φ cos θ

sin θ

∂

∂φ

)
, (8.6.6)

Lz ↔ −ih̄ ∂

∂φ
. (8.6.7)

From these, we also obtain for the raising and lowering operators L± = Lx ± iLy as defined by

eq. (8.1.8),

L+ ↔ h̄eiφ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (8.6.8)

L− ↔ h̄e−iφ
(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (8.6.9)

and, using L2 = L2
x + L2

y + L2
z = (L+L− + L−L+)/2 + L2

z from eq. (8.1.15), we get

L2 ↔ −h̄2
(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (8.6.10)

For future reference, we note that L2 is closely related to the part of the Laplacian involving

angular derivatives; this is useful because the kinetic energy term in the Hamiltonian involves

∇2. More precisely,

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

h̄2r2
L2. (8.6.11)

When acting on a wavefunction corresponding to an eigenstate of L2 with eigenvalue h̄2l(l+1),

this becomes

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− l(l + 1)

r2
. (8.6.12)

We now solve the eigenvalue problem for orbital angular momentum. In doing so, we can

make use of a notable feature of eqs. (8.6.5)–(8.6.10): there is no r dependence in any of
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the angular momentum operator representations as differential operators on the wavefunctions.

Thus we can consider wavefunctions for eigenstates of L2 and Lz in which the r dependence is

factored out, with an orthobasis of position eigenkets that are a tensor product of radial and

angular parts,

|r, θ, φ〉 = |r〉 ⊗ |θ, φ〉 , (8.6.13)

with Dirac orthonormality conditions

〈r′|r〉 =
1

r2
δ(r − r′), (8.6.14)

〈θ′, φ′|θ, φ〉 = δ(φ− φ′) δ(cos θ − cos θ′), (8.6.15)

and completeness relations
∫ ∞

0

dr r2 |r〉 〈r| = Ir, (8.6.16)
∫
dΩ |θ, φ〉〈θ, φ| = Iθ,φ, (8.6.17)

where Ir and Iθ,φ are the identity operators on the respective Hilbert spaces, with I = Ir ⊗ Iθ,φ.
In eq. (8.6.17), and from here on, we define

dΩ = dφ d(cos θ) (8.6.18)

as the differential of solid angle in spherical coordinates, so that

∫
dΩ · · · =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ) · · · . (8.6.19)

The Hilbert space spanned by the orthobasis of angular eigenkets |θ, φ〉 is also spanned by an

orthobasis of (L2, Lz) eigenkets |l, m〉 satisfying, from eqs. (8.1.6), (8.1.7), (8.1.22), and (8.1.24),

Lz |l, m〉 = h̄m |l, m〉 , (8.6.20)

L+ |l, m〉 = h̄
√
l(l + 1)−m(m+ 1) |l, m+1〉 , (8.6.21)

L− |l, m〉 = h̄
√
l(l + 1)−m(m− 1) |l, m−1〉 , (8.6.22)

L2 |l, m〉 = h̄2l(l + 1) |l, m〉 , (8.6.23)

for l = 0, 1, 2, . . . and m = −l, . . . , l. The |l, m〉 also satisfy orthonormality and completeness

relations

〈l′, m′|l, m〉 = δl,l′ δm,m′ , (8.6.24)
∞∑

l=0

l∑

m=−l
|l, m〉〈l, m| = Iθ,φ. (8.6.25)
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We now define the angular wavefunctions

〈θ, φ|l, m〉 = Y m
l (θ, φ), (8.6.26)

called spherical harmonics.

The actions of the differential operators Lz, L+, L−, and L
2 defined in eqs. (8.6.7)–(8.6.10)

on the spherical harmonic wavefunctions are expressed as

LzY
m
l (θ, φ) = h̄mY m

l (θ, φ), (8.6.27)

L+Y
m
l (θ, φ) = h̄

√
l(l + 1)−m(m+ 1)Y m+1

l (θ, φ), (8.6.28)

L−Y
m
l (θ, φ) = h̄

√
l(l + 1)−m(m− 1)Y m−1

l (θ, φ), (8.6.29)

L2Y m
l (θ, φ) = h̄2l(l + 1) Y m

l (θ, φ). (8.6.30)

These are the position representation differential operator versions of the Hilbert space operator

equations (8.6.20)–(8.6.23). For simplicity, we are using the same symbols for the differential op-

erators (acting on wavefunctions) and the corresponding Hilbert space operators (acting on kets

and bras). From eqs. (8.6.17) and (8.6.24), the spherical harmonics satisfy the orthonormality

condition
∫
dΩ Y m′

l′ (θ, φ)∗ Y m
l (θ, φ) = δl,l′δm,m′ , (8.6.31)

and from eqs. (8.6.15) and (8.6.25), the completeness relation

∞∑

l=0

l∑

m=−l
Y m
l (θ′, φ′)∗ Y m

l (θ, φ) = δ(φ− φ′) δ(cos θ − cos θ′). (8.6.32)

The full Hilbert space is now spanned by the orthobasis of tensor product kets

|r〉 ⊗ |l, m〉 , (8.6.33)

which describe states in which the particle is known to be at a distance r from the origin, and in

which L2 and Lz are also known to be h̄2l(l+1) and h̄m respectively. These orthobasis elements

are an alternative to eq. (8.6.13).

Equation (8.6.27) together with eq. (8.6.7) gives the simple differential equation

−ih̄ ∂

∂φ
Y m
l = h̄mY m

l , (8.6.34)

which has the general solution

Y m
l (θ, φ) = eimφfml (θ), (8.6.35)
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where the functions fml (θ) are now to be determined. We know already that the largest possible

value of m is l, so let us start with that case. Equation (8.6.28) implies L+Y
l
l = 0, or

(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
eilφf ll (θ) = 0 (8.6.36)

after using eq. (8.6.8). This reduces to

df ll
d(sin θ)

= l
f ll

sin θ
, (8.6.37)

which has the general solution

f ll (θ) = eC(sin θ)l, (8.6.38)

where C is a constant of integration. Thus, we can write

Y l
l (θ, φ) = (−1)l

√
(2l + 1)!

4π

1

2l l!
eilφ(sin θ)l, (8.6.39)

where a multiplicative normalization factor has been included, with magnitude chosen in such

a way that eq. (8.6.31) holds with m′ = m = l′ = l. The (−1)l factor is a choice of convention.

The spherical harmonics for the remaining values m < l can now be obtained by acting

repeatedly with L−, using eq. (8.6.29), and comparing to eq. (8.6.9). First,

Y l−1
l (θ, φ) = −e

−iφ
√
2l

(
∂

∂θ
+ l

cos θ

sin θ

)
Y l
l (θ, φ). (8.6.40)

Continuing in the same way, it can be shown by recursion that, for general −l ≤ m ≤ l,

Y m
l (θ, φ) =

(−1)l
2l l!

√
(2l + 1) (l +m)!

4π (l −m)!
eimφ (sin θ)−m

dl−m

d(cos θ)l−m
(sin θ)2l. (8.6.41)

The normalization factor in eq. (8.6.41) ensures that eqs. (8.6.31) and (8.6.32) are satisfied. The

phase convention here is determined by the choices that we have already made in eqs. (8.1.22),

(8.1.24), and (8.6.39), and is called the Condon–Shortley phase convention. (Other phase

and normalization conventions for the spherical harmonics exist, so one must be careful when

comparing results from different sources.)

An equivalent way of writing the spherical harmonics is

Y m
l (θ, φ) =

√
(2l + 1) (l −m)!

4π (l +m)!
(−1)meimφPm

l (cos θ), (8.6.42)

where the Pm
l (u) are called associated Legendre functions. They are solutions to the differential

equations
[
(1− x2) d

2

dx2
− 2x

d

dx
+ l(l + 1)− m2

1− x2
]
Pm
l (x) = 0. (8.6.43)
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For non-negative m, the associated Legendre functions are given by

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x), (8.6.44)

where P 0
l (x) = Pl(x) are the ordinary Legendre polynomials,

Pl(x) =
1

2l l!

dl

dxl
(x2 − 1)l. (8.6.45)

They have a generating function

(1− 2tx+ t2)−1/2 =

∞∑

n=0

tnPl(x), (8.6.46)

and satisfy the orthonormality relations
∫ 1

−1
dxPl′(x)Pl(x) =

2

2l + 1
δl,l′. (8.6.47)

The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, (8.6.48)

P2(x) = (3x2 − 1)/2, P3(x) = (5x3 − 3x)/2, (8.6.49)

P4(x) = (35x4 − 30x2 + 3)/8. (8.6.50)

For negative m, the associated Legendre functions are

P−ml (x) =
(l −m)!

(l +m)!
Pm
l (x) (m < 0). (8.6.51)

With the Condon–Shortley phase convention,

Y −ml (θ, φ) = (−1)mY m
l (θ, φ)∗. (8.6.52)

For large l and maximal m, Y ±ll (θ, φ) ∝ (sin θ)l, which is largest in magnitude for θ ≈ π. Thus,

states with large angular momentum about the z axis have probability densities that are peaked

near the xy plane and are suppressed near the z axis.

Since Y m
l (θ, φ) is proportional to eimφ, the only spherical harmonics that are independent of

φ are the m = 0 ones,

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ). (8.6.53)

In the special case θ = 0, the coordinate φ is arbitrary. This implies that Y m
l (0, φ) cannot

possibly depend on φ, so it can only be non-zero if m = 0. From eq. (8.6.53) and Pl(1) = 1, we

therefore obtain the special value

Y m
l (0, φ) = δm,0

√
2l + 1

4π
. (8.6.54)
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The spherical harmonics that are most commonly encountered in practical problems are the

ones for l ≤ 2, which are

Y 0
0 =

1√
4π
, (8.6.55)

Y 0
1 =

√
3

4π
cos θ, Y ±11 = ∓

√
3

8π
e±iφ sin θ, (8.6.56)

Y 0
2 =

√
5

16π
(3 cos2 θ − 1), (8.6.57)

Y ±12 = ∓
√

15

8π
e±iφ sin θ cos θ, Y ±22 =

√
15

32π
e±2iφ sin2 θ. (8.6.58)

Note that Y m
l is always a polynomial of degree l in cos θ, sin θ, cos φ, and sinφ.

Using completeness of the orthobasis |l, m〉 over the Hilbert space component corresponding

to the angular coordinates, as expressed in eq. (8.6.25), any wavefunction can be expanded as

ψ(r, θ, φ) =
∞∑

l=0

l∑

m=−l
(〈r| ⊗ 〈θ, φ|) |l, m〉 〈l, m|ψ〉 (8.6.59)

=
∞∑

l=0

l∑

m=−l
Y m
l (θ, φ) (〈r| ⊗ 〈l, m|) |ψ〉 . (8.6.60)

Defining functions Fl,m(r) = (〈r| ⊗ 〈l, m|) |ψ〉, this can be rewritten as

ψ(r, θ, φ) =

∞∑

l=0

l∑

m=−l
Fl,m(r) Y

m
l (θ, φ). (8.6.61)

To find the coefficient functions Fl,m(r) for a given ψ(r, θ, φ), multiply both sides of eq. (8.6.61)

by Y m′

l′ (θ, φ)∗, then integrate dΩ, then use the orthonormality condition eq. (8.6.31) to reduce

the double sum to a single term with l′ = l and m′ = m, and finally rename (l′, m′) → (l, m).

The result is

Fl,m(r) =

∫
dΩ Y m

l (θ, φ)∗ ψ(r, θ, φ). (8.6.62)

Of course, eqs. (8.6.61) and (8.6.62) also apply if ψ and F have no dependence on r.

If the wavefunction ψ(r, θ, φ) is normalized, so that
∫∞
0
dr r2

∫
dΩ |ψ(r, θ, φ)|2 = 1, then one

can use the orthonormality condition eq. (8.6.31) again to obtain

∞∑

l=0

l∑

m=−l

∫ ∞

0

dr r2|Fl,m(r)|2 = 1. (8.6.63)

It follows that the probability of simultaneously measuring L2 and Lz and getting the results

h̄2l(l + 1) and h̄m is, by using Postulate 4 with r playing the role of the degeneracy label,

Pl,m =

∫ ∞

0

dr r2
∣∣∣(〈r| ⊗ 〈l, m|) |ψ〉

∣∣∣
2

=

∫ ∞

0

dr r2|Fl,m(r)|2. (8.6.64)
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As a corollary, the probability of measuring just L2 and getting h̄2l(l+1) is obtained by summing

this over m, so Pl =
∑l

m=−l Pl,m. And, the probability of measuring Lz and getting the result

h̄m is Pm =
∑∞

l=|m| Pl,m. Here, the sum over l starts at |m|, because for smaller l there are no

states that have Lz eigenvalue h̄m.

In many cases, it is not necessary to actually do the radial integral in eq. (8.6.64) in order

to evaluate the probabilities; instead one can make use of proportionalities between the various

possibilities. As a simple but essential example, any wavefunction that is a function of r only

(with no θ or φ dependence) is proportional to Y 0
0 , so one has l = m = 0, and the measurements

of the compatible orbital angular momentum observables L2 and Lz are both certain to give 0.

For a slightly less trivial example, consider a wavefunction

ψ(r) = C sin2 θ cos2φ e−αr, (8.6.65)

where C and α are constants. (Note that we are not providing any context about whether

this state is related to any particular Hamiltonian.) If L2 and/or Lz is measured, what are the

possible outcomes and their probabilities? To answer this, we seek to write the wavefunction as

a linear combination of spherical harmonics multiplied by functions of r only. A useful clue is

that the wavefunction is quadratic in sines and cosines of θ and φ, so one should expect that it

will involve l = 2 and l = 0. Indeed, one finds that

sin2 θ cos2φ =
√
π

[
2

3
Y 0
0 −

2

3
√
5
Y 0
2 +

√
2

15
Y 2
2 +

√
2

15
Y −22

]
. (8.6.66)

This implies that the measurements of (L2, Lz) can yield only the four possible pairs (0, 0) and

(6h̄2, 0) and (6h̄2, 2h̄) and (6h̄2,−2h̄), with probability ratios, respectively,

Pl=0,m=0 : Pl=2,m=0 : Pl=2,m=2 : Pl=2,m=−2 =

∣∣∣∣
2

3

∣∣∣∣
2

:

∣∣∣∣−
2

3
√
5

∣∣∣∣
2

:

∣∣∣∣∣

√
2

15

∣∣∣∣∣

2

:

∣∣∣∣∣

√
2

15

∣∣∣∣∣

2

. (8.6.67)

By requiring that the sum of the probabilities is 1, it follows that

Pl=0,m=0 = 5/9, Pl=2,m=0 = 1/9, Pl=2,m=2 = Pl=2,m=−2 = 1/6. (8.6.68)

Note that the radial wavefunction here was irrelevant for the angular momentum measurement

probabilities, since it is common factor.

One often needs to consider wavefunctions for states that are pure eigenstates of L2 and Lz,

with fixed eigenvalues h̄2l(l + 1) and h̄m, respectively. These will have the form

ψ(r, θ, φ) = F (r)Y m
l (θ, φ). (8.6.69)
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According to eq. (8.6.12), the Laplacian acting on such a wavefunction is

∇2 [F (r)Y m
l (θ, φ)] =

1

r2

[
∂

∂r

(
r2
∂F

∂r

)
− l(l + 1)F

]
Y m
l (θ, φ). (8.6.70)

As a consequence of the rotational invariance of the Laplacian operator, this maintains the form

of an eigenfunction of L2 and Lz with the same eigenvalues.

We close this section with the statement and proof of an extraordinarily useful formula.

Theorem 8.6.1 (Spherical harmonics addition formula) Consider any two unit vectors n̂

and n̂′, characterized by their spherical coordinate angles (θ, φ) and (θ′, φ′), respectively. Let us

call the angle between these vectors γ, so that

n̂ · n̂′ = cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (8.6.71)

Then, for each l,

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y m
l (θ′, φ′)∗ Y m

l (θ, φ). (8.6.72)

Proof: Since Pl(cos γ) is a function of θ and φ, it can be written as an expansion in spherical

harmonics with arguments θ and φ. Since the differential operator L2 is invariant under rotations,

the spherical harmonics involved in the linear combination all must have the same l. (The reason

is that we can always rotate to a coordinate system in which n̂′ is the new z direction, so that

the polar angular coordinate of n̂ is γ. In that coordinate system, Pl(cos γ) is proportional to a

spherical harmonic with m = 0, an eigenfunction of the differential operator L2 with eigenvalue

h̄2l(l+1).) Likewise, Pl(cos γ) is also a function of θ′ and φ′, so it can also be written as a linear

combination of spherical harmonics of those angles, with the same l. Therefore, it must be that

Pl(cos γ) is a sum of terms of the form Y m′

l (θ′, φ′)∗ Y m
l (θ, φ). Each of these terms is proportional

to ei(mφ−m
′φ′), but if one chooses φ′ = φ, then cos γ is independent of φ, so only terms with

m′ = m can occur. Therefore, we must have

Pl(cos γ) =
l∑

m=−l
almY

m
l (θ′, φ′)∗ Y m

l (θ, φ), (8.6.73)

and the remaining task is to evaluate the coefficients alm.

Because Pl(cos γ) is real, and is unchanged if we exchange (θ, φ) ↔ (θ′, φ′), the coefficients

must satisfy alm = a∗lm, so they are real. To learn more, consider the special case (θ, φ) = (θ′, φ′),

so that cos γ = 1. Then, since the Legendre polynomials satisfy Pl(1) = 1, eq. (8.6.73) reads

1 =

l∑

m=−l
alm |Y m

l (θ, φ)|2 . (8.6.74)
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Integrating with respect to dΩ, and using the orthonormality condition eq. (8.6.31), we get

4π =

l∑

m=−l
alm. (8.6.75)

Next, we consider the square of eq. (8.6.73), which can be written

[Pl(cos γ)]
2 =

l∑

m=−l
almY

m
l (θ′, φ′)∗ Y m

l (θ, φ)

l∑

m′=−l
alm′Y m′

l (θ′, φ′) Y m′

l (θ, φ)∗. (8.6.76)

Let us integrate over all angles (θ′, φ′). To evaluate the integral of the left side, it is convenient

to again use coordinates such that γ is the polar angle, and making use of eq. (8.6.47), we have

∫
dΩ′ [Pl(cos γ)]

2 = 2π

∫ 1

−1
d(cos γ) [Pl(cos γ)]

2 =
4π

2l + 1
. (8.6.77)

Meanwhile, the dΩ′ integral of the right side of eq. (8.6.76) is evaluated by using the orthonor-

mality condition eq. (8.6.31) again, after which only the terms with m′ = m contribute in the

double sum. Comparing the two sides, we get

4π

2l + 1
=

l∑

m=−l
a2lmY

m
l (θ, φ)∗Y m

l (θ, φ). (8.6.78)

Integrating this with respect to dΩ, and using orthonormality once again, we find

(4π)2

2l + 1
=

l∑

m=−l
a2lm. (8.6.79)

We now have enough information to solve for the coefficients. Using eqs. (8.6.75) and (8.6.79),

we discover that

l∑

m=−l

(
alm −

4π

2l + 1

)2

= 0, (8.6.80)

and since the left side is a sum of squares, the unique solution is obtained when each term

vanishes, so that alm = 4π/(2l + 1) for all l, m. This concludes the proof of the spherical

harmonics addition formula.

8.7 Parity of angular momentum eigenstates

As we noted in section 5.3, angular momentum operators have even parity, which is another

way of saying that they commute with the parity operator Π. According to Theorem 2.7.1,

this means that the eigenstates of angular momentum operators J2, Jz can also be chosen to be

parity eigenstates.
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First, let us work out the parity eigenvalues of the orbital angular momentum eigenstates

|l, m〉. If (x, y, z)→ (−x,−y,−z), the spherical coordinate transformations are

r → r, θ → π − θ, φ→ φ+ π, (8.7.1)

so that

cos θ → − cos θ, sin θ → sin θ, eimφ → (−1)meimφ. (8.7.2)

Using these, it follows immediately from eq. (8.6.41) that

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ). (8.7.3)

Therefore,

〈θ, φ|Π|l, m〉 = 〈π − θ, φ+ π|l, m〉 = (−1)lY m
l (θ, φ) = (−1)l 〈θ, φ|l, m〉 , (8.7.4)

so

Π |l, m〉 = (−1)l |l, m〉 . (8.7.5)

This shows that eigenstates of orbital angular momentum are always even (odd) under parity if

the quantum number l is even (odd). This is true regardless of the quantum number m, which

can be understood from the fact that the states |l, m〉 are all obtained from |l, l〉 by acting with

L−, which commutes with Π. [Therefore, the parity eigenvalue (−1)l could actually have been

obtained by considering the spherical harmonics for only one sample value of m for each l, for

example m = l using eq. (8.6.39), rather than the more general formula of eq. (8.6.41).] Since

parity in spherical coordinates does not change the radial coordinate, the parity eigenvalue of

an angular momentum eigenstate also does not depend on the radial wavefunction or radial

quantum numbers.

Let us next consider the parity of eigenkets |s,ms〉 of intrinsic angular momentum operators

S2 and Sz. From the fact that the lowering operator S− commutes with parity and relates kets

with different ms, we know that the parity eigenvalue of |s,ms〉 cannot depend on ms. We can

therefore write

Π |s,ms〉 = η |s,ms〉 , (8.7.6)

where η is known as the intrinsic parity of the particle in question. For any given particle

type, the intrinsic parity can be chosen to be either +1 or −1, as an arbitrary convention. This

conventional choice cannot be of any practical significance at all if the number of particles of
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each type does not change. This is because a change in the conventional choice of intrinsic parity

just amounts to flipping the parity for every bra and every ket, therefore not affecting matrix

elements. So, when the number of particles does not change, one might as well just always

choose η = +1, and the parity of a single particle L2 eigenstate is (−1)l, regardless of the spin.

For a system of N particles with individual orbital angular momentum quantum numbers li, the

parity eigenvalue is, from eq. (8.7.5),

π = (−1)
∑N

i=1
li . (8.7.7)

This is the case for electrons in an atom, where the parity and the angular momenta are all

defined with respect to the origin chosen to be the location of the fixed nucleus.

However, if the Hamiltonian is invariant under parity and can cause changes in the numbers of

particles, it is natural and useful to adopt a convention in which the intrinsic parities of particles

and antiparticles are chosen in a consistent way so that parity is conserved. Such Hamiltonians

arise in quantum field theory, where the electromagnetic and strong nuclear interactions conserve

parity, while the weak nuclear interactions do not but can often be treated as a perturbation. A

generally accepted convention is to choose η = +1 for spin-1/2 particles (the electron, proton,

neutron, muon, and quarks, for example). Then the structure of kinetic terms in relativistic

quantum field theory can be used to show that their antiparticles (the positron, antiproton,

antineutron, antimuon, and antiquarks) must be assigned η = −1 in the same convention.

For a composite particle c, made out of two particles a and b with intrinsic parities ηa and ηb

in a state with relative angular momentum quantum number L, the consistent intrinsic parity

assignment is†

ηc = (−1)Lηaηb. (8.7.8)

Thus, mesons composed of a quark and an antiquark in an L = 0 bound state (for example,

pions and kaons) have intrinsic parity η = −1. For a bound state of three or more particles,

the situation is more complicated, but the intrinsic parities of bound states can always be

defined if the Hamiltonian is invariant under space inversion. In processes governed by the

electromagnetic and strong nuclear forces, one can experimentally verify parity conservation

and check the consistency of the intrinsic parity assignments. In doing so, the photon and the

gluon have intrinsic parity −1, while the Higgs particle has intrinsic parity +1. The W and

Z particles are not assigned a well-defined intrinsic parity, as they are the mediators of the

parity-violating weak interactions.

†Note that this differs from eq. (8.7.7), since (−1)L is not always equal to (−1)la+lb . This is because the
angular momentum L and the intrinsic parity ηc in eq. (8.7.8) are defined with respect to the origin as the
center-of-mass position of the two particles, rather than a fixed position as in eq. (8.7.7).
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9 Examples with spherical symmetry

9.1 Stationary states with spherical symmetry

Consider a Hamiltonian of the form

H =
P 2

2µ
+ V (R). (9.1.1)

In this chapter, we will write µ for the mass of the particle, to avoid confusion with the eigenvalue

h̄m of Lz, and R is the operator corresponding to the classical spherical coordinate r. Thus V (R)

is a spherically symmetric potential, with no dependence on θ or φ. Likewise, the momentum

squared operator

P 2 = P 2
x + P 2

y + P 2
z = −h̄2∇2 (9.1.2)

is rotationally invariant, so there is no preferred direction associated with the Hamiltonian. It

follows that H , L2, and Lz are compatible observables, and we can look for an orthobasis of

common eigenstates

|E, l,m〉 , (9.1.3)

where E is the energy of the state, the eigenvalue of the Hamiltonian. Because of eq. (8.7.5),

these are also parity eigenstates, with eigenvalue (−1)l.
In the following, we will work in the position wavefunction representation with

ψE,l,m(r, θ, φ) = 〈r, θ, φ|E, l,m〉 = RE,l(r)Y
m
l (θ, φ), (9.1.4)

where RE,l(r) is a radial wavefunction. Note that RE,l(r) will depend on both E and l in general,

but it will not depend on m, because the operators L+ and L− raise and lower m without

changing l or the radial dependence of the wavefunction. The time-independent Schrödinger

equation in this basis is

[
− h̄

2∇2

2µ
+ V (r)

]
ψE,l,m(r, θ, φ) = EψE,l,m(r, θ, φ). (9.1.5)

Now, using eq. (8.6.12), this becomes

− h̄
2

2µ

[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]
RE,l(r) + V (r)RE,l(r) = ERE,l(r), (9.1.6)

where the spherical harmonics have been factored out.

In many cases, we will find that the radial wavefunction RE,l(r) has a power-law behavior rp

near the origin, for an integer p. By requiring the total probability to be finite, it is clear that
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p cannot be less than −1; otherwise, the normalization integral
∫
dr r2|RE,l(r)|2 would diverge.

But in almost all cases, one can make the even stronger statement that RE,l(r) must be finite

as r → 0. This is because ∇2(1/r) = −4πδ(r), so that p = −1 would necessarily imply the

presence of a delta function contribution to the potential V (r). In the examples to follow, we

will often make use of the finiteness of the radial wavefunction.

It is often useful to define a function

UE,l(r) = rRE,l(r), (9.1.7)

in which one power of the radial coordinate has been factored out. The eigenvalue differential

equation then becomes
[
− h̄

2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
+ V (r)

]
UE,l = EUE,l, (9.1.8)

with the nice feature that there is no term with a single r derivative; that is the reason for

sometimes using UE,l rather than RE,l.

Indeed, eq. (9.1.8) for UE,l is very similar to the one-dimensional time-independent Schrödinger

equation (6.3.3) with x replaced by r. However, there are two important differences. First, the

domain of the independent variable is now limited to non-negative values,

0 ≤ r < ∞, (9.1.9)

unlike the one-dimensional Schrödinger equation. Second, the potential has effectively been

modified to

Veff(r) = V (r) +
h̄2l(l + 1)

2µr2
, (9.1.10)

where the second term is a repulsive centrifugal contribution that blows up at r = 0, and

therefore makes the wavefunction vanish there unless l = 0. In fact, if V (r) is finite at r = 0,

one finds from either eq. (9.1.6) or (9.1.8) that for l 6= 0, RE,l must scale like rl at very small r.

With these caveats, the problem of stationary states for a particle in a spherically symmetric

potential has been reduced to a particular type of one-dimensional problem. The same results

that we derived in section 6.3 [see the discussion surrounding eqs. (6.3.4)–(6.3.6)] for matching

wavefunctions at special points holds here as for the one-dimensional problems. In particular, the

radial wavefunction is always continuous, and if the potential is finite (not necessarily continuous)

at a point r = r0, then its first derivative with respect to r is continuous there.

9.2 Free particle in spherical coordinates

We have already discussed the position and momentum eigenstates and wavefunctions for a free

particle moving in three dimensions, in section 2.8. For position eigenstates, the CSCO used was
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(X, Y, Z), while for momentum eigenstates, it was (Px, Py, Pz). Now we will discuss the same

physical problem using the CSCO (H, L2, Lz) with eigenvalues (E, h̄2l(l + 1), h̄m), starting

from eq. (9.1.8) with V (r) = 0. We will solve the time-independent Schrödinger equation for

fixed (E, l,m) in the position wavefunction representation with coordinates (r, θ, φ), where the

domain may consist of only a sub-volume of the whole space. The resulting solutions can then

be applied, using matching of the wavefunction, to problems in which a particle moves freely

only in that sub-volume. They can also be applied to scattering problems in three dimensions.

To simplify things, define

k2 = 2µE/h̄2, (9.2.1)

ρ = kr. (9.2.2)

From the discussion in section 2.8, we already know that the allowed eigenvalues E are positive,

so that k is a real number with units of 1/[length]. Thus ρ is a radial coordinate re-scaled to

make it dimensionless. In terms of these, eq. (9.1.8) becomes

(
d2

dρ2
+ 1− l(l + 1)

ρ2

)
Ul(ρ) = 0. (9.2.3)

Note that this equation and the forms of its solutions Ul(ρ) do not depend on E, because the

dependence has been hidden in ρ.

Let us start with the case l = 0. Then eq. (9.2.3) is a familiar equation, with the familiar

solutions U0(ρ) = sin(ρ) or cos(ρ). Of these, the first solution U0 = sin(ρ) gives a constant for

R(r) as r → 0. However, the second solution U0 = cos(ρ) approaches a constant as r → 0.

This renders it physically unacceptable if the origin is included in the spatial region under

consideration, because then R(r) ∼ 1/r, which is divergent and would require a delta function

potential V (r) at the origin, since ∇2(1/r) = −4πδ(r). Nevertheless, it is acceptable if we are

solving for the free-particle wavefunction only in a region that does not include the origin. We

therefore have two solutions for L2 = 0, labeled A and B,

UA
0 (kr) = sin(kr), UB

0 (kr) = − cos(kr), (9.2.4)

where the minus sign is a phase choice for later convenience, and the B solution is understood

to be acceptable if, and only if, the origin is excluded. These solutions for l = 0 can be used as

seeds to find solutions for l > 0, as we will now see.

Writing the solution for general l in the form

Ul(ρ) = ρl+1fl(ρ), (9.2.5)
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the differential equation (9.2.3) becomes

[
d2

dρ2
+

2(l + 1)

ρ

d

dρ
+ 1

]
fl(ρ) = 0. (9.2.6)

Now we note that if fl(ρ) satisfies the differential equation for l, then

fl+1(ρ) ≡ −1

ρ

dfl
dρ

(9.2.7)

will satisfy it for l + 1, as can be proved by computing d2fl+1/dρ
2 and dfl+1/dρ and plugging

into eq. (9.2.6). So, for each of our two l = 0 solutions from eq. (9.2.4),

fA0 (ρ) =
sin ρ

ρ
, fB0 (ρ) = −cos ρ

ρ
, (9.2.8)

by recursion we will have a solution

fl =

(
−1

ρ

d

dρ

)l
f0. (9.2.9)

Therefore, for each value of l, we have two linearly independent solutions

RA
l (ρ) = ρlfAl = ρl

(
−1

ρ

d

dρ

)l(
sin ρ

ρ

)
≡ jl(ρ), (9.2.10)

RB
l (ρ) = ρlfBl = ρl

(
−1

ρ

d

dρ

)l(
−cos ρ

ρ

)
≡ nl(ρ). (9.2.11)

The functions jl(ρ) are called the spherical Bessel functions, and nl(ρ) are called the spher-

ical Neumann functions. The lowest few are

j0(ρ) =
sin ρ

ρ
, n0(ρ) = −cos ρ

ρ
, (9.2.12)

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ
, n1(ρ) = −cos ρ

ρ2
− sin ρ

ρ
, (9.2.13)

j2(ρ) =

(
3

ρ3
− 1

ρ

)
sin ρ− 3

ρ2
cos ρ, n2(ρ) =

(
− 3

ρ3
+

1

ρ

)
cos ρ− 3

ρ2
sin ρ. (9.2.14)

For small ρ, they can be shown to behave like

jl(ρ) ∼
ρl

(2l + 1)!!
, (9.2.15)

nl(ρ) ∼ −(2l − 1)!!

ρl+1
, (9.2.16)

where the double factorial notation means

(2l + 1)!! = (2l + 1)(2l− 1) · · · (1) = (2l + 1)!/(2ll!), (9.2.17)
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with the special value (−1)!! = 1. Thus the jl solutions are well-behaved at the origin, but the

nl solutions are not. For large ρ, they both fall off like 1/ρ multiplied by oscillating functions,

jl(ρ) ∼
1

ρ
sin(ρ− lπ/2), (9.2.18)

nl(ρ) ∼ −1

ρ
cos(ρ− lπ/2). (9.2.19)

The functions nl(ρ) are not needed for the case of a completely free particle (one that has no

potential everywhere including r = 0). However, they are useful in situations where we piece

together the free-particle solution(s) in region(s) not including the origin to other solutions that

do include the origin, as for example in section 9.4.

For example, suppose we have a potential that is spherically symmetric and piece-wise con-

stant within radial intervals, so that

V (r) =





V0 (0 ≤ r < a1),
V1 (a1 < r < a2),
· · · · · ·
VN (aN < r <∞).

(9.2.20)

In each of these regions, the constant potential Vn can be absorbed into the constant energy, so

the possible stationary-state solution wavefunctions are

[
A

(n)
l jl(knr) +B

(n)
l nl(knr)

]
Y m
l (θ, φ), for (an < r < an+1), (9.2.21)

for some constants A
(n)
l and B

(n)
l , but now with

kn =
√
2µ(E − Vn)/h̄. (9.2.22)

The coefficients A
(n)
l and B

(n)
l can be determined by matching the wavefunctions, and their

first derivative with respect to r, at each of the points an. This procedure also simultaneously

determines the energy eigenvalue E. In the region 0 ≤ r < a1, the Neumann function solutions

are not allowed, so one must have B
(0)
l = 0, but in all other regions B

(n)
l is allowed to be non-

zero. Note that there is a degeneracy 2l + 1 for each of these stationary states, due to the fact

that the energy does not depend on m = −l, . . . , l. One can also match such wavefunctions to

regions in which the potential is something more complicated.

Different linear combinations of jl and nl are useful in certain kinds of problems. The

spherical Hankel functions defined by

h
(1)
l (ρ) = jl(ρ) + inl(ρ) = −iρl

(
−1

ρ

d

dρ

)l(
eiρ

ρ

)
, (9.2.23)

h
(2)
l (ρ) = jl(ρ)− inl(ρ) = iρl

(
−1

ρ

d

dρ

)l(
e−iρ

ρ

)
, (9.2.24)
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correspond to outgoing and ingoing spherical waves, respectively. To understand this, note that

from eqs. (9.2.18) and (9.2.19) their behavior for large ρ = kr is

h
(1)
l (ρ) ≈ 1

ρ
ei[ρ−π(l+1)/2] = i−leiρ/ρ, (9.2.25)

h
(2)
l (ρ) ≈ 1

ρ
e−i[ρ+π(l+1)/2] = ile−iρ/ρ, (9.2.26)

so that the time dependence of the corresponding wavefunctions is

〈r |ψ(1)(t)〉 ∝ e−itE/h̄eikr/r, (9.2.27)

〈r |ψ(2)(t)〉 ∝ e−itE/h̄e−ikr/r. (9.2.28)

These maintain constant phase at r = (E/h̄k) t+constant and r = −(E/h̄k) t+constant,

respectively. (The phase velocity is therefore ω/k = E/p = h̄k/2m, but recall from the discussion

leading to eq. (6.2.6) that wave-packet superpositions will have a group velocity twice this, h̄k/m,

which is the classical value.)

For problems in which E < Vn in at least one region, k will be imaginary in that region.

Then the solutions will involve jl(kr) and nl(kr) or h
(1)
l (kr) and h

(2)
l (kr), where now k =

i
√

2µ(Vn − E)/h̄ is a pure imaginary number. In many such cases, a more convenient basis of

solutions is provided by the modified spherical Bessel functions,

il(ρ) = jl(iρ)/i
l = ρl

(
1

ρ

d

dρ

)l(
sinh ρ

ρ

)
, (9.2.29)

kl(ρ) = − ilh(1)l (iρ) = ρl
(
−1

ρ

d

dρ

)l(
e−ρ

ρ

)
, (9.2.30)

where now

ρ = κr, κ = k/i =
√

2µ(Vn − E)/h̄. (9.2.31)

The function il(ρ) is well-defined and useful for regions that include r = 0, while the function

kl(ρ) is useful for regions that extend to r =∞.

For the rest of this section, we consider the (H,L2, Lz) orthobasis eigenstate wavefunctions

for the completely free particle whose domain includes all space, including the origin. They are

〈r |k, l,m〉 = ψk,l,m(r) = Rk,l(r)Y
m
l (θ, φ), (E = h̄2k2/2µ), (9.2.32)

where the radial wavefunctions Rk,l(r) = Ak,l jl(kr) contain a normalization constant Ak,l to be

fixed. To do so, we can use the orthonormality relations for the spherical Bessel functions,†
∫ ∞

0

dr r2jl(kr)jl(k
′r) =

π

2k2
δ(k − k′), (9.2.33)

†Equation 9.2.33 is technically ill-defined, because the integration does not converge, even for k 6= k′. It should
therefore be viewed as a formal relation, to be used within expressions where k or k′ is integrated over. This is
very similar to the technically ill-defined nature of the Fourier integral for the delta function in eq. (2.2.20).
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for each l. It follows that if we choose Ak,l =
√
2k2/π, so that the radial wavefunctions are

Rk,l(r) =

√
2k2

π
jl(kr), (9.2.34)

then we have the orthonormality relations,
∫
dr r2Rk′,l(r)Rk,l(r) = δ(k − k′), (9.2.35)

and for the full eigenstates and their wavefunctions,

〈k′, l′, m′ |k, l,m〉 =
∫
d3r ψk′,l′,m′(r)∗ ψk,l,m(r) = δ(k − k′) δl,l′δm,m′ . (9.2.36)

With our choice of normalization in eqs. (9.2.34)–(9.2.36), we also have the completeness of the

orthobasis in terms of an integral over k,

∫ ∞

0

dk

∞∑

l=0

l∑

m=−l
|k, l,m〉〈k, l,m| = 1, (9.2.37)

from which follows

∫ ∞

0

dk

∞∑

l=0

l∑

m=−l
ψk,l,m(r

′)∗ψk,l,m(r) = δ(3)(r − r ′). (9.2.38)

In eqs. (9.2.34)-(9.2.38), we have chosen a “wavenumber normalization” for the Dirac or-

thonormality of the energy eigenstates, as they contain δ(k−k′) and a corresponding integration

over k. Since δ(k − k′) = δ(E − E ′)h̄2k/µ, a viable alternative would be to express the same

results in terms of “energy normalization” kets

|E, l,m〉 =

√
µ

h̄2k
|k, l,m〉 , (9.2.39)

and the corresponding radial wavefunctions

RE,l(r) =

√
2µk

πh̄2
jl(kr). (9.2.40)

If one uses |E, l,m〉, RE,l(r), and ψE,l,m(r), then the Dirac orthonormality and completeness

relations have the same form as eqs. (9.2.35)-(9.2.38), but with δ(E − E ′) replacing δ(k − k′)
and

∫∞
0
dE replacing

∫∞
0
dk.

Let us now consider the relation between the plane wavefunctions associated with momentum

eigenstates |p〉 and the spherical waves associated with the (H,L2, Lz) eigenstates |k, l,m〉. Using
the completeness relation, we have

〈r|p〉 =

∫ ∞

0

dk

∞∑

l=0

l∑

m=−l
〈r|k, l,m〉〈k, l,m|p〉 . (9.2.41)
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Now, both |p〉 and |k, l,m〉 are eigenstates of H with energy eigenvalues E = |p|2/2µ and

h̄2k2/2µ, respectively. Therefore, Theorem 2.6.5 says that the last inner product in eq. (9.2.41)

must vanish unless |p| = h̄k, and so it must be of the form

〈k, l,m|p〉 =
1

(2πh̄)3/2
δ(k − |p|/h̄)

√
π

2k2
Cl,m(θ~p, φ~p), (9.2.42)

for some functions Cl,m that depend only on l, m, and the angular coordinates of the vector

p. (By dimensional analysis, the Cl,m cannot depend on the magnitude k, because they are

dimensionless and there is no other dimensionful quantity on which they could depend.) Since

k = |p|/h̄ is enforced by the delta function, we can define k = p/h̄ and use eqs. (2.8.62) and

(9.2.32) to find that eq. (9.2.41) reads

ei
~k·~r

(2πh̄)3/2
=

1

(2πh̄)3/2

∞∑

l=0

l∑

m=−l
Cl,m(θ~k, φ~k) jl(kr)Y

m
l (θ, φ). (9.2.43)

The claim is that the coefficient functions turn out to be

Cl,m(θ~k, φ~k) = 4πilY m
l (θ~k, φ~k)

∗, (9.2.44)

so that we have the remarkable identity relating plane waves to spherical waves,

ei
~k·~r =

∞∑

l=0

l∑

m=−l
4πil Y m

l (θ~k, φ~k)
∗ jl(kr)Y

m
l (θ, φ). (9.2.45)

Note that (θ~k, φ~k) are the spherical coordinate angles for the vector k, while (θ, φ) are the angles

for the vector r in the same coordinate system. The interpretation of eq. (9.2.45) is that a plane

wave with momentum p = h̄k consists of a superposition of spherical waves with all allowed

(quantized) values of orbital angular momentum.

To prove the claimed eq. (9.2.45), we first consider the case that k = kẑ. Then θ~k = 0, and

k · r = kr cos θ, so

ei
~k·~r = eikr cos θ. (9.2.46)

Because this does not depend on φ at all, its expansion in terms of spherical harmonics will

only include the m = 0 functions Y 0
l (θ, φ), which are proportional to the ordinary Legendre

polynomials Pl(cos θ). Therefore, in this case the expansion in eq. (9.2.45) is of the simpler form

eikr cos θ =

∞∑

l=0

cl jl(kr)Pl(cos θ), (9.2.47)
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where cl are some coefficients that we need to determine. Now we can multiply both sides of

eq. (9.2.47) by Pl′(cos θ), and integrate with respect to cos θ, making use of the identity

∫ 1

−1
du Pl(u)Pl′(u) =

2

2l + 1
δl,l′. (9.2.48)

The result, after relabeling l′ → l, is

cl jl(kr) =
2l + 1

2

∫ 1

−1
d(cos θ)Pl(cos θ)e

ikr cos θ. (9.2.49)

This must hold for all r, so we can consider the leading behavior as r → 0 in particular. Using

eq. (9.2.15), this gives

cl
(kr)l

(2l + 1)!!
+O(rl+1) =

2l + 1

2

∫ 1

−1
du Pl(u)e

ikru. (9.2.50)

This shows that the right side evidently must be proportional to rl in the limit of small r.

Expanding eikru in a power series in r, using eikru =
∑∞

n=0(ikru)
n/n!, this implies the identities

∫ 1

−1
du unPl(u) = 0 (for integer n < l), (9.2.51)

and the result we need (from the n = l term),

cl
kl

(2l + 1)!!
=

2l + 1

2

(ik)l

l!

∫ 1

−1
du ulPl(u). (9.2.52)

Using eq. (8.6.45) for the Legendre polynomials, one can obtain the integral

∫ 1

−1
du ulPl(u) =

2(l!)

(2l + 1)!!
, (9.2.53)

by integrating by parts l times. Thus, eq. (9.2.52) simplifies to

cl = (2l + 1)il, (9.2.54)

so that

eikr cos θ =
∞∑

l=0

(2l + 1)il jl(kr)Pl(cos θ). (9.2.55)

Now for the case of k in an arbitrary direction, substitute kr cos θ → k · r in the preceding, or

cos θ → k̂ · r̂. (9.2.56)

Using the spherical harmonic addition identity, eq. (8.6.72), one finally arrives at eq. (9.2.45).
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9.3 Particle confined to a sphere

As an application of the results of the previous section, consider a particle of mass µ that is

confined within a sphere of radius a, but is otherwise free, so that the potential is

V (r) =

{
0 (r < a),

∞ (r ≥ a).
(9.3.1)

The stationary-state wavefunctions are

ψE,l,m =

{
CE,l,m jl(kr)Y

m
l (θ, φ) (r < a),

0 (r ≥ a),
(9.3.2)

where CE,l,m are normalization constants and E = h̄2k2/2µ. Continuity of the wavefunction at

r = a requires that

jl(ka) = 0, (9.3.3)

and this boundary condition determines the allowed quantized energy levels En,l. Let us see

how this works for l = 0, 1, 2.

For l = 0, eq. (9.3.3) becomes simply sin(ka)/ka = 0, so ka = nπ, where n is a positive

integer. The energies are therefore

En,0 =
h̄2k2

2µ
=
h̄2π2n2

2µa2
(9.3.4)

for l = m = 0, with corresponding wavefunctions

ψn,0,0 = Cn,0,0
sin(nπr/a)

nπr/a
. (9.3.5)

Note that these wavefunctions approach a non-zero constant at r = 0. The number of zeros of

the radial wavefunction, including the one at r = a, is n. The constant can be fixed by requiring

the unit normalization condition

1 = 4π

∫ a

0

dr r2|ψn,0,0|2, (9.3.6)

which yields Cn,0,0 = n
√
π/2a3.

For l = 1, the boundary condition (9.3.3) reads

tan(ka) = ka, (9.3.7)

which is a transcendental equation that can be understood graphically and then solved nu-

merically for X = ka as shown in Figure 9.3.1. The lowest three energy solutions have
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Figure 9.3.1: The solutions of the transcen-
dental equation X = tanX for positive
X = ka provide the eigenvalues for k for the
l = 1 states of a particle confined to a ball of
radius a. This graph shows the lowest three
solutions X ≈ π(1.4303, 2.4590, 3.4709) =
(4.4934, 7.7253, 10.9041), obtained as the
intersections of Y = tanX with the line
Y = X .

ka/π ≈ (1.4303, 2.4590, 3.4709, . . .), so

En,1 ≈
h̄2π2

2µa2
(2.0458, 6.0468, 12.0471, . . .) for n = (2, 3, 4, . . .), (9.3.8)

where the label n is again the number of zeros of the radial wavefunction. In the l = 1 case,

r = 0 and r = a are always both zeros, so n ≥ 2. Each of the l = 1 energy levels has degeneracy

3, because the quantum number m = −1, 0, 1 does not affect the energy.

For l = 2, the boundary condition (9.3.3) becomes

tan(ka) =
ka

1− (ka)2/3
, (9.3.9)

which again is transcendental, but whose solutions can again be found numerically, with the

results ka/π ≈ (1.8346, 2.8950, 3.9225, . . .), so

En,2 ≈
h̄2π2

2µa2
(3.3656, 8.3812, 15.3861, . . .) for n = (2, 3, 4, . . .), (9.3.10)

where again the label n is the number of zeros of the radial wavefunction j2(kr). Each of these

energy levels has degeneracy 5, corresponding to m = −2,−1, 0, 1, 2.
The energy eigenvalues for higher angular momentum quantum number l can be solved for

numerically in a similar way, and have increasingly higher energies. The degeneracy of each

energy level En,l is 2l + 1, corresponding to the allowed values of the Lz eigenvalue h̄m. The

lowest few energy levels, with En,l < 10h̄2π2/µa2 and l ≤ 7, are depicted in Fig. 9.3.2.

9.4 Particle in a spherical potential well

Consider a particle of mass µ in a spherical potential well of radius a, with finite depth V0, so

that

V (r) =

{ −V0 (r < a),

0 (r ≥ a).
(9.4.1)
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Figure 9.3.2: The lowest energy levels, in units of the ground-state energy E1,0 = h̄2π2/2µa2,
for a particle of mass µ confined to a sphere of radius a, labeled by the angular momentum
quantum number l. All energy eigenvalues with En,l < 10h̄2π2/µa2 and l ≤ 7 are shown.

We will consider bound state solutions, which have E < 0. As discussed in section 9.2, the

stationary-state solution for the region r < a involves the ordinary spherical Bessel function

jl(kr), but now with

k =
√

2µ(E + V0)/h̄. (9.4.2)

The Neumann functions nl(ρ) are not well-behaved at ρ = 0 and so do not appear for r < a.

The solution for r > a uses the modified spherical Bessel function kl(κr) [see eq. (9.2.30)] with

κ =
√
−2µE/h̄, (9.4.3)

because kl(ρ) is the linear combination that is well-behaved at ρ = ∞. The stationary-state

wavefunctions are therefore

ψE,l,m(r) =

{
Ajl(kr) Y

m
l (θ, φ) (r ≤ a),

B kl(κr) Y
m
l (θ, φ) (r ≥ a),

(9.4.4)

where A and B are normalization constants, and

k2 + κ2 = 2µV0/h̄
2 (9.4.5)

from eqs. (9.4.2) and (9.4.3).

At r = a, the wavefunction and its first derivative with respect to r are continuous, since

the potential is finite there. This gives

Ajl(ka) = B kl(κa), (9.4.6)

kA j′l(ka) = κB k′l(κa). (9.4.7)
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Taking the ratio of these to eliminate A and B yields

k j′l(ka)

jl(ka)
=

κ k′l(κa)

kl(κa)
, (9.4.8)

which is a transcendental equation that can be used together with eq. (9.4.5) to solve for the

allowed eigenvalues k, κ, and thus E. As always for a spherically symmetric potential, the allowed

energies depend on l, but not m. Either equation (9.4.6) or (9.4.7) then also allows for the ratio

A/B to be found for each E, l. The remaining unknown corresponds to the overall magnitude

of the constants A and B, which can be fixed by the normalization of the wavefunction.

For example, if l = 0, eq. (9.4.8) yields

−k cot(ka) = κ. (9.4.9)

Writing dimensionless variables X = ka and Y = κa, eqs. (9.4.5) and (9.4.9) give

X2 + Y 2 = 2µV0a
2/h̄2, (9.4.10)

−X cotX = Y. (9.4.11)

Fortunately, these are exactly the same equations we encountered for the odd-parity solutions of

the one-dimensional square well problem, with L→ 2a. [Compare to eqs. (6.5.12) and (6.5.18).]

The same graphical and numerical analysis therefore applies. In particular, if we label the l = 0

stationary states by n = 1, 2, 3, . . ., then the condition for the bound state |ψn〉 to exist is

µV0a
2

h̄2
>

π2

2
(n− 1/2)2. (9.4.12)

Recall that in the case of a particle in a one-dimensional square well, there is always at least

one bound state, but for a sufficiently shallow potential well only the even-parity ground state

exists as a bound state. For the three-dimensional spherical well, since only the analogs of the

odd-parity one-dimensional square-well states exist, eq. (9.4.12) tells us that the existence of a

bound state requires the potential to be sufficiently deep, V0 > π2h̄2/8µa2. The more general

lesson is that three-dimensional potentials may have no bound states if they are not sufficiently

attractive.

9.5 Isotropic three-dimensional harmonic oscillator

In section 7.5, we have already encountered the isotropic three-dimensional harmonic oscillator

as a special case of the general anisotropic version, and obtained its stationary-state energy

levels and degeneracies. We did this using a CSCO of (Hx, Hy, Hz), the individual Hamiltonians
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for excitations in the x, y, and z directions. In this section, we will solve the problem again,

this time with a CSCO consisting of (H,L2, Lz). This is possible because, in the isotropic case,

H =
P 2

2µ
+

1

2
µω2R2 (9.5.1)

is invariant under all rotations and therefore commutes with L2 and Lz . Note that we are now

using µ as the symbol for the mass of the particle.

Before proceeding, let us consider what sort of answer we expect, given the results of section

7.5. At an energy level E = h̄ω(n + 3/2) with n = nx + ny + nz, the wavefunctions must be

linear combinations of wavefunctions of the form

〈x, y, z|nx, ny, nz〉 ∝ Hnx(x/b)Hny(y/b)Hnz(z/b) e
−(x2+y2+z2)/2b2 , (9.5.2)

where the length scale in the problem is

b =
√
h̄/µω, (9.5.3)

and the Hna are the Hermite polynomials. After translating to spherical coordinates, such a

linear combination that is an eigenstate of L2 and Lz must be of the form

〈r, θ, φ |n, l,m〉 = Y m
l (θ, φ)Rn,l(r), (9.5.4)

where

Rn,l(r) = (polynomial of degree n in r) e−r
2/2b2 . (9.5.5)

Our goal is to solve for the functions Rn,l(r).

In section 9.1, we found the differential equation for Un,l = rRn,l, which in the present case

becomes
[
− h̄

2

2µ

d2

dr2
+

1

2
µω2r2 +

h̄2l(l + 1)

2µr2
− E

]
Un,l = 0. (9.5.6)

Inspired by eq. (9.5.5), we define dimensionless quantities x and y(x) by

x = r/b, Un,l = y(x)e−x
2/2. (9.5.7)

When plugged into eq. (9.5.6), this gives

y′′ − 2xy′ +
[
E − 1− l(l + 1)/x2

]
y = 0, (9.5.8)

where

E = 2µb2E/h̄2 = 2E/h̄ω (9.5.9)
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is a dimensionless combination proportional to the energy eigenvalue. We already know from

eq. (7.5.13) that the allowed eigenvalues are E = 2n + 3 for non-negative integers n, and from

eq. (9.5.5) that y(x) is a polynomial, but in the following derivation we will proceed as if these

facts were not known.

We now try a series solution for y(x), of the form

y = xq
∞∑

p=0

cpx
p. (9.5.10)

Here q and the cp are constants, with c0 6= 0 by definition. (Otherwise, we would adjust the

value of q to make it so.) Now we prepare to plug in to eq. (9.5.8) by computing

y′′ =
∞∑

p=0

cp(p+ q)(p+ q − 1)xp+q−2, (9.5.11)

y/x2 =

∞∑

p=0

cpx
p+q−2, (9.5.12)

xy′ =

∞∑

p=0

cp(p+ q)xp+q =

∞∑

p=0

cp−2(p+ q − 2)xp+q−2, (9.5.13)

y =
∞∑

p=0

cp−2x
p+q−2, (9.5.14)

where in the last equality of each of eqs. (9.5.13) and (9.5.14) we have used the trick of relabeling

p→ p− 2 and defining c−2 = c−1 = 0. The motivation behind this relabeling trick is that now

all of the summands have the same powers of x, and so eq. (9.5.8) becomes

∞∑

p=0

xp+q−2
{
cp
[
(p+ q)(p+ q − 1)− l(l + 1)]− cp−2[2(p+ q − 2) + 1− E

]}
= 0. (9.5.15)

For this equation to be satisfied for all x, each coefficient of a given power of x must vanish, so

the quantity in braces must vanish for each p.

From the first term p = 0, using c−2 = 0 we find

c0
[
q(q − 1)− l(l + 1)

]
= 0. (9.5.16)

Since c0 6= 0, the possible solutions are q = l + 1 and q = −l. However, the latter can be

rejected on physical grounds, since it would imply that y ∼ x−l for small x, which would mean

Rn,l ∼ 1/rl+1 for small r, and the wavefunction would not be finite at the point r = 0. Therefore,

q = l + 1, (9.5.17)

202



which implies that Rn,l ∼ rl for small r. This suppression for small r is consistent with the

existence of the repulsive h̄2l(l+1)/2µr2 centrifugal barrier contribution to the effective potential

for non-zero angular momentum, see eq. (9.1.10) or eq.(9.5.6).

The second term p = 1 gives us

c1
[
q(q + 1)− l(l + 1)

]
= 0, (9.5.18)

because c−1 = 0. Now, plugging in q = l + 1, this becomes 2(l + 1)c1 = 0. Since our knowledge

of the angular momentum eigenvalue problem tells us that l + 1 cannot vanish, we must have

c1 = 0. (9.5.19)

For all larger p, the vanishing of eq. (9.5.15) implies (after using q = l + 1) that

cp p(p+ 2l + 1) = cp−2 (2p+ 2l − 1− E). (9.5.20)

Since c1 = 0, it follows that cp = 0 for all odd p. Defining Cj = c2j , we have

y = xl+1
∞∑

j=0

Cjx
2j , (9.5.21)

with, from eq. (9.5.20) by taking p = 2(j + 1), the recurrence relation

Cj+1 =
4j + 2l + 3− E

2(j + 1)(2j + 2l + 3)
Cj . (9.5.22)

For large j, we have Cj ≈ Cj−1/j, so if the series does not terminate, it would behave asymp-

totically like y ∼ xl+1
∑

j(x
2)j/j! ∼ xl+1ex

2

, which would imply that Rn,l ∼ rle−r
2/2b2er

2/b2 ∼
rler

2/2b2 . As in the case of the one-dimensional harmonic oscillator, such a solution that blows

up exponentially as r →∞ is unphysical, since it cannot be normalized.

We can therefore conclude that the series must terminate, and y(x) is actually a polynomial,

in agreement with eq. (9.5.5). Then the recurrence relation eq. (9.5.22) implies that physically

valid solutions for y(x) must have Ck+1 = 0 for some integer k ≥ 0, and so satisfy

E = 4k + 2l + 3, (9.5.23)

or, using eq. (9.5.9),

E = h̄ω(2k + l + 3/2). (9.5.24)

The integer n = nx + ny + nz must then be equal to 2k + l, and the energy eigenkets |E, l,m〉
are linear combinations of the kets |nx, ny, nz〉. An interesting feature of these results is that,
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unlike the particle-in-a-sphere and particle-in-a-spherical-well examples of sections 9.3 and 9.4,

here the degeneracies in the energy levels are not entirely due to the rotational invariance of

the problem. For a given l, there are 2l + 1 degenerate states with m = −l, . . . , l that have the

same energy. But, there are also “accidental” energy degeneracies between states with different

angular momenta, for example k = 0, l = 2 and k = 1, l = 0.

Summarizing what we now know about the three-dimensional isotropic harmonic oscillator

stationary-state wavefunctions with definite (L2, Lz),

ψk,l,m(r, θ, φ) = ARk,l(r) Y
m
l (θ, φ), (9.5.25)

where A is a normalization constant. The radial wavefunctions are of the form

Rk,l(r) = (r/b)lPk,l(r
2/b2)e−r

2/2b2 , (9.5.26)

where, with z = x2,

Pk,l(z) =
k∑

j=0

Cjz
j . (9.5.27)

Using eq. (9.5.23), the recurrence relation (9.5.22) becomes

Cj+1 =
2(j − k)

(j + 1)(2j + 2l − 3)
Cj. (9.5.28)

For the lowest few values k = 0, 1, 2, 3, we have (leaving the coefficient C0 as an arbitrary

normalization for the moment):

P0,l(z) = C0, (9.5.29)

P1,l(z) = C0

(
1− 2

2l + 3
z
)
, (9.5.30)

P2,l(z) = C0

(
1− 4

2l + 3
z +

4

(2l + 3)(2l + 5)
z2
)
, (9.5.31)

P3,l(z) = C0

(
1− 6

2l + 3
z +

12

(2l + 3)(2l + 5)
z2 − 8

(2l + 3)(2l + 5)(2l + 7)
z3
)
. (9.5.32)

These polynomials are proportional to associated Laguerre polynomials, for which there

are unfortunately at least three different notational conventions in common use. Adopting here

the definition of the associated Laguerre polynomial Lαk (z) used by Mathematica,†

Pk,l(z) = L
l+1/2
k (z), (9.5.33)

†The relations between the definition of the associated Laguerre polynomials used here and in some other
sources is Γ(N + α+ 1)Lα

N(z)here,Mathematica = Lα
N(z)some other books = (−1)αLα

N+α(z)still other books.
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corresponding to the choice

C0 =
(2l + 2k + 1)!!

2k k! (2l + 1)!!
=

(2l + 2k + 1)! l!

22k (2l + 1)! (l + k)! k!
. (9.5.34)

More generally, the conventional normalization is such that, at z = 0 and for any α,

Lαk (0) =
Γ(k + α + 1)

k! Γ(α+ 1)
. (9.5.35)

Here, the Gamma function is defined by

Γ(z) =

∫ ∞

0

dt tz−1e−t, (9.5.36)

and satisfies Γ(z) = (z − 1)Γ(z − 1). When z is an integer, then z! = Γ(z + 1). Another useful

value is Γ(1/2) =
√
π.

An explicit, general form for the associated Laguerre polynomials is

LαN (z) =
1

N !
z−αez

dN

dzN
(
e−zzN+α

)
. (9.5.37)

Note that the lower index N is always an integer equal to the degree of the polynomial, but the

raised index α need not be, as in the present application where α = l + 1/2. They satisfy the

differential equation

[
z
d2

dz2
+ (1− z + α)

d

dz
+N

]
LαN (z) = 0, (9.5.38)

and the orthogonality relation

∫ ∞

0

dz e−zzαLαN (z)L
α
N ′(z) =

Γ(N + α+ 1)

k!
δN,N ′ . (9.5.39)

The degree N is also equal to the number of zeros (in the present case N = k), which all occur

for positive real z.

Putting everything together, the wavefunctions for the stationary states of the three-dimensional

isotropic harmonic oscillator with energies E = h̄ω(2k + l + 3/2) are

ψk,l,m(r, θ, φ) =

√
2(k!)

b3 Γ(k + l + 3/2)

(r
b

)l
L
l+1/2
k (r2/b2) e−r

2/2b2 Y m
l (θ, φ). (9.5.40)

The normalization factor A in eq. (9.5.25) has been chosen, with the aid of eq. (9.5.39), so that

orthonormality holds,

〈k′, l′, m′|k, l,m〉 =

∫ ∞

0

dr r2
∫
dΩ [ψk′,l′,m′(r, θ, φ)]∗ ψk,l,m(r, θ, φ) = δk,k′δl,l′δm,m′ . (9.5.41)
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10 Coulomb potential and hydrogen-like atoms

10.1 Bound states for hydrogen atom

One of the most important exactly solvable problems in quantum mechanics is that of a particle

moving in a Coulomb potential. This includes the hydrogen atom, and more generally hydrogen-

like ions, which consist of a single electron with mass me and charge −e [with the normalization

as defined in Gaussian cgs metric system units, see eqs. (1.1.1) and (1.1.2)] and a heavy nucleus

with mass mN and charge Ze, where Z is an integer. As discussed in a general context in section

4.2, the problem can be separated into center-of-mass and relative degrees of freedom, where

the latter use a reduced mass µ = memN/(me+mN), which is very close to me. In this chapter,

we neglect the small effects of special relativity and electron and nuclear spins, which will be

treated in Chapter 15. So, our Hamiltonian is H = P 2/2µ+ V (R), where the potential energy

in the position representation is

V (r) = −Ze2/r. (10.1.1)

The special case Z = 1 is the hydrogen atom. Because the potential is spherically symmetric,

we choose the CSCO to be (H,L2, Lz), and look for an orthobasis of eigenstates |E, l,m〉 with
wavefunctions

ψE,l,m(r, θ, φ) = 〈r, θ, φ |E, l,m〉 = RE,l(r) Y
m
l (θ, φ). (10.1.2)

The goal is to find the energy eigenvalues and the radial wavefunctions RE,l(r).

In this section, we will work out the properties of the bound state solutions, for which the

energy eigenvalues are discrete and satisfy E < V (∞) = 0, and |RE,l| decreases exponentially

as r →∞. Unlike the case of the three-dimensional harmonic oscillator, there are also unbound

energy eigenstates, for which E is continuous and non-negative, and rRE,l oscillates with an

amplitude approaching a constant for large r. The unbound state solutions will be found in

section 10.2.

The time-independent Schrödinger equation for the radial wavefunction is

[
− h̄

2

2µ

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
− Ze2

r
− E

]
RE,l(r) = 0. (10.1.3)

A good first step is to replace r by a dimensionless variable. Since −h̄2/2µE has units of [length]2

and is a positive number for the bound states, we define a rescaled radial coordinate

s = 2r/b, b = h̄/
√
−2µE. (10.1.4)
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With this change of variables, eq. (10.1.3) becomes
(
d2

ds2
+

2

s

d

ds
− l(l + 1)

s2
+
n

s
− 1

4

)
RE,l = 0, (10.1.5)

where we have introduced

n =
Ze2

h̄

√
−µ
2E

, (10.1.6)

a dimensionless quantity that parameterizes the energy eigenvalue. Note that n is a real number

for E < 0, and is pure imaginary for E > 0. We will soon find out [see eq. (10.1.15)] that n

must be a positive integer for a bound-state solution, but we do not know that yet.

The next part of our strategy is to identify, and factor out, the large-distance and short-

distance behaviors of RE,l. For s → ∞, eq. (10.1.5) becomes d2R/ds2 ≈ R/4, which has two

linearly independent solutions, es/2 and e−s/2. The first of these is unphysical, as it blows up for

s→∞ and so is not normalizable. In the opposite limit s→ 0, the last two terms of eq. (10.1.5)

can be neglected, and there is a power-law solution for R proportional to sl. We therefore write

RE,l = sle−s/2f(s), (10.1.7)

which factors out the leading behavior in the two limits. Plugging this into eq. (10.1.5) gives

s
d2f

ds2
+ (2l + 2− s)df

ds
+ (n− l − 1)f = 0, (10.1.8)

which we must now solve simultaneously for the eigenfunctions f(s) and the corresponding

eigenvalues n.

Equation (10.1.8) is a special case of a famous differential equation, called the confluent

hypergeometric equation, which we write in a general form as

x
d2F

dx2
+ (c− x)dF

dx
− aF = 0, (10.1.9)

where a and c are constants. This has a unique (up to a multiplicative constant) solution that

is finite as x→ 0, the confluent hypergeometric function, which has a series expansion

F (a, c, x) = 1 +
a

c
x+

a(a+1)

c(c+1)

x2

2!
+
a(a+1)(a+2)

c(c+1)(c+2)

x3

3!
+ · · · , (10.1.10)

as can be verified by direct substitution into the differential equation. This series converges for

all finite |x|, even if a, c, and x are complex, provided that c 6= 0,−1,−2, . . .. One can check

(either from the series solution, or by direct substitution into the differential equation) that it

has an integral representation

F (a, c, x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

dt etx ta−1(1− t)c−a−1, (10.1.11)
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provided that Re[a] > Re[c] > 0. For real x large and positive, it has the asymptotic form

F (a, c, x) ≈ Γ(c)

Γ(a)
xa−c ex (large real x, and a 6= 0,−1,−2, . . .). (10.1.12)

However, as we are about to see, the special case relevant for our present purposes will arise

when a is a non-positive integer; in that case, F (a, c, x) is instead a polynomial in x of degree

−a, because the series in eq. (10.1.10) terminates.

For the present application to the bound states of the hydrogen-like atom, we have x = s

and a = l + 1 − n and c = 2l + 2, by comparing eq. (10.1.8) to (10.1.9). Therefore, f(s) in

eq. (10.1.7) is equal to F (l+1−n, 2l+2, s), up to normalization, so

Rn,l = Cn,l s
le−s/2F (l+1−n, 2l+2, s), (10.1.13)

Here we have replaced the subscript label E by the label n, which contains the same information,

and Cn,l is a normalization constant to be chosen later. In the large-distance limit s→∞, the

asymptotic form of eq. (10.1.12) would seem to tell us

Rn,l ∝ s−n−1es/2 (n−l−1 6= 0, 1, 2, . . .). (10.1.14)

However, the exponential factor es/2 is the form that we already rejected as non-normalizable

and therefore physically unacceptable; it would imply that no matter how far from the nucleus

you look, the electron must have infinitely larger probability to be farther away. The only way

to get a physically sensible bound state is to arrange for eq. (10.1.14) not to apply. In other

words, it is necessary that the series solution eq. (10.1.10) for F (l+1−n, 2l+2, s) terminates,

so that instead of being proportional to es, it is actually a polynomial in s with degree that we

will call k. This implies that

n = k + l + 1. (10.1.15)

Since k, being the degree of the polynomial, is a non-negative integer, and l + 1 is always a

positive integer, n must be a positive integer, called the principal quantum number of the

hydrogen atom bound state.

Inverting eq. (10.1.6), the allowed energy eigenvalues are

En = −
(
e4µ

2h̄2

)
Z2

n2
= −

(
e2

2a0

)
Z2

n2
, (10.1.16)

which depend only on n, not k and l individually. To write the last expression we have defined†

†The definitions of the Bohr radius and Rydberg energy units used here are appropriate for the infinite nuclear
mass limit, with µ = me. An alternative definition uses, instead of the electron mass me, the reduced mass µ
for the lightest isotope of hydrogen, which is smaller by a factor mp/(me +mp) ≈ 0.999453. From here on, we
ignore the small difference between me and µ, which can be restored by replacing me → µ in the obvious way.
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n = 1

n = 2

n = 3
n = 4, 5, . . .

continuum

l = 0 l = 1 l = 2 l = 3 l = 4

E = 0

E = −13.6 eV

Figure 10.1.1: Stationary-state energy levels of the hydrogen atom for l ≤ 4. The bound
state levels with En = −13.6 eV/n2 for n = 1, 2, 3, . . . are discrete and have degeneracy n2,
with 0 ≤ l ≤ n − 1. For each non-negative integer l, there are also unbound continuum
energy eigenstates with E ≥ 0.

the Bohr radius (named after Niels Bohr),

a0 =
h̄2

e2me
= 5.292× 10−11meters = Bohr radius. (10.1.17)

The scale of energy is therefore

e4me

2h̄2
=

e2

2a0
= 2.180× 10−18 Joules = 13.606 eV = Rydberg, (10.1.18)

named after Johannes Rydberg. The ground state has n = 1 and k = l = 0. More generally, for

each l, the lowest possible energy is obtained for k = 0, so that n = l + 1.

The energy levels of the hydrogen atom are depicted in Fig. 10.1.1. At each bound-state

energy level n, the values of l that can occur are the integers from 0 to n − 1, each with

degeneracy 2l + 1, which comes from m = −l, . . . , l. The total degeneracy for each energy level

En is therefore

gn =

n−1∑

l=0

(2l + 1) = n2. (10.1.19)

Because this includes states with different angular momenta, the energy degeneracy is accidental,

meaning that it cannot be explained by rotational invariance alone. This was also the case for

the three-dimensional isotropic harmonic oscillator. For hydrogen-like atoms, this degeneracy is

slightly broken by spin and relativistic effects, as we will discuss in detail in Chapter 15.
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The distinct values of l are given letter codes that go back to the early history of spectroscopic

analysis. This spectroscopic notation is as follows:

l = 0 ↔ s “sharp”,

l = 1 ↔ p “principal”,

l = 2 ↔ d “diffuse”,

l = 3 ↔ f “fundamental”,

l = 4 ↔ g “grotesque”,

l = 5 ↔ h “horrendous”,

· · · · · · (10.1.20)

The letter codes are in alphabetical order f, g, h, i, k, . . . for l = 3, 4, 5, 6, 7, . . ., but j is omitted.

(And I’m just kidding about the names “grotesque” and “horrendous”; unlike the first four, I

just made those up, and they do not actually have standard names to fit the standard letters.)

A supposedly useful mnemonic is “sober physicists don’t find giraffes hiding in kitchens”. The

hydrogen atom states are often referred to in the notation nl, but with l = 0, 1, 2, 3, 4, 5, . . .

replaced by the spectroscopic code‡ letter s, p, d, f, g, h . . ., so that the ground state is called 1s

and the first excited states are 2s and 2p, and the second excited states are 3s, 3p, and 3d.

Returning to the radial wavefunction, eq. (10.1.13) tells us that

Rn,l = Cn,l s
le−s/2Fn,l, (10.1.21)

where we are now adopting the shorter notation

Fn,l = F (l+1−n, 2l+2, s), (10.1.22)

which is a polynomial of degree k = n − l − 1. Recalling that s = 2r/b from eq. (10.1.4), the

exponential factor tells us that the spatial support of wavefunctions is set, in terms of the Bohr

radius, by the length scale

b = na0/Z. (10.1.23)

Equations (10.1.16) and (10.1.23) show that the magnitude of the binding energy scales like Z2,

while the characteristic size of a given wavefunction’s support scales like 1/Z. In the classical

limit h̄→ 0, the Bohr radius goes to 0 and the binding energy of the ground state goes to −∞,

in accord with the discussion of the classical instability of atoms in section 1.1.

‡In some other contexts, the letter codes for orbital angular momentum in eq. (10.1.20) are capitalized.
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For the lowest few energy states, the polynomials are, from eq. (10.1.10),

F1,0 = 1, (10.1.24)

F2,1 = 1, F2,0 = 1− s

2
, (10.1.25)

F3,2 = 1, F3,1 = 1− s

4
, F3,0 = 1− s+ s2

6
, (10.1.26)

F4,3 = 1, F4,2 = 1− s

6
, F4,1 = 1− s

2
+
s2

20
, F4,0 = 1− 3s

2
+
s2

2
− s3

24
. (10.1.27)

More generally, in terms of the associated Laguerre polynomials LαN (x) already defined explicitly

by eq. (9.5.37), it can be shown that

Fn,l =
(n−l−1)! (2l+1)!

(n+l)!
L2l+1
n−l−1(s). (10.1.28)

The lower index on LαN is always equal to the degree of the associated Laguerre polynomial,

which is also the number of its zeros, in this case N = k − 1. Note, however, that in the case

of the isotropic three-dimensional harmonic oscillator the upper index α was always half-integer

[see eq. (9.5.33)], while here α = 2l + 1 is always a positive odd integer.

From Theorem 2.6.5, we know that the kets |n, l,m〉 and |n′, l′, m′〉 are orthogonal whenever
any of n, l, or m differ from n′, l′, or m′, respectively. The orthogonality conditions δl,l′ and

δm,m′ are already enforced by the proportionality of the wavefunctions to spherical harmonics.

It follows that the associated Laguerre polynomials must also satisfy an orthogonality relation

of the form (taking x = ns = 2Zr/a0):
∫ ∞

0

dx x2l+2 L2l+1
n−l−1(x/n)L

2l+1
n′−l−1(x/n

′) e−x(1/n+1/n′)/2 = δn,n′ Bn,l, (10.1.29)

for n, n′ = 1, 2, 3, . . . and l = 0, 1, . . . ,min(n, n′) − 1. Although not obvious, it can be checked

that this is true, with

Bn,l =
2 (n+ l)!n2l+4

(n− l − 1)!
. (10.1.30)

Note that eq. (10.1.29) is a quite different orthogonality relation for associated Laguerre poly-

nomials than the one that was useful for the three-dimensional harmonic oscillator, eq. (9.5.39).

Putting together eqs. (10.1.4), (10.1.21), (10.1.23), and (10.1.28), we obtain the radial wave-

functions of the hydrogen-like atom bound states,

Rn,l(r) = An,l e
−Zr/na0

(
2Zr

na0

)l
L2l+1
n−l−1(2Zr/na0), (10.1.31)

where we have introduced a new normalization constant factor

An,l =

(
2Z

a0

)3/2
nl√
Bn,l

=

(
Z

a0

)3/2
2

n2

√
(n− l − 1)!

(n+ l)!
, (10.1.32)
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chosen so that
∫ ∞

0

dr r2Rn,l(r)Rn′,l(r) = δn,n′. (10.1.33)

The full wavefunction [obtained by including the Y m
l (θ, φ) factor according to eq. (10.1.2)] is

ψn,l,m(r, θ, φ) = Rn,l(r)Y
m
l (θ, φ). (10.1.34)

An arbitrary choice of phase has been made in An,l, as usual. With this sensible choice, the

radial wavefunctions Rn,l are all real.

We now have everything necessary to evaluate the wavefunctions for the lowest few energy

levels. For the ground state,

R1,0(r) =

(
Z

a0

)3/2

2e−Zr/a0, (10.1.35)

and for the first excited states,

R2,0(r) =

(
Z

a0

)3/2
1

2
√
2

(
2− Zr

a0

)
e−Zr/2a0 , (10.1.36)

R2,1(r) =

(
Z

a0

)3/2
1

2
√
6

Zr

a0
e−Zr/2a0 , (10.1.37)

and for the second excited states,

R3,0(r) =

(
Z

a0

)3/2
2

81
√
3

[
27− 18

Zr

a0
+ 2

(
Zr

a0

)2
]
e−Zr/3a0 , (10.1.38)

R3,1(r) =

(
Z

a0

)3/2
2
√
2

81
√
3

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 , (10.1.39)

R3,2(r) =

(
Z

a0

)3/2
2
√
2

81
√
15

(
Zr

a0

)2

e−Zr/3a0 . (10.1.40)

These radial wavefunctions, and the corresponding radial probability densities r2|Rn,l|2, are

graphed in Figure 10.1.2 for Z = 1. For future reference, we also note that the hydrogen atom

radial wavefunction at r = 0 can be evaluated, using eqs. (10.1.28), 10.1.31), and (10.1.32), as

Rn,l(0) = 2

(
Z

na0

)3/2

δl,0. (10.1.41)

In particular, it is only non-zero for states with orbital angular momentum l = 0.

Putting in the spherical harmonics with the Condon–Shortley phase convention, the wave-

functions for the lowest few energy levels are

ψ1,0,0 =

(
Z

a0

)3/2
1√
π
e−Zr/a0 , (10.1.42)
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Figure 10.1.2: Radial wavefunctions Rn,l in units of 1/a
3/2
0 (left column) and radial probability

densities r2|Rn,l|2 in units of 1/a0 (right column) for the Z = 1 hydrogen atom stationary states
with n = 1, 2, 3, as functions of r/a0. Note the differing vertical scales.
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for the ground state, and

ψ2,0,0 =

(
Z

a0

)3/2
1

4
√
2π

(
2− Zr

a0

)
e−Zr/2a0 , (10.1.43)

ψ2,1,0 =

(
Z

a0

)3/2
1

4
√
2π

Zr

a0
e−Zr/2a0 cos θ, (10.1.44)

ψ2,1,±1 = ∓
(
Z

a0

)3/2
1

8
√
π

Zr

a0
e−Zr/2a0 sin θ e±iφ, (10.1.45)

for the first excited states, and

ψ3,0,0 =

(
Z

a0

)3/2
1

81
√
3π

[
27− 18

Zr

a0
+ 2

(
Zr

a0

)2
]
e−Zr/3a0 , (10.1.46)

ψ3,1,0 =

(
Z

a0

)3/2 √
2

81
√
π

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 cos θ, (10.1.47)

ψ3,1,±1 = ∓
(
Z

a0

)3/2
1

81
√
π

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 sin θ e±iφ, (10.1.48)

ψ3,2,0 =

(
Z

a0

)3/2
1

81
√
6π

(
Zr

a0

)2

e−Zr/3a0(3 cos2 θ − 1), (10.1.49)

ψ3,2,±1 = ∓
(
Z

a0

)3/2
1

81
√
π

(
Zr

a0

)2

e−Zr/3a0 sin θ cos θ e±iφ, (10.1.50)

ψ3,2,±2 =

(
Z

a0

)3/2
1

162
√
π

(
Zr

a0

)2

e−Zr/3a0 sin2 θ e±2iφ, (10.1.51)

for the second excited states.

Let us now work out the expectation value of Rp in the ground state, for integer p,

〈1, 0, 0|Rp|1, 0, 0〉 =

∫ ∞

0

dr r2
∫
dΩ rp

(
Z

a0

)3
1

π
e−2Zr/a0 . (10.1.52)

Using
∫
dΩ = 4π, this evaluates to

〈1, 0, 0|Rp|1, 0, 0〉 =





1

2
(p+ 2)!

( a0
2Z

)p
(p ≥ −2),

∞ (p ≤ −3).
(10.1.53)

In particular, plugging in p = 0 gives 〈1, 0, 0|1|1, 0, 0〉 = 1 (confirming the correct normalization

of the wavefunction), while p = 1 gives

〈1, 0, 0|R|1, 0, 0〉 = 〈R〉 = 3a0
2Z

, (10.1.54)

and p = −1 gives

〈1, 0, 0| 1/R |0, 0, 1〉 = Z/a0. (10.1.55)
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(Note that this is not equal to 1/〈R〉.) We can also directly compute, for the ground state,

〈1, 0, 0|P 2|1, 0, 0〉 =

∫ ∞

0

dr r2
∫
dΩψ∗1,0,0(−h̄2∇2)ψ1,0,0 = h̄2Z2/a20. (10.1.56)

As a check, the expectation value of the Hamiltonian in the ground state is

〈H〉 = 〈P 2〉 /2me − Ze2 〈1/R〉 = −Z2e2/2a0 = −Z2 Rydberg, (10.1.57)

in agreement with the energy eigenvalue.

Later, we will want more general expressions for the expectation values 〈Rp〉 in arbitrary

hydrogen-like atom stationary bound states |n, l,m〉, for various integer powers p. A helpful tool

to find these for all integer p ≥ −1, and for all integer p ≤ −3 in terms of the single seed case

p = −2, is the Kramers–Pasternack recurrence formula, which relates the expectation

values for any three consecutive integer powers of the radial coordinate R. It is

q+1

n2
〈Rq〉 − (2q+1)

a0
Z
〈Rq−1〉 + q

4

[
(2l+1)2 − q2

] a20
Z2
〈Rq−2〉 = 0, (10.1.58)

valid for all q > −2l − 1.

The proof of eq. (10.1.58) is far from obvious, but goes as follows. Start from the differential

equation for the radial wavefunction Rn,l(s) with s = 2Zr/na0, as given in eq. (10.1.5). Multi-

ply by 4sq+3R′n,l + 2(1 − q)sq+2Rn,l (this is perhaps the most non-obvious part), and integrate

with respect to s. Then, expand the integrand and eliminate all derivatives of Rn,l using the

integration-by-parts identities§

∫ ∞

0

ds
d

ds

(
sq+3R ′2n,l

)
= 0, (10.1.59)

∫ ∞

0

ds
d

ds

(
sq+2Rn,lR

′
n,l

)
= 0, (10.1.60)

∫ ∞

0

ds
d

ds

(
spR2

n,l

)
= 0, (10.1.61)

with p = q + 1, q + 2, and q + 3 in the last equation. The result is
∫ ∞

0

ds
{
(q + 1)sq+2 − 2(2q + 1)nsq+1 + q

[
(2l + 1)2 − q2

]
sq
}
R2
n,l = 0. (10.1.62)

Finally, using the change-of-integration-variable relation,

〈Rp〉 =

∫ ∞

0

dr rp+2 [Rn,l(r)]
2 = (na0/2Z)

p+3

∫ ∞

0

ds sp+2 [Rn,l(s)]
2 , (10.1.63)

from eqs. (10.1.4), and (10.1.23), we arrive at eq. (10.1.58).

§The ′ denotes a derivative with respect to s. The boundary terms in eqs. (10.1.59)–(10.1.61) vanish for
q > −2l− 1, because Rn,l scales like sl for s→ 0, and like e−s/2 for s→∞.
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Using q = 0 in the Kramers–Pasternack formula of eq. (10.1.58), and 〈R0〉 = 〈1〉 = 1, we

immediately find

〈1/R〉 =
Z

n2a0
, (10.1.64)

in agreement with the n = 1 special case in eq. (10.1.55). Then, using q = 1, one obtains

〈R〉 =
a0
2Z

[3n2 − l(l + 1)]. (10.1.65)

Using this as a measure of the “size” of the state |n, l,m〉, we note that it does not depend on

the magnetic quantum number m, and

• shrinks with larger nuclear charge Z,

• grows with larger n, for fixed l,

• shrinks with larger l, for fixed n.

The last two of these features can be compared visually to the probability density distributions

in the right column of Figure 10.1.2.

Applying eq. (10.1.58) with q = 2, we get

〈R2〉 =
a20
Z2

n2

2

[
5n2 − 3l(l + 1) + 1

]
. (10.1.66)

One can apply eq. (10.1.58) recursively to find 〈Rq〉 for any desired positive integer q. However,

for negative q, one finds an obstacle, that 〈1/R2〉 cannot be determined by the recurrence relation

alone. In section 13.6, we will use another method to find

〈1/R2〉 =
Z2

a20n
3(l + 1/2)

. (10.1.67)

With this as a seed, all results for 〈Rp〉 with p ≤ −3 can then be determined by the recurrence

relation. In particular, using q = −1 in eq. (10.1.58) yields¶

〈1/R3〉 =
Z3

a30n
3l(l + 1)(l + 1/2)

. (10.1.68)

The expectation value of P 2 can also be found by relating it to the Hamiltonian,

〈P 2〉 = 2me

(
〈H〉+ Ze2 〈1/R〉

)
= me

(
e2

2a0

)
2Z2

n2
=

h̄2Z2

a20n
2
, (10.1.69)

where we have used the known energy eigenvalues and the result of eq. (10.1.64).

¶Note that 〈1/R3〉 diverges for l = 0. More generally, 〈Rp〉 =
∫∞
0 dr r2+p|Rn,l(r)|2 diverges if p ≤ −2l − 3,

because |Rnl| ∝ rl for small r.
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The characteristic size of the hydrogen atom with Z = 1 is set by the Bohr radius a0 =

h̄2/mee
2. This could have been estimated by a dimensional analysis construction from the

available quantities in the problem, by requiring it to have units of length, and demanding that

it vanish in each of the following three extreme limits: (1) the classical limit h̄ → 0, and (2)

the limit that the electron mass me is taken very large, and (3) the limit of large e2 so that the

attractive electrical force between the nucleus and the electron is large.

However, if we add the speed of light c to our toolbox of quantities, then there is a dimen-

sionless quantity that we can form out of the available parameters in the problem, namely the

fine structure constant,

α =
e2

h̄c
≈ 1/137.036. (10.1.70)

So, one can construct another length scale, which also turns out to be significant, the reduced‖

Compton wavelength of the electron,

λ̄e = αa0 =
h̄

mec
≈ 3.862× 10−13meters. (10.1.71)

Named for Arthur Compton’s studies of the scattering of electrons by high-energy photons, this

is also the (very small) length scale at which virtual electron-positron pair production becomes

important for understanding the energy levels of electron bound states. To see this, note that

according to Einstein’s famous formula relating energy and mass, the amount of energy needed to

make such a pair is ∆E = 2mec
2. For ultra-relativistic particles, energy is related to momentum

by ∆E ∼ c∆p, so e−e+ pair production becomes important for ∆p > 2mec. From the uncertainty

principle (∆x)(∆p) ≥ h̄/2, confinement of the electron to a size ∆x ∼ h̄/4mec ∼ λ̄e/4 will

result in large enough fluctuations ∆p to cause virtual e−e+ pair production to be an issue.

Furthermore, if we call v =
√
〈P 2〉/me the order of magnitude of the “velocity” of electrons in

a hydrogen-like atom state with principal quantum number n, then

v ∼ Zh̄

na0me
= Zαc/n. (10.1.72)

These considerations show that the approximation we have made in this section works only

because the fine structure constant is small. That is what ensures λ̄e ≪ a0 and v ≪ c, so that

electron-positron pair production and other relativistic corrections to the Hamiltonian can be

neglected, to first approximation. However, for atoms with very large Z, the speeds of atomic

electrons increase, and relativistic effects become important.

A related point is that the binding energy of the hydrogen atom is very small compared to

mec
2 = 0.511 MeV, the rest energy of the electron. In terms of the fine structure constant,

1 Rydberg =
e2

2a0
=

e4me

2h̄2
=

1

2
α2mec

2. (10.1.73)

‖The ordinary Compton wavelength of the electron is defined as λe = h/mec = 2πλ̄e.
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To estimate (very roughly) the size of the relativistic corrections to the energies, we can take

the total classical relativistic energy of an electron with momentum p, and subtract off the rest

energy, then expand in small p,

Erelativistic =
√
m2
ec

4 + p2c2 −mec
2 =

p2

2me

− p4

8m3
ec

2
+ · · · , (10.1.74)

where we have used the binomial expansion
√
1 + x = 1+x/2−x2/8+· · · for small x = p2/m2

ec
2.

The first term is just the non-relativistic kinetic energy that we have been using in the quantum

Hamiltonian. So, we can estimate that relativistic effects should make a difference of order

∆Erelativistic ∼ − 〈P
2〉2

8m3
ec

2
= −α

2Z4

4n4
Rydberg. (10.1.75)

It turns out that a correct relativistic analysis must take into account spin. We will carry this

out in section 15.1, with a final result in eq. (15.1.27). Our crude estimate in eq. (10.1.75)

is parametrically correct in the sense that the fine structure effects indeed modify the binding

energies by amounts that are suppressed by α2 and by powers of n, but we will see that the

other numerical details are different than the naive estimate of eq. (10.1.75).

When an electron transitions between states of the hydrogen atom, it releases or absorbs a

photon with energy equal to the difference in energy levels, ∆E = En − En′ . This is equal to

h̄ω where ω is the angular frequency of the photon. Therefore, taking Z = 1 for the remainder

of this section,

ωn,n′ =
13.6 eV

h̄

(
1

n′2
− 1

n2

)
, (10.1.76)

or equivalently in terms of wavelength,

λn,n′ = (9.11× 10−8meters)
n′2

1− n′2/n2
. (10.1.77)

This formula was found empirically by Rydberg in 1888, generalizing work by Johann Balmer.

For transitions between the ground state n′ = 1 and the states with n ≥ 2, these spectral lines

are called the Lyman series, after Theodore Lyman. They are all in the ultraviolet range,

Lyman series: ωn,1 = (2.067× 1016 s−1)

(
1− 1

n2

)
, (n = 2, 3, 4, . . . ,∞), (10.1.78)

with wavelengths from λ2,1 = 1.216 × 10−7 meters to λ∞,1 = 9.11 × 10−8 meters. The latter

wavelength, corresponding to a photon emitted when a free electron is captured to the ground

state of a hydrogen atom, or absorbed in the process of ionizing a hydrogen atom that was

initially in its ground state, is called the Lyman limit. The spectral line with n′ = 1 and n = 2
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is called the Lyman-alpha line, and is important in astronomy as an absorption feature when

observing very distant sources, as a tool to learn about intervening intergalactic gas.

The Balmer series comes from transitions between n′ = 2 and all higher-energy states n ≥ 3,

Balmer series: ωn,2 = (5.168× 1015 s−1)

(
1− 4

n2

)
, (n = 3, 4, 5, . . . ,∞), (10.1.79)

with wavelengths ranging from λ3,2 = 6.56 × 10−7 meters to λ∞,2 = 3.97 × 10−7 meters. The

Balmer lines are particularly interesting because four of them can be seen by the human eye. For

n = 3 the Balmer line is red, which is responsible for the reddish color of supernova remnants and

star-forming regions, including the Orion nebula. The n = 4, 5, and 6 Balmer lines are greenish-

blue, blue, and violet, respectively, while n = 7, . . . ,∞ are in the ultraviolet. The remaining

named series are all entirely in the infrared, and are called Paschen (transitions between n′ = 3

and n ≥ 4), Brackett (transitions between n′ = 4 and n ≥ 5), Pfund (transitions between n′ = 5

and n ≥ 6), and Humphreys (transitions between n′ = 6 and n ≥ 7), with higher n′ series not

named. There is significant overlap between the infrared series of spectral lines. Within each

series, the spectral lines are called α, β, etc. in order of decreasing wavelength.

10.2 Unbound states of Coulomb potentials

We now consider the unbound stationary states of the Coulomb problem, with E ≥ 0. These

include the ionized states of the hydrogen-like atom, describing an electron that is influenced

by the nucleus but not localized near it. The electron’s wavefunction can again be split into the

product of an angular part consisting of a spherical harmonic and a radial wavefunction,

〈r|ΦE,l,m〉 = ΦE,l,m(r, θ, φ) = R̃E,l(r)Y
m
l (θ, φ) (E ≥ 0). (10.2.1)

We write ΦE,l,m and R̃E,l here to distinguish them from the bound-state wavefunctions ψn,l,m

and Rn,l of the preceding section. For the unbound states, each E ≥ 0 can have any non-negative

integer value of l, as depicted in Fig. 10.1.1.

The differential equation satisfied by the radial wavefunction for unbound states is the same

as eq. (10.1.5), with the important differences that the rescaled radial coordinate s and the quan-

tity n, defined in eqs. (10.1.4) and (10.1.6) respectively, are imaginary for E > 0. Accordingly,

we make the replacement†

n→ i

ka0
, (10.2.2)

†In this section, we set µ = me and Z = 1 for simplicity, with the understanding that general Z can always
be restored by the replacement a0 → a0/Z.
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which defines a continuous real wavenumber parameter k with units of 1/[length]. Comparing

to the definition of n in eq. (10.1.6) gives

ka0 =

√
2h̄2E

mee4
, (10.2.3)

or, equivalently,

E =
1

2
(ka0)

2 Rydberg. (10.2.4)

Then, from eq. (10.1.4) the rescaled radial coordinate used in the previous section becomes

s = 2ikr. (10.2.5)

It follows that, up to normalization, we can obtain the solution in terms of the confluent hyper-

geometric function defined in eq. (10.1.10), by simply re-using eq. (10.1.13) with the preceding

substitutions for n and s. Since s is now imaginary, there is no problem with having an asymp-

totic behavior like es/2 for large s, and therefore no restriction that the confluent hypergeometric

function must be a polynomial; that is why there is no discrete quantization of k. The result is

R̃E,l(r) = Ck,l (2kr)
l e−ikr F (l+1+

i

ka0
, 2l+2, 2ikr), (10.2.6)

where Ck,l is a normalization constant to be determined, which we will choose to be real.

Despite the appearance of the phase factor e−ikr and the complex arguments of the confluent

hypergeometric function, R̃E,l(r) as given in eq. (10.2.6) is real. This follows immediately from

a property of the confluent hypergeometric function,

F (a, c, z) = ezF (c− a, c,−z), (10.2.7)

which can in turn be proved quickly from the integral representation of eq. (10.1.11) by using

the change of integration variable t→ 1− t.
Let us now consider the behavior of the radial wavefunction R̃E,l for large r. This can be done

by using the asymptotic form for the confluent hypergeometric function for complex arguments,

F (a, c, z) ≈ Γ(c)

Γ(c− a)(−z)
−a +

Γ(c)

Γ(a)
ezza−c (large |z|), (10.2.8)

which generalizes eq. (10.1.12) for real arguments. Applying this to eq. (10.2.6), the two terms

turn out to give contributions that are complex conjugates of each other, as required by the

previous paragraph. After some simplification, one finds the asymptotic form

R̃E,l(r) ≈ Ck,l
(2l + 1)! e−π/2ka0

|Γ(l + 1 + i/ka0)|
1

kr
sin
(
kr +

1

ka0
ln(2kr)− π

2
l − δ

)
(10.2.9)
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for large kr, where

δ = Arg
[
Γ
(
l + 1 + i/ka0

)]
. (10.2.10)

The radial probability density rR̃E,l(r) approaches a sinusoidal oscillation with a constant am-

plitude at large distances, but with a phase shift that depends logarithmically on kr.

In order to determine the normalization constant, we first define the orthonormality prop-

erties of the states. Since the energy E ≥ 0 is continuous, we will use a Dirac orthonormality

condition for unbound states |E, l,m〉, along with the ordinary discrete orthonormality of the

bound states |n, l,m〉 of the previous section. So,

〈E ′, l′, m′|E, l,m〉 = δ(E −E ′) δl,l′ δm,m′ , (10.2.11)

〈n′, l′, m′|E, l,m〉 = 0, (10.2.12)

〈n′, l′, m′|n, l,m〉 = δn,n′ δl,l′ δm,m′ . (10.2.13)

In terms of the radial wavefunctions for each l, these become
∫ ∞

0

dr r2 R̃E′,l(r)R̃E,l(r) = δ(E − E ′), (10.2.14)

∫ ∞

0

dr r2 R̃E′,l(r)Rn,l(r) = 0, (10.2.15)

∫ ∞

0

dr r2Rn′,l(r)Rn,l(r) = δn,n′. (10.2.16)

Now, for the purposes of normalizing the radial wavefunction in eq. (10.2.9), note that when

E = E ′, one need only consider the asymptotic form at very large r, because contributions

to
∫∞
0
dr r2 |R̃E,l(r)|2 from any finite range in r contribute only an infinitesimal fraction of the

total. In the very large r limit, the logarithmic variation in the phase shift can be neglected,

and the normalization problem is the same as for the simpler wavefunctions

fk(r) = A
sin(kr + β)

kr
, (10.2.17)

for some phase shift β, where

A = Ck,l
(2l + 1)! e−π/2ka0

|Γ(l + 1 + i/ka0)|
. (10.2.18)

The norm of this wavefunction is infinite, but integrating over a finite range gives

∫ D

0

dr r2 fk′(r)fk(r) =
A2

2kk′

{
sin[(k − k′)D]

k − k′ +
sin[2β]− sin[2β + (k + k′)D]

k + k′

}
. (10.2.19)

In the formal limit D → ∞, one can interpret the first term in the braces as a delta function

distribution [see eq. (2.2.22)], while the remaining part remains bounded for all k and k′, and
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vanishes for an infinite number of choices D = 2πq/(k+k′), for arbitrarily large integers q. This

allows us to interpret, when inserted in any expression in which k or k′ is integrated over,

∫ ∞

0

dr r2 fk′(r)fk(r) = A2 π

2k2
δ(k − k′) = A2 πh̄

2

4mek
δ(E −E ′). (10.2.20)

Thus we can adopt the energy normalization for Dirac orthonormality, by taking A2 = 4mek/πh̄
2,

allowing us to solve eq. (10.2.18) for Ck,l. Using this in eq. (10.2.6), the final result for the un-

bound energy eigenstate state radial wavefunction is

R̃E,l(r) =
2

h̄

√
mek

π

|Γ(l+1+i/ka0)|eπ/2ka0
(2l + 1)!

(2kr)l e−ikr F (l+1+
i

ka0
, 2l + 2, 2ikr), (10.2.21)

where k is related to E by eq. (10.2.3) or eq. (10.2.4). Although this is not the simplest result

one might have hoped for, we again remark that at least it is real, despite naive appearances.

The completeness relation corresponding to the energy eigenstates of eqs. (10.2.11)-(10.2.13)

contains both a sum over bound states and an integral over unbound states:

∞∑

n=1

n−1∑

l=0

l∑

m=−l
|n, l,m〉〈n, l,m| +

∫ ∞

0

dE

∞∑

l=0

l∑

m=−l
|E, l,m〉〈E, l,m| = I. (10.2.22)

This mixture of Dirac and ordinary orthonormality and completeness will be crucial in the

evaluation of the ground state energy of the hydrogen atom in an electric field (the quadratic

Stark effect), in section 13.7.

For a general potential V (r) = −Ze2/r, the results above can be obtained by making the

replacement a0 → a0/Z everywhere in the preceding discussion. This includes the case of a

repulsive potential with Z < 0, but with one qualitative difference: the bound states |n, l,m〉 do
not exist, and the orthonormality and completeness relations therefore include only the unbound

states with continuous positive E.
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11 Addition of angular momenta

11.1 Statement of the problem

In quantum mechanical problems, we often deal with two or more distinct angular momenta.

The sum of two independent angular momentum operators,

J = J1 + J2, (11.1.1)

is also an angular momentum operator. This expresses the fact that if all components of J1 com-

mute with all components of J2, and if the components of J1 and J2 each satisfy the commutator

algebra (5.3.32), then so will the components of J .

Since J2
1 , J

2
2 , J1z, and J2z are compatible operators, we can find an orthobasis of common

eigenkets for them, labeled

|j1 j2m1m2〉 ≡ |j1m1〉 ⊗ |j2m2〉 , (11.1.2)

with eigenvalues h̄2j1(j1+1), h̄2j2(j2+1), h̄m1, and h̄m2, respectively. We call this the product

orthobasis for two angular momenta, because its elements consist of the tensor products of

elements of the orthobases for the individual angular momenta. Here we have suppressed any

degeneracy labels, which might correspond to different radial wavefunctions, for example. For

fixed j1 and j2, there are 2j1 + 1 allowed values of m1, and 2j2 + 1 allowed values of m2,

m1 = j1, j1−1, . . . , −j1+1, −j1, (11.1.3)

m2 = j2, j2−1, . . . , −j2+1, −j2. (11.1.4)

So, there are (2j1 + 1)(2j2 + 1) orthobasis kets of the form eq. (11.1.2) for fixed j1 and j2.

Another set of compatible operators is J2
1 , J

2
2 , J

2, and Jz. They also have a set of common

eigenkets that form a different orthobasis, whose kets we can write as

|j1 j2 j m〉 . (11.1.5)

This is called the total angular momentum orthobasis. As we will see in the following

sections, for fixed j1 and j2, the possible values of j range from a maximum of j1+ j2 to a

minimum of |j1−j2|, with integer increments,

j = j1+j2, j1+j2−1, . . . , |j1−j2|+1, |j1−j2|. (11.1.6)

Intuitively, the extremes for j correspond to the two angular momenta aligned in the same and

in opposite directions, respectively. Then, for each j, there are 2j+1 allowed values

m = j, j−1, . . . ,−j+1, −j. (11.1.7)
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As a check, the number of total angular momentum basis states for fixed j1 and j2 is

j1+j2∑

j=|j1−j2|
(2j + 1) = (2j1 + 1)(2j2 + 1), (11.1.8)

matching the result for the number of product basis kets.

There is a potentially annoying problem of notation to be addressed here, because both

orthobases are labeled by four numbers. In many cases, this will not cause confusion, but what

if it does? Our solution to this problem will be to use a colon to separate the last two (magnetic

quantum number) labels for the product angular momentum orthobasis whenever there is a

chance of confusion. All other labels in both the product and total angular momentum bases

are separated by no punctuation, or by a comma when it is typographically convenient (or

just suits our mood). Also, there will be many occasions in which the labels j1 and j2 that

are common to both orthobases are fixed, and understood from context. In that case, we can

suppress those labels and call the total angular momentum orthobasis kets |jm〉 or |j,m〉, and
the product orthobasis kets |m1m2〉 or |m1, m2〉, but use the notation |m1 :m2〉 if there is a

significant chance of confusion with the total angular momentum orthobasis.

Because they are both bases, each element of the total angular momentum orthobasis must

be a linear combination of the product orthobasis kets, and vice versa. In general, the problem

of addition of angular momenta is to evaluate the coefficients appearing in these linear

combinations.

We will start with two useful and common special cases before taking on the most general

case. First, in section 11.2, we consider the case of two spins s1 = s2 = 1/2, for two particles

with orbital angular momenta absent or disregarded. Next, in section 11.3, we will take up the

example of a single particle with arbitrary orbital angular momentum l and spin s = 1/2, which

can be combined to form the total angular momentum of the particle. In section 11.4 we will

discuss the general case of addition of two arbitrary angular momenta. These results can be

applied recursively to combine any number of angular momenta.

11.2 Addition of s1 = 1/2 and s2 = 1/2

Consider two spins with s1 = s2 = 1/2. Spin magnitudes are always fixed, so we suppress those

labels, and write the four product orthobasis kets as

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (11.2.1)

Here the first ↑ or ↓ label on each ket stands for the eigenvalue h̄/2 or −h̄/2 of S1z, and the

second label similarly stands for the eigenvalue of S2z. We say that the individual spins in this
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basis are either “up” or “down” relative to our choice of the ẑ direction. Now, define the total

spin operator by

S = S1 + S2. (11.2.2)

The product orthobasis kets are also eigenkets of Sz, since

Sz |m1m2〉 = S1z |m1m2〉+ S2z |m1m2〉 = h̄(m1 +m2) |m1m2〉 , (11.2.3)

so that Sz |↑↑〉 = h̄ |↑↑〉, and Sz |↑↓〉 = Sz |↓↑〉 = 0, and Sz |↓↓〉 = −h̄ |↓↓〉. Choosing a represen-

tation in which

|↑↑〉 ↔




1
0
0
0


 , |↑↓〉 ↔




0
1
0
0


 , |↓↑〉 ↔




0
0
1
0


 , |↓↓〉 ↔




0
0
0
1


 , (11.2.4)

we have the matrix representation

Sz ↔ h̄




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 . (11.2.5)

However, the product orthobasis kets are not all eigenstates of S2. The operation of S2 on

them can be obtained from

S2 = (S1 + S2) · (S1 + S2) = S2
1 + S2

2 + 2S1 · S2

=
3

2
h̄2 + S1+S2− + S1−S2+ + 2S1zS2z, (11.2.6)

where in the last equality we have taken advantage of the fact that all of the kets in the state

space under consideration are eigenkets of both S2
1 and S2

2 with eigenvalues 3h̄2/4, and then

applied eq. (8.1.8) to write the result in terms of the angular momentum raising and lowering

operators. Now, recall from eqs. (8.1.22) and (8.1.24) that, for any j = 1/2 system,

J+ |↑〉 = 0, J+ |↓〉 = h̄ |↑〉 , (11.2.7)

J− |↓〉 = 0, J− |↑〉 = h̄ |↓〉 . (11.2.8)

Applying these for each of J = S1 and S2, we obtain from eq. (11.2.6),

S2 |↑↑〉 = 2h̄2 |↑↑〉 , (11.2.9)

S2 |↑↓〉 = h̄2 |↑↓〉+ h̄2 |↓↑〉 , (11.2.10)

S2 |↓↑〉 = h̄2 |↑↓〉+ h̄2 |↓↑〉 , (11.2.11)

S2 |↓↓〉 = 2h̄2 |↓↓〉 . (11.2.12)
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In matrix representation form, this reads

S2 ↔ h̄2




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 . (11.2.13)

This matrix has eigenvalues 2h̄2, 2h̄2, 2h̄2, and 0, which correspond to S2 = h̄2s(s + 1) with

s = 1 and s = 0. The addition of two spins with s1 = s2 = 1/2 thus gives a triplet of states

|1, m〉 with total spin s = 1 and m = −1, 0, 1, plus a singlet state with total spin s = 0, denoted

|0, 0〉. By finding the eigenkets corresponding to the eigenvalue pairs (s,m), we can summarize

the information about the addition of two spin-1/2 systems as

total spin basis |s,m〉 product basis |m1m2〉
|1, 1〉 = |↑↑〉 , (11.2.14)

|1, 0〉 =
1√
2
(|↑↓〉+ |↓↑〉) , (11.2.15)

|1,−1〉 = |↓↓〉 , (11.2.16)

|0, 0〉 =
1√
2
(|↑↓〉 − |↓↑〉) . (11.2.17)

Both orthobases have 4 members, and we can of course invert the relationship for the m = 0

states, to find

|↑↓〉 =
1√
2
(|1, 0〉+ |0, 0〉) , (11.2.18)

|↓↑〉 =
1√
2
(|1, 0〉 − |0, 0〉) . (11.2.19)

As a way of expressing the fact that the tensor product of two spin-1/2 systems gives a sum

of angular momenta 0 and 1, we write

1

2
⊗ 1

2
= 0A ⊕ 1S, (11.2.20)

Here, the ⊗ represents the addition of angular momenta, while the ⊕ indicates the combinations

of total angular momenta. The subscripts A and S in this notation are a reminder that the

s = 0 singlet state is antisymmetric under exchange of the two spins, while each of the s = 1,

m = 1, 0,−1 triplet states is symmetric, as can be seen in eqs. (11.2.14)-(11.2.17).

An important practical question is: which orthobasis should we use? The answer depends on

the problem under consideration. As a general rule, it is convenient to use a basis in which the

operators most important to us are diagonal. For example, suppose that we have a Hamiltonian

of the form

H = b1S1z + b2S2z, (11.2.21)
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which could occur if both spins are interacting with a magnetic field, but not with each other.

This Hamiltonian is diagonal in the product basis, where the kets are already eigenvalues of S1z

and S2z, but it is diagonal in the total angular momentum basis only if b1 = b2. On the other

hand, suppose that our Hamiltonian is of the form

H = aS1 · S2, (11.2.22)

which comes from the magnetic moments of the particles interacting with each other. In that

case, we can use a common trick, by writing

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)
. (11.2.23)

The right side shows that this operator is diagonal in the total spin basis, where it evaluates to

S1 · S2 =
h̄2

2
[s(s+ 1)− 3/2] , (11.2.24)

with s = 1 for the triplet states and s = 0 for the singlet state. In other cases, a judgment can be

made about which is the most convenient basis, often based on which part of the Hamiltonian,

or some other observable of interest, is the most important.

As a classic example, the hyperfine splitting of the hydrogen atom ground state arises from

the interaction of the electron’s spin with the spin of the proton. The hyperfine Hamiltonian Hhf

has exactly the form of eq. (11.2.22), with a constant a that is positive, and very small compared

to the Rydberg energy scale divided by h̄2. Before taking into account fine or hyperfine effects,

the hydrogen atom energy eigenstates can be given in the product spin basis labeled as

|n, l,ml︸ ︷︷ ︸
orbital

,

electron spin︷ ︸︸ ︷
se, mse , sp, msp︸ ︷︷ ︸

proton spin

〉 = |n, l,ml, mse, msp〉 , (11.2.25)

or we can use the the total spin basis,

|n, l,ml, se, sp, s,ms〉 = |n, l,ml, s,ms〉 . (11.2.26)

In both cases, the individual spin labels se, sp = 1/2 are completely fixed and therefore can be

suppressed, as indicated. Our present interest is the effect on the ground state with n = 1 and

l = 0. Since Horbital = P 2/2me − e2/R commutes with

Hhf = aSe · Sp, (11.2.27)

they have an orthobasis of common eigenstates. The eigenvalues of Hhf are found immediately

in the total spin basis, using eq. (11.2.24), as

Ehf =

{
ah̄2/4 (s = 1),

−3ah̄2/4 (s = 0),
(11.2.28)
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for the triplet and singlet total spin states, respectively. The energy splitting between these

states is therefore ah̄2, which for the ground state of the hydrogen atom is, numerically,

∆Ehf = ah̄2 = 5.87× 10−6 eV, (11.2.29)

corresponding to a wavelength λ = 2πc/ah̄ = 0.211 meters. This is the famous 21 centimeter

line of radio astronomy. The rate for transitions between the s = 1 and s = 0 states turns out

to be highly suppressed (for reasons to be discussed in section 19.5), but space is big and mostly

cold, so it is a very useful observational tool in astrophysics and experimental cosmology.

There is a special consideration when the two spin-1/2 particles are identical. The Pauli

exclusion principle says that two identical particles with half-integer spin cannot be in the

same quantum state, and more generally that the quantum state describing two identical par-

ticles must be antisymmetric under their exchange. Such particles are called fermions, after

Enrico Fermi, while particle with integer spin are called bosons after Satyendra Nath Bose. For

example, suppose that the orbital wavefunctions of two spin-1/2 fermions are ψa(r) and ψb(r),

corresponding to single-particle kets (neglecting spins for the moment) |ψa〉 and |ψb〉. From

these, one can form symmetric and antisymmetric combinations

|ψa, ψb〉S =
1√
2

(
|ψa, ψb〉+ |ψb, ψa〉

)
, (11.2.30)

|ψa, ψb〉A =
1√
2

(
|ψa, ψb〉 − |ψb, ψa〉

)
, (11.2.31)

where, on the right-hand sides, the first and second entries in each ket correspond to particle

labels 1 and 2, respectively. Then the allowed states constructed from the tensor product of the

orbital and total spin states must be either symmetric in orbital kets and antisymmetric in spin

kets, or vice versa,

|ψa, ψb〉S ⊗
1√
2

(
|↑↓〉 − |↓↑〉

)
(s = 0), (11.2.32)

|ψa, ψb〉A ⊗ |↑↑〉 (s = 1, ms = 1), (11.2.33)

|ψa, ψb〉A ⊗ 1√
2

(
|↑↓〉+ |↓↑〉

)
(s = 1, ms = 0), (11.2.34)

|ψa, ψb〉A ⊗ |↓↓〉 (s = 1, ms = −1). (11.2.35)

Other kets, such as |ψa, ψb〉S ⊗ |↑↑〉, do not exist as physical states. For example, the ground

state of helium, with two electrons, has an orbital part that is symmetric under interchange of

the positions of the two electrons. The spin state is therefore the antisymmetric total spin s = 0

combination.
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11.3 Addition of orbital angular momentum and spin 1/2

In this section, we consider the combination of two angular momenta j1 and j2, with j1 arbitrary

and j2 = 1/2. This applies, for example, to the case where we are combining the orbital L and

intrinsic S angular momenta for a single spin-1/2 particle such as the electron. We will frame

our discussion in that context.

As we saw in section 8.2, the spin states of an electron can be associated with a two-

component spinor, with the spin operator S represented by 2 × 2 matrices h̄
2
σ. In the position

wavefunction spinor representation corresponding to the CSCO (R, S2, Sz), the orbital angular

momentum operators L and L2 are represented by differential operators proportional to the unit

matrix in the spin sector, for example [compare eqs. (8.6.7) and (8.6.8)]

Lz ↔ −ih̄
(
1 0
0 1

)
∂

∂φ
, L+ ↔ h̄eiφ

(
1 0
0 1

)(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (11.3.1)

etc. However, it is often more useful in problems with spherical symmetry to replace R in the

CSCO with the radial coordinate operator R and the operators L2 and Lz , so that all of the

angular momentum operators are represented by matrices rather than differential operators on

wavefunctions.

The angular momentum product orthobasis consists of common eigenkets of the compatible

operators (L2, S2, Lz, Sz). The corresponding basis kets can be labeled |l smlms〉, where we have
suppressed one or more degeneracy labels (which might correspond to the radial wavefunction).

Then, also suppressing the labels l, s, the product basis states are

|ml, ↑〉 and |ml, ↓〉 , (11.3.2)

where ms = 1/2 and −1/2 are represented by ↑ and ↓, respectively. Using J = L + S, we

have another choice of compatible operators, (L2, S2, J2, Jz), associated to the total angular

momentum orthobasis eigenkets

|l s j m〉 = |j, m〉 . (11.3.3)

Our goal is to express the kets of eq. (11.3.3) as linear combinations of the product basis kets

(11.3.2), for each l.

If l = 0, then things are very easy; the product basis kets |0, ↑〉 and |0, ↓〉 are already

eigenstates of J2 with eigenvalue 3h̄2/4, and of Jz with eigenvalues ±h̄/2, respectively. Therefore,
the total angular momentum basis kets have j = 1/2 and m = ±1/2, and are |1

2
, 1
2
〉 = |0, ↑〉 and

|1
2
,−1

2
〉 = |0, ↓〉.

For l 6= 0, we begin with some preliminary counting, in order to know what to expect. There

are (2l+1)2 product basis kets |ml, ↑〉 and |ml, ↓〉. They are all eigenkets of Jz = Lz + Sz, and
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the largest eigenvalue of Jz is h̄m = h̄(l + 1/2). This implies that there must be, in the total

angular momentum basis, a multiplet with j = l + 1/2, which will have 2(l + 1/2) + 1 = 2l + 2

basis elements. Exactly one of those will have m = l − 1/2, but we also know that there

are two linearly independent states with that eigenvalue in the product basis, namely |l, ↓〉 and
|l−1, ↑〉. Therefore, there must also be a multiplet with j = l−1/2, which has 2(l−1/2)+1 = 2l

orthobasis members. Since we have accounted for all 4l + 2 linearly independent kets, we have

established that the tensor product of angular momentum l with angular momentum 1/2 must

consist of states with total angular momenta j = l+1/2 and l−1/2, and no others. In notation

similar to eq. (11.2.20), this is expressed as

l ⊗ 1

2
= (l − 1/2)⊕ (l + 1/2). (11.3.4)

Unlike eq. (11.2.20), there are no A or S subscripts here, because one cannot define antisym-

metrization or symmetrization with respect to angular momenta that are are not the same.

To construct a complete map between the total and product orthobases, let us start with

the state |ml, ms〉 = |l, ↑〉. Acting on this with Jz gives

Jz |l, ↑〉 = (Lz + Sz) |l, ↑〉 = h̄(l + 1/2) |l, ↑〉 , (11.3.5)

and this is clearly the unique state with the largest possible Jz eigenvalue. Since this is an

eigenstate of J2 and Jz with quantum numbers j = l+1/2 and m = l+1/2, up to a phase that

we can set arbitrarily,

|l+1/2, l+1/2〉 = |l, ↑〉 . (11.3.6)

Now we can use this to construct all of the other states with j = l + 1/2, by acting repeatedly

with the lowering operator J− = L− + S−. From eq. (8.1.24),

J− |l+1/2, l+1/2〉 = h̄
√
2l + 1 |l+1/2, l − 1/2〉 , (11.3.7)

so we get

|l+1/2, l−1/2〉 =
1

h̄
√
2l + 1

(S− + L−) |l, ↑〉 , (11.3.8)

or, using eq. (8.1.24) again to evaluate the action of each of S− and L−,

|l+1/2, l−1/2〉 =
1√

2l + 1

(
|l, ↓〉+

√
2l |l−1, ↑〉

)
. (11.3.9)

This is our second total angular momentum orthobasis eigenket. Acting with J− on it in a

similar way gives

|l+1/2, l−3/2〉 =
1√

2l + 1

(√
2 |l−1, ↓〉+

√
2l − 1 |l−2, ↑〉

)
. (11.3.10)
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Using the same strategy, by induction we obtain all of the j = l + 1/2 kets,

|l+1/2, m〉 = 1√
2l + 1

(√
l−m+1/2 |m+1/2, ↓〉+

√
l+m+1/2 |m−1/2, ↑〉

)
(11.3.11)

for all m = −l−1/2, . . . , l+1/2.

We are done finding the states with total angular momentum j = l+1/2, but now we must

find the states with j = l−1/2. Each state with j = l−1/2 must be a linear combination of the

form

|l−1/2, m〉 = a |m+1/2, ↓〉+ b |m−1/2, ↑〉 . (11.3.12)

We know this because the product orthobasis kets on the right side are the only two that have

the correct eigenvalue m of Jz/h̄. Now, we can appeal to Theorem 2.6.5, which assures us

that, since J2 is Hermitian, the state |l−1/2, m〉 must be orthogonal to the state |l+1/2, m〉.
Carrying out the inner product of eq. (11.3.11) with eq. (11.3.12), we learn that

a
√
l −m+ 1/2 = −b

√
l +m+ 1/2. (11.3.13)

As an arbitrary phase convention, we choose a real and positive. Requiring unit normalization

of the ket then uniquely determines that for j = l − 1/2,

|l−1/2, m〉 = 1√
2l + 1

(√
l+m+1/2 |m+1/2, ↓〉 −

√
l−m+1/2 |m−1/2, ↑〉

)
, (11.3.14)

for m = −l+1/2, . . . , l−1/2.
That concludes our task. To recap, in eqs. (11.3.11) and (11.3.14), we have obtained the

J2, Jz orthobasis kets as linear combinations of the product orthobasis kets.

As the simplest non-trivial concrete example, which we will have occasion to use later (at

the end of section 15.3), consider the addition of an angular momentum l = 1 to a spin-1/2:

1⊗ 1

2
=

3

2
⊕ 1

2
. (11.3.15)

Applying eq. (11.3.11), we have the j = 3/2 total angular momentum basis states

∣∣3
2 ,

3
2

〉
= |1, ↑〉 , (11.3.16)

∣∣3
2
, 1
2

〉
=

√
1
3
|1, ↓〉+

√
2
3
|0, ↑〉 , (11.3.17)

∣∣3
2 ,−

1
2

〉
=

√
2
3 |0, ↓〉+

√
1
3 |−1, ↑〉 , (11.3.18)

∣∣3
2 ,−

3
2

〉
= |−1, ↓〉 , (11.3.19)

and applying eq. (11.3.14) we get the j = 1/2 total angular momentum basis states

∣∣1
2 ,

1
2

〉
=

√
2
3 |1, ↓〉 −

√
1
3 |0, ↑〉 , (11.3.20)

∣∣1
2
,−1

2

〉
=

√
1
3
|0, ↓〉 −

√
2
3
|−1, ↑〉 . (11.3.21)
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11.4 The general case and Clebsch–Gordan coefficients

Now consider the general case of addition of angular momenta J1 and J2. Let us apply reasoning

similar to the counting that led to eq. (11.3.4). The largest eigenvalue of Jz = J1z + J2z is

h̄(j1 + j2), and there is only one such state, |j1 : j2〉, so there must be exactly one total angular

momentum multiplet with j = j1 + j2. (For the remainder of this section, product angular

momentum basis kets will always be distinguished by use of a colon.) The subspace with

Jz eigenvalue h̄(j1 + j2 − 1) has dimension 2, spanned by the two states in the product basis

|j1 − 1 : j2〉 and |j1 : j2 − 1〉. One linear combination of these is found in the j = j1+j2 multiplet,

so there must also be exactly one total angular momentum multiplet with j = j1 + j2 − 1.

Similarly, the subspace with Jz eigenvalue h̄(j1 + j2 − 2) has dimension 3, spanned by the

product basis kets |j1 − 2 : j2〉 and |j1 − 1 : j2 − 1〉 and |j1 : j2 − 2〉. Two linear combinations

of these will occur in the j = j1 + j2 and j = j1 + j2− 1 multiplets that we already know about,

so there must also be exactly one total angular momentum multiplet with j = j1 + j2 − 2.

Continuing in this way, one finds that the tensor product of a multiplet with J2
1 eigenvalue

h̄2j1(j1 + 1) and a multiplet with J2
2 eigenvalue h̄2j2(j2 + 1) must consist of a sum of multiplets

with J2 = h̄2j(j+1), with j taking on the values from |j1−j2| to j1+j2, with integer increments,

j1 ⊗ j2 = |j1 − j2| ⊕ · · · ⊕ (j1 + j2). (11.4.1)

Each of the total angular momentum basis kets |j1 j2 j,m〉 is a linear combination of the product

basis kets |j1 j2m1 :m2〉. By the completeness of the latter, we can write

|j1 j2 j,m〉 =

j1∑

m1=−j1

j2∑

m2=−j2

|j1 j2m1 :m2〉 〈j1 j2m1 :m2|j1 j2 j,m〉 (11.4.2)

=

j1∑

m1=−j1

j2∑

m2=−j2
|j1 j2m1 :m2〉Cj1 j2 j

m1m2m
(11.4.3)

where the inner products

Cj1 j2 j
m1m2m

≡ 〈j1 j2m1 :m2|j1 j2 j,m〉 (11.4.4)

are known as Clebsch–Gordan coefficients, after mathematicians Alfred Clebsch and Paul

Gordan. Various different notations and conventions for them appear in the literature. We will

usually use the C notation for these inner products, as a way of saving space, with commas

inserted between the superscripts or subscripts when it helps to make the meaning clear.

The Clebsch–Gordan coefficients obey selection rules; they can be non-zero only if

|j1 − j2| ≤ j ≤ j1 + j2, (triangle condition), (11.4.5)

j1 + j2 − j is an integer, (11.4.6)

m = m1 +m2. (11.4.7)
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The first two of these simply restate eq. (11.4.1), and the last follows from evaluating matrix

elements of Jz = J1z + J2z. In general, the Clebsch–Gordan coefficients are subject to phase

ambiguities, which are resolved here by adopting a phase convention that Cj1 j2 j
m1m2m is real and

positive for j1 ≥ j2 when m = j and m1 = j1. (In the case that j1 = j2, one should just

arbitrarily chose one of the two equal angular momenta for the label 1.) Then, because the

actions of J− and J1− and J2− only involve real coefficients, as given by eq. (8.1.24), we find the

useful result that all of the Clebsch–Gordan coefficients will be real. If one simultaneously flips

the signs of m1, m2, and m, then they satisfy

Cj1 j2 j
m1m2m

= (−1)j1+j2−j Cj1 j2 j
−m1,−m2,−m (11.4.8)

in our phase convention.

One can also use completeness with respect to the orthobasis elements |j1 j2 j,m〉, to ob-

tain the inverse relation to eq. (11.4.3), which gives each product orthobasis ket as a linear

combination of the total angular momentum orthobasis kets,

|j1 j2m1 :m2〉 =

j1+j2∑

j=|j1−j2|

j∑

m=−j
|j1 j2 j,m〉 〈j1 j2 j,m|j1 j2m1 :m2〉 (11.4.9)

=

j1+j2∑

j=|j1−j2|

j∑

m=−j
|j1 j2 j,m〉 Cj1 j2 j

m1m2m
. (11.4.10)

The matrix elements on the right are actually the complex conjugates of the Clebsch–Gordan

coefficients, but in our phase convention, all of them are real anyway.

As eqs. (11.4.3) and (11.4.10) demonstrate, results for total angular momentum orthobasis

states in terms of product states, or vice versa, can always be expressed in terms of Clebsch–

Gordan coefficients. For example, the content of the results for 1⊗ 1
2
= 3

2
⊕ 1

2
in eqs. (11.3.16)-

(11.3.21) can be expressed as

C
1, 1

2
, 3
2

1, 1
2
, 3
2

= 1, C
1, 1

2
, 3
2

1,− 1

2
, 1
2

=

√
1
3 , C

1, 1
2
, 3
2

0, 1
2
, 1
2

=

√
2
3 , (11.4.11)

C
1, 1

2
, 1
2

1,− 1

2
, 1
2

=

√
2
3 , C

1, 1
2
, 1
2

0, 1
2
, 1
2

= −
√

1
3 , (11.4.12)

and others related to them by eq. (11.4.8). One can easily find published or online tables of

Clebsch–Gordan coefficients, and software implementations of them, but it is a good idea to

read the fine print to make sure of the phase convention being used.

In the remainder of this section, we will often suppress the labels j1, j2, which are the same

for all of the kets. We will also assume that j1 ≥ j2, in order to implement our phase convention.

(Otherwise, one can simply reverse the roles of j1 and j2.)
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To find the total angular momentum orthobasis states, and thus the Clebsch–Gordan coef-

ficients, in a general case, we can use the following recipe. Start with the the state with the

highest possible m, which is m = j1 + j2 = j. Since there is only one product orthobasis state

with J1z + J2z eigenvalue equal to h̄(j1 + j2), we have, using our phase convention choice,

|j1+j2, j1+j2〉 = |j1 : j2〉. (11.4.13)

Now we follow the strategy of repeatedly acting with the lowering operator J− = J1− + J2− to

find new states |j1 + j2, m〉. Using eq. (8.1.24) gives

J−|j1+j2, j1+j2〉 = h̄
√
2(j1 + j2)|j1+j2, j1+j2−1〉, (11.4.14)

which also can be evaluated as

J1−|j1 : j2〉+ J2−|j1 : j2〉 = h̄
√

2j1|j1−1 : j2〉+ h̄
√

2j2|j1 : j2−1〉. (11.4.15)

Therefore,

|j1+j2, j1+j2−1〉 =
1√

j1 + j2

(√
j2|j1 : j2−1〉+

√
j1|j1−1 : j2〉

)
. (11.4.16)

[The special cases j1 = j2 = 1/2 and j1 = l, j2 = 1/2 were previously found in eqs. (11.2.15) and

(11.3.9), respectively.] Continuing to act with J−, we similarly find all of the orthobasis kets

|j1+j2, m〉. Eventually we will obtain m = −j1 − j2, which is then annihilated by J−.

Next, we proceed to obtain the states that have total j = j1 + j2 − 1. We start by writing

the most general possible expression for the state with the largest possible m,

|j1+j2−1, j1+j2−1〉 = a|j1 : j2−1〉+ b|j1−1 : j2〉. (11.4.17)

The coefficients a and b can be uniquely identified by requiring that this ket is orthogonal to

|j1+ j2, j1+ j2−1〉, that the ket is normalized so that |a|2 + |b|2 = 1, and that a is real and

positive according to our phase convention. This gives

|j1+j2−1, j1+j2−1〉 =
1√

j1 + j2

(√
j1|j1 : j2−1〉 −

√
j2|j1−1 : j2〉

)
. (11.4.18)

[Again, we had previously derived this in the special cases j1 = j2 = 1/2 and j1 = l, j2 = 1/2,

in eqs. (11.2.17) and (11.3.14), respectively.] Now, we again apply the operator J− repeatedly,

to obtain all of the other states |j1+j2−1, m〉.
Continuing on our vaunted quest, we proceed to the states with j = j1 + j2 − 2, starting

again with the maximum value ofm. This must be some linear combination of the three product

orthobasis kets with m = m1 +m2 = j1 + j2 − 2, which we can write as

|j1+j2−2, j1+j2−2〉 = a|j1 : j2−2〉+ b|j1−1 : j2−1〉+ c|j1−2 : j2〉. (11.4.19)
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The three unknown coefficients a, b, c can be obtained by demanding that this be orthogonal

to both of the kets |j1+j2, j1+j2−2〉 and |j1+j2−1, j1+j2−2〉, as required by Theorem 2.6.5

(since all three are eigenvectors of J2 with different eigenvalues), and that the ket is normalized,

so |a|2 + |b|2 + |c|2 = 1, and that a is real and positive according to our phase convention. The

remaining states |j1+j2−2, m〉 are then obtained by acting repeatedly with J−.

The preceding illustrates the general procedure, which is shown schematically in Figure

11.4.1. Each column represents the repeated action of J− on the state with the highest m for a

given j. After completing each column, we move to the next column by first writing a candidate

ket |j, j〉 as a linear combination of the product orthobasis kets that have m1 +m2 = m = j.

The coefficients are determined by requiring orthogonality to all of the previously obtained total

angular momentum orthobasis kets with that value of m, and total angular momentum j+1 or

larger. Demanding that the ket be normalized and obey our phase convention, the state is then

uniquely determined, and the rest of the states |j, m〉 follow by applying J− repeatedly. The

process iterates by moving to the next column with j lower by 1. Eventually, we will finish the

last column of orthobasis kets with j = |j1 − j2|, and there will be none more.

The identities necessary and sufficient to carry out the calculations just described can be

expressed directly in terms of the Clebsch–Gordan coefficients. These formulas will have other

uses, too. First,

√
j(j + 1)−m(m− 1)Cj1 j2 j

m1,m2,m−1 =
√
j1(j1 + 1)−m1(m1 + 1)Cj1 j2 j

m1+1,m2,m

+
√
j2(j2 + 1)−m2(m2 + 1)Cj1 j2 j

m1,m2+1,m, (11.4.20)

which follows from evaluating

〈m1 :m2|J−|j,m〉 = 〈m1 :m2| (J1− + J2−) |j,m〉 = (〈j,m|(J1+ + J2+)|m1 :m2〉)∗ (11.4.21)

using eqs. (8.1.22) and (8.1.24). From the reality of the Clebsch–Gordan coefficients in our

chosen convention, and the total angular momentum orthonormality relations with product

basis completeness, we also have

j1∑

m1=−j1

j2∑

m2=−j2
Cj1 j2 j
m1m2m

Cj1 j2 j′

m1m2m′ = δj ,j′ δm,m′ . (11.4.22)

The Clebsch–Gordan coefficient results can alternatively be derived, or checked, using the re-

currence relations that follow similarly from matrix elements of J+,

√
j(j + 1)−m(m+ 1)Cj1 j2 j

m1,m2,m+1 =
√
j1(j1 + 1)−m1(m1 − 1)Cj1 j2 j

m1−1,m2,m

+
√
j2(j2 + 1)−m2(m2 − 1)Cj1 j2 j

m1,m2−1,m, (11.4.23)
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Start→ |j1+j2, j1+j2〉
↓ J−

orthog.

|j1+j2, j1+j2−1〉 −→ |j1+j2−1, j1+j2−1〉
↓ J− ↓ J−

orthog.

|j1+j2, j1+j2−2〉 |j1+j2−1, j1+j2−2〉 −→ |j1+j2−2, j1+j2−2〉
↓ J− ↓ J− ↓ J−
...

...
... . . .

↓ J− ↓ J− ↓ J−
|j1+j2,−j1−j2+2〉 |j1+j2−1,−j1−j2+2〉 |j1+j2−2,−j1−j2+2〉

↓ J− ↓ J−
|j1+j2,−j1−j2+1〉 |j1+j2−1,−j1−j2+1〉

↓ J−
|j1+j2,−j1−j2〉

Figure 11.4.1: Schematic of a plan to compute the total angular momentum orthobasis kets
|j1 j2 j,m〉, abbreviated here as |j,m〉, in terms of product orthobasis kets, when two angular
momenta j1 and j2 are combined. The process starts at the upper left with j = m = j1+ j2.
Each column has fixed j, and is constructed from top to bottom using J−. Then the next
column is started by constructing the state with maximum m = j, by requiring it to be
orthogonal to all of the previously found kets that have that same m. The process ends after
the rightmost column with j = |j1 − j2| is finished, with m = −|j1 − j2|. The results of this
process provide the Clebsch–Gordan coefficients 〈m1 :m2|j,m〉 = 〈j1 j2m1 :m2|j1 j2 j,m〉 =
Cj1 j2 j
m1m2m

.
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and the product basis orthonormality relations

j1+j2∑

j=|j1−j2|

j∑

m=−j
Cj1 j2 j
m1m2mC

j1 j2 j
m′

1
m′

2
m = δm

1
,m′

1
δm

2
,m′

2
, (11.4.24)

which follow from completeness of the total angular momentum orthobasis.

Besides the examples already done in the previous sections, consider the special case of

adding two angular momenta j1 = 1 and j2 = 1. The resulting allowed values of j are 0, 1, and

2. By following the procedure summarized in Figure 11.4.1, one finds the j = 2 states

|2, 2〉 = |1 : 1〉 , (11.4.25)

|2, 1〉 =
1√
2

(
|1 : 0〉+ |0 : 1〉

)
, (11.4.26)

|2, 0〉 =
1√
6

(
|1 :−1〉+ 2 |0 : 0〉+ |−1 : 1〉

)
, (11.4.27)

|2,−1〉 =
1√
2

(
|0 :−1〉+ |−1 : 0〉

)
, (11.4.28)

|2,−2〉 = |−1 :−1〉 , (11.4.29)

which are all symmetric under m1 ↔ m2, followed by the j = 1 states

|1, 1〉 =
1√
2

(
|1 : 0〉 − |0 : 1〉

)
, (11.4.30)

|1, 0〉 =
1√
2

(
|1 :−1〉 − |−1 : 1〉

)
, (11.4.31)

|1,−1〉 =
1√
2

(
|0 :−1〉 − |−1 : 0〉

)
, (11.4.32)

which are each antisymmetric under the same exchange, and finally the j = 0 state

|0, 0〉 =
1√
3

(
|1 :−1〉 − |0 : 0〉+ |−1 : 1〉

)
, (11.4.33)

which is symmetric. To summarize,

1⊗ 1 = 2S ⊕ 1A ⊕ 0S, (11.4.34)

where the S and A subscripts indicate the symmetry or antisymmetry of the total angular

momentum orthobasis kets under exchange of the two product basis eigenvalues m1 and m2.

More generally, for the combination of two equal angular momenta j1 = j2 = j, the symmetry

and antisymmetry properties for exchange of m1 and m2 are summarized by

j ⊗ j = (2j)S ⊕ (2j − 1)A ⊕ (2j − 2)S ⊕ · · · ⊕ 0, (11.4.35)

with alternating S and A, so that the singlet on the right is symmetric if j is an integer and

antisymmetric if j is a half-integer.
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For example, if j1 = j2 = 3/2, and we call the resulting total angular momentum quantum

number J , then you can show that the J = 3, mJ = 3 and J = 3, mJ = 0 and J = 0, mJ = 0

states are, in terms of product basis states |m1 : m2〉,

|3, 3〉 =
∣∣3
2 :

3
2

〉
, (11.4.36)

|3, 0〉 =
1√
20

(∣∣3
2 :−

3
2

〉
+
∣∣−3

2 :
3
2

〉
+ 3
∣∣1
2 :−

1
2

〉
+ 3
∣∣−1

2 :
1
2

〉)
, (11.4.37)

|0, 0〉 =
1

2

(∣∣3
2
:−3

2

〉
−
∣∣−3

2
: 3
2

〉
−
∣∣1
2
:−1

2

〉
+
∣∣−1

2
: 1
2

〉)
, (11.4.38)

respectively. It is left as an exercise to work out the other total angular momentum orthobasis

states |J,mJ〉 in this example.

One can also combine three (or more) angular momenta, to obtain an orthobasis of kets that

are eigenstates of the observables J2 and Jz for the total angular momentum J = J1 + J2 + J3.

This can be done recursively, by first combining J1 and J2 into an angular momentum operator

J12, and then combining the results with J3. For example, combining three spin-1/2 angular

momenta results in

1

2
⊗ 1

2
⊗ 1

2
= (1⊕ 0)⊗ 1

2
= (1⊗ 1

2
)⊕ (0⊗ 1

2
) = (3/2)S ⊕ (1/2)a ⊕ (1/2)b. (11.4.39)

The subscript S on the j = 3/2 multiplet indicates that the states in it are symmetric under

exchange of any two of the three individual spins, as we will soon check. There are also two

j = 1/2 multiplets in the result, distinguished by degeneracy labels a and b. To check the

multiplicities of states, we note that on the left side of eq. (11.4.39) there are 23 = 8 product

orthobasis states, since each individual spin has 2 values of ms = ±1/2. On the right, the

multiplicities of the total angular momentum states are 4+2+2 = 8. To explicitly construct the

total angular momentum orthobasis kets, one can first use eqs. (11.2.14)–(11.2.17) to construct

the J2
12, J12z eigenstate kets. Combining the resulting j12 = 1 states with the third spin, one

finds, by using eq. (11.3.11), that the j = 3/2 states are

|32 ,
3
2〉 = |↑↑↑〉 , (11.4.40)

|32 ,
1
2〉 =

1√
3

(
|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉

)
, (11.4.41)

|32 ,−
1
2〉 =

1√
3

(
|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉

)
, (11.4.42)

|3
2
,−3

2
〉 = |↓↓↓〉 , (11.4.43)

and, by using eq. (11.3.14), the j = 1/2 states

|12 ,
1
2 , a〉 =

1√
6

(
2 |↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉

)
, (11.4.44)

|1
2
,−1

2
, a〉 =

1√
6

(
|↑↓↓〉+ |↓↑↓〉 − 2 |↓↓↑〉

)
. (11.4.45)
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From combining the j12 = 0 states from eq. (11.2.17) with the third spin, we have the additional

j = 1/2 total angular momentum basis states

|12 ,
1
2 , b〉 =

1√
2

(
|↑↓↑〉 − |↓↑↑〉

)
, (11.4.46)

|12 ,−
1
2 , b〉 =

1√
2

(
|↑↓↓〉 − |↓↑↓〉

)
. (11.4.47)

The explicit forms for the j = 3/2 states show that they are indeed each symmetric under

exchange of any two of the three individual spins. For the j = 1/2 states, the ones labeled

a are symmetric, and the ones labeled b are antisymmetric, under exchange of the first two

spins. However, these j = 1/2 states do not have a complete symmetry or antisymmetry under

exchange of every pair of spins. Also note that there is no totally antisymmetric combination of

three or more spin 1/2 states, simply because in the product basis there are only two values ↑
and ↓ available, so that every product orthobasis ket is symmetric under interchange of at least

one pair of spins.

Similarly, combining four spin-1/2 angular momenta gives

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= (1⊕ 0)⊗ (1⊕ 0) = 2S ⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (11.4.48)

Here the counting is that the number of product orthobasis states on the left is 24 = 16,

while the counting of multiplicities of total angular momentum orthobasis states on the right is

5 + 3 + 3 + 3 + 1 + 1 = 16. Only the total spin 2 multiplet is totally symmetric, and there is

no totally antisymmetric multiplet. The other multiplets on the right side of eq. (11.4.48) have

mixed symmetry properties under exchange of the spins.

In the case of N electrons in an atom, the angular momentum eigenstates are often given

in spectroscopic notation, defined as follows. First, combine all of the individual spin operators

Si to obtain the total spin angular momentum operator S =
∑

i Si. The eigenvalues of the

operator S2 = S ·S are then denoted by h̄2S(S+1) where S is a number.† Clearly, if N is even,

then the number S must be an integer with 0 ≤ S ≤ N/2. If N is odd, then the number S

must be half-integer, with 1/2 ≤ S ≤ N/2. Next, combine all of the individual orbital angular

momenta operators Li to obtain the total orbital angular momentum operator L =
∑

i Li. The

eigenvalues of the operator L2 = L · L are likewise denoted h̄2L(L + 1), where the quantum

number L is always an integer. Finally, the operators S and L are combined to form the total

angular momentum operator J , and the operators J2 and Jz have eigenvalues denoted h̄
2J(J+1)

and h̄mJ , respectively. The traditional notation for a multiplet of common eigenstates of the

†Following a common but potentially confusing notation, in the case of combined angular momenta, capital
letters are often used both for the names of the operators as well as the corresponding quantum numbers.
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observables S2, L2, and J2 is then

2S+1LJ , (11.4.49)

where S, L, and J are the quantum numbers, but with L replaced by the capital letter code S, P ,

D, F , G, . . ., according to whether the number L is 0, 1, 2, 3, 4, . . ., as indicated in eq. (10.1.20).

The degeneracy, or multiplicity, of each group of states denoted by 2S+1LJ is 2J + 1, since the

eigenvalue mJ can take on the values −J, −J+1, . . . , J−1, J .
For example, a single electron always has S = 1/2. For L = 0, it has J = 1/2, and for L ≥ 1

it can have J = L ± 1/2, as we saw in section 11.3. So, the list of total angular momentum

multiplets for a single electron in an atom is

2S1/2,
2P1/2,

2P3/2,
2D3/2,

2D5/2,
2F5/2,

2F7/2,
2G7/2,

2G9/2, . . . . (11.4.50)

For two electrons, the possible total spin quantum numbers are S = 0 and 1, as we saw

in section 11.2. The orbital angular momenta L1 and L2 with quantum numbers l1 and l2 can

be combined into L = |l1− l2|, . . . , l1+ l2. Therefore, the possible total angular momentum

eigenstates for two electrons are

1S0,
1P1,

1D2,
1F3,

1G4, . . . (11.4.51)

for S = 0, and

3S1,
3P0,

3P1,
3P2,

3D1,
3D2,

3D3,
3F2,

3F3,
3F4, . . . (11.4.52)

for S = 1. However, as we will discuss in more detail in section 16.1, Fermi–Dirac statistics

requires that the total state must be antisymmetric under exchange of the two electrons. In the

special case that the electrons have the same radial wavefunction and the same orbital angular

momentum quantum number l1 = l2, then one can use eq. (11.4.35) to see that if L is odd

(an antisymmetric position wavefunction) then only the symmetric spin combination S = 1 is

allowed, and if L is even (a symmetric position wavefunction), then only the antisymmetric spin

combination S = 0 is allowed.

11.5 How spherical harmonics combine

The spherical harmonics are the position representations of the orbital angular momentum

eigenstates of L2 and Lz. In this section, we will learn how the addition of angular momentum

technology is realized in terms of the spherical harmonics.

Let us start by considering fixed l1, l2, l, and m. We then define the following function of

θ, φ, as a linear combination of products of spherical harmonics weighted by the Clebsch–Gordan
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coefficients defined by eq. (11.4.4),

Ψm
l (θ, φ) ≡

∑

m1,m2

Y m1

l1
(θ, φ) Y m2

l2
(θ, φ)C l1l2l

m1m2m
, (11.5.1)

where the sums are over all m1 and m2 such that the Clebsch–Gordan coefficient does not

vanish. Our goal is to find another simple expression for Ψm
l (θ, φ). We claim that, as its

labeling suggests, this wavefunction is an eigenstate of the differential operators L2 and Lz, with

eigenvalues h̄2l(l + 1) and h̄m, respectively, and it is therefore proportional to Y m
l (θ, φ).

To prove this claim, we will check the action of the differential operators Lz , L+, and L− on

it. First, by applying eq. (8.6.27), we find

LzΨ
m
l =

∑

m1,m2

(h̄m1 + h̄m2) Y
m1

l1
Y m2

l2
C l1l2l
m1m2m. (11.5.2)

The Clebsch–Gordan coefficient enforces that all non-zero contributions have m1 +m2 = m, so

LzΨ
m
l = h̄mΨm

l . (11.5.3)

Next, applying eq. (8.6.29) we find

L−Ψ
m
l = h̄

∑

m1,m2

[√
l1(l1 + 1)−m1(m1 − 1) Y m1−1

l1
Y m2

l2

+
√
l2(l2 + 1)−m2(m2 − 1)Y m1

l1
Y m2−1
l2

]
C l1l2l
m1m2m

. (11.5.4)

Since we are summing over all m1 and m2, we can use the trick of relabeling m1 → m1 + 1 in

the first term and m2 → m2 + 1 in the second term, to obtain

L−Ψ
m
l = h̄

∑

m1,m2

[√
l1(l1 + 1)−m1(m1 + 1)C l1l2l

m1+1,m2,m

+
√
l2(l2 + 1)−m2(m2 + 1)C l1l2l

m1,m2+1,m

]
Y m1

l1
Y m2

l2
. (11.5.5)

Now the Clebsch–Gordan recurrence relation eq. (11.4.20) turns this into

L−Ψ
m
l = h̄

∑

m1,m2

√
l(l + 1)−m(m− 1)C l1l2l

m1,m2,m−1 Y
m1

l1
Y m2

l2
, (11.5.6)

or, using the definition of eq. (11.5.1), simply,

L−Ψ
m
l = h̄

√
l(l + 1)−m(m− 1)Ψm−1

l . (11.5.7)

In an exactly analogous way, one finds

L+Ψ
m
l = h̄

√
l(l + 1)−m(m+ 1)Ψm+1

l . (11.5.8)
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Taken together, eqs. (11.5.3), (11.5.7) and (11.5.8), combined with L2 = (L+L−+L−L+)/2+L
2
z

from eq. (8.1.15), show that this wavefunction also obeys

L2Ψm
l = h̄2l(l + 1)Ψm

l . (11.5.9)

Since the spherical harmonic Y m
l is the unique (θ, φ) function with L2 eigenvalue h̄2l(l+ 1) and

Lz eigenvalue h̄m, eqs. (11.5.3) and (11.5.9) show that Ψm
l must be proportional to it, and

Ψm
l (θ, φ) = cl1,l2,l,m Y

m
l (θ, φ) (11.5.10)

as claimed, for some constant cl1,l2,l,m (independent of θ, φ).

Furthermore, by acting with L− on both sides of the previous equation, we obtain

L−Ψ
m
l = cl1,l2,l,mL−Y

m
l = cl1,l2,l,mh̄

√
l(l + 1)−m(m− 1)Y m−1

l , (11.5.11)

but also from eq. (11.5.7) this is equal to

L−Ψ
m
l = h̄

√
l(l + 1)−m(m− 1) cl1,l2,l,m−1 Y

m−1
l . (11.5.12)

Comparing these informs us that cl1,l2,l,m = cl1,l2,l,m−1 for all −l + 1 ≤ m ≤ l, so the constant of

proportionality does not actually depend on m, and we therefore drop that label.

All of the preceding just served to prove that we can write

∑

m1,m2

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)C l1l2l

m1m2m
= cl1l2l Y

m
l (θ, φ) (11.5.13)

for some proportionality constant cl1l2l. Our remaining task is to identify this constant. Fortu-

nately, there is a trick to do this very easily; just consider the special case θ = 0. Using the fact

found in eq. (8.6.54),

Y m
l (0, φ) = δm,0

√
2l + 1

4π
, (11.5.14)

the double sum in eq. (11.5.13) collapses to a single term with m1 = m2 = 0, and it reads

√
2l1 + 1

4π

√
2l2 + 1

4π
C l1l2l

000 = cl1l2l

√
2l + 1

4π
. (11.5.15)

Solving this for cl1l2l, eq. (11.5.13) becomes

∑

m1,m2

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)C l1l2l

m1m2m
=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 Y
m
l (θ, φ). (11.5.16)

This accomplishes our goal.

242



To derive a related interesting and useful identity, start with eq. (11.5.16), multiply by

C l1l2l
m′

1
m′

2
m, then sum over all l, m, then apply the orthogonality of the Clebsch–Gordan coefficients

of eq. (11.4.24) on the left side, and finally relabel m′1 → m1 and m′2 → m2. The result is

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

l1+l2∑

l=|l1−l2|

l∑

m=−l

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 C
l1l2l
m1m2mY

m
l (θ, φ). (11.5.17)

The product of any two spherical harmonics is thus an appropriately weighted sum over the

spherical harmonics selected by the corresponding addition of angular momenta.

Another closely related identity follows. Start from eq. (11.5.17), multiply by Y m′

l′ (θ, φ)∗,

integrate over the angular coordinates, then apply the orthonormality of the spherical harmonics

using eq. (8.6.31) on the right side, and finally relabel l′ → l and m′ → m. The result is

∫
dΩ
[
Y m
l (θ, φ)

]∗
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 C
l1l2l
m1m2m. (11.5.18)

This is the Wigner–Eckart formula for spherical harmonics. It is a special case of the

general Wigner–Eckart theorem (a statement about matrix elements of operators, and applicable

not just to orbital angular momentum) to be derived in section 12.3. Remarkably, the integral

only depends on the magnetic quantum numbers m1, m2, and m through the coefficient C l1l2l
m1m2m

,

so the Clebsch–Gordan selection rules (11.4.5)–(11.4.7) also govern which integrals of this type

can be non-zero. This formula can be used to evaluate the integral of any product of three

spherical harmonics (with or without complex conjugates), simply by making use of eq. (8.6.52).
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12 Tensor operators and rules they obey

12.1 Irreducible tensor operators

Consider a finite spatial rotation generated by a unitary operator, so that a state ket |ψ〉 is trans-
formed to |ψ′〉 = U(α) |ψ〉, as discussed in section 5.3. Recall, from the discussion surrounding

eqs. (2.5.25)–(2.5.30), that for any operator A we can consider the corresponding rotated version

defined by A′ = U(α)AU(α)†, so that any matrix element 〈χ|A|ψ〉 is equal to the matrix ele-

ment of the rotated operator for the rotated states, 〈χ′|A′|ψ′〉. We will now study operators that

transform under rotations in a simple and useful way, specifically, as irreducible representations

of the rotation group.

An irreducible tensor operator (also known as a spherical tensor operator) of order

j is a collection of 2j + 1 component operators labeled by an index m,

T (j)
m , (m = −j, . . . , j), (12.1.1)

which, by definition, are required to obey the following transformation rule for every unitary

rotation operator U(α),

U(α) T (j)
m U(α)† =

j∑

m′=−j
T

(j)
m′ D

(j)
m′m(α), (12.1.2)

with the Wigner rotation matrices D(j)(α) as defined in eq. (8.5.2). Using the form of U(α) for

an infinitesimal rotation in terms of the total angular momentum operator J in eq. (8.5.1), and

the actions of Jz, J+, and J− on angular momentum eigenstate as given in eqs. (8.1.7), (8.1.22),

and (8.1.24), which are reproduced here for convenience,

Jz |j,m〉 = h̄m |j,m〉 , (12.1.3)

J+ |j,m〉 = h̄
√
j(j + 1)−m(m+ 1) |j,m+1〉 , (12.1.4)

J− |j,m〉 = h̄
√
j(j + 1)−m(m− 1) |j,m−1〉 , (12.1.5)

it is left as an exercise to show that the components of an irreducible tensor operator must obey

the commutation relations

[
Jz, T

(j)
m

]
= h̄mT (j)

m , (12.1.6)
[
J+, T

(j)
m

]
= h̄

√
j(j + 1)−m(m+ 1)T

(j)
m+1, (12.1.7)

[
J−, T

(j)
m

]
= h̄

√
j(j + 1)−m(m− 1) T

(j)
m−1. (12.1.8)

The similarity of eqs. (12.1.6)–(12.1.8) to eqs. (12.1.3)–(12.1.5) suggests that the operators T
(j)
m

“carry” angular momentum as indicated by the quantum number labels j and m. Indeed this
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intuition is valid, as we will explain in the following, with the most precise statement to be given

in eq. (12.3.9).

The simplest type of irreducible tensor operator is obtained for j = 0 with a single component,

and is called a scalar operator. A scalar operator S obeys U(α)S U(α)† = S, or equivalently

it commutes with the total angular momentum operators Jz, J+, J−, and therefore also with Jx

and Jy and J2. Consider a state |α, j,m〉 that is an eigenstate of J2 and Jz with eigenvalues

h̄2j(j + 1) and h̄m, with α a degeneracy label. It follows that the state S |α, j,m〉 is also an

eigenstate of J2 and Jz with the same eigenvalues. In that sense, the scalar operator S carries

no total angular momentum.

Irreducible tensor operators with j = 1/2, or more generally with half-integer j, are called

spinor operators. However, these cannot be observables, because they are necessarily double-

valued; under a rotation by 2π they acquire a minus sign, just as we saw for matrix represen-

tations of rotations of states with half-integer angular momentum in eqs. (8.5.14) and (8.5.17).

Observables can be constructed by taking the product of an even number of spinor operators,

using Theorem 12.1.1 below. We will not discuss them further here, although they do play a

very important role in quantum field theories with fermions.

An irreducible tensor operator with order j = 1 and three components m = −1, 0, 1 is called

a vector operator V
(1)
m . These can be used to define the familiar rectangular x, y, z components

of V = x̂Vx + ŷVy + ẑVz, as follows:

Vx =
(
V

(1)
−1 − V

(1)
1

)
/
√
2, (12.1.9)

Vy = i
(
V

(1)
−1 + V

(1)
1

)
/
√
2, (12.1.10)

Vz = V
(1)
0 . (12.1.11)

These can be shown, using eqs. (12.1.6)–(12.1.8) with j = 1, to obey the commutation relations

[Ja, Vb] = ih̄ǫabcVc, (a, b, c = x, y, z). (12.1.12)

For example, the rectangular coordinate position operators found in R = x̂X + ŷY + ẑZ can be

expressed in terms of components of an irreducible tensor operator R(1), as

R
(1)
0 = Z, (12.1.13)

R
(1)
1 = −(X + iY )/

√
2, (12.1.14)

R
(1)
−1 = (X − iY )/

√
2, (12.1.15)

and it is left as an exercise to check that the requisite commutation relations (12.1.6)–(12.1.8)

are indeed satisfied. Besides the position operator, other examples of vector operators are the

momentum operator P , the orbital angular momentum L, the spin S, and the total angular
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momentum operator itself, J = L + S. Note that the angular momentum raising and lowering

operators defined by eq. (8.1.8) are actually given in the irreducible tensor component formalism

by J+ = −
√
2J

(1)
1 and J− =

√
2J

(1)
−1 , respectively, while Jz = J

(1)
0 .

Given any two irreducible tensor operators, one can multiply them to construct others. The

way to do this is specified by the following theorem.

Theorem 12.1.1 (Product rules for tensor operators) If T (j1) and S(j2) are irreducible

tensor operators of orders j1 and j2 respectively, and C
j1 j2 j
m1m2m are the Clebsch–Gordan coefficients

defined in eq. (11.4.4), then

W (j)
m =

∑

m1

∑

m2

T (j1)
m1

S(j2)
m2

Cj1 j2 j
m1m2m (m = −j, . . . , j) (12.1.16)

is an irreducible tensor operator of order j. Furthermore,

T (j1)
m1

S(j2)
m2

=
∑

j

∑

m

W (j)
m Cj1 j2 j

m1m2m
. (12.1.17)

The proof is left as an exercise.

As an example, consider two vector operators V (1) and U (1). Then, using the results of

eqs. (11.4.25)–(11.4.33) to extract the necessary Clebsch–Gordan coefficients for 1⊗1 = 0⊕1⊕2,
we apply eq. (12.1.16) to construct the following three tensor operators, of orders 0, 1, and 2:

W
(0)
0 =

(
V

(1)
1 U

(1)
−1 + V

(1)
−1 U

(1)
1 − V

(1)
0 U

(1)
0

)
/
√
3, (12.1.18)

and

W
(1)
±1 = ±

(
V

(1)
±1 U

(1)
0 − V

(1)
0 U

(1)
±1

)
/
√
2, (12.1.19)

W
(1)
0 =

(
V

(1)
1 U

(1)
−1 − V

(1)
−1 U

(1)
1

)
/
√
2, (12.1.20)

and

W
(2)
±2 = V

(1)
±1 U

(1)
±1 , (12.1.21)

W
(2)
±1 =

(
V

(1)
±1 U

(1)
0 + V

(1)
0 U

(1)
±1

)
/
√
2, (12.1.22)

W
(2)
0 =

(
V

(1)
1 U

(1)
−1 + V

(1)
−1 U

(1)
1 + 2V

(1)
0 U

(1)
0

)
/
√
6. (12.1.23)

Now, W
(0)
0 is a scalar operator, equal to −V ·U/

√
3. It is also not hard to check that W

(1)
m forms

a vector operator, and using eqs. (12.1.9)–(12.1.11), the corresponding rectangular components

are found to be those of i(V × U)/
√
2. The j = 2 tensor operator can be rewritten, in terms of

the rectangular components of V and U , as

W
(2)
±2 = (Vx ± iVy)(Ux ± iUy)/2, (12.1.24)

W
(2)
±1 = [(∓Vx − iVy)Uz + Vz(∓Ux − iUy)] /2, (12.1.25)

W
(2)
0 = (2VzUz − VxUx − VyUy) /

√
6. (12.1.26)
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A different basis for these j = 2 operators consists of the five operators

VxUy + VyUx, VxUz + VzUx, VyUz + VzUy,

VxUx − VyUy, 2VzUz − VxUx − VyUy, (12.1.27)

which can also be recognized as a basis for the entries of the traceless symmetric 3× 3 matrix

Wab = (VaUb + VbUa)/2 − δabV · U/3, (a, b = x, y, z). (12.1.28)

Therefore, W
(2)
m and Wab are the same operators in different guises. In terms of rectangular

components, the product of Va and Ub decomposes to a linear combination of the irreducible

tensor operators with j = 0, 1, 2, as

VaUb = δabV · U/3 + ǫabc(V × U)c/2 + Wab. (12.1.29)

This can be checked using ǫabc(V ×U)c = VaUb−VbUa. Thus VaUb is an example of a reducible

tensor operator.†

As a further specialization, we can take V = U = R, the position operator. The resulting

j = 2 spherical tensor is called the quadrupole moment operator:

Q
(2)
±2 = (X ± iY )2/2, (12.1.30)

Q
(2)
±1 = (∓X − iY )Z, (12.1.31)

Q
(2)
0 = (2Z2 −X2 − Y 2)/

√
6, (12.1.32)

with the same content as the rectangular-component traceless symmetric tensor

Qab = RaRb − δabR2/3. (12.1.33)

We will encounter this operator again in our study of absorption and emission of electromagnetic

radiation, in section 19.5.

12.2 Selection rules for scalar and vector operators and the Landé

projection formula

As remarked in the previous section, scalar operators do not change the total angular momentum

quantum numbers of the states they act on. Furthermore, their matrix elements between total

angular momentum (J2, Jz) eigenstates do not depend on the magnetic quantum number. Both

properties are incorporated in the following:

†A Cartesian tensor operator Ta1,...,an
with n ≥ 2 indices ai = x, y, z is generically (if no special symmetry,

antisymmetry, or trace conditions are imposed) reducible, in the sense that its entries can be written as linear
combinations of irreducible tensor operators with more than one j.
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Theorem 12.2.1 (Scalar operator selection rule) If S is a scalar operator, and |αjm〉 are
eigenstates of the total angular momentum operators J2 and Jz, with additional labels α, then

〈βj′m′|S|αjm〉 = δj′,jδm′,m 〈βj‖S‖αj〉 , (12.2.1)

where 〈βj‖S‖αj〉 does not depend on m.

As a matter of terminology, the object 〈βj‖S‖αj〉 is called a reduced matrix element.

This is not a matrix element in the usual sense, but rather just a symbol denoting a number

that depends on α, β, and j and on the choice of the operator S, but not on m or m′.

To prove Theorem 12.2.1, consider 〈βj′m′|[Jz, S]|αjm〉, which is 0 from the definition of

a scalar operator. Evaluating each Jz acting on the bra or ket to which it is adjacent, this

immediately tells us that (h̄m′ − h̄m) 〈βj′m′|S|αjm〉 = 0, so the matrix element in question

can only be non-zero if m′ = m. Similarly, the matrix element of [J2, S] = 0 tells us that

[h̄2j′(j′ + 1) − h̄2j(j + 1)] 〈βj′m′|S|αjm〉 = 0, so the matrix element can only be non-zero if

j′ = j, since the other root j′ = −j − 1 is impossible because j and j′ are both non-negative. It

remains to show that the matrix element is independent of m. This follows from

〈β, j,m+1|S|α, j,m+1〉 = 〈β, j,m|S|α, j,m〉 , (12.2.2)

which can be obtained by using the following facts: |α, j,m+1〉 is proportional to J+ |α, j,m〉;
and 〈β, j,m| is proportional to 〈β, j,m+1| J+ with the same constant of proportionality, namely

h̄
√
j(j + 1)−m(m+ 1); and [J+, S] = 0 for a scalar operator.

Theorem 12.2.1 is a powerful selection rule which can be applied, for example, if S is a part

of the Hamiltonian, which is often invariant under rotations and therefore a scalar operator.

(Examples of exceptions include a charged particle in the presence of an external electric or

magnetic field, which will always pick out a special direction that destroys the rotational sym-

metry. For example, if there is a constant external electric field E, the Hamiltonian will contain

a term proportional to E ·R, which is not a scalar operator. This is because E, being constant,

does not transform as a vector operator in the sense we have defined.) This theorem will even

be useful to us in the seemingly trivial case that S is the identity operator.

We now turn our attention to vector operators, which in this section we will treat in terms

of their rectangular coordinate components Va for a = x, y, z with V = x̂Vx + ŷVy + ẑVz. By

definition, these satisfy

[Ja, Vb] = ih̄ǫabcVc. (12.2.3)

One useful observation is that the operator J ·V = V ·J does not depend on the ordering, since

each Ja commutes with the corresponding component Va. Furthermore, it is a scalar operator:

[
Ja, J · V

]
= 0. (12.2.4)
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One can also check straightforwardly that

[
J2, Va

]
= ih̄ǫabc(VbJc + JcVb). (12.2.5)

From this, and the identity ǫabcǫdec = δadδbe − δaeδbd, one can establish the double commutator

relation

[
J2,
[
J2, Va

]]
= 2h̄2

(
J2Va + VaJ

2 − 2Ja(J · V )
)
. (12.2.6)

We now exploit eq. (12.2.6) by evaluating both sides as a matrix element between orthobasis

states 〈β, j′, m′| and |α, j,m〉, where α and β are degeneracy labels. Each instance of J2 can be

immediately evaluated as either h̄2j(j + 1) or h̄2j′(j′ + 1), leading to

h̄4
(
[j(j + 1)− j′(j′ + 1)]2 − 2[j(j + 1) + j′(j′ + 1)]

)
〈β, j′, m′|Va|α, j,m〉 =

−4h̄2 〈β, j′, m′|Ja(J · V )|α, j,m〉 . (12.2.7)

The matrix element on the right can be separated, by using completeness, to get

〈β, j′, m′|Ja(J · V )|α, j,m〉 =
∑

γ,j′′,m′′

〈β, j′, m′|Ja|γj′′m′′〉 〈γj′′m′′|J · V |α, j,m〉 . (12.2.8)

Here, the first matrix element vanishes unless γ = β and j′′ = j′, while according to Theorem

12.2.1 the second matrix element vanishes unless j′′ = j and m′′ = m. Therefore, only one term

in the completeness sum contributes, and eq. (12.2.7) simplifies to a remarkably useful formula,

h̄2(j + j′ + 2)(j + j′)[(j − j′)2 − 1] 〈β, j′, m′|Va|α, j,m〉 =

−4δjj′ 〈j,m′|Ja|j,m〉 〈β, j,m|J · V |α, j,m〉 , (12.2.9)

where the irrelevant label β has been removed from the first matrix element on the right.

One important application of eq. (12.2.9) is the special case j′ = j. Then it immediately

reduces to the following result due to Alfred Landé:

Theorem 12.2.2 (Vector operator projection rule) If an operator V transforms as a vec-

tor with respect to rotations generated by the angular momentum operator J , then the Landé

projection formula holds:

〈β, j,m′|V |α, j,m〉 = 〈j,m′|J |j,m〉 〈β, j‖J · V ‖α, j〉
h̄2j(j + 1)

(12.2.10)

for j 6= 0, where the reduced matrix element

〈β, j‖J · V ‖α, j〉 ≡ 〈β, j,m|J · V |α, j,m〉 (12.2.11)

does not depend on m or m′. For the special case j = 0,

〈β, 0, 0|V |α, 0, 0〉 = 0. (12.2.12)
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Because J ·V is a scalar operator, Theorem 12.2.1 reminds us that the right side of eq. (12.2.11)

does not actually depend onm, as claimed. So, in applications, we can pick any convenient value

for m to do the evaluation of 〈β, j‖J · V ‖α, j〉. (The most convenient choice is usually either

m = j or m = 0.) Of course, if j = 0 then eq. (12.2.10) fails, but in that case j = m = m′ = 0,

and the vanishing of 〈β, 0, 0|V |α, 0, 0〉 follows from spherical symmetry. The j = 0 states do not

have any special direction along which the matrix element of a vector operator could point.

Intuitively, the Landé projection formula says that, within each subspace of fixed j, all vector

operators are proportional to each other, and in particular to the angular momentum operator.

As a check, if we take V = J , then J · V = J2, and eq. (12.2.10) is satisfied. The reason for

the word “projection” in the name is that it implies that fixed-j matrix elements of V are equal

to those of J(J · V )/J2, the geometric projection of V onto the angular momentum operator

direction. The projection formula is a particularly useful special case of the Wigner–Eckart

theorem discussed in the next section.

Another important application of eq. (12.2.9) occurs if we take V = R, the position op-

erator. As a notable example, this will be useful for evaluating absorption and emission of

electromagnetic radiation in the electric dipole approximation (in section 19.4). For this reason,

the conditions on the matrix elements of the components of R that we are about to derive are

often called the dipole selection rules.

When considering matrix elements of R, we can take J to be just the orbital angular momen-

tum operator L, since that is what generates rotations for R; the spin is not relevant. Further,

L ·R = (R× P ) · R = 0, so the right side of eq. (12.2.9) vanishes, and it gives simply

h̄2(l + l′ + 2)(l + l′)[(l − l′)2 − 1] 〈β, l′, m′|R |α, l,m〉 = 0. (12.2.13)

Therefore, for the matrix element to be non-zero, we need

(l + l′ + 2)(l + l′)[(l − l′)2 − 1] = 0. (12.2.14)

Now, l+l′+2 cannot vanish because l and l′ are always non-negative. Also, the condition l+l′ = 0

can only be satisfied if l = l′ = 0, but then 〈β, l′, m′|R |α, l,m〉 can only be 〈β, 0, 0|R |α, 0, 0〉,
which must vanish anyway due to the spherical symmetry of the state wavefunctions. From

eq. (12.2.14), the only other possibility for a non-vanishing matrix element is (l− l′)2 = 1. Thus,

we have the first dipole selection rule,

〈β, l′, m′|R |α, l,m〉 6= 0 requires l′ − l = ±1. (12.2.15)

Since this holds for the whole vector R, it is also true for the matrix elements of each of its
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components, X , Y , and Z. The remaining dipole selection rules are

〈β, l′, m′|Z|α, l,m〉 6= 0 requires m′ = m, (12.2.16)

〈β, l′, m′|(X + iY )|α, l,m〉 6= 0 requires m′ = m+ 1, (12.2.17)

〈β, l′, m′|(X − iY )|α, l,m〉 6= 0 requires m′ = m− 1. (12.2.18)

To prove these, we can suppress the labels α, β, which play no role. Taking the matrix element of

the commutation relation [Lz, Z] = 0 gives 〈l′, m′|[Lz, Z]|l, m〉 = (h̄m′−h̄m) 〈l′, m′|Z|l, m〉 = 0.

This shows that if 〈l′, m′|Z|l, m〉 is to be non-zero, we need m′ = m. A simple alternative

proof uses the φ-dependence of the position representations of the spherical harmonics and

X , Y , and Z. We have 〈l′, m′|Z|l, m〉 ∝
∫ 2π

0
dφ
(
e−im

′φ
)(
1
)(
eimφ

)
∝ δm,m′ , and similarly,

〈l′, m′|(X ± iY )|l, m〉 ∝
∫ 2π

0
dφ
(
e−im

′φ
)(
e±iφ

)(
eimφ

)
∝ δm′,m±1. Equations (12.2.17) and

(12.2.18) also imply that the corresponding matrix elements ofX and Y vanish unlessm′ = m±1.
As a last application of eq. (12.2.9), consider the selection rules for the matrix elements

〈β, j,m′|V |α, j,m〉 of a general vector operator. The only difference compared to the special

case of R that led to eq. (12.2.15) is that now we must admit the possibility that the right side

of eq. (12.2.9) does not vanish for j = j′. Therefore, the general vector operator selection

rules are

〈β, j′, m′|V |α, j,m〉 6= 0 requires j′ − j = 0,±1. (12.2.19)

〈β, j′, m′|Vz|α, j,m〉 6= 0 requires m′ = m, (12.2.20)

〈β, j′, m′|(Vx + iVy)|α, j,m〉 6= 0 requires m′ = m+ 1, (12.2.21)

〈β, j′, m′|(Vx − iVy)|α, j,m〉 6= 0 requires m′ = m− 1. (12.2.22)

The last three can be obtained by using [Jz, Vz] = 0 and [J+, V+] = 0 and [J−, V−] = 0.

12.3 The Wigner–Eckart Theorem and selection rules for tensor op-
erators

In this section we will state and prove the Wigner–Eckart Theorem for matrix elements of

irreducible tensor operators. Developed independently by Wigner and Carl Eckart, this is a

generalization of three simpler results that we have already given: eq. (11.5.18) for spherical

harmonics, Theorem 12.2.1 for scalar operators, and Theorem 12.2.2 for vector operators. The

reader may wish to contemplate the parallels between the following derivations and those used

in section 11.5 for spherical harmonics.

Consider an irreducible tensor operator T
(j1)
m1 with m1 = −j1, . . . , j1, and a multiplet of

angular momentum eigenstates |αj2m2〉 with m2 = −j2, . . . , j2, where α is a degeneracy label.
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Now we construct the states

|γjm〉 =
∑

m1,m2

T (j1)
m1
|αj2m2〉 Cj1 j2 j

m1m2m
, (12.3.1)

for j = |j1−j2|, . . . , j1+j2 and m = −j, . . . , j, where Cj1 j2 j
m1m2m

are Clebsch–Gordan coefficients

as defined by eq. (11.4.4). We claim that, as the labeling indicates, eq. (12.3.1) is an eigenstate

of J2 and Jz with eigenvalues h̄2j(j + 1) and h̄m, respectively. (It is not necessarily normalized

to unity.) To prove this, it suffices to show that

Jz |γjm〉 = h̄m |γjm〉 , (12.3.2)

J− |γjm〉 = h̄
√
j(j + 1)−m(m− 1) |γ, j,m− 1〉 , (12.3.3)

J+ |γjm〉 = h̄
√
j(j + 1)−m(m+ 1) |γ, j,m+ 1〉 , (12.3.4)

as then the result for J2 = (J+J− + J−J+)/2 + J2
z follows.

To prove eq. (12.3.2), we use eq. (12.1.6) to obtain

Jz |γjm〉 =
∑

m1,m2

T (j1)
m1

(h̄m1 + Jz) |αj2m2〉 Cj1 j2 j
m1m2m. (12.3.5)

Then, use Jz |αj2m2〉 = h̄m2 |αj2m2〉, and eq. (12.3.2) follows by noting that the Clebsch–Gordan

coefficient enforces that only m1 +m2 = m contributes in the sum.

To prove eq. (12.3.3), we similarly use eq. (12.1.8) and then eq. (12.1.5) to find

J− |γjm〉 = h̄
∑

m1,m2

Cj1 j2 j
m1m2m

(√
j1(j1 + 1)−m1(m1 − 1) T

(j1)
m1−1 |αj2m2〉

+
√
j2(j2 + 1)−m2(m2 − 1)T (j1)

m1
|α, j2, m2 − 1〉

)
. (12.3.6)

Now, since we are summing over all m1 and m2, we can use the trick of relabeling the indices

according to m1 → m1 + 1 in the first term and m2 → m2 + 1 in the second term. The result is

J− |γjm〉 = h̄
∑

m1,m2

T (j1)
m1
|αj2m2〉

(√
j1(j1 + 1)−m1(m1 + 1)Cj1 j2 j

m1+1,m2,m (12.3.7)

+
√
j2(j2 + 1)−m2(m2 + 1)Cj1 j2 j

m1,m2+1,m

)
. (12.3.8)

Equation (12.3.3) then follows immediately from using the Clebsch–Gordan recurrence relation

eq. (11.4.20). The proof of eq. (12.3.4) is completely analogous.

Having established that the states |γjm〉 defined by eq. (12.3.1) are really eigenstates of J2

and Jz, we can now solve for each term in the sum on the right side of that equation. Starting

from eq. (12.3.1), multiply by Cj1 j2 j
m′

1
m′

2
m, sum over all j and m, and then use the Clebsch–Gordan
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orthonormality relation eq. (11.4.24) to collapse the m1, m2 sums to a single term, and finally

relabel m′1 → m1 and m′2 → m2. The result is

T (j1)
m1
|αj2m2〉 =

∑

j,m

|γjm〉 Cj1 j2 j
m1m2m

. (12.3.9)

This is the precise version of the intuitive statement that T
(j1)
m1 carries angular momentum

quantum numbers j1 and m1, and that it imparts them to the states it acts on, yielding a

sum of states that occur in the addition of angular momenta j1 and j2.

Now acting on eq. (12.3.9) with 〈βj′m′|, and then relabeling j′ → j and m′ → m, we obtain

〈βjm|T (j1)
m1
|αj2m2〉 = 〈βjm|γjm〉Cj1 j2 j

m1m2m
. (12.3.10)

By its construction, the state |γjm〉 depends on α and the choice of tensor operator T (j1) and

j. However, the matrix element 〈βjm|γjm〉 clearly does not depend on m1 or m2, and applying

Theorem 12.2.1 with S taken to be the identity operator, we learn that it does not actually

depend on m either. Therefore, we have proved a powerfully general result:

Theorem 12.3.1 (Wigner–Eckart) If T (j1) is an irreducible tensor operator, and |αj2m2〉
and |βjm〉 are eigenstates of J2 and Jz with eigenvalues as labeled, then†

〈βjm|T (j1)
m1
|αj2m2〉 = 〈βj‖T (j1)‖αj2〉 Cj1 j2 j

m1m2m
, (12.3.11)

where the reduced matrix element 〈βj‖T (j1)‖αj2〉 does not depend on m, m1, or m2.

For j1 = m1 = 0, so that T
(0)
0 = S is a scalar operator, we can use the fact that C0j j′

0mm′ =

δj,j′δm,m′ to recover Theorem 12.2.1 as a special case of the Wigner–Eckart Theorem. This is

hardly surprising, since we just used the former in the proof of the latter. The Landé projection

formula, eq. (12.2.10), can be shown to be equivalent to the special case obtained for vector

operators, when j1 = 1. The triple spherical harmonic integral relation eq. (11.5.18) is equivalent

to the special case in which the generator of rotations J is taken to be the orbital angular

momentum L.

One way to use the Wigner–Eckart Theorem is as a labor-saving device. If we can calculate

the matrix element on the left side of eq. (12.3.11) for just one instance (m1, m2, m) for which

it is non-zero, then we can infer the reduced matrix element. Once that is done, all other cases

of (m1, m2, m) with the same α, β, j1, j2, and j will be known.

The Wigner–Eckart Theorem also provides selection rules, since it implies that the matrix

element can only be non-zero if the Clebsch–Gordan coefficient Cj1 j2 j
m1m2m

is non-zero. This means

†Some sources define the reduced matrix element with other normalization conventions, most commonly by
including a factor of 1/

√
2j + 1 (and sometimes a different sign) on the right side of eq. (12.3.11).
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that the same selection rules apply, so that 〈βjm|T (j1)
m1 |αj2m2〉 can be non-zero only if

j = |j1−j2|, . . . , j1+j2−1, j1+j2, (12.3.12)

m = m1+m2. (12.3.13)

These tensor operator selection rules generalize the results in eqs. (12.2.19)–(12.2.22) that

we obtained for the special case of vector operators.
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13 Stationary-state perturbation theory

13.1 Perturbative expansion for energy eigenstates

Given a Hamiltonian H that does not depend on time, we would like to solve the time-

independent Schrödinger equation,

H|ψn〉 = En|ψn〉, (13.1.1)

as an eigenvalue problem for the stationary states |ψn〉 and their energies En. Unfortunately,

in many cases this is too hard to do exactly. However, suppose that it is possible to split the

Hamiltonian into two parts,

H = H0 + λW, (13.1.2)

where H0 is a simpler Hamiltonian for which we already know how to solve the eigenvalue

problem, and λ is a small parameter, so that W can be treated as a perturbation. Then we

can hope to find an approximate solution for the full Hamiltonian H , by expanding in λ. We

will now work out how to do this. This is called time-independent perturbation theory or

stationary-state perturbation theory.

To begin, assume that we have found the complete set of eigenstates |n〉 and eigenvalues En
for H0, so that

H0|n〉 = En|n〉. (13.1.3)

In general, the states |n〉 for a given En might be degenerate, but for now we assume they

are not. For each unperturbed stationary state |n〉 and energy En, we want to solve for the

corresponding |ψn〉 and energy En. The connection between the unperturbed and perturbed

stationary-state solutions is assumed to be smoothly continuous in λ in order for the following

strategy to work. In particular, there should be a one-to-one correspondence between the known

|n〉 and the desired |ψn〉 for all λ, as long as it is not too large.

The perturbation theory strategy is to write the unknown full eigenstates and energy eigen-

values each as a power series in λ,

|ψn〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ λ3|ψ(3)

n 〉+ · · · , (13.1.4)

En = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n + · · · . (13.1.5)

Now, λ = 0 must recover the unperturbed solutions, so

|ψ(0)
n 〉 = |n〉, (13.1.6)

E(0)
n = En. (13.1.7)
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The unperturbed stationary states are a complete orthobasis, with

∑

n

|n〉〈n| = I, (13.1.8)

〈n′|n〉 = δn,n′. (13.1.9)

This is always true, because H0 is assumed to be an observable.

We could also choose unit normalization for the eigenkets |ψn〉, but we won’t. It is much

more convenient to choose the following normalization condition for them instead:

〈n|ψn〉 = 1 (for each n), (13.1.10)

which will result in 〈ψn|ψn〉 6= 1. After obtaining the solutions for |ψn〉, we can re-normalize

them later, as a last step. Plugging eq. (13.1.4) into eq. (13.1.10), we have

〈n|
(
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
= 1. (13.1.11)

Since 〈n|n〉 = 1, in order to have a solution for general λ, it is necessary and sufficient that the

coefficient of λk in eq. (13.1.11) vanishes for each k ≥ 1, which implies

〈n|ψ(k)
n 〉 = 0 (for k = 1, 2, 3, . . .). (13.1.12)

Thus, the normalization choice eq. (13.1.10) ensures that all of the corrections to each state are

orthogonal to the corresponding unperturbed state. This is extremely important, and will be

used repeatedly in the following.

The time-independent Schrödinger equation (13.1.1) now reads

(H0 + λW )
(
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
=

(
En + λE(1)

n + λ2E(2)
n + · · ·

) (
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
. (13.1.13)

Expanding both sides, and matching the coefficient of each power λk, we get

λ0 : H0|n〉 = En|n〉, (13.1.14)

λ1 : H0|ψ(1)
n 〉+W |n〉 = En|ψ(1)

n 〉+ E(1)
n |n〉, (13.1.15)

λ2 : H0|ψ(2)
n 〉+W |ψ(1)

n 〉 = En|ψ(2)
n 〉+ E(1)

n |ψ(1)
n 〉+ E(2)

n |n〉, (13.1.16)

and, in general,

λk : H0|ψ(k)
n 〉+W |ψ(k−1)

n 〉 = En|ψ(k)
n 〉+

k−1∑

j=1

E(j)
n |ψ(k−j)

n 〉+ E(k)
n |n〉. (13.1.17)

Equation (13.1.14) is, of course, just a repetition of eq. (13.1.3).
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Consider first the effect of the perturbation at order λ1. Taking the inner product of

eq. (13.1.15) with 〈n| gives

〈n|H0|ψ(1)
n 〉+ 〈n|W |n〉 = En〈n|ψ(1)

n 〉+ E(1)
n 〈n|n〉. (13.1.18)

Now using 〈n|H0 = En〈n| on the first term, we see that it and the first term on the right side

are equal, and both vanish due to eq. (13.1.12). Therefore, using the orthonormality condition

eq. (13.1.9) on the last term, eq. (13.1.18) simplifies to

E(1)
n = 〈n|W |n〉, (13.1.19)

so that

En = En + λ〈n|W |n〉+ · · · . (13.1.20)

To first order in the expansion in λ, the energy shift in the state |n〉 is simply the expectation

value of the Hamiltonian perturbation. This is the most important and commonly used result

from stationary-state perturbation theory.

To find the first-order correction to the energy eigenkets, we note that completeness of the

H0 eigenstates allows us to write

|ψ(1)
n 〉 =

∑

m6=n
|m〉〈m|ψ(1)

n 〉, (13.1.21)

where we have made good use of eq. (13.1.12) to dispense with the m = n term. We now need

to find the coefficients 〈m|ψ(1)
n 〉 for m 6= n. To do so, take the inner product of 〈m| acting on

eq. (13.1.15),

〈m|H0|ψ(1)
n 〉+ 〈m|W |n〉 = En〈m|ψ(1)

n 〉+ E(1)
n 〈m|n〉. (13.1.22)

The last term vanishes due to the orthonormality of the unperturbed stationary states eq. (13.1.9),

and the first term on the left can be simplified using 〈m|H0 = Em〈m|. Therefore,

(En − Em) 〈m|ψ(1)
n 〉 = 〈m|W |n〉 (m 6= n). (13.1.23)

Now, assuming that there are no degeneracies, so that Em 6= En for m 6= n, we can solve for

〈m|ψ(1)
n 〉, and eq. (13.1.21) becomes

|ψ(1)
n 〉 =

∑

m6=n
|m〉〈m|W |n〉En − Em

. (13.1.24)

We have thus obtained the perturbed energy eigenstates at first order in the expansion in λ,

|ψn〉 = |n〉+ λ
∑

m6=n
|m〉〈m|W |n〉En − Em

+ · · · . (13.1.25)
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We can now see why the normalization condition eq. (13.1.10) was so useful and important; it

gave us eq. (13.1.12), which in turn allowed us to exclude m = n from the sum, which avoided

a term with a disastrous vanishing denominator† in |ψ(1)
n 〉, and in similar expressions to follow.

Having solved the perturbation theory problem at order λ1, we can continue iteratively to

obtain the perturbed energies and their eigenstates at any desired order in λ. We will now

find the necessary recurrence relations in general. At order λk, the inner product of 〈n| with
eq. (13.1.17) is

〈n|H0|ψ(k)
n 〉+ 〈n|W |ψ(k−1)

n 〉 = En 〈n|ψ(k)
n 〉+

k−1∑

j=1

E(j)
n 〈n|ψ(k−j)

n 〉+ E(k)
n . (13.1.26)

The first term on the left vanishes because of eq. (13.1.12), after pulling out H0 = En. On the

right side of the equality, using eq. (13.1.12) again ensures that all of the terms vanish except

the last one, where we have used 〈n|n〉 = 1. So, we find the remarkable result

E(k)
n = 〈n|W |ψ(k−1)

n 〉, (13.1.27)

that the λk correction to each energy eigenvalue is always obtained in terms of the λk−1 correction

to the corresponding ket.

Also, using completeness, we can write

|ψ(k)
n 〉 =

∑

m6=n
|m〉〈m|ψ(k)

n 〉, (13.1.28)

where once again eq. (13.1.12) has been used to eliminate them = n term. To find the coefficients

〈m|ψ(k)
n 〉 for m 6= n, we take 〈m| acting on eq. (13.1.17), which gives

(En − Em) 〈m|ψ(k)
n 〉 = 〈m|W |ψ(k−1)

n 〉 −
k−1∑

j=1

E(j)
n 〈m|ψ(k−j)

n 〉, (13.1.29)

where 〈m|n〉 = 0 has been used to eliminate the term proportional to E
(k)
n . The right-hand

side only involves expressions from orders less than k. Therefore, eqs. (13.1.27), (13.1.28), and

(13.1.29) can be used to solve iteratively for E
(k)
n and then |ψ(k)

n 〉 at each successive level k.

Let us apply the preceding for k = 2. Evaluating eq. (13.1.27) using eq. (13.1.24) gives

E(2)
n =

∑

m6=n

|〈m|W |n〉|2
En − Em

. (13.1.30)

We have thus obtained the second-order corrections to the energies. Also, eq. (13.1.29) gives

〈m|ψ(2)
n 〉 =

1

En − Em

(
〈m|W |ψ(1)

n 〉 − E(1)
n 〈m|ψ(1)

n 〉
)
, (13.1.31)

†Of course, the denominator is still a disaster if the unperturbed states have energy degeneracies, so that
Em = En for some m 6= n. This issue is addressed in section 13.6.
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or, using eqs. (13.1.19) and (13.1.24),

〈m|ψ(2)
n 〉 =

∑

p 6=n

〈m|W |p〉〈p|W |n〉
(En − Ep)(En − Em)

− 〈m|W |n〉〈n|W |n〉
(En − Em)2

(13.1.32)

for n 6= m. Summarizing the results to order λ2:

En = En + λ〈n|W |n〉+ λ2
∑

m6=n

|〈m|W |n〉|2
En − Em

+ · · · , (13.1.33)

and

|ψn〉 = |n〉+ λ
∑

m6=n
|m〉〈m|W |n〉En − Em

+λ2
∑

m6=n
|m〉

(
∑

p 6=n

〈m|W |p〉〈p|W |n〉
(En − Ep)(En − Em)

− 〈m|W |n〉〈n|W |n〉
(En − Em)2

)
+ · · · . (13.1.34)

Don’t forget that, by design, this ket |ψn〉 does not have unit norm, but now it can be renor-

malized as |ψn〉/
√
〈ψn|ψn〉, if desired. In doing so, it often makes sense to expand in λ and drop

the terms of order λ3 or higher. From eq. (13.1.34), we find using the orthonormality of the

unperturbed kets that

〈ψn|ψn〉 = 1 + λ2
∑

m6=n

|〈m|W |n〉|2
(En − Em)2

+ · · · , (13.1.35)

so that, working consistently to second order in λ, the normalized eigenstate can be obtained

by just multiplying the first term |n〉 in eq. (13.1.34) by

1/
√
〈ψn|ψn〉 = 1− λ2

2

∑

m6=n

|〈m|W |n〉|2
(En − Em)2

+ · · · . (13.1.36)

It is also worth noting that, using eq. (13.1.27), the energy eigenvalue to all orders in λ is

En = En +
∞∑

k=1

λk〈n|W |ψ(k−1)
n 〉 = En + λ〈n|W

∞∑

k=1

λk−1|ψ(k−1)
n 〉, (13.1.37)

which can be rewritten

En = En + λ〈n|W |ψn〉. (13.1.38)

The all-orders energy En is therefore known exactly in terms of the all-orders state ket |ψn〉. Of

course, the latter may well be only known partially as a perturbative expansion.

So far, we have used the parameter λ as a way of keeping track of the order of perturbation

theory. In any given term, the power of λ is the same as the number of matrix elements of
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W , so we can simply absorb λ into the definition of W without losing any information. (The

convergence of perturbation theory still relies on the assumption that the properties ofW allow it

to be treated as a small correction. For example,W may contain one or more small dimensionless

parameters that effectively play the role of λ.) Equivalently, taking λ = 1, we have

En = En + E(1)
n + E(2)

n + E(3)
n + · · · , (13.1.39)

|ψn〉 = |n〉+ |ψ(1)
n 〉+ |ψ(2)

n 〉+ |ψ(3)
n 〉+ · · · . (13.1.40)

The preceding results can be expressed more compactly with the following simplifying notation,

Wmn = 〈m|W |n〉, (13.1.41)

Enm = En − Em. (13.1.42)

Then, the energy eigenvalue corrections are summarized as

E(1)
n = Wnn, (13.1.43)

E(2)
n =

∑

m6=n

|Wmn|2
Enm

, (13.1.44)

E(3)
n =

∑

m6=n

∑

p 6=n

WnmWmpWpn

EnpEnm
−Wnn

∑

m6=n

|Wmn|2
E2nm

, (13.1.45)

etc., and for the (un-normalized) energy eigenstates,

|ψ(1)
n 〉 =

∑

m6=n
|m〉Wmn

Enm
, (13.1.46)

|ψ(2)
n 〉 =

∑

m6=n
|m〉

(
∑

p 6=n

WmpWpn

EnpEnm
− WnnWmn

E2nm

)
, (13.1.47)

etc. All higher order corrections likewise involve powers of matrix elements of W in the numera-

tors, and powers of unperturbed energy differences Enm’s in the denominators. This means that

the perturbative expansion, as we have constructed it here, may fail to converge for a state |n〉
if there is some other state |m〉 such that Enm is zero, or small compared to the matrix elements

of W . To treat such cases, we will need to use degenerate perturbation theory (section 13.6), or

almost-degenerate perturbation theory (section 13.8), respectively.

13.2 Simple examples of perturbation theory

Consider the one-dimensional harmonic oscillator with a linear perturbation:

H0 =
P 2

2m
+

1

2
mω2X2, W = −fX. (13.2.1)
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Here f is a constant force, which plays the role of the expansion parameter λ in the discussion

of section 13.1. Before solving this as a problem in perturbation theory for small f , we recall

that it is special in that the stationary states can actually be found exactly. As already noted

at the end of section 7.4, this is because the total Hamiltonian can be rewritten, by completing

the square, as

H =
P 2

2m
+

1

2
mω2

(
X − f

mω2

)2
− f 2

2mω2
, (13.2.2)

so that after a shift of variables X → X + f/mω2, the new H will have the same m, ω, and

energy eigenvalues, except that the latter will be offset by a constant −f 2/2mω2. Thus we have

En = h̄ω(n+ 1/2)− f 2/2mω2, (13.2.3)

exactly. Furthermore, the corresponding energy eigenstates must be

|ψn〉 = T (f/mω2)|n〉, (13.2.4)

where T (a) is the translation operator of eq. (5.2.1), and |n〉 are the stationary states of H0. We

can expand this exact result to linear order in f , using eq. (7.3.4) for the momentum operator

in terms of harmonic oscillator creation and annihilation operators, to get

T (f/mω2) = I +
f√

2mh̄ω3
(a† − a) +O(f 2), (13.2.5)

so that the eigenstates of H are

|ψn〉 = |n〉+ f√
2mh̄ω3

(√
n + 1|n+1〉 −

√
n|n−1〉

)
+O(f 2) (13.2.6)

in terms of the eigenstates of H0.

Now let us use solve the same problem using the technology of perturbation theory that we

have developed. The unperturbed energy eigenvalues and eigenstates are En = h̄ω(n+1/2) and

|n〉. The general matrix elements needed for the perturbative expansion are

Wn′n = 〈n′|W |n〉 = −f〈n′|X|n〉 = −f
√

h̄

2mω
〈n′|(a† + a)|n〉

= −f
√

h̄

2mω

(√
n+ 1 δn′,n+1 +

√
n δn′,n−1

)
. (13.2.7)

Now, since this vanishes for n′ = n, the first-order correction to the energies are all 0. From

eqs. (13.1.43) and (13.1.44), we get, through second order,

E(1)
n = 0, (13.2.8)

E(2)
n =

∣∣−f
√
h̄(n+ 1)/2mω

∣∣2

En − En+1
+

∣∣−f
√
h̄n/2mω

∣∣2

En − En−1
, (13.2.9)
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where only two terms in the sum contributed. Now En − En+1 = −h̄ω and En − En−1 = h̄ω, so

eq. (13.2.9) simplifies to

E(2)
n = −f 2/2mω2, (13.2.10)

and we have

En = h̄ω(n+ 1/2)− f 2/2mω2 + · · · . (13.2.11)

This agrees with the exact result of eq. (13.2.3). In fact, this comparison shows that the possible

higher-order terms (indicated by the ellipsis here) must actually conspire to vanish. The first-

order perturbative correction to the stationary state |n〉, applying eq. (13.1.46), also only has

two terms in the sum,

|ψ(1)
n 〉 = −f

√
h̄

2mω

(√
n+ 1|n+1〉
−h̄ω +

√
n|n−1〉
h̄ω

)
(13.2.12)

=
f√

2mh̄ω3

(√
n+ 1|n+1〉 −

√
n|n−1〉

)
. (13.2.13)

Again this agrees with the exact result in eq. (13.2.4), after the expansion for linear order in f

as in eq. (13.2.6).

As a second example, less amenable to an easy exact calculation, consider the one-dimensional

potential

V (x) =





V0 (|x| < a/2),

0 (a/2 < |x| < L/2),

∞ (|x| > L/2),

(13.2.14)

illustrated in Figure 13.2.1.

V (x)

x

L/2−L/2 a/2−a/2

V0

Figure 13.2.1: An infinite one-dimensional
square well potential with width L, with a
symmetric bump of height V0 and width a
to be treated as a perturbation.

This is an infinite square well with a perturbation bump in the middle, so we define H = H0+W

where, using a hybrid operator/position-representation notation,

H0 =
P 2

2m
+

{
0 (|x| < L/2),

∞ (|x| > L/2),
(13.2.15)
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and the perturbation Hamiltonian is the bump potential

W =

{
V0 (|x| < a/2),

0 (|x| > a/2).
(13.2.16)

The infinite square well problem defined by H0 was solved in section 6.4. The wavefunctions

〈x|n〉 = φn(x) for the unperturbed H0 eigenstates |n〉 were found to be

φn(x) =

√
2

L
cos(nπx/L) (n = 1, 3, 5, . . .), (13.2.17)

φn(x) =

√
2

L
sin(nπx/L) (n = 2, 4, 6, . . .), (13.2.18)

with, in both cases, energies

En =
h̄2π2n2

2mL2
. (13.2.19)

Applying eq. (13.1.19) or its equivalent eq. (13.1.43), the leading correction to the energy eigen-

value for the state n is

E(1)
n = V0

∫ a/2

−a/2
dx |φn(x)|2. (13.2.20)

For the ground state with n = 1, the energy eigenvalue to first order in V0 evaluates to

E1 =
h̄2π2

2mL2
+ V0

(
a

L
+

1

π
sin(πa/L)

)
. (13.2.21)

As a check, note that if a = L, then the perturbation simply adds V0 to the energy eigenvalue,

independent of L. This is just a constant shift in the Hamiltonian.

For the change in the ground-state wavefunction, we apply eq. (13.1.46). This requires us to

find Wk1/E1k, which for odd k 6= 1 is

〈k|W |1〉
E1 − Ek

=
2mL2

h̄2π2(1− k2)
2V0
L

∫ a/2

−a/2
dx cos

(
πkx

L

)
cos
(πx
L

)
(13.2.22)

=
4V0mL

2

h̄2π3(1− k2)

[
sin(πa(k − 1)/2L)

k − 1
+

sin(πa(k + 1)/2L)

k + 1

]
. (13.2.23)

For even k we have instead

〈k|W |1〉
E1 − Ek

= 0, (13.2.24)

because of

∫ a/2

−a/2
dx sin

(
πkx

L

)
cos
(πx
L

)
= 0. (13.2.25)
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This reflects (sorry not sorry about the pun) the parity selection rule of eq. (5.4.17). Since the

perturbation Hamiltonian has even parity πW = 1, and πk = (−1)k−1 for a state |k〉, the parity

selection rule tells us that 〈k|W |n〉 vanishes if k + n is odd, and in particular that 〈k|W |1〉 = 0

for even k. It follows that the corrected ground-state wavefunction is

ψ1(x) =

√
2

L
cos
(πx
L

)
+ ψ

(1)
1 (x), (13.2.26)

with

ψ
(1)
1 (x) =

∑

k=3,5,7,...

〈k|W |1〉
E1 − Ek

φk(x) (13.2.27)

=
∑

k=3,5,7,...

4V0mL
2

h̄2π3(1− k2)

[
sin(πa(k − 1)/2L)

k − 1
+

sin(πa(k + 1)/2L)

k + 1

]√
2

L
cos

(
πkx

L

)
.

(13.2.28)

The corrections to the energies and wavefunctions of the other stationary states are left as an

exercise.

For a third example, let us estimate the effect of the proton size on the energy levels of

the hydrogen atom. In doing so, we will treat the proton (not completely realistically) as a

ball of uniform charge density with radius ap. For all r ≥ ap, the electric field is the same as

if the proton were a point charge. For r ≤ ap, an elementary application of Gauss’ Law in

electrostatics shows that the electric field rises linearly with r, so that the potential energy of

the electron is

V (r) =





−e2
(

3

2ap
− r2

2a3p

)
, (r ≤ ap),

−e
2

r
, (r ≥ ap),

(13.2.29)

as shown in Figure 13.2.2.

V (r)

r

−e2/ap

−3e2/2ap

ap

Figure 13.2.2: The solid line shows the shape of
the potential energy for the electron in the hydro-
gen atom, with the proton modeled as a sphere of
radius ap with uniform charge density. The dashed
line shows the potential with the proton modeled
as a point, as in section 10.1.
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Therefore, compared to our treatment in section 10.1, the perturbation to the Hamiltonian is

W =





e2
(
1

r
− 3

2ap
+

r2

2a3p

)
, (r ≤ ap),

0, (r ≥ ap),

(13.2.30)

in the position representation. So, the first-order correction to the ground state energy is

E
(1)
1,0,0 = 〈1, 0, 0|W |1, 0, 0〉 (13.2.31)

= 4π

∫ ap

0

dr r2
(

1√
πa30

e−r/a0
)2

e2
(
1

r
− 3

2ap
+

r2

2a3p

)
, (13.2.32)

where the 4π factor comes from the angular integration. Within the radial integral, e−2r/a0 ≈ 1

is an excellent approximation, since ap ≪ a0. The integration then yields

E
(1)
1,0,0 =

2e2a2p
5a30

=
4a2p
5a20

Rydberg ≈ 2.1× 10−10 Rydberg, (13.2.33)

where we have used ap ≈ 8.5× 10−16 meters in the last approximation.

In the preceding, we used the small size of the proton compared to the Bohr radius to

effectively replace the radial wavefunction by its (very nearly constant) value at r = 0, with

|R1,0(r)|2 → |R1,0(0)|2. For a general n, l,m state, the same procedure will give

E
(1)
n,l,m = |Rn,l(0)|2

∫
dΩ |Y m

l (θ, φ)|2
∫ ap

0

dr r2 e2
(
1

r
− 3

2ap
+

r2

2a3p

)
. (13.2.34)

Now,
∫
dΩ|Y m

l |2 = 1, and Rn,l(0) = 0 unless l = 0, which also implies m = 0. From

eq. (10.1.41), we know that the hydrogen atom radial wavefunction evaluated at r = 0 is

Rn,l(0) = δl,02/(na0)
3/2. So, we find

E
(1)
n,l,m = δl,0 δm,0

4a2p
5a20n

3
Rydberg. (13.2.35)

Thus the finite proton radius only affects the energies of the states with no angular momentum,

and with decreasing importance for larger principal quantum number n.

The preceding calculation is just an estimate, as the proton is certainly not a ball of uniform

charge density. A more sophisticated calculation can be used to define the effective charge

radius of the proton, which can then be compared to various experimental determinations of

the same quantity. This has recently been the subject of some interest and controversy, because

experimental determinations of the proton charge radius inferred from electron scattering seem

to be slightly larger than those obtained from measuring the energy levels of muonic hydrogen,

in which a muon replaces the electron. The muon is used because its much larger mass gives

it a smaller Bohr radius than the electron, leading to a larger effect in eq. (13.2.35) by a factor

m2
µ/m

2
e ≈ 42753; the heavier muon is much more likely to be found inside the proton than an

electron, and therefore provides a better probe.
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13.3 Helium atom ground state from first-order perturbation theory

In this section, we consider the helium atom consisting of two electrons each with mass me and

charge −e, and a heavy nucleus with charge Ze = +2e at the origin, as pictured in Figure 13.3.1.

+2e

−e −e

r1
r2

r1 − r2

Figure 13.3.1: The helium atom consists of
two electrons with massme and charge−e at
positions r1 and r2, and a very heavy nucleus
of charge +2e at the origin.

The Hamiltonian is†

H = H1 +H2 +H12, (13.3.1)

in which, in the position representation,

H1 = − h̄2

2me

∇2
1 −

Ze2

r1
, H2 = − h̄2

2me

∇2
2 −

Ze2

r2
, (13.3.2)

H12 =
e2

|r1 − r2|
, (13.3.3)

where Z = 2, and r1 and r2 describe the position coordinates of the two electrons, and ∇2
1 and

∇2
2 are the corresponding Laplacians. If the electrons did not interact with each other, then

H1 and H2 would just be the Hamiltonians for hydrogen-like atoms with Z = 2. The electron-

electron interaction term H12 is the source of complications, and in this section we treat it as

the perturbation W , although it is not particularly small.

The lowest energy eigenstate of the unperturbed Hamiltonian H0 = H1 +H2 is simply the

tensor product of two hydrogen-like atomic ground states with (n, l,m) = (1, 0, 0),

|(1, 0, 0), (1, 0, 0)〉 = |1, 0, 0〉1 ⊗ |1, 0, 0〉2. (13.3.4)

The position wavefunction for the unperturbed state is

ψ(r1, r2) = 〈r1|1, 0, 0〉1 〈r2|1, 0, 0〉2 = ψ1,0,0(r1)ψ1,0,0(r2), (13.3.5)

where, as we found in eq. (10.1.42),

ψ1,0,0(r) =

√
Z3

πa30
e−Zr/a0. (13.3.6)

†For simplicity, we ignore small effects due to spin interactions and the finite mass of the nucleus. Also, we
ignore the fact that the electrons are identical; this issue turns out to not affect the following treatment of the
ground state because the electron spins will be oriented oppositely, but it does affect the excited states of helium,
as we will discuss later, in section 16.3.
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The corresponding unperturbed total energy eigenvalue for H1 +H2 is, including the contribu-

tions of both electrons,

E0 = 2

(
−Z

2e2

2a0

)
= −8Rydberg = −108.85 eV. (13.3.7)

This turns out to be about 30% lower than the experimental value (the minimum energy needed

to completely ionize the helium atom). The reason is that the electron-electron Coulomb repul-

sive potential H12 raises the energy, by an amount that we now estimate.

At first order in perturbation theory, the ground-state energy correction is

E(1) = 〈(1, 0, 0), (1, 0, 0)|H12|(1, 0, 0), (1, 0, 0)〉 (13.3.8)

=

∫
d3r1

∫
d3r2 |ψ1,0,0(r1)|2|ψ1,0,0(r2)|2

e2

|r1 − r2|
. (13.3.9)

We therefore have

E(1) = e2
(
Z3

πa30

)2

I, (13.3.10)

with

I =

∫ ∞

0

dr1 r
2
1

∫
dΩ1

∫ ∞

0

dr2 r
2
2

∫
dΩ2 e

−2Zr1/a0e−2Zr2/a0
1

|r1 − r2|
. (13.3.11)

Our challenge now is to evaluate the integral I. To do so, we use the valuable identity

1

|r1 − r2|
=

∞∑

l=0

rlmin

rl+1
max

Pl(cos γ), (13.3.12)

in which Pl(x) are the Legendre polynomials, γ is the angle between r1 and r2, and

rmax = max(r1, r2), rmin = min(r1, r2). (13.3.13)

The identity (13.3.12), which may be familiar from the multipole expansion of problems with

azimuthal symmetry in electrostatics, follows from the generating function eq. (8.6.46). The

spherical harmonics addition formula eq. (8.6.72) tells us that

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y m
l (θ2, φ2)

∗ Y m
l (θ1, φ1). (13.3.14)

Using eqs. (13.3.12) and (13.3.14) in the integral I, we therefore have
∫
dΩ1 Y

m
l (θ1, φ1) = 0

unless l = m = 0, and similarly for the dΩ2 integral. So, we can replace

Pl(cos γ) → 4π Y 0
0 (θ2, φ2)

∗ Y 0
0 (θ1, φ1)δl,0 = 4π

(
1/
√
4π
)2
δl,0 = δl,0, (13.3.15)
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eliminating all of the angular dependences of the integrand. So, using
∫
dΩ1 =

∫
dΩ2 = 4π,

I = (4π)2
∫ ∞

0

dr1 r
2
1

∫ ∞

0

dr2 r
2
2 e
−2Zr1/a0e−2Zr2/a0

1

rmax
. (13.3.16)

Separating the dr2 integral into two parts, according to whether r2 < r1 or r2 > r1, now gives

I = (4π)2
∫ ∞

0

dr1

(∫ r1

0

dr2 r1r
2
2 +

∫ ∞

r1

dr2 r
2
1r2

)
e−2Zr1/a0e−2Zr2/a0 , (13.3.17)

which can be done straightforwardly. The two parts turn out to contribute equally to the total,

I =
5π2a50
8Z5

. (13.3.18)

Putting this into eq. (13.3.10), the first-order correction to the ground-state energy is

E(1) =
5Ze2

8a0
. (13.3.19)

Combining this with eq. (13.3.7), and plugging in Z = 2, the total ground-state energy for

helium estimated from first-order perturbation theory is

E = E0 + E(1) = (−8 + 5/2) Rydberg = −74.83 eV. (13.3.20)

Note that the first-order correction is not suppressed by an adjustable small parameter compared

to the unperturbed energy; it is 5/16 as large in magnitude. This might cause worry that the

perturbative expansion is not converging fast enough to be trusted. Nevertheless, our final result

differs by only about 5.3% from the experimental result of −79.01 eV. In section 14.4, we will

use a non-perturbative technique, the variational method, to do even better.

13.4 Brillouin–Wigner perturbation theory

The standard organization of stationary-state perturbation theory summarized in eqs. (13.1.39)–

(13.1.47) has an alternative, called Brillouin–Wigner perturbation theory after Léon Bril-

louin and Wigner, which sometimes has better numerical convergence behavior. To derive it,

we start with the eigenvalue problem in the form

(H0 +W −En) |ψn〉 = 0, (13.4.1)

using the same notations as in section 13.1, but with λ = 1 from the start. Now, act with the

unperturbed bra 〈m|, then use 〈m|H0 = 〈m|Em, and rearrange the result to get

〈m|ψn〉 =
〈m|W |ψn〉
En − Em

. (13.4.2)
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Note the simultaneous presence in the denominator of the full energy eigenvalue En and the

unperturbed energy Em. From completeness of the unperturbed states |m〉, we also have

|ψn〉 =
∑

m

|m〉〈m|ψn〉 = |n〉〈n|ψn〉+
∑

m6=n
|m〉〈m|ψn〉 . (13.4.3)

As in section 13.1.47, we choose the normalization condition 〈n|ψn〉 = 1, and use eq. (13.4.2) in

(13.4.3) to obtain

|ψn〉 = |n〉+
∑

m6=n
|m〉 〈m|W |ψn〉

En − Em
. (13.4.4)

This has a straightforward iterative solution,

|ψn〉 = |n〉+
∑

m6=n
|m〉 1

En − Em
〈m|W |n〉

+
∑

m6=n

∑

p 6=n
|m〉 1

En − Em
〈m|W |p〉 1

En − Ep
〈p|W |n〉+ · · · , (13.4.5)

as can be checked by plugging it in. To find an equation for the corresponding energy eigenvalues,

we now use eq. (13.1.38) to obtain

En = En + 〈n|W |n〉+
∑

m6=n
〈n|W |m〉 1

En − Em
〈m|W |n〉

+
∑

m6=n

∑

p 6=n
〈n|W |m〉 1

En − Em
〈m|W |p〉 1

En − Ep
〈p|W |n〉+ · · · . (13.4.6)

Equations (13.4.5) and (13.4.6) summarize Brillouin–Wigner perturbation theory. They have a

simpler structure than the standard perturbation theory of section 13.1, but have the disadvan-

tage that they are not yet a complete solution, since the full energy En appears on both sides

of eq. (13.4.6).

At first order in Brillouin–Wigner perturbation theory, only the first two terms on the right-

hand side of eq. (13.4.6) are included, and the solution for En is the same as in standard

perturbation theory. At second order or beyond, the equation for En is a non-linear algebraic

equation, and often can only be obtained numerically as an approximation. However, this can

be a good thing, because the results so obtained are often more accurate than those found from

the standard perturbation theory of section 13.1 at the same order. One way of thinking about

this is that, at a given order in perturbation theory, the En appearing in the denominators of

Brillouin–Wigner perturbation theory contain more complete information than the En appearing
in the denominators of standard perturbation theory. Once En has been obtained by solving

eq.(13.4.6) truncated at a specific order in the expansion, it can be plugged into eq. (13.4.5) to

obtain the corresponding energy eigenstate.
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13.5 Dalgarno–Lewis method for simplifying perturbation theory

The formulas of stationary-state perturbation theory found in section 13.1 for the state, and for

the energy beyond first order, contain sums over all of the unperturbed states. For example,

the second-order correction to the energy contains the sum

E(2)
n =

∑

m6=n

|〈m|W |n〉|2
En − Em

(13.5.1)

While this is a well-defined formal solution, in practice it is sometimes hard to compute such

sums directly. It is especially difficult if some of the unperturbed states form a continuum, in

which case the corresponding part of the summation will actually be an integration. Fortunately,

there is an elegant method, due to A. Dalgarno and J.T. Lewis, that allows these sums to be

recast into a form that can often be solved exactly. Even when an exact solution cannot be

obtained, the Dalgarno–Lewis method still allows for a systematic approximation, often by

numerically solving a differential equation.

Suppose that, given |n〉, one can find an operator A that satisfies

[A,H0] |n〉 = (W − c) |n〉 , (13.5.2)

where H0 and W are the unperturbed and perturbation parts of the Hamiltonian, respectively,

and c is a constant. In fact, c is not arbitrary, because after acting on both sides of eq. (13.5.2)

with 〈n|, the left side vanishes, which implies c = 〈n|W |n〉 = E
(1)
n . Also, since only the

commutator of A appears in eq. (13.5.2), one can always add a constant multiple of the identity

operator to it, to ensure that

〈n|A|n〉 = 0. (13.5.3)

Note that the required operator A is different for each unperturbed state |n〉. Now, for every

other unperturbed orthobasis state |m〉, eq. (13.5.2) implies

〈m|W |n〉 = 〈m|[A,H0]|n〉+ c 〈m|n〉 = (En − Em) 〈m|A|n〉 , (13.5.4)

where we have used 〈m|n〉 = 0 by orthonormality of the unperturbed H0 eigenstates. The

Dalgarno–Lewis idea is to use eq. (13.5.4) to cancel the energy denominators in the results of

perturbation theory, by expressing matrix elements of W in terms of matrix elements of A. The

resulting expressions can then be simplified using the completeness relation for the unperturbed

states.

For example, the first-order correction to the state is, from eq. (13.1.24),

|ψ(1)
n 〉 =

∑

m6=n
|m〉 〈m|W |n〉En − Em

=
∑

m6=n
|m〉〈m|A|n〉 =

∑

m

|m〉 〈m|A|n〉 . (13.5.5)
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The last equality relies on the fact that the additional term with m = n vanishes, because

of eq. (13.5.3). Now, from the completeness relation
∑

m |m〉〈m| = I, we conclude that the

first-order correction to the state |n〉 is simply

|ψ(1)
n 〉 = A |n〉 . (13.5.6)

In words, the desired operator A turns the unperturbed state into the first-order correction to

the state. Similarly, the second-order correction to the energy is, from eq. (13.5.1),

E(2)
n =

∑

m6=n
〈n|W |m〉 〈m|A|n〉 =

∑

m

〈n|W |m〉 〈m|A|n〉 = 〈n|WA|n〉 , (13.5.7)

where we have again used eq. (13.5.3) to account for the vanishing of the additional term with

m = n, and then used completeness. As a check, this can be rewritten as

E(2)
n = 〈n|W |ψ(1)

n 〉 , (13.5.8)

in accord with eq. (13.1.27) with k = 2. In a similar way, it is not too hard to show that even

the third-order correction to the energy can be written as

E(3)
n = 〈ψ(1)

n |W |ψ(1)
n 〉 − 〈ψ(1)

n |ψ(1)
n 〉〈n|W |n〉 , (13.5.9)

without energy-difference denominators.

To make use of the Dalgarno–Lewis method, one must either find the operator A, or equiv-

alently (and more directly) solve for the ket A|n〉 = |ψ(1)
n 〉. Rewriting eq. (13.5.2), the key

equation to be solved is

(En −H0) |ψ(1)
n 〉 = W |n〉 − |n〉 〈n|W |n〉 . (13.5.10)

In favorable cases, this can be solved exactly for |ψ(1)
n 〉 or the corresponding wavefunction; we

will see an example of this in section 13.7 when we treat the ground state of the hydrogen

atom in an electric field (the quadratic Stark effect). Even when this is not feasible, it is often

possible to cast eq. (13.5.10) in the position representation as a differential equation that can

be solved approximately, perhaps numerically. This is often faster and simpler than trying to

do the sums over all other states |m〉 with energy denominators En − Em, especially if there are

an infinite number of such states. The great advantage of the Dalgarno–Lewis method is that

eq. (13.5.10) only involves the eigenvalues and matrix elements of the unperturbed state |n〉
that one is considering. Once |ψ(1)

n 〉 has been found, the second and third-order corrections to

the energy follow immediately from eqs. (13.5.8) and (13.5.9), respectively.
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Figure 13.6.1: Perturbed energies as a function of the expansion parameter λ, for non-
degenerate (left) and degenerate (right) perturbation theory. In degenerate perturbation
theory, for each of the perturbed states |ψ1〉, |ψ2〉, |ψ3〉 there is an ambiguity in choosing the
corresponding unperturbed states |1〉, |2〉, |3〉, since arbitrary linear combinations of them
have the same H0 eigenvalue E1= E2 = E3. This ambiguity is resolved (at least in part) by
choosing the unperturbed states to diagonalize the perturbation HamiltonianW within each
subspace of degenerate En.

13.6 Degenerate perturbation theory

As noted in section 13.1, a special problem arises when unperturbed states |n〉 have degen-

eracies, because then the energy differences Enm = En − Em appearing in the denominators of

eqs. (13.1.44)–(13.1.47) will vanish. In this section, we show how to deal with this difficulty.

The bad denominator problem is related to the fact that perturbation theory requires a

smooth one-to-one correspondence between the unperturbed states and the perturbed states

as the expansion parameter λ varies. Specifically, this is what allowed us to demand that the

unperturbed state |n〉 and the corrections to it |ψ(k)
n 〉 are orthogonal, as we did in eq. (13.1.12).

This in turn was used to exclude the terms in the sums that would otherwise have had vanishing

energy difference denominators. In the degenerate case, the essential problem is that for a given

perturbed state |ψn〉 there is an ambiguity in deciding which of the degenerate unperturbed

states |n〉 corresponds to it and therefore can be excluded from the sums, since arbitrary linear

combinations of them have the same H0 eigenvalue En. This is illustrated in Figure 13.6.1, which

compares the situations for non-degenerate and degenerate unperturbed states.

To resolve the problem, we need to answer the following question: if a group of unperturbed

states {|n〉} have the same unperturbed energy En, then which linear combinations of them are

the |ψ(0)
n 〉? The problem of avoiding bad (vanishing) denominators in perturbation theory is the

same as the problem of choosing the correct linear combinations of unperturbed energy states.
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Consider what happens when we return to eq. (13.1.23), rewritten here for convenience,

(En − Em) 〈m|ψ(1)
n 〉 = 〈m|W |n〉 (m 6= n), (13.6.1)

but now allowing for the possibility that some unperturbed states have degenerate unperturbed

energies. Whenever Em 6= En, we can still solve

〈m|ψ(1)
n 〉 =

Wmn

Enm
, (Em 6= En). (13.6.2)

However, for Em = En, we instead learn only that 〈m|W |n〉 must vanish for m 6= n, in order to

have a consistent perturbative solution. It is therefore required that the matrix elements of W

form a diagonal matrix when restricted to each subspace with degenerate unperturbed energies,

〈m|W |n〉 = δnmWnn (for Em = En). (13.6.3)

Fortunately, this is always possible to arrange by a suitable choice of the orthobasis of stationary

states |n〉. This is assured by Theorem 2.6.6, since W is Hermitian.

Equation 13.6.3 is a necessary (but not always sufficient, as we will see) requirement on the

choice of unperturbed states. The point is that by choosing a “good” basis of unperturbed

states in this way, the perturbation Hamiltonian matrix Wmn does not connect pairs of distinct

unperturbed states for which the energy-difference denominators would vanish.

In practice, one must solve the eigenvalue problem for gEn × gEn matrices, formed by the

matrix elements of the operator W restricted to each gEn-dimensional degenerate subspace.

Once we choose the states |n〉 as the resulting orthonormal eigenvectors, then it follows from

eq. (13.1.19) that the eigenvalues are the corresponding first-order corrections to the energies,

E(1)
n =Wnn, (13.6.4)

the same result as for the non-degenerate case. Note that it is only necessary to diagonalize W

within the subspaces for degenerate En. In particular, for each unperturbed state |n〉 that is

non-degenerate, there is nothing to do; W restricted to that subspace is simply a 1× 1 matrix,

so |n〉 is automatically an eigenvector, with eigenvalue Wnn = 〈n|W |n〉.
Often, only the first-order energy corrections are required; then eq. (13.6.4) is sufficient

together with eq. (13.6.3), and in that case you can skip the complications of the next few

paragraphs, from here to eq. (13.6.15).

If one needs the first-order corrections to the state ket |ψ(1)
n 〉 and the second-order corrections

to the energies E
(2)
n , then one must confront the fact that eq. (13.6.1) provides no information

about 〈m|ψ(1)
n 〉 for Em = En. By completeness,

|ψ(1)
n 〉 =

∑′

m

|m〉Wmn

Enm
+
∑′′

m

|m〉 〈m|ψ(1)
n 〉 , (13.6.5)
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where we have introduced the notations, always for fixed n,

∑′

m

= sum over all m such that Em 6= En, (13.6.6)

∑′′

m

= sum over all m such that m 6= n and Em = En, (13.6.7)

and used eq. (13.6.2) in the first summation. To solve for the remaining matrix elements 〈m|ψ(1)
n 〉

in the last summation, one must use the equations governing the perturbative expansion at order

λ2, and possibly beyond.

To see how this goes, consider eq. (13.1.29) with k = 2 and Em = En, which yields

E(1)
n 〈m|ψ(1)

n 〉 = 〈m|W |ψ(1)
n 〉 , (for m 6= n and Em = En). (13.6.8)

After using E
(1)
n = Wnn, and eq. (13.6.5) with m replaced by p, and defining an operator W (2)

with matrix elements

W (2)
mn ≡

∑′

p

WmpWpn

Enp
, (13.6.9)

eq. (13.6.8) becomes

Wnn 〈m|ψ(1)
n 〉 = W (2)

mn +
∑′′

p

Wmp 〈p|ψ(1)
n 〉 , (for m 6= n and Em = En). (13.6.10)

In the last summation, we know that Wmp = δmpWmm, because of eq. (13.6.3). Therefore, only

the single term with p = m in that sum survives, and eq. (13.6.10) reduces to

(Wnn −Wmm) 〈m|ψ(1)
n 〉 = W (2)

mn, (for m 6= n and Em = En). (13.6.11)

Now, for states that are non-degenerate at first order, so that Wmm 6= Wnn, we obtain

〈m|ψ(1)
n 〉 =

W
(2)
mn

Wnn −Wmm
(for Em = En and Wmm 6= Wnn), (13.6.12)

but in the opposite case we learn only that

W (2)
mn = 0, (for m 6= n and Em = En and Wmm =Wnn). (13.6.13)

This is a second condition that must be imposed on the choice of the unperturbed states,

in addition to eq. (13.6.3). In words, we have found that we must choose the kets |n〉 so
that on subspaces where both H0 and W are proportional to the identity, the matrix W (2) is

also diagonal. Fortunately, this is always possible, because W (2) is a Hermitian matrix when
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restricted to this subspace. Now, in general, the second-order correction to the energy is obtained

from eq. (13.1.27), and becomes simply

E(2)
n = W (2)

nn =
∑′

m

|Wmn|2
Enm

, (13.6.14)

where it is crucial that the unperturbed states satisfy the conditions given in both eqs. (13.6.3)

and (13.6.13), and there is no vanishing denominator problem because of the fact that the sum

excludes all terms with Em = En.
There may still be some ambiguity in the matrix elements 〈m|ψ(1)

n 〉, if for some m 6= n one

has Em = En and Wmm = Wnn and W
(2)
nn = W

(2)
mm, so that the degeneracy is not completely lifted

even at second order. In that case, one must use the information from third order, that is, k = 3

in eq. (13.1.17). One then finds a third condition on the choice of unperturbed states |n〉, that
the operator W (3) with matrix elements

W (3)
mn ≡

∑′

q

∑′

p

WmqWqpWpn

EnqEnp
−Wnn

∑′

p

WmpWpn

E2np
(13.6.15)

is diagonal on each subspace of states where the operators H0, W , and W (2) are proportional to

the identity operator. If the degeneracy of unperturbed states is still not removed at third order

(that is, W (3) has degenerate eigenvalues when restricted to that subspace of states), one must

continue to k = 4 in eq. (13.1.17), etc. These considerations from k ≥ 3 affect the determination

of |ψ(1)
n 〉 (through 〈m|ψ(1)

n 〉) even though they seemingly involve higher orders in perturbation

theory, but they do not affect the determination of E
(2)
n given by eq. (13.6.14).

Practical applications of degenerate perturbation theory often only need E
(1)
n as given in

eq. (13.6.4), and therefore one only needs to worry about choosing the unperturbed states

to satisfy eq. (13.6.3). Examples will appear in sections 13.7 and 13.8 and in Chapter 15. To

conclude this section, we exploit first-order perturbation theory to infer the exact matrix element

〈1/R2〉 for the states |n, l,m〉 of the hydrogen atom, fulfilling a promise made in section 10.1.

Consider the Hamiltonian Hλ = H0 + λ/R2, where H0 = P 2/2me − e2/R is the unperturbed

hydrogen atom Hamiltonian, and λ is a small parameter. In this case, the operator 1/R2

commutes with the angular momentum operators L2 and Lz, so it is diagonal in the orthobasis

of states |n, l,m〉 for fixed n and different l, m. Therefore |n, l,m〉 is a good basis for degenerate

first-order perturbation theory in λ, and the first-order correction to the energy eigenvalue for

each state is simply proportional to the expectation value that we seek,

E
(1)
n,l,m = λ〈1/R2〉n,l,m. (13.6.16)

Meanwhile, the exact energy eigenvalues Eλ,k,l,m of Hλ are the solutions to the radial wavefunc-
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tion eigenvalue problem

[
− h̄2

2me

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
+
λ

r2

]
Rk,l = Eλ,k,l,mRk,l, (13.6.17)

where the integer k is the radial quantum number (the number of zeros of Rk,l(r) for 0 < r <∞).

Now we can define a quantity l′ by

h̄2

2me
l′(l′ + 1) =

h̄2

2me
l(l + 1) + λ, (13.6.18)

or, equivalently,

l′ =

√
(l + 1/2)2 + 2meλ/h̄

2 − 1/2. (13.6.19)

Note that l′ need not be an integer, unlike l. Nevertheless, the analysis of the radial wavefunction

eigenvalue problem that led to eq. (10.1.16) goes through, but with l replaced everywhere by l′,

and n replaced by k+ l′+1. In particular, it is crucial that k is a non-negative integer, in order

that the wavefunction is normalizable. The result is

Eλ,k,l,m = − e2

2a0(k + l′ + 1)2
. (13.6.20)

Expanding in small λ, for fixed integers k and l,

Eλ = Eλ=0 + λ
dEλ
dλ

∣∣∣∣
λ=0

+ · · · , (13.6.21)

and by comparing to eq. (13.6.16), we find

〈1/R2〉n,l,m =
d

dλ

( −e2
2a0(k + l′ + 1)2

) ∣∣∣∣
λ=0

=
e2

a0(k + l + 1)3
dl′

dλ

∣∣∣∣
λ=0

. (13.6.22)

From eq. (13.6.19), we have

dl′

dλ

∣∣∣∣
λ=0

=
me

h̄2(l + 1/2)
. (13.6.23)

Plugging eq. (13.6.23) into eq. (13.6.22), and using n = k + l + 1, we obtain

〈1/R2〉n,l,m =
mee

2

h̄2a0n3(l + 1/2)
=

1

a20n
3(l + 1/2)

. (13.6.24)

Equation (10.1.67) follows by restoring the general nuclear charge Z, using the rule a0 → a0/Z.

The same sort of perturbation theory trick can be used to check the result we found for

〈1/R〉n,l,m in eq. (10.1.64). Consider HZ = P 2/2me − Ze2/R, the Hamiltonian for general Z.

We rewrite this as HZ = H0 + W , where H0 = P 2/2me − e2/R is the Z = 1 Hamiltonian,
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and W = (1 − Z)e2/R is treated as a perturbation by taking Z to be close to 1. Then, for an

eigenstate of H0 with principal quantum number n, the first-order energy correction is

E(1)
n = (1− Z)e2〈1/R〉n,l,m, (13.6.25)

which is proportional to the expectation value that we seek. (Again we are making use of the

fact that the basis |n, l,m〉 is a good one for first-order degenerate perturbation theory, in the

sense that the perturbation 1/R is diagonal for fixed n and different l, m.) On the other hand,

the exact energies were found in eq. (10.1.16) to be

En = − Z2e2

2a0n2
= = − e2

2a0n2

[
1 + 2(Z − 1) + (Z − 1)2

]
. (13.6.26)

Comparing the terms linear in small Z − 1 in eqs. (13.6.25) and (13.6.26), we must have

〈1/R〉n,l,m =
1

a0n2
. (13.6.27)

This confirms eq. (10.1.64) with Z = 1.

13.7 Hydrogen atom in electric field (Stark effect)

Consider a hydrogen atom in a static external electric field E = Eẑ. The corresponding electro-

static potential seen by the electron is Φ(r) = −Ez, giving a potential energy contribution to

the Hamiltonian,

W = −eΦ = eEZ, (13.7.1)

which we will treat as a perturbation. The calculation of shifts in the atomic energy levels,

known as the the Stark effect, provides a nice example of both non-degenerate second-order and

degenerate first-order perturbation theory.

For the ground state |n, l,m〉 = |1, 0, 0〉, the first-order correction to the energy vanishes,

E
(1)
1,0,0 = 〈1, 0, 0|W |1, 0, 0〉 = eE〈1, 0, 0|Z|1, 0, 0〉 = 0. (13.7.2)

This can be understood as a consequence of the parity selection rule, eq. (5.4.17). More generally,

the expectation value of Z in any parity eigenstate is always 0, because ΠZΠ = −Z, so that

πZ = −1, giving πZπ2
n,l,m = −1. Another way to see that the matrix element vanishes is the

dipole selection rule of eq. (12.2.15).

Since the first-order correction to the ground-state energy is 0, we turn to the second-order

correction. Applying the general formula of eq. (13.1.44), and remembering that the unperturbed
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energies do not depend on l and m, we have

E
(2)
1,0,0 = e2E2

∞∑

n=2

n−1∑

l=0

l∑

m=−l

| 〈n, l,m|Z|1, 0, 0〉 |2
E1 − En

+ e2E2

∫ ∞

0

dE
∞∑

l=0

l∑

m=−l

| 〈E , l, m|Z|1, 0, 0〉 |2
E1 − E

.

(13.7.3)

Note that this includes integration over the unbound states |E , l, m〉 with continuous unperturbed

energies E > 0 as well as summation over the bound states |n, l,m〉 with discrete unperturbed

energies En = −e2/2a0n2, excluding n = 1. Equation (13.7.3) simplifies considerably if we use

the dipole selection rules of eqs. (12.2.15) and (12.2.16), which inform us that only the l = 1

and m = 0 matrix elements are non-zero. Therefore, it can be rewritten as

E
(2)
1,0,0 = −e2E2

( ∞∑

n=2

| 〈n, 1, 0|Z|1, 0, 0〉 |2
En − E1

+

∫ ∞

0

dE | 〈E , 1, 0|Z|1, 0, 0〉 |
2

E − E1

)
, (13.7.4)

where the overall minus sign appears because the denominators have flipped sign to make them

positive. Since both the sum and the integral are clearly positive, eq. (13.7.4) is negative; the

presence of the electric field lowers the hydrogen atom energy.

The evaluation of eq. (13.7.4) is not trivial, so we will study it using a series of tricks with

instructive value. First, we will find a simple lower bound on its magnitude, then a simple upper

bound, and then attempt a numerical approximation by including only the bound state sum

contribution. Finally, we will obtain the exact value of E
(2)
1,0,0 by exploiting the power of the

Dalgarno–Lewis method of section 13.5.

To obtain the lower bound, note that the magnitude of eq. (13.7.4) is certainly greater than

that of the n = 2 term alone, since all of the contributions have the same sign. So, using

E2 − E1 = 3e2/8a0,

|E(2)
1,0,0| > (n=2 term only) =

8

3
a0E

2|〈2, 1, 0|Z|1, 0, 0〉|2. (13.7.5)

The relevant matrix element is

〈2, 1, 0|Z|1, 0, 0〉 =
∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2 (R21Y
0
1 )
∗ r cos θ (R10Y

0
0 ) =

128
√
2

243
a0. (13.7.6)

Therefore, we have

|E(2)
1,0,0| >

218

311
E2a30 ≈ 1.4798E2a30 (13.7.7)

as a lower bound on the energy shift of the ground state due to the external electric field E.

We also obtain a bound from the other direction, by noting that the denominators in

eq. (13.7.4) with n 6= 2 are all larger than they would be if each instance of En or E were
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replaced by E2. So,

|E(2)
1,0,0| <

8

3
a0E

2

( ∞∑

n=2

|〈n, 1, 0|Z|1, 0, 0〉|2 +
∫ ∞

0

dE|〈E , 1, 0|Z|1, 0, 0〉|2
)
. (13.7.8)

Now that the annoying energy-difference denominators are gone, we can evaluate the whole

quantity in parentheses using the completeness identity of eq. (10.2.22), remembering that the

missing l 6= 1 and m 6= 0 terms vanish by the dipole selection rules. The result is

|E(2)
1,0,0| <

8

3
a0E

2 〈1, 0, 0|Z2|1, 0, 0〉. (13.7.9)

Another trick: by rotational symmetry of the ground state, we can replace Z2 in the expectation

value by the average of X2, Y 2, and Z2, which is easier to compute. So

〈1, 0, 0|Z2|1, 0, 0〉 =
1

3
〈1, 0, 0|(X2 + Y 2 + Z2)|1, 0, 0〉 = 1

3
〈1, 0, 0|R2|1, 0, 0〉 = a20, (13.7.10)

where, at the end, we have used eq. (10.1.53) with p = 2. Thus we have

|E(2)
1,0,0| <

8

3
E2a30 ≈ 2.6667a30E

2 (13.7.11)

as an upper bound on the energy shift to complement the lower bound in eq. (13.7.7).

As an attempt to do better than the bounds in eqs. (13.7.7) and (13.7.11), one can add up

the exact contributions from all bound states n = 2, 3, 4, . . . with En = −e2/2a0n2 in eq. (13.7.4).

It is possible, but quite non-trivial, to show that

e2
| 〈n, 1, 0|Z|1, 0, 0〉 |2

En − E1
=

(2n)9(n− 1)2n−6

3(n+ 1)2n+6
a30. (13.7.12)

The sum over all integers n ≥ 2 in eq. (13.7.4) is then found to converge to a numerical value

E
(2), partial
1,0,0 ≈ −1.8316E2a30, (13.7.13)

which is indeed between the two bounds that we have already obtained. However, this turns

out to be numerically far from the true answer; as we are about to discover, the integral over

unbound states contributes significantly.

Fortunately, one can obtain the correct result while avoiding having to perform directly the

difficult sum plus integration, by instead using the Dalgarno–Lewis method described in section

13.5. To do this, we must first use eq. (13.5.10) to solve for the first-order correction to the

ground-state wavefunction, ψ
(1)
1,0,0(r). In the position representation, this equation is

(E1 −H0)ψ
(1)
1,0,0 = eE r cos θ ψ

(0)
1,0,0, (13.7.14)
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where E1 = −e2/2a0 and ψ
(0)
1,0,0 = e−r/a0/

√
πa30 from the results of section 10.1, and we have

used the fact that W = eEZ has vanishing expectation value in the unperturbed ground state.

The unperturbed Hamiltonian operator is

H0 = − h̄2

2me
∇2 − e2

r
= −a0e

2

2

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
− e2

r
, (13.7.15)

where, in the second equality, we have used the fact that there is no φ dependence because

of the symmetry of the problem about the z-axis, and h̄2/2me = a0e
2/2. Given the form of

eq. (13.7.14), it is reasonable to try for a solution of the form

ψ
(1)
1,0,0 = f(r) cos θ ψ

(0)
1,0,0. (13.7.16)

With this guess, the differential equation (13.7.14) becomes

1

2
f ′′ +

(
1

r
− 1

a0

)
f ′ − 1

r2
f =

E

ea0
r, (13.7.17)

in which we are delighted to see that the θ dependence has disappeared. Since the inhomogeneous

part is linear in r, we are inspired to make the further guess that f is a quadratic polynomial

in r, and are rewarded with the simple solution

f = −E
e
(a0 + r/2)r. (13.7.18)

[This corresponds to the Dalgarno–Lewis operator A = −E
e
(a0 + R/2)Z as the solution to

eqs. (13.5.2) and (13.5.3), although we do not directly need it.]

Having successfully found ψ
(1)
1,0,0, the rest is relatively easy. We get, using eq. (13.5.8) in the

position representation,

E
(2)
1,0,0 =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2
(
eEr cos θ

)(
−E
e
(a0 + r/2)r cos θ

)
|ψ(0)

1,0,0|2, (13.7.19)

which evaluates finally to the correct, and surprisingly simple, result

E
(2)
1,0,0 = −9

4
a30E

2 = −2.25a30E2. (13.7.20)

Because the leading correction to the ground state energy comes from second order in perturba-

tion theory, and is therefore quadratic in the applied electric field, this is called the quadratic

Stark effect.

Let us now see how to connect eq. (13.7.20) to an experimental measurement. In general,

for a dipole moment p induced by an external electric field E, the polarizability α is defined by

p = αE. (13.7.21)
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As the electric field is increased, the change in the energy of the dipole is

dU = −p · dE = −αE dE, (13.7.22)

so that the total energy of the induced dipole is

U = −1
2
αE2. (13.7.23)

Comparing to eq. (13.7.20), we have −9
4
a30E

2 = −1
2
αE2, or

α =
9

2
a30 = 6.67× 10−31m3, (13.7.24)

which agrees well with the experimental value for the polarizability of atomic hydrogen in the

ground state.

Let us now turn to the Stark effect for the first excited (n = 2) stationary states of the

hydrogen atom. The unperturbed states are

|n, l,m〉 = |2, 0, 0〉, |2, 1, 0〉, |2, 1, 1〉, and |2, 1,−1〉, (13.7.25)

which all have the same unperturbed energy E2 = −e2/8a0. We therefore need to apply the

method of degenerate perturbation theory as outlined in section 13.6. To start, we must choose

the unperturbed orthobasis of n = 2 states as the eigenkets of the 4× 4 matrix

W(l′,m′), (l,m) = 〈2, l′, m′|eEZ|2, l, m〉. (13.7.26)

Using the dipole selection rule of eqs. (12.2.15) and (12.2.16), the only non-zero entries of this

matrix come from

〈2, 1, 0|Z|2, 0, 0〉 = 〈2, 0, 0|Z|2, 1, 0〉, (13.7.27)

which can be evaluated as

〈2, 1, 0|Z|2, 0, 0〉 =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2
(
R21Y

0
1 )
∗ (r cos θ

) (
R20Y

0
0 ) (13.7.28)

=
1

16

∫ 1

−1
d(cos θ) cos2 θ

∫ ∞

0

dr

(
r

a0

)4

(2− r/a0) e−r/a0 (13.7.29)

= −3a0. (13.7.30)

So, in the orthobasis of eq. (13.7.25), the perturbation Hamiltonian has the matrix representation

W ↔ −3a0eE




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , (13.7.31)

281



which has eigenvalues −3a0eE, +3a0eE, 0, and 0. Thus, the energy eigenvalues to first order

in the perturbing electric field and the corresponding unperturbed energy states are

Energies States (13.7.32)

− e2

8a0
− 3a0eE

1√
2
(|2, 0, 0〉+ |2, 1, 0〉) , (13.7.33)

− e2

8a0
+ 3a0eE

1√
2
(|2, 0, 0〉 − |2, 1, 0〉) , (13.7.34)

− e2

8a0
|2, 1, 1〉, |2, 1,−1〉. (13.7.35)

Because the perturbed n = 2 energy levels vary linearly with the applied electric field, this is

called the linear Stark effect.

Now that we have found the leading results in perturbation theory for the n = 1 and

n = 2 energy levels, it is time to confess the awful truth that in this example, the perturbative

expansion does not converge! The perturbation Hamiltonian W = eEZ is unbounded from

below; it approaches −∞ for z → −∞. This implies that in the idealized problem of a hydrogen

atom in a uniform electric field filling infinite space, there are no bound states at all. Instead,

the exact stationary-state solutions will have only continuous energies, with resonances near

the bound state energies that we have obtained. For this reason, the perturbative expansion in

powers of the electric field E actually cannot converge to the supposed atomic bound states.

Fortunately, however, in any real-world version of the Stark effect, the electric field is cut off

at some large distance, and the perturbation Hamiltonian remains finite. So, our effort was not

at all wasted. In fact, the practically relevant results really are the perturbative ones we found,

not the “exact” calculation for unbound states based on an unattainable ideal.

13.8 Almost-degenerate perturbation theory

The perturbative expansion can also face problems if the perturbed state is almost, but not

quite, degenerate with some other states. This means that for some subset of stationary states

|n1〉, |n2〉, . . . |nN〉, the differences in unperturbed energies Enj
−Enk

are all small compared to the

magnitudes of the matrix elements of W . In this case, the terms in the perturbation expansions

for Enj
and |ψnj

〉 will be finite, but will not become smaller at higher orders, and convergence

will fail. To get sensible results we must formulate almost-degenerate perturbation theory

to evaluate them, as follows.

For inspiration, we write the perturbation Hamiltonian as

W =
∑

n

∑

m

|n〉〈n|W |m〉〈m|, (13.8.1)
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by using completeness twice. Consider a projection operator onto the subspace of almost-

degenerate states that we wish to consider,

Pdeg =
∑

k

|nk〉〈nk|. (13.8.2)

Now we define the perturbation Hamiltonian projected onto the almost-degenerate subspace,

Wdeg = PdegWPdeg, (13.8.3)

which is equivalent to only including the orthobasis elements for the degenerate subspace in the

summations in eq. (13.8.1). Note that PdegWdegPdeg = Wdeg, since P
2
deg = Pdeg, as always for

projection operators.

The strategy is to now re-divide the full Hamiltonian as

H = H ′0 +W ′, (13.8.4)

where

H ′0 = H0 +Wdeg, (13.8.5)

W ′ = W −Wdeg. (13.8.6)

One now endeavors to solve the eigenvalue problem for H ′0 exactly, and then treat W ′ as the

perturbation. In favorable circumstances, for example if the dimension of the almost-degenerate

subspace is small, this can be done exactly. In less favorable cases, one might have to solve the

eigenvalue problem for H ′0 in an approximation, before then applying W ′ as the perturbation.

In any case, let us refer to the unperturbed eigenstates of H ′0 within the almost-degenerate

subspace as |n′j〉, with unperturbed energies En′
j
. The point is that all of the W ′ matrix elements

within the almost-degenerate subspace vanish,

〈n′j |W ′|n′k〉 = 0. (13.8.7)

This follows because the left side can be rewritten, using |n′k〉 = Pdeg|n′k〉, as

〈n′j|Pdeg(W −Wdeg)Pdeg|n′k〉 = 〈n′j|(Wdeg −Wdeg)|n′k〉 = 0. (13.8.8)

One can now fearlessly apply the usual non-degenerate perturbation theory results of eqs. (13.1.43)–

(13.1.47) with H ′0 as the unperturbed Hamiltonian with eigenstates |n′j〉, and W ′ as the pertur-

bation, because small denominators En′
j
− En′

k
can never appear in the sums.

As a minimal example of all three types of stationary-state perturbation theory (non-

degenerate, degenerate, almost-degenerate), consider a system with only 2 states, with

H0 =

(
a 0
0 b

)
, W =

(
0 c
c∗ 0

)
, (13.8.9)
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Figure 13.8.1: Perturbation theory results at leading order for energy eigenvalues of a
two-state system with Hamiltonian given by eq. (13.8.9), for non-degenerate perturbation
theory with b − a ≫ |c| (left), degenerate perturbation theory with a = b (center), and
almost-degenerate perturbation theory with a ≈ b (right). For a two-state system, almost-
degenerate perturbation theory is the exact result, by definition. In all three cases, the
energy eigenvalues are moved apart by the perturbation, illustrating level repulsion.

where a, b are real numbers and c is complex. Of course, 2×2 matrices are easy, so the eigenvalues

for H = H0 +W can be done exactly in this example, with the results

E1,2 =
1

2

(
a+ b∓

√
(a− b)2 + 4|c|2

)
. (13.8.10)

If one applies non-degenerate perturbation theory, one readily obtains (assuming that b > a)

E1 = a− |c|2/(b− a) + · · · , E2 = b+ |c|2/(b− a) + · · · , (13.8.11)

with the perturbation c contributing quadratically. On the other hand, if b = a, then the

previous expansion fails, but one can apply degenerate perturbation theory, with the result

E1 = a− |c|+ · · · , E2 = a + |c|+ · · · , (13.8.12)

in which the perturbation c contributes linearly. In this simple example, the application of

almost-degenerate perturbation theory is just the exact result, which behaves quadratically with

|c| for small |c| ≪ |a − b|, and transitions to behaving linearly with |c| for large |c| ≫ |a + b|.
These statements are illustrated in Figure 13.8.1. The fact that increasing the off-diagonal

perturbation moves the energy eigenvalues apart is called level repulsion.

As a less minimal example of almost-degenerate perturbation theory, consider a state space

of dimension 3, with matrix representations for the unperturbed and perturbation Hamiltonians

H0 =



a−∆ 0 0

0 a+∆ 0
0 0 b


 , W =



0 δ ǫ
δ 0 0
ǫ 0 0


 , (13.8.13)

where a, b,∆, δ, and ǫ are all real constants. The exact eigenvalues of H = H0 + W can be

obtained by solving a cubic equation, but the results are complicated. However, it is worth
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noting that, because of the theorem in linear algebra that the sum of the eigenvalues of a matrix

is equal to the trace, the exact energies must satisfy a simple sum rule,

E1 + E2 + E3 = 2a+ b, (13.8.14)

regardless of the values of the other parameters. Now let us see what perturbation theory says.

First, let us find the energy eigenvalues by applying non-degenerate perturbation theory.

Because H0 is diagonal, the unperturbed stationary states are the kets represented by the unit

column vectors

|1〉 =




1
0
0



 , |2〉 =




0
1
0



 , |3〉 =




0
0
1



 , (13.8.15)

with

E1 = a−∆, E2 = a+∆, E3 = b. (13.8.16)

From eq. (13.1.43), the first-order corrections to the energies vanish, because W has no non-

zero diagonal entries. Applying (13.1.44) gives the energy eigenvalues at second order in non-

degenerate perturbation theory in δ, ǫ,

E1 = a−∆+ ǫ2/(a− b−∆)− δ2/2∆, (13.8.17)

E2 = a+∆+ δ2/2∆, (13.8.18)

E3 = b+ ǫ2/(b− a+∆). (13.8.19)

As a check, these do satisfy the sum rule eq.(13.8.14).

However, if ∆ is small compared to δ, then the last term in each of eqs. (13.8.17) and

(13.8.18) will be large, signaling a breakdown in the perturbative expansion because the unper-

turbed states |1〉 and |2〉 are too close in energy. In that case, one must use almost-degenerate

perturbation theory. In this example,

Pdeg =



1 0 0
0 1 0
0 0 0


 , Wdeg =



0 δ 0
δ 0 0
0 0 0


 , (13.8.20)

and so

H ′0 =




a−∆ δ 0
δ a+∆ 0
0 0 b



 , W ′ =




0 0 ǫ
0 0 0
ǫ 0 0



 . (13.8.21)
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Note that W ′ is indeed 0 within the 2 × 2 subspace of almost-degenerate states. It is not too

hard to find the unperturbed energies and eigenstates of H ′0,

E1′ = a−
√
δ2 +∆2, |1′〉 =

√
r+
2
|1〉 −

√
r−
2
|2〉, (13.8.22)

E2′ = a+
√
δ2 +∆2, |2′〉 =

√
r−
2
|1〉+

√
r+
2
|2〉, (13.8.23)

E3′ = b, |3′〉 = |3〉, (13.8.24)

where

r± = 1± ∆√
δ2 +∆2

. (13.8.25)

We then apply eqs. (13.1.43) and (13.1.44) with H ′0 and W ′, while being careful to note that

the matrix representation of W ′ in eq. (13.8.21) is in the original basis |1〉, |2〉, |3〉, so that

W ′ = ǫ|1〉〈3|+ ǫ|3〉〈1|. (13.8.26)

The first-order contributions to the energies vanish because W ′ is also off-diagonal in the

basis |1′〉, |2′〉, |3′〉. The second-order energy corrections are

E
(2)
1′ = |〈3′|W ′|1′〉|2/(E1′ − E3′), (13.8.27)

E
(2)
2′ = |〈3′|W ′|2′〉|2/(E2′ − E3′), (13.8.28)

E
(2)
3′ = |〈1′|W ′|3′〉|2/(E3′ − E1′) + |〈2′|W ′|3′〉|2/(E3′ − E2′), (13.8.29)

resulting in the energy eigenvalues at second-order in almost-degenerate perturbation theory,

E1′ = a−
√
δ2 +∆2 +

ǫ2r+

2(a− b−
√
δ2 +∆2)

, (13.8.30)

E2′ = a+
√
δ2 +∆2 +

ǫ2r−

2(a− b+
√
δ2 +∆2)

, (13.8.31)

E3′ = b+
ǫ2(b− a−∆)

(b− a)2 − δ2 −∆2
, (13.8.32)

now with ǫ as the sole expansion parameter. Again one can check that the sum rule eq.(13.8.14)

is indeed satisfied.

The almost-degenerate perturbation theory expansion in ǫ will be a good one as long as

|ǫ/(E1′−E3′)| = |ǫ/(a−b−
√
δ2 +∆2)| and |ǫ/(E2′−E3′)| = |ǫ/(a−b+

√
δ2 +∆2)| are both small.

Conversely, if they are not, then even this expansion will break down, and almost-degenerate

perturbation theory would, unfortunately, consist of solving the original 3× 3 problem exactly.
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14 The variational method

14.1 Estimate and upper bound on the ground state energy

In the previous chapter, we studied how to use perturbation theory to find approximate solu-

tions to the Hamiltonian eigenvalue problem. In this chapter, we will consider the variational

method (also known as the Rayleigh–Ritz method), which applies even in situations for

which it is not possible to make a sensible perturbation series expansion. Because the varia-

tional method is not based on a perturbative expansion, there is no need to know the exact

solution to a simpler unperturbed problem.

The key idea comes from an inequality satisfied by the expectation value of the Hamiltonian

in any state |ψ〉 of our choice. Although the eigenstates |En, uEn〉 of H and the corresponding

energy eigenvalues En and degeneracy labels uEn are unknown, we can use completeness to write

〈ψ|H|ψ〉 =
∑

n

∑

uEn

〈ψ|H|En, uEn〉〈En, uEnψ〉 =
∑

n

∑

uEn

En 〈ψ|En, uEn〉 〈En, uEn|ψ〉 (14.1.1)

≥ E0

∑

n

∑

uEn

〈ψ|En, uEn〉〈En, uEn|ψ〉 , (14.1.2)

where we used E0 ≤ En to get the last line. Now we can again use completeness to rewrite∑

n

∑

uEn

〈ψ|En, uEn〉〈En, uEn|ψ〉 = 〈ψ|ψ〉, and obtain the bound

〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0. (14.1.3)

(We have not assumed the normalization condition 〈ψ|ψ〉 = 1, as this is sometimes not conve-

nient.) Equation (14.1.3) means that we can make a guess, or a class of guesses, for |ψ〉, and
then evaluate the left side of eq. (14.1.3) to obtain an estimate for E0 that is guaranteed not to

be lower than the true value. The guess is called a trial state or trial wavefunction.

In a typical application, we improve the quality of our guess by choosing a whole family of

trial states |ψ(a)〉, where a denotes a continuously variable parameter (or, more generally, a set

of parameters). Now we compute

E(a) =
〈ψ(a)|H|ψ(a)〉
〈ψ(a)|ψ(a)〉 , (14.1.4)

and minimize it with respect to a to obtain amin, typically by solving

∂E(a)

∂a
= 0. (14.1.5)

Then E(amin) is our corresponding best estimate and upper bound for E0, and |ψ(amin)〉 is our
best estimate for the ground state |E0〉.
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The variational method tends to forgive us if our guess is good, but not perfect. To see why,

suppose the result of our best guess can be written as

|ψ(amin)〉 = |E0〉+
∑

n 6=0

δn|En〉, (14.1.6)

where the δn are some unknown, but hopefully small, numbers representing the fact that our

guess was not perfect. (For simplicity, take the energy eigenvalues to be not degenerate for the

illustration; this is not a crucial assumption.) Then we compute

〈ψ|H|ψ〉 = E0 +
∑

n 6=0

En|δn|2, (14.1.7)

〈ψ|ψ〉 = 1 +
∑

n 6=0

|δn|2, (14.1.8)

which yields

〈ψ|H|ψ〉
〈ψ|ψ〉 = E0 +

∑

n 6=0

(En − E0)|δn|2

1 +
∑

n 6=0

|δn|2
. (14.1.9)

The error in our estimate for E0 is seen to be quadratic, involving |δn|2 rather than |δn|. The

lesson here is that the estimate for the energy is better than the estimate for the state, provided

only that the best-estimate errors are not too horrible, obeying |δn| < 1. A 10% error in the

state ket typically leads to only a ∼ 1% error in the energy.

Still, we do want to make a good guess for our parameterized family of states |ψ(a)〉, so that

the best of them has a chance to be as close as possible to the true ground state. For example, we

should choose trial wavefunctions ψ(r) that have as few wiggles and nodes as possible, consistent

with the given potential V (r), in order to minimize the kinetic contribution to the Hamiltonian.

Also, |ψ(r)| should be larger where the potential V (r) is smaller. In three-dimensional problems,

in order to minimize the kinetic contribution to the energy, we should also make guesses that

have L2 eigenvalue l = 0 if the Hamiltonian has rotational symmetry.

14.2 Variational method for excited states

The variational method also can provide information about higher-energy states, by projecting

out lower-energy states from the trial state guesses. For example, suppose that we want to

obtain the energy eigenvalue for the first excited state(s) |E1〉. If we somehow already knew the

exact |E0〉, then we could define the projector

P = I − |E0〉〈E0|, (14.2.1)
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which satisfies P 2 = P and P |E0〉 = 0. Then, for all trial states P |χ〉, one can prove the bound

〈χ|PHP |χ〉
〈χ|P |χ〉 ≥ E1, (14.2.2)

where E1 is the first excited energy eigenvalue.

In practice, we may only have a variational estimate |ψest〉 for |E0〉, for example |ψest〉 =
|ψ(amin)〉 from a previous variational estimate of the ground state. In that case, it might be

that the best we can do is to instead define

P̃ = I − |ψest〉 〈ψest| , (14.2.3)

(assuming that |ψest〉 has been normalized to unity) and then minimize the expectation value of

the Hamiltonian in a parameterized family of states P̃ |χ(b)〉, where |χ(b)〉 is chosen based on a

prior understanding of the properties of the first excited state(s), and depends on a variational

parameter b. Unfortunately, the accuracy of the resulting estimate for E1 will be limited by the

goodness of the estimate |ψest〉 ≈ |E0〉. To the extent that this is not a good approximation,

there is some leakage from the ground state into the guess, and we do not have a strict bound

on the result of the minimization of the Hamiltonian expectation value. For this reason, it is

often computationally challenging to obtain good estimates for all but the lowest few energy

eigenvalues.

Fortunately, strict bounds and variational estimates for some of the higher energy states can

be obtained if the Hamiltonian is compatible with some other observable(s). Suppose that there

is an observable Ω that satifies

[H,Ω] = 0. (14.2.4)

This implies that one can choose an orthobasis of common eigenstates of H and Ω, so that the

energy eigenstates can be sub-classified by their Ω eigenvalues, denoted ω. Common examples

for Ω are the total angular momentum operators J2, Jz and/or the parity operator Π. In such

cases, we can define a family of trial kets |ψω(a)〉 that are restricted to be eigenstates of Ω with

a fixed eigenvalue ω, so

Ω |ψω(a)〉 = ω |ψω(a)〉 . (14.2.5)

In most examples, it will be obvious how to do this, but if necessary we can define the projection

operator for each ω,

Pω =
∑

uω

|ω, uω〉〈ω, uω|, (14.2.6)
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where the uω are degeneracy labels for ω, and then take |ψω(a)〉 = Pω |ψ(a)〉. In any case, given

a family of trial states |ψω(a)〉, one finds

E(a, ω) =
〈ψω(a)|H|ψω(a)〉
〈ψω(a)|ψω(a)〉

≥ Emin(ω), (14.2.7)

where Emin(ω) is the true minimum energy eigenvalue within the subspace of states that have

Ω = ω. Thus, we obtain a separate variational estimate and bound on the lowest energy

eigenstate within each ω subspace.

For example, if the Hamiltonian for a spin-less particle has rotational symmetry, then we

can take Ω = L2. Then, applying the variational principle in turn to the trial wavefunctions

ψ(r, θ, φ) = RA(r) and RB(r)Y
0
1 (θ, φ) and RC(r)Y

0
2 (θ, φ), we will obtain estimates for the mini-

mum energy eigenvalues and wavefunctions for the ground state with l = 0, and for the lowest

energy state that has l = 1, and for the lowest energy state that has l = 2, respectively. (Recall

that rotational invariance guarantees that the energy eigenvalues and the radial wavefunctions

are actually independent ofm, so we tookm = 0 in each case just to be specific. Any other value

of m would work just as well.) It is not necessary in this case to go to the trouble of defining

the projection operator in eq. (14.2.6), because the eigenstates of L2 are known in terms of the

spherical harmonics.

14.3 Examples of the variational method

As an easy example, consider a system for which we already know the exact answer: the harmonic

oscillator in one dimension, with

H =
P 2

2m
+

1

2
mω2X2. (14.3.1)

We now use a family of trial wavefunctions

ψ(a) = e−x
2/a2 . (14.3.2)

This is a very fortunate guess, as it just so happens to include the correct ground-state wave-

function as a special case. Now, calculate

〈ψ(a)|ψ(a)〉 =

∫ ∞

−∞
dx e−2x

2/a2 =

√
π

2
a, (14.3.3)

and

〈ψ(a)|H|ψ(a)〉 =

∫ ∞

−∞
dx e−x

2/a2
[
− h̄2

2m

d2

dx2
+

1

2
mω2x2

]
e−x

2/a2 (14.3.4)

=

∫ ∞

−∞
dx

[
h̄2

2m

(
2

a2
− 4x2

a4

)
+

1

2
mω2x2

]
e−2x

2/a2 (14.3.5)

=

√
π

2

(
h̄2

2ma
+

1

8
mω2a3

)
. (14.3.6)
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Using these in eq. (14.1.4) gives

E(a) =
h̄2

2ma2
+
mω2a2

8
. (14.3.7)

The first term is the kinetic contribution, which wants a to be large, and the second term is the

potential contribution, which prefers a to be small. Minimizing E(a) with respect to a2 gives

a2min =
2h̄

mω
, (14.3.8)

and so the result of the variational method is

E0 ≤ E(amin) = h̄ω/2, (14.3.9)

in agreement with the exact result. Of course, ψ(amin) is also the exact ground state wavefunction

(up to the normalization factor), as a result of our fortunate guess.

For a less trivial example, consider the Hamiltonian

H =
P 2

2m
+ λX4, (14.3.10)

which is a cousin of the harmonic oscillator but with a steeper, quartic, potential. Not feel-

ing very imaginative at the moment, and remembering the forgiving nature of the variational

principle, we again choose as the trial wavefunction

ψ(a) = e−x
2/a2 , (14.3.11)

which gives

E(a) =
h̄2

2ma2
+

3

16
λa4. (14.3.12)

(The computation of the first term is identical to that for the previous example, as the trial

wavefunction and the P 2/2m part of the Hamiltonian have not changed.) Now minimizing E(a)

with respect to a2 gives

a2min =

(
4h̄2

3λm

)1/3

≈ 1.101

(
h̄2

λm

)1/3

, (14.3.13)

and

Emin =
3

8

(
6h̄4λ

m2

)1/3

≈ 0.681

(
h̄4λ

m2

)1/3

(14.3.14)

as the estimate of the ground state energy.
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To do better, we invent a three-parameter trial wavefunction

ψ(a, b, c) = (1 + bx2 + cx4)e−x
2/a2 . (14.3.15)

We do not bother including odd powers of x, because we expect that the parity of the ground

state is +1. Using a computer to minimize E(a, b, c) with respect to all three of a, b, c gives

E(amin, bmin, cmin) ≈ 0.668

(
h̄4λ

m2

)1/3

(14.3.16)

as a better estimate. As always, the more general wavefunction gives an estimate that is lower,

and closer to the true ground-state energy eigenvalue.

The first excited state for H in eq. (14.3.10) will have one node, at x = 0, and odd parity.

To find it, we can therefore exploit eq. (14.2.7), by choosing a simple trial wavefunction

ψ(a) = xe−x
2/a2 . (14.3.17)

A straightforward calculation of the Hamiltonian’s expectation value and the norm gives

E(a) =
3h̄2

2ma2
+

15

16
λa4, (14.3.18)

with minimum at

a2min =

(
4h̄2

5λm

)1/3

, (14.3.19)

leading to the estimate and upper bound for E1 of

E(amin) =
9

4

(
5h̄4λ

4m2

)1/3

≈ 2.424

(
h̄4λ

m2

)1/3

. (14.3.20)

A somewhat better result could follow from using a multi-parameter trial wavefunction of the

form ψ(a, b, c, . . .) = (x+ bx3+ cx5+ · · · )e−x2/a2 . Note that it is important to be careful to only

include odd-parity terms in the trial wavefunction, to avoid contamination from the even-parity

ground state. The actual first excited state energy eigenvalue E1 turns out to be

E1 = 2.394 . . .

(
h̄4λ

m2

)1/3

, (14.3.21)

as can be obtained from numerical minimization of, say, a 6-parameter trial wavefunction.

Next, consider as a three-dimensional example the hydrogen atom Hamiltonian, written in

the spherical coordinate position representation as

H = T + V, T = − h̄
2∇2

2me
, V = −e

2

r
. (14.3.22)
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Although we know the exact wavefunction, let us ignore the temptation to use it, and instead

try a Gaussian trial wavefunction with a variational parameter k,

ψ(k) = e−k
2r2. (14.3.23)

To find the expectation value of the Hamiltonian, we first compute the kinetic contribution,

〈ψ|T |ψ〉 = − h̄2

2me
4π

∫ ∞

0

dr r2 e−k
2r2
(
d2

dr2
+

2

r

d

dr

)
e−k

2r2 = 4π

(
h̄2

mek

√
π

2

3

16

)
, (14.3.24)

then the potential contribution,

〈ψ|V |ψ〉 = 4π

(
− e2

4k2

)
, (14.3.25)

and finally the normalization factor,

〈ψ|ψ〉 = 4π

(√
π

2

1

8k3

)
. (14.3.26)

Putting these together, we have

E(k) =
3h̄2k2

2me

−
√

8

π
e2k. (14.3.27)

The minimum is found from ∂E(k)/∂k = 0 to be at

kmin =

√
8

π

e2me

3h̄2
=

√
8

π

1

3a0
. (14.3.28)

Plugging this in gives the estimate of the ground state energy

E(kmin) = −
(

8

3π

)
e2

2a0
≈ −0.849Rydberg. (14.3.29)

Of course, the exact answer is −1 Rydberg. Even though our choice of one-parameter trial

wavefunctions was not a very good one, because the harmonic oscillator is a poor approximation

to the Coulomb potential, the result was within about 15% of the correct answer.

14.4 Helium atom ground state from the variational method

We conclude this chapter with a more practical example in which the variational method shines:

the helium atom consisting of two electrons with charge −e and a nucleus with charge +2e. The

Hamiltonian for this system was already given in eqs. (13.3.1)–(13.3.3) of section 13.3, where

we treated it using first-order perturbation theory.

To use the variational method in the most simple way, let us choose a factorized trial wave-

function of the form

Ψ(Z̃, r1, r2) = ψ(Z̃, r1)ψ(Z̃, r2), (14.4.1)
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where [compare eq. (10.1.42)]

ψ(Z̃, r) =

√
Z̃3

πa30
e−Z̃r/a0 (14.4.2)

is the normalized ground state wavefunction for a hydrogen-like atom with general atomic num-

ber Z̃. However, here we do not set Z̃ equal to Z = 2 in the trial wavefunction, but instead

treat it as a continuous variational parameter, adjusting it to find the minimum expectation

value of the total H . In contrast, Z in the Hamiltonian is fixed to be equal to the actual number

of protons in the nucleus. For helium, Z = 2, but we will leave it general for the following

discussion, so that our results apply to any ion with 2 electrons.

We therefore need to compute, and then minimize:

E(Z̃) = E1(Z̃) + E2(Z̃) + E12(Z̃), (14.4.3)

where E1(Z̃) = E2(Z̃) = 〈Ψ|H1|Ψ〉, and E12(Z̃) = 〈Ψ|H12|Ψ〉, since we have arranged for

〈Ψ|Ψ〉 = 1 in this example. Because each electron partly screens the charge +Ze nucleus from

the other electron, we anticipate that the value Z̃min that minimizes E(Z̃) will be in the range

Z − 1 < Z̃min < Z, so that for helium, 1 < Z̃min < 2.

To find the non-interaction contributions, we first compute

E1(Z̃) =

∫
d3r1 ψ(r1)

∗
(
− h̄2

2me
∇2

1 −
Ze2

r1

)
ψ(r1)

∫
d3r2 |ψ(r2)|2. (14.4.4)

Note that the potential energy contribution is −Ze2/r1, not −Z̃e2/r1, because Z̃ is our varia-

tional parameter, not the actual nuclear charge. In this expression,
∫
d3r2 |ψ(r2)|2 = 1, and the

remaining integral factor evaluates simply, to give

E1(Z̃) =
e2

2a0

(
Z̃2 − 2Z̃Z

)
. (14.4.5)

Of course, E2(Z̃) = E1(Z̃) follows from an identical calculation with the labels 1 and 2 inter-

changed. The more difficult part is the interaction contribution

E12(Z̃) = e2
∫
d3r1

∫
d3r2 |ψ(r1)|2 |ψ(r2)|2

1

|r1 − r2|
. (14.4.6)

Fortunately, we have already evaluated this integral in eqs. (13.3.8)–(13.3.19), with the result

E12(Z̃) =
5Z̃e2

8a0
. (14.4.7)

Plugging this into eq. (14.4.3), along with E1(Z̃) = E2(Z̃) from eq. (14.4.5), gives

E(Z̃) = Z̃(Z̃ − 2Z + 5/8)
e2

a0
. (14.4.8)
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Minimizing this with respect to our variational parameter Z̃ gives

Z̃min = Z − 5/16 = 27/16. (14.4.9)

Note that indeed Z − 1 < Z̃min < Z, as we had anticipated.

Our variational method estimate for the ground state energy of the helium atom is therefore

E(Z̃min) = −Z̃2
min

e2

a0
= −

(
27

16

)2
e2

a0
= −5.695 Rydberg = −77.49 eV. (14.4.10)

This can be compared to the experimental value (the minimum ionization energy needed to

completely remove both electrons from the He atom in its ground state), which is

Eexp = −5.807 Rydberg = −79.005 eV. (14.4.11)

As expected, our variational method estimate is higher than the true value, but by less than

2%. Recall that the first-order perturbation theory method in section 13.3 gave instead

Epert. = −5.5 Rydberg = −74.83 eV, (14.4.12)

which is about 5.3% higher than the experimental value. The variational method, even with the

simplest trial wavefunction, performs better than first-order perturbation theory. If one uses a

more sophisticated non-factorized trial wavefunction with more parameters, and asks a computer

to do the integrations and minimization numerically, then the variational method will win even

more convincingly for a given amount of human calculation effort expended. The variational

method also scales nicely to more complex problems in atomic and molecular physics, where

perturbation theory often tends to have more difficulty.
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15 Fine, hyperfine, and magnetic effects for the hydrogen

atom

15.1 Relativistic kinetic, spin-orbit, and Darwin corrections

The hydrogen atom Hamiltonian was treated in chapter 10 in a non-relativistic approximation.

There, it was argued that relativistic effects should affect the energy eigenvalues by a factor

suppressed by the square of the fine-structure constant α = 1/137.036 . . .. Now it is time to find

those corrections, using stationary-state perturbation theory.

By an expansion of the Dirac equation, it is possible to show that a more accurate approx-

imation for the electron (with mass called me in this section) moving in a general spherically

symmetric electrostatic potential† Φ(R) is given by

H = H0 +Hrel +HSO +HDarwin, (15.1.1)

where

H0 =
P 2

2me

− eΦ(R) (15.1.2)

is the non-relativistic approximation we have already used, with P 2 = P · P , and

Hrel = − (P 2)2

8m3
ec

2
, (15.1.3)

HSO = − e

2m2
ec

2

1

R

dΦ

dR
L · S, (15.1.4)

HDarwin = − h̄2e

8m2
ec

2
∇2Φ (15.1.5)

are called the relativistic kinematic, spin-orbit, and Darwin terms, respectively. (The last is

named for Charles G. Darwin, the grandson of the Charles Darwin famous for evolution.) These

three terms give rise to numerical effects that are of the same order, collectively called the fine

structure corrections to the hydrogen atom energy levels. Each of them is a relativistic effect,

as suggested by the 1/c2 factors, which would make them formally vanish if the speed of light

were infinite. In this section, we will calculate their effects using perturbation theory. Before

doing so, let us briefly review the physical reasons behind the fine structure terms.

First, Hrel can be understood as coming from the binomial expansion of the special relativistic

expression for the energy of a massive particle with classical momentum p,

E =
√
m2
ec

4 + p2c2 = mec
2 +

p2

2me
− (p2)2

8m3
ec

2
+ · · · . (15.1.6)

†For hydrogen-like atoms, Φ(R) = Ze/R, but in eqs. (15.1.2)–(15.1.5) we choose to be more general.
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The first term is just a constant, Einstein’s famous equivalence of rest mass and energy. We

can ignore it, since it causes all time-dependent states to be multiplied by the same phase. The

second term is the kinetic term in H0, and the third gives Hrel when p is promoted from classical

momentum to the quantum momentum operator.

The HSO contribution can be understood as the energy due to the interaction of the intrinsic

magnetic moment of the electron with the magnetic field B that it experiences because it is

moving. Naively, this gives a contribution to the Hamiltonian −µe ·B, where the magnetic field

as seen in the electron’s rest frame moving with velocity v is, in gaussian cgs units,

B = −v
c
× E. (15.1.7)

Here, we can use v = p/me and, for a spherically symmetric potential,

E = −∇Φ = −r
r

dΦ

dr
, (15.1.8)

so that, promoting r and p to quantum operators,

B =
1

mec

1

R

dΦ(R)

dR
(P × R) = − 1

mec

1

R

dΦ(R)

dR
L. (15.1.9)

There is no operator ordering issue in writing the cross-product L = R×P = −P ×R, because
different rectangular coordinate components of P and R commute. The magnetic moment of

the electron is opposite the direction of the spin, because the charge −e is negative,

µe = − e

mec
S, (15.1.10)

where we have used eqs. (4.3.18) and (4.3.19) with the (very good) approximation ge ≈ 2. So,

naively we would have

HSO, naive = −µe ·B = − e

m2
ec

2

1

R

dΦ

dR
L · S. (15.1.11)

The extra factor of 1/2 in the true HSO in eq. (15.1.4) is known as the Thomas precession effect.

Llewellyn Thomas explained it in 1925 as a classical relativistic effect of the electron being at

rest in a rotating (not inertial) reference frame. Alternatively, it can be derived directly from

the Dirac equation.

Finally, the physical origin of the Darwin term HDarwin is related to the fact that, as we noted

following eq. (10.1.71), the behavior of the electron is modified on a distance scale comparable

to its reduced Compton wavelength, λ̄e = h̄/mec, due to the effects of virtual electron-positron

production, which are not captured by the non-relativistic Hamiltonian. A proper derivation

from the Dirac equation shows that this ends up making the replacement

Φ(R) → Φ(R)− λ̄2e
8
∇2Φ, (15.1.12)
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resulting in the correction HDarwin in eq. (15.1.5).

Now we apply first-order perturbation theory to evaluate theHrel contribution to the energies

of the unperturbed states |n, l,m〉. These unperturbed states have degeneracies for n > 1, so we

are really doing degenerate perturbation theory, but W = Hrel is already diagonal in this basis,

so we can directly apply eq. (13.6.4). This gives

E
(1), rel
n,l,m = 〈Hrel〉n,l,m = − 1

8m3
ec

2
〈(P 2)2〉n,l,m, (15.1.13)

where here, and in the following, 〈· · · 〉n,l,m denotes the expectation value 〈n, l,m| · · · |n, l,m〉.
To evaluate this efficiently, we can use a trick, by rewriting it using P 2 = 2me(H0 + e2/R),

E
(1), rel
n,l,m = − 1

2mec2
〈(H0 + e2/R)2〉n,l,m (15.1.14)

= − 1

2mec2
(
E2n + 2Ene2〈1/R〉n,l,m + e4〈1/R2〉n,l,m

)
, (15.1.15)

where En = −e2/2a0n2 is the eigenvalue of H0 for the state |n, l,m〉. The expectation values of

1/R and 1/R2 were given in eqs. (10.1.64) and (10.1.67), respectively. Plugging those results

into eq. (15.1.15) gives

E
(1), rel
n,l,m = α2 e

2

2a0

1

n3

(
3

4n
− 1

l + 1/2

)
, (15.1.16)

where we have used a0 = h̄2/mee
2 to write the result in terms of the fine structure constant

α = e2/h̄c ≈ 1/137.036, and e2/2a0 = 1 Rydberg ≈ 13.606 eV.

By itself, eq. (15.1.16) is not very useful, because the spin-orbit and Darwin terms contribute

at the same order. To evaluate the spin-orbit contribution, we note that for the special case of

the hydrogen atom, the electrostatic potential is Φ = e/R, so that eq. (15.1.4) becomes

HSO =
e2

2m2
ec

2

1

R3
L · S. (15.1.17)

This vanishes for all l = 0 states, including the ground state n = 1, since they have no orbital

angular momentum. Because the n > 1 states have H0 eigenvalue degeneracies, we are really

doing degenerate perturbation theory, which means that we must use a basis in which HSO is

diagonal. We use a standard trick for dot products of angular momentum operators,

L · S =
1

2
(J2 − L2 − S2) =

h̄2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] , (15.1.18)

which is diagonal in the total angular momentum orthobasis |n, l, s, j,mj〉. (In particular, we

do not want to use the product orthobasis |n, l, s,ml, ms〉 here, because then L · S would not
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be diagonal, as required for degenerate perturbation theory.) Using s = 1/2, it follows that the

first-order correction is

E
(1), SO
n,l,j =

h̄2e2

4m2
ec

2
[j(j + 1)− l(l + 1)− 3/4] 〈1/R3〉n,l,m, (l 6= 0). (15.1.19)

The expectation value of 1/R3 was given in eq. (10.1.68), reproduced here for convenience,

〈1/R3〉n,l,m =
1

a30n
3l(l + 1)(l + 1/2)

. (15.1.20)

It follows that

E
(1), SO
n,l,j =

h̄2e2

2m2
ec

2a30

j(j + 1)− l(l + 1)− 3/4

n3l(l + 1)(2l + 1)
, (l 6= 0). (15.1.21)

Now, using j = l ± 1/2, and writing the prefactor in terms of the fine structure constant and

the Rydberg energy,

E
(1), SO
n,l,j = α2

(
e2

2a0

) −1 ± (2l + 1)

2n3l(l + 1)(2l + 1)
, (l 6= 0, j = l ± 1/2), (15.1.22)

to go along with E
(1), SO
n,0,1/2 = 0.

Now we turn to the Darwin term of eq. (15.1.5), which for the hydrogen atom includes, in the

position representation, a factor ∇2Φ = e∇2(1/r) = −4πeδ(3)(r). It is left as a short exercise to

compute the first-order energy correction

E(1),Darwin = δl,0 α
2

(
e2

2a0

)
1

n3
. (15.1.23)

which only depends on n, l and is only non-zero for l = 0.

We are finally ready to combine the three fine-structure contributions, Efine = E(1),rel +

E(1),SO + E(1),Darwin, from eqs. (15.1.16), (15.1.22), and (15.1.23). This can be done in three

separate cases,

(l = 0, j = 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2 + 0 + 1

)
, (15.1.24)

(l 6= 0, j = l + 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2

2l + 1
+

1

(l + 1)(2l + 1)
+ 0

)
, (15.1.25)

(l 6= 0, j = l − 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2

2l + 1
− 1

l(2l + 1)
+ 0

)
. (15.1.26)

All three cases are seen to be encompassed by the simple formula

Efine
n,j =

α2

n3

(
e2

2a0

)(
3

4n
− 1

j + 1/2

)
, (15.1.27)

299



which notably depends only on n and j, and not separately on l, as one perhaps might have

guessed. (The same result can be obtained by solving the Dirac equation directly.)

For the lowest few energy levels, in terms of the quantity

Ef = α2e2/2a0 = 7.245× 10−4 eV, (15.1.28)

one has fine structure shifts for spectroscopic states for n = 1:

1S1/2 (n = 1, l = 0, j = 1/2) Efine = −Ef/4, (15.1.29)

and for n = 2:

2S1/2 (n = 2, l = 0, j = 1/2)

2P1/2 (n = 2, l = 1, j = 1/2)

}
Efine = −5Ef/64, (15.1.30)

2P3/2 (n = 2, l = 1, j = 3/2) Efine = −Ef/64, (15.1.31)

where the 2S1/2 and 2P1/2 states stay degenerate, and for n = 3:

3S1/2 (n = 3, l = 0, j = 1/2)

3P1/2 (n = 3, l = 1, j = 1/2)

}
Efine = −Ef/36, (15.1.32)

3P3/2 (n = 3, l = 1, j = 3/2)

3D3/2 (n = 3, l = 2, j = 3/2)

}
Efine = −Ef/108, (15.1.33)

3D5/2 (n = 3, l = 2, j = 5/2) Efine = −Ef/324, (15.1.34)

where the 3S1/2 and 3P1/2 states stay degenerate, as do the 3P3/2 and 3D3/2 states. Including

electron spin, each principal quantum number level n has (2s+ 1)
n−1∑
l=0

(2l+ 1) = 2n2 states. The

fine structure splits each of those levels into n sub-levels, with j = 1/2, 3/2, . . . , n− 1/2. The

degeneracies are further enhanced by a factor of 2 for the proton spin, but then are further split

by the hyperfine structure to be discussed next.

15.2 Hyperfine structure of hydrogen

The hyperfine structure takes into account that an atomic nucleus also has a magnetic dipole

moment (along its spin direction) and an electric quadrupole moment (if the nuclear spin is at

least 1). For the 1H isotope of hydrogen with a nucleus consisting of one proton and no neutrons,

the magnetic moment of the proton is related to its spin-1/2 operator, which we denote Sp, by

µp =
gpe

2mpc
Sp, (15.2.1)

(see section 4.3), where mp is the proton’s mass, and gp = 5.5856946893(16) is the proton’s

g-factor. The hyperfine contributions to the energy eigenvalues are numerically suppressed

compared to the fine structure contributions because of the fact that mp ≫ me.
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The interaction between the magnetic field created by the proton’s magnetic moment and

the moving electron introduces a proton spin-orbit coupling term in the Hamiltonian,

Hproton
SO =

e

mecR3
µp · L =

gpe
2

2mempc2
1

R3
Sp · L. (15.2.2)

In addition, there is the energy of the magnetostatic interaction of the dipole moments of the

proton and the electron,

Hdipole-dipole =
1

R3

[
µe · µp −

3

R2
(µe · R) (µp · R)

]
− 8π

3
µe · µp δ(3)(R), (15.2.3)

in which the final term is called a contact term. These two contributions are of the same

numerical order, and so, using

µe = −
gee

2mec
S (15.2.4)

with ge ≈ 2 and S the electron’s spin, the full hyperfine contribution to the Hamiltonian for

hydrogen is

Hhf = Hproton
SO +Hdipole-dipole (15.2.5)

=
gpe

2

2mempc2

[
1

R3
(L− S) · Sp +

3

R5
(R · S)(R · Sp) +

8π

3
S · Sp δ(3)(R)

]
. (15.2.6)

We now treat this as a perturbation of the fine-structure results found in the previous section.

Even after taking into account the fine structure, there were still energy degeneracies. There-

fore, we again need to do degenerate perturbation theory by choosing a good set of unperturbed

orthobasis states, so that Hhf is diagonal in that basis. The appropriate basis is again a total

angular momentum basis, but now taking into account the proton’s spin in addition to the

electron’s spin and orbital angular momentum. We define

J = L+ S, (15.2.7)

F = J + Sp = L+ S + Sp, (15.2.8)

so that F (J) is the total angular momentum including (excluding) the proton’s spin. The

eigenvalues for J2 and Jz are denoted h̄2j(j + 1) and h̄mj , where the allowed values for j are

l−1/2 and l+1/2, and in each case mj takes on the 2j+1 values −j,−j+1, . . . , j−1, j. Because
F arises from adding the orbital angular momentum to two spin-1/2 angular momenta, the

eigenvalues for F 2 and Fz are h̄
2f(f + 1) and h̄mf , with integer values f = j−1/2 and j + 1/2,

and in each case mf = −f,−f+1, . . . , f−1, f . The total angular momentum orthobasis states

are constructed by first combining L and S eigenstates to obtain an orthobasis |l, s, j,mj〉, and
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then taking the tensor product with the proton spin eigenstates |sp, msp〉 and going to the total

angular momentum basis to obtain states labeled |l, s, j, sp, f,mf〉. Here the s and sp spin labels

are trivial and can be omitted, as they are both fixed to be 1/2. So, including the principal

quantum number n, the CSCO = {H0, L
2, J2, F 2, Fz} eigenstate orthobasis states can be labeled

|n, l, j, f,mf〉. (15.2.9)

We now want to show that Hhf is diagonal in this basis, and obtain its expectation values. It is

convenient to treat separately the case l = 0 (including the ground state) and the case l 6= 0.

For l = 0, the first two terms in eq. (15.2.6) do not contribute. To see this, note that the

spherical symmetry of l = 0 states guarantees that the expectation value of these two terms is

proportional to the angular integral of 3(r̂ · S)(r̂ · Sp) − S · Sp, where we have used L = 0 for

l = 0. Such an integral is a scalar, and is linear in each of the two spins, and depends on no

other vectors, so it can only be proportional to their dot product. That is, we must have
∫
dΩ

[
3(r̂ · S)(r̂ · S)− S · Sp

]
= aS · Sp (15.2.10)

for some constant number a. The value of a can now be discovered to be 0 by evaluating the

left side for S = Sp = ẑ.

The last term in eq. (15.2.6), proportional to δ(3)(~R), does contribute for l = 0, and only in

that case. To see this, note that

〈n, l,ml|δ(3)(R)|n, l,ml〉 = |ψn,l,ml
(0, 0, 0)|2, (15.2.11)

the square of the wavefunction at the origin. Using the radial wavefunction at r = 0 from

eq. (10.1.41), this is non-zero only if l = 0, which of course implies ml = 0 also, and

〈n, l,ml|δ(3)(R)|n, l,ml〉 = δl,0 δml,0
1

πa30n
3
. (15.2.12)

Now, with l = 0, F = S + Sp, so

S · Sp =
1

2
(F 2 − S2 − S2

p). (15.2.13)

This is indeed diagonal in the total angular momentum basis |n, l, j, f,mf〉, with F 2−S2−S2
p =

h̄2[f(f + 1)− 3/2], where the possible values of f are 0 and 1. Putting together the factors,

〈Hhf〉 =
gpe

2

2mempc2
8π

3

h̄2

2
[f(f + 1)− 3/2]

1

πa30n
3

(l = 0), (15.2.14)

so we arrive at the hyperfine energy correction for l = 0, j = 1/2 states,

E
(l=0)
hf = 〈Hhf〉 =

gpme

mp

α2

n3

(
e2

2a0

)
×
{

2/3 for f = 1,

−2 for f = 0.
(15.2.15)
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In particular, the hyperfine interaction splits the n = 1 ground state by an amount

Eγ = E
(f=1)
hf − E(f=0)

hf =
8gpme

3mp
α2

(
e2

2a0

)
= 5.878× 10−6 eV. (15.2.16)

We had already discussed this in eqs. (11.2.27)–(11.2.29); here we have shown how the numerical

prefactor arises. The actual experimental value 5.87433 × 10−6 eV is very slightly less than

eq. (15.2.16), due to higher order effects. The f = 1 state is higher in energy than the f = 0

state, and when the former decays to the latter it emits a photon with this energy splitting,

whose frequency is ν = ω/2π = Eγ/2πh̄ = 1.42041× 109 Hz, corresponding to a wavelength

λ = c/ν = 21.106 cm. (15.2.17)

This is the “21 centimeter line” of radio astronomy, which comes from a photon emission or

absorption between states with different orientations of the electron and proton spins in the

hydrogen atom ground state.

Now take the case l 6= 0. We will use the Landé projection formula eq. (12.2.10) derived

in section 12.2 for a general vector operator, given in our present problem by the vector that

appears dotted into Sp in eq. (15.2.6),

V =
1

R3
(L− S) + 3

R5
(R · S)R, (15.2.18)

so that

H l 6=0
hf =

gpe
2

2mempc2
V · Sp. (15.2.19)

Here we have used the fact that the δ(3)(R) term does not contribute for l 6= 0, as noted in

the calculation of eq. (15.2.12). Because V itself does not involve Sp at all, for the purposes of

evaluating its matrix elements we can temporarily ignore the f and mf quantum numbers when

using eqs. (12.2.10) and (12.2.11), and so take the total angular momentum operator to be just

J = L+S, the generator of rotations for the orbital and electron spin degrees of freedom.† Also,

in our present problem, we are calculating an energy correction as an expectation value, so the

degeneracy labels α and β appearing in eq. (12.2.10) are the same, α = (n, l), and the Landé

projection formula eq. (12.2.10) gives

〈α, j,m′j|V |α, j,mj〉 = 〈j,m′j |J |j,mj〉
〈α, j‖J · V ‖α, j〉

h̄2j(j + 1)
, (15.2.20)

where the reduced matrix element is the scalar expectation value

〈α, j‖J · V ‖α, j〉 = 〈α, j,mj|J · V |α, j,mj〉 . (15.2.21)

†If V had contained Sp, then the Landé projection formula eq. (12.2.10) would apply only if J were replaced

by F , the total angular momentum operator including the proton spin.
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Recall that, because of Theorem 12.2.1, since J · V is a scalar operator, 〈α, j‖J · V ‖α, j〉 does
not actually depend on mj at all, despite its appearance on the right side of eq. (15.2.21).

To evaluate 〈α, j‖J · V ‖α, j〉 we therefore need the expectation values 〈J · (L− S)/R3〉 and
〈(R · J)(R · S)/R5〉 in a state |α, j,mj〉. For the first of these, we calculate:

J · (L− S) = (L+ S) · (L− S) = L2 − S2 = h̄2[l(l + 1)− 3/4]. (15.2.22)

For the second, we use R · L = R · (R× P ) = 0 to obtain R · J = R · S, and therefore

(R · J)(R · S) = (R · S)(R · S) =
h̄2

4
(R · σ)(R · σ) = h̄2R2/4, (15.2.23)

where we have used the Pauli matrix representation of spin, and then the identity eq. (8.2.18).

Putting eqs. (15.2.22) and (15.2.23) into eq. (15.2.21) gives

〈α, j‖J · V ‖α, j〉 = h̄2l(l + 1) 〈n, l| 1
R3
|n, l〉 (15.2.24)

for the operator V defined in eq. (15.2.18). So, we can write for eq. (15.2.19), within matrix

elements with common n, l, j,

H l 6=0
hf =

gpe
2

2mempc2
l(l + 1)

j(j + 1)
J · Sp

1

R3
. (15.2.25)

In the orthobasis |n, l, j, f,mf〉, the angular momentum operator factor in eq. (15.2.25) is diag-

onal, and evaluates to

J · Sp =
1

2
(F 2 − J2 − S2

p) =
h̄2

2
(f(f + 1)− j(j + 1)− 3/4). (15.2.26)

The radial part of the expectation value was found in eq. (10.1.68),

〈1/R3〉 =
1

a30n
3l(l + 1)(l + 1/2)

. (15.2.27)

Using eqs. (15.2.26) and (15.2.27) to find the expectation value of eq. (15.2.25), and eliminating

j in favor of f , gives

Ehf = 〈Hhf〉 =
gpme

mp

α2

n3

(
e2

2a0

) ±1
(l + 1/2)(2f + 1)

, (15.2.28)

where the + sign applies if f = j+1/2 and the − sign if f = j−1/2. Actually, this agrees with

the l = 0, j = 1/2 formula in eq. (15.2.15), so that eq. (15.2.28) is an all-purpose result, correct

for all states |n, l, j, f,mf〉 in the total angular momentum basis.

Note that the hyperfine energy contribution is independent of the quantum number mf . This

had to be true, because the energy eigenvalues for the hydrogen atom cannot possibly depend on
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the orientation of the total angular momentum with respect to an arbitrarily chosen ẑ direction.

Therefore, each state with total angular momentum quantum number f has a remaining exact

degeneracy of 2f+1. The only way to break this degeneracy is to introduce some external effect

that picks out a special direction in space, for example an external electric or magnetic field.

The average hyperfine energy contribution for any given n, l, j level is 0. Of the 2(2j + 1)

states before the hyperfine splitting is taken into account, the 2j+2 states with f = j+1/2 are

raised by an amount multiplied by 1/(2j + 2), while the 2j states with f = j − 1/2 are lowered

by the same amount multiplied by 1/2j.

In terms of the total n = 1 hyperfine splitting Eγ defined in eq. (15.2.16), the hyperfine

splittings of the n = 2 states are

2S1/2(l = 0, j = 1/2) : Ehf =

{
Eγ/32 (f = 1)

−3Eγ/32 (f = 0)
→ ∆E

2S1/2

hf = Eγ/8, (15.2.29)

2P1/2(l = 1, j = 1/2) : Ehf =

{
Eγ/96 (f = 1)

−Eγ/32 (f = 0)
→ ∆E

2P1/2

hf = Eγ/24, (15.2.30)

2P3/2(l = 1, j = 3/2) : Ehf =

{
Eγ/160 (f = 2)

−Eγ/96 (f = 1)
→ ∆E

2P3/2

hf = Eγ/60. (15.2.31)

So far, we have evaluated the fine and hyperfine contributions, by working at first order in

degenerate perturbation theory. However, there is a second-order effect, called the Lamb shift

after Willis E. Lamb Jr., which for l = 0 states is numerically larger than the hyperfine effect.

The Lamb shift arises due to the electron emitting and reabsorbing virtual photons, quanta of

the electromagnetic field. To calculate it in a systematic way requires the toolbox of quantum

electrodynamics, including renormalization of ultraviolet divergent contributions and a careful

treatment of infrared effects. Understanding these issues played a critical role in the development

of relativistic quantum field theory, but here we can only summarize the results numerically.

The Lamb shift for atomic hydrogen states |n, l, j〉 has been calculated to be, approximately,

∆ELamb =
α3

n3

(
e2

2a0

)
×
{

6.50 (for l = 0, j = 1/2),

0.026± 1

π(j + 1/2)(2l + 1)
(for l 6= 0, j = l ± 1/2),

(15.2.32)

where the decimal coefficients actually have a slight dependence on n. Note that the Lamb

shift is much larger for s-wave (l = 0) states than for l 6= 0 states. The extra factor of α here

(compared to the α2 factor for fine and hyperfine energy corrections) is indicative of an effect

of second order in perturbation theory. Effects that are even higher order in α = 1/137.036

give slight modifications to each of the fine, hyperfine, and Lamb shift contributions, so each

of the energy splittings that we have calculated here cannot be trusted beyond about the per
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cent level. More heroic calculations, not reviewed here, have been done to improve beyond that

accuracy.

The fine, hyperfine, and Lamb shift splitting effects on the n = 2 states of atomic hydrogen

are summarized and illustrated in Figure 15.2.1.

2S1/2

0.735 µeV

hyperfine

f = 1

f = 0
4.375 µeV

Lamb shift
2P1/2

f = 1

f = 0

0.245 µeV
hyperfine

f = 2

f = 1

2P3/2

0.098 µeV
hyperfine

45.3 µeV fine +
0.1 µeV Lamb shift

Figure 15.2.1: The fine, hyperfine, and Lamb shift energy splittings in µeV for the n = 2
energy levels of the hydrogen atom, with nlj spectroscopic notation where l is the orbital
angular momentum replaced by its (capitalized) letter code as in eq. (10.1.20), j is the
total angular momentum quantum number excluding the proton spin, and f is the total
angular momentum quantum number including the proton spin. Relative energy spacings
are indicated qualitatively, but not to scale. The Lamb-shift splitting between the 2S1/2 and
2P1/2 levels is the experimental one, which differs slightly from the calculation quoted in
eq. (15.2.32) due to higher order effects. Each energy level shown has a degeneracy 2f +1.

15.3 Hydrogen atom in external magnetic field (Zeeman and Paschen–
Back effects)

Atomic and molecular state properties can be probed using an external magnetic field. In this

section, we consider the energy levels of the hydrogen atom in the presence of a uniform constant
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magnetic field, which is taken without loss of generality to point in the ẑ direction,

B = Bẑ. (15.3.1)

This is associated with the Coulomb-gauge vector potential in spherical coordinates,

A =
1

2
Br sin θ φ̂. (15.3.2)

We wish to apply this in the Hamiltonian for a charged particle moving in an electromagnetic

field, eq. (4.3.35), which includes A ·P . Working in the position representation with P = −ih̄∇,

A · P =
1

2
B
(
−ih̄ ∂

∂φ

)
=

1

2
BLz, (15.3.3)

where the last equality uses the differential representation of Lz of eq. (8.6.7). Therefore, from

eq. (4.3.35), the external magnetic field contribution to the electron’s Hamiltonian in the hy-

drogen atom is

∆H =
eB

2mec
(Lz + geSz) +

e2B2

8mec2
r2 sin2 θ. (15.3.4)

Let us first get a rough idea of the order of magnitude of these contributions, for typical labo-

ratory magnetic fields. Putting in the numerical values of the constants gives

∆H = (5.8× 10−5 eV)
1

h̄
(Lz + geSz)

B

Tesla
+ (6.2× 10−11 eV)

r2

a20
sin2 θ

(
B

Tesla

)2

. (15.3.5)

From this, we estimate that the term linear in B will contribute comparably to the fine-structure

effects in atomic hydrogen if B is of order 1 Tesla. For fields typically accessible in laboratories

(of order 10 Tesla or less), the term quadratic in B is much smaller, so we will neglect it. Taking

ge = 2, the new Hamiltonian contribution to be considered in this section is therefore

HB = µBB (Lz + 2Sz) /h̄, (15.3.6)

where the Bohr magneton µB was defined in eq. (4.3.26). Our goal is to understand the energy

splitting of hydrogen atomic states due to this Hamiltonian perturbation, as a function of the

magnetic field strength.

Let us first consider the weak-field limit, in which µBB can be treated as a perturbation that

is small compared to the fine-structure contributions, but still large compared to the hyperfine

energy splittings, which we will neglect. This is called the Zeeman effect, after Pieter Zeeman.

We apply degenerate first-order perturbation theory to the fine-structure eigenstates |n, l, j,m〉
with unperturbed energies

E =
e2

2a0

[
− 1

n2
+
α2

n3

(
3

4n
− 1

j + 1/2

)]
. (15.3.7)
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Following the general discussion of degenerate perturbation theory in section 13.6, the energy

shifts due to B will be the eigenvalues of the (2j + 1)× (2j + 1) perturbation matrix

(HB)m′,m =
µBB

h̄
〈n, l, j,m′|(Lz + 2Sz)|n, l, j,m〉 , (15.3.8)

for each energy level with fixed n, l, j. (There is no need to consider matrix elements between

different values of l, because the perturbation Lz + 2Sz cannot connect states with different l.

We will also suppress the common label n in the following.) Now we write

Lz + 2Sz = Jz + Sz, (15.3.9)

and replace Jz by its eigenvalue, using 〈l, j,m′|Jz|l, j,m〉 = h̄mδm,m′ . To finish the calculation, we

need the matrix elements 〈l, j,m′|Sz|l, j,m〉. Here, the Landé projection formula of eqs. (12.2.10)

and (12.2.11) comes to our aid, with S in the role of V . It tells us that the matrix elements of

Sz are proportional to those of Jz, with

〈l, j,m′|Sz|l, j,m〉 = 〈l, j,m′|Jz|l, j,m〉
〈l, j,m|J · S|l, j,m〉

h̄2j(j + 1)
. (15.3.10)

Now, we again evaluate 〈l, j,m′|Jz|l, j,m〉 = h̄mδm,m′ , and are delighted to see that the whole HB

is proportional to δm,m′ , and so is actually a diagonal matrix on the degenerate subspace of total

angular momentum basis states. It remains to calculate the matrix element 〈l, j,m|J · S|l, j,m〉.
This can be done using the standard trick for dot products of angular momenta,

J · S =
1

2

[
J2 + S2 − (J − S)2

]
=

1

2

[
J2 + S2 − L2

]
, (15.3.11)

which can be replaced by its eigenvalue, h̄2[j(j + 1) + s(s+ 1)− l(l+ 1)]/2, when acting on the

state |l, j,m〉.
Putting the ingredients of eq. (15.3.8) together, the energy shifts are

∆EB = gµBBm, (15.3.12)

where

g =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(15.3.13)

is called the Landé g-factor. These energy splittings are directly proportional to the magnetic

quantum number m for the total angular momentum. Using the facts that s = 1/2 and j =

l ± 1/2, we can rewrite the Landé g-factor for the hydrogen atom as

g =

{ 1 + 1
2j

(for j = l + 1/2),

1− 1
2j+2

(for j = l − 1/2).
(15.3.14)
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The weak-field Zeeman energy shifts for the lowest few values of j are therefore

∆ES1/2
= 2µBBm, (m = ±1/2), (15.3.15)

∆EP1/2
=

2

3
µBBm, (m = ±1/2), (15.3.16)

∆EP3/2
=

4

3
µBBm, (m = ±3/2, ±1/2), (15.3.17)

∆ED3/2
=

4

5
µBBm, (m = ±3/2, ±1/2), (15.3.18)

∆ED5/2
=

6

5
µBBm, (m = ±5/2, ±3/2, ±1/2), (15.3.19)

etc. By applying a weak magnetic field, the energy degeneracies for each principal quantum

number n are eliminated, and the observed splittings can be used to count the (previously

degenerate) states and deduce their angular momentum quantum numbers. This phenomenon

is the historical reason for calling m the “magnetic quantum number”.

Next, consider the opposite limit, called the Paschen–Back regime after Friedrich Paschen

and Ernst Back, in which the effect of the external magnetic field is taken to be much stronger

than the fine-structure effect, which will be treated as a perturbation. The Hamiltonian H0 =

P 2/2me − e2/R commutes with the magnetic field Hamiltonian HB in eq.( 15.3.6), so the exact

energy eigenstates of H0 + HB are the product angular momentum states |n, l,ml, ms〉, with
energy eigenvalues E = −e2/2a0n2 + ∆EB, where

∆EB = µBB(ml + 2ms). (15.3.20)

Now we must apply the fine-structure Hamiltonian to these states as a perturbation. A key

point is that when doing so, we cannot use the states |n, l, j,m〉 as the unperturbed states, as

we did in the previous treatment of the fine structure with a vanishing or weak external magnetic

field. This is because the strong magnetic field has eliminated the spherical symmetry and the

degeneracy associated with it. Instead, degenerate perturbation theory tells us that the fine-

structure energy shifts are obtained as the expectation values of the fine-structure Hamiltonian

in the product basis states |n, l,ml, ms〉, with their degeneracies for fixed ml + 2ms.

First, consider the easier case that l = 0. Then the spin-orbit Hamiltonian vanishes, and

the fine-structure contribution to the energies are the same as found in eq. (15.1.24) from the

Hrel and HDarwin terms. Since ml = 0 in this case, the combined energy shift due to the strong

external B field and the fine structure is

∆E l=0
B, fine = 2µBBms +

α2

n3

(
e2

2a0

)(
3

4n
− 1

)
. (15.3.21)

Now consider the case l 6= 0. From the spin-orbit Hamiltonian in eq. (15.1.17), the energy
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correction from first-order perturbation theory is

〈n, l,ml, ms|HSO|n, l,ml, ms〉 =
e2

2m2
ec

2
〈1/R3〉 〈l, ml, ms|L · S|l, ml, ms〉 . (15.3.22)

The expectation value 〈1/R3〉 was already given in eq. (15.1.20). To evaluate the expectation

value of L · S, it is convenient to use

L · S =
1

2
(L+S− + L−S+) + LzSz, (15.3.23)

because in the product basis states the expectation value of LzSz evaluates to h̄2mlms, and

the expectation values of S± and L± vanish. (Note the difference from the previously treated

spin-orbit case with a weak magnetic field, where one must instead evaluate the expectation

value of L · S in the total angular momentum basis states.) Combining the spin-orbit result

with the Hrel contribution from eq. (15.1.16), and recalling from eq. (15.1.23) that the Darwin

contribution vanishes for l 6= 0, we obtain the total first-order perturbation contribution

∆E l 6=0
B,fine = µBB(ml + 2ms) + α2 e

2

2a0

1

n3

(
mlms

l(l + 1/2)(l + 1)
+

3

4n
− 1

l + 1/2

)
(15.3.24)

from the strong external B field and the fine-structure effects.

Finally, let us consider the intermediate case in which the effects of the fine structure Hfine =

Hrel+HSO+HDarwin and external magnetic field HB Hamiltonians are comparable to each other,

so that Hfine+HB must be treated together as a single perturbation to H0. The preceding results

for weak B and for strong B can be obtained as special-case limits of the following analysis. As

before, we will ignore the smaller hyperfine effects. For the unperturbed states, it is not a bad

idea to choose† the total angular momentum basis elements |n, l, j,m〉, so that the matrix for

the fine-structure Hamiltonian Hfine is diagonal and we can make use of results already found

in section 15.1.

For l = 0 states, there is no distinction between Sz and Jz, so HB = 2µBBms is also diagonal

in the total angular momentum basis. This means that the energy shift for the l = 0 states is

the same as we already found in eq. (15.3.21),

For l 6= 0 states, things are more complicated. Let us consider only the n = 2 level with

l = 1, where the six unperturbed states are

|j,m〉 = |3
2
, 3
2
〉 , |3

2
, 1
2
〉 , |3

2
,−1

2
〉 , |3

2
,−3

2
〉 , (2P3/2), (15.3.25)

|1
2
, 1
2
〉 , |1

2
,−1

2
〉 , (2P1/2). (15.3.26)

The matrix elements of Lz+2Sz between any pair of these states can be quickly evaluated using

eqs. (11.3.16)–(11.3.21), which give these |j,m〉 states in terms of the product orthobasis states

†It is also possible to choose the product basis eigenstates of HB as the unperturbed states. Then the Hfine

matrix elements will be off-diagonal, but the final results for the energy corrections will be the same.
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|ml, ms〉, allowing the operator Lz + 2Sz to be replaced by h̄(ml + 2ms). It is useful to note

that the only non-zero matrix elements in the |j,m〉 basis are between states with the same m,

because Lz + 2Sz commutes with Jz. Therefore, most of the elements of the 6 × 6 matrix of

perturbations for the 2P3/2 and 2P1/2 states vanish. For HB in eq. (15.3.6), the only relevant

non-zero matrix elements in the |j,m〉 basis with positive m are

〈3
2
, 3
2
|(Lz + 2Sz)/h̄|32 , 32〉 = 2, (15.3.27)

〈3
2
, 1
2
|(Lz + 2Sz)/h̄|32 , 12〉 = 2/3, (15.3.28)

〈3
2
, 1
2
|(Lz + 2Sz)/h̄|12 , 12〉 = 〈1

2
, 1
2
|(Lz + 2Sz)/h̄|32 , 12〉 = −

√
2/3, (15.3.29)

〈1
2
, 1
2
|(Lz + 2Sz)/h̄|12 , 12〉 = 1/3, (15.3.30)

while the corresponding matrix elements with negative m each have the opposite sign. From

eq. (15.1.27), Hfine is diagonal, with non-zero matrix elements

〈3
2
, m|Hfine|32 , m〉 = − 1

64
α2 e

2

2a0
, (m = ±3/2,±1/2), (15.3.31)

〈1
2
, m|Hfine|12 , m〉 = − 5

64
α2 e

2

2a0
. (m = ±1/2). (15.3.32)

We can now put together these results to find the matrix elements of W = Hfine +HB. Using

the notations

a =
α2

64

e2

2a0
, b = µBB (15.3.33)

for simplicity, and ordering the basis elements as |3
2
, 3
2
〉, |3

2
,−3

2
〉, |3

2
, 1
2
〉, |1

2
, 1
2
〉, |3

2
,−1

2
〉, |1

2
,−1

2
〉,

the matrix representation for the perturbation is

W =




−a+2b 0 0 0 0 0

0 −a−2b 0 0 0 0

0 0 −a+ 2
3
b −

√
2
3
b 0 0

0 0 −
√
2
3
b −5a+ 1

3
b 0 0

0 0 0 0 −a− 2
3
b

√
2
3
b

0 0 0 0
√
2
3
b −5a− 1

3
b




. (15.3.34)

This contains only 1× 1 and 2× 2 non-zero blocks, with eigenvalues

∆En=2, l=1
B, fine = −a± 2b, (15.3.35)

−3a + b/2±
√
4a2 + 2ab/3 + b2/4, (15.3.36)

−3a− b/2±
√

4a2 − 2ab/3 + b2/4. (15.3.37)
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Figure 15.3.1: Energy corrections (in µeV) to the n = 2 states of atomic hydrogen, due
to the fine structure Hamiltonian and an external magnetic field B (in Tesla), as found
in eqs. (15.3.35)–(15.3.38). At small B, the weak-field Zeeman effect energy eigenstates
approach total angular momentum eigenstates |l, s, j,m〉; the group of upper four states
are 2P3/2, and the lower four states are 2P1/2 and 2S1/2. The small Lamb shift of 4.375
µeV has also been included for the 2S1/2 states, and is barely visible. At large B, the
strong-field (Paschen–Back regime) energy eigenstates approach product angular momen-
tum eigenstates |l, s,ml, ms〉, with ml + 2ms = 2, 1, 0, −1, and −2, from top to bottom.

In the same notation, the l = 0 energy corrections from eq. (15.3.21) are

∆En=2, l=0
B, fine = −5a± b, . (15.3.38)

These eight energy corrections to the n = 2 states are graphed in Figure 15.3.1 as a function of

the external magnetic field B, also including the small positive Lamb shift of 4.375 µeV for the

l = 0 eigenstates. It is left as an exercise for the reader to confirm that expanding eqs. (15.3.35)–

(15.3.38) in small b/a recovers the weak-field limit of eqs. (15.1.27) and (15.3.15)-(15.3.17), and

expanding in small a/b recovers the strong-field limit found in eqs. (15.3.21) and (15.3.24).
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Figure 16.1.1: In scattering of indistinguishable particles (for example electrons) 1, 2→ 3, 4,
each of the final-state particles labeled 3 and 4 have an equal claim to be the same as each
of the initial-state particles 1 and 2 of the same type. It is allowed and useful to label the
identical particles, but physical results cannot depend on our labeling choice.

16 Identical particles

16.1 Intrinsic indistinguishability of identical particles

Particles are said to be identical if there is no way of distinguishing them, even in principle.

In particular, they must have the same mass, spin magnitude, charge, and any other intrinsic

properties. Classically, one can keep track of individual particles, even if they are identical,

by following their trajectories, which are determined by the equations of motion. However, in

quantum mechanics, this is impossible.

For example, if we scatter two electrons off of each other, as illustrated in Figure 16.1.1, we

may choose to label the electrons in the initial state by 1, 2, and the electrons in the final state

by 3, 4. However, it has no meaning to say that final-state electron 3 is uniquely the same as

the initial-state electron 1. Both of the outgoing electrons 3 and 4 have an equal claim to being

the same as the incoming electron 1 (or 2). Although we may choose a labeling scheme, and it

is generally quite useful to do so, the physics results cannot depend at all on that choice.

One way to describe a state with N identical particles is to take a tensor product of N

identical individual state spaces. Suppose that we have an orthobasis of single-particle kets

|αn〉, where each αn represents a set of CSCO labels for one particle. An orthobasis of kets for

the N -particle Hilbert space is, mathematically,†

|α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN〉. (16.1.1)

For example, we could take αn = (rn, mn), and the orthobasis elements would be

|r1, m1〉 ⊗ |r2, m2〉 ⊗ · · · ⊗ |rN , mN 〉, (16.1.2)

where the interpretation of |rn, mn〉 is that we are certain to find the particle at position rn

with spin component Sz = h̄mn. Alternatively, αn could instead include the momentum pn
†We say “mathematically” here because the physical N -identical-particle Hilbert space is a proper subset of

the mathematical N -identical-particle Hilbert space, as we will soon see.
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rather than the position, or it could include the energy, L2, and Lz quantum numbers of the

nth particle, or some other choice of CSCO eigenvalues. In any case, we can dispense with the

tensor product notation and write eq. (16.1.1) as a single ket for a given orthobasis element,

|α1, α2, . . . αN〉. (16.1.3)

The fact that the particles are identical means that although we may choose to label them by

integers n = 1, 2, . . . , N , we cannot distinguish them, and so physical results cannot depend on

our arbitrary choice of labels. In particular, this means that any observable operator must be

unchanged if we exchange any pair of labels.

For example, the Hamiltonian for two identical particles of mass m can be of the form

H =
P 2
1

2m
+
P 2
2

2m
+ V (R1) + V (R2) + Vint(|R1 − R2|), (16.1.4)

since this is invariant under the exchange of labels 1↔ 2. It is important here that the potentials

V (r) for the individual identical particles 1 and 2 are the same function. The total momentum

operator for N identical particles,

P = P1 + P2 + · · ·+ PN , (16.1.5)

is likewise an observable, but the individual operators Pn appearing in it are not observables.

Similarly, we can define the observable operator for the density at a fixed position r as

ρ(r) =

N∑

n=1

δ(3)(r − Rn). (16.1.6)

Here r is an ordinary 3-vector that labels which operator we are talking about, and Rn are the

individual position operators for the identical particles.

Pair-exchange operators exchange the labels of two identical particles, and therefore are

defined by

Pij | . . . , αi, . . . , αj, . . .〉 = | . . . , αj, . . . , αi, . . .〉. (16.1.7)

So, for example, P13|α1, α2, α3〉 = |α3, α2, α1〉 in the special case of a system of three identical

particles. Note that Pij is both unitary and Hermitian (like the parity operator), and Pij = Pji,

and (Pij)
2 = I. It follows from the last property that if Pij |ψ〉 = λ |ψ〉, then λ2 = 1 unless |ψ〉

is the null ket, so the only possible eigenvalues of Pij are λ = ±1. Despite being Hermitian, Pij

is not itself an observable, since, for example, P12 is not left unchanged if we exchange identical

particles 1 and 3.

Now, since observables must be symmetric under the pair exchange of labels, we have
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Theorem 16.1.1 For any observable A, and any pair-exchange operator Pij for identical par-

ticles,

[Pij, A] = 0. (16.1.8)

Proof: write A = A(a1, a2, . . . , aN), where the an are operators that act non-trivially only on

orthobasis kets |αn〉 for the nth particle. Since A must be symmetric under exchange of labels,

A(. . . , ai, . . . , aj, . . .) = A(. . . , aj, . . . , ai, . . .). (16.1.9)

It follows that

PijA| . . . , αi, . . . , αj, . . .〉 = A| . . . , αj, . . . , αi, . . .〉 = APij | . . . , αi, . . . , αj, . . .〉, (16.1.10)

where the first equality made used of eq. (16.1.9). Since the states | . . . , αi, . . . , αj, . . .〉 are an

orthobasis, the theorem follows by linearity since PijA must equal APij acting on every state.

In particular, the Hamiltonian must commute with every Pij ,

[H,Pij] = 0. (16.1.11)

Now suppose that |E〉 is an eigenket of H , with energy eigenvalue E. Then,

H (Pij|E〉) = PijH|E〉 = EPij |E〉, (16.1.12)

so Pij |E〉 is also an eigenket of H with the same energy eigenvalue E. This fact sometimes goes

by the name of exchange degeneracy.

However, while mathematically useful, the exchange degeneracy is really a fake physically,

because it only applies to mathematical kets, and not to physical states. The reason is the spin-

statistics principle: physical states are not just any kets, but are required to be eigenstates

of all exchange operators Pij for pairs of identical particles, with eigenvalue +1 if the identical

particles being exchanged are bosons (have integer spin), and eigenvalue −1 if they are fermions

(have spin 1/2, 3/2, . . . ). These are the only two possible eigenvalues, as noted after eq. (16.1.7).

Fermions are said to obey Fermi–Dirac statistics, and bosons are said to obeyBose–Einstein

statistics.

The spin-statistics principle is sometimes taken as a postulate, but it can proved as a theorem

in 4-d relativistic quantum field theory, the fundamental quantum mechanical framework that

underlies our best understanding of the universe at small distance scales. Since it can be

proved in that context, rather than assumed, it was not listed among the postulates of quantum

mechanics in section 3.1. On the other hand, if a quantum system is not assumed to obey

special relativity, then the spin-statistics principle cannot be proved, but can be adopted (or
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not) as an assumption. Alternatively, one can view the spin-statistics principle simply as an

experimentally observed fact, subject at any time to potential falsification.

The spin-statistics principle applies not just for the particles that we currently believe to

be fundamental, including bosons (photons, gluons, W and Z bosons, and Higgs bosons) and

fermions (electrons, muons, tau leptons, neutrinos, quarks), but even for composite bosons (for

example, H atoms, deuterons, 4He nuclei, pions) and composite fermions (protons, neutrons, 3He

nuclei). Whether a composite particle is a boson or a fermion is determined simply by whether

its constituents include an even or odd number of fermions, respectively. For example, a 4He

nucleus consists of two protons and two neutrons. Doing a pair exchange of two 4He nuclei

therefore involves the simultaneous exchange of four fermions, resulting in a factor of (−1)4.
The proton can be viewed as consisting of 3 + n quarks and n antiquarks, where naively n = 0,

but the presence of virtual particles inside the proton means that n is actually indeterminate.

Nevertheless, n takes on integer values, so the pair exchange of two protons always results in

factor of (−1)3+n(−1)n = −1, making the proton a fermion.

The exchange degeneracy described by eq. (16.1.12) is completely eliminated from physical

states by the spin-statistics principle. For example, if there are two identical particles, then

|α1, α2〉 and |α2, α1〉 are not eigenstates of P12 unless α1 = α2. If α1 6= α2, then using

P12|α1, α2〉 = |α2, α1〉, P12|α2, α1〉 = |α1, α2〉, (16.1.13)

one finds that the linear combinations

|α1, α2〉S =
1√
2
(|α1, α2〉+ |α2, α1〉) , (16.1.14)

|α1, α2〉A =
1√
2
(|α1, α2〉 − |α2, α1〉) , (16.1.15)

are normalized eigenkets of P12, with eigenvalues +1 and −1, respectively. Therefore, according
to the spin-statistics principle, only the linear combination |α1, α2〉S is a physical state if the

two particles are identical bosons, and only |α1, α2〉A is a physical state if the two particles are

identical fermions. In either case, if |α1, α2〉 is an energy eigenstate, then exactly one linear

combination is physical, and there is no true energy degeneracy associated with the exchange of

identical particles. (There may, however, be energy degeneracies for other reasons.)

If instead α1 = α2, then |α1, α1〉S = |α1, α1〉 is a physical state if the particles are bosons;

note that only the normalization has changed compared to eq. (16.1.14). But if the particles

are fermions, then |α1, α1〉A is the null ket, so there is no such physical state. This is the

Pauli exclusion principle; two identical fermions are not allowed to be in the same state. In

particular, they are not allowed to have the same eigenvalues for a CSCO.
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To construct physical states that satisfy the spin-statistics principle for N > 2 identical

particles, we first construct general permutation operators, which are arbitrary products of

pair-exchange operators, for example P = P12P13P45. (Note that the order of the Pij matters,

because they do not always commute.) There are many different ways of writing a given per-

mutation operator as a product in this way, because of identities like P12P23P12 = P13, but the

total number of distinct permutation operators is exactly N !. They can all be classified as odd

or even, according to whether the number of pair-exchange operators in the product is even or

odd. If P is an even permutation, we define (−1)P = +1, and if P is an odd permutation, we

write (−1)P = −1.
We can then define the symmetrization and antisymmetrization operators as sums

over all N ! distinct permutation operators for N identical particles,

S =
1

N !

∑

P

P, (16.1.16)

A =
1

N !

∑

P

(−1)PP. (16.1.17)

These are projection operators onto the subspaces of completely symmetric and antisymmetric

kets, respectively, and satisfy the properties S2 = S and A2 = A and SA = AS = 0. Further-

more, we have PijS = S and PijA = −A for all i, j, so that any ket acted on by S will be an

eigenstate of every Pij with eigenvalue 1, and any ket acted on by A will be an eigenstate of

every Pij with eigenvalue −1.
It follows that the physical orthobasis states for N identical fermions are proportional to

A|α1, α2, . . . , αN〉,

|α1, α2, . . . , αN〉A =
1√
N !

∑

P

(−1)PP |α1, α2, . . . , αN〉. (16.1.18)

These are the simultaneous eigenstates for every pair-exchange operator Pij with eigenvalue −1,
unique up to normalization, that one can build out of the 1-particle orthobasis states |αi〉. The
prefactor has been chosen to make the ket have unit norm if the |αi〉 are orthonormal and all

distinct from each other. An equivalent way to write this is the Slater determinant, named

after John C. Slater,

|α1, α2, . . . , αN〉A =
1√
N !

∣∣∣∣∣∣∣∣∣

|α1〉1 |α1〉2 . . . |α1〉N
|α2〉1 |α2〉2 . . . |α2〉N
...

...
. . .

...
|αN〉1 |αN〉2 . . . |αN〉N

∣∣∣∣∣∣∣∣∣

, (16.1.19)

where the products obtained from the determinant are to be understood as

|αi〉1 |αj〉2 . . . |αk〉N = |αi, αj, . . . , αk〉. (16.1.20)
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If any two of the αi are the same, then the determinant vanishes, and there is no corresponding

physical state at all. This is the more general version of the Pauli exclusion principle.

Similarly, the physical orthobasis states forN identical bosons are proportional to completely

symmetrized kets S|α1, α2, . . . , αN〉, because these are the simultaneous eigenstates for all of the

pair-exchange operators Pij with eigenvalue +1, unique up to normalization, that one can build

out of the 1-particle orthobasis states. Here, the normalization factor is complicated slightly by

the fact that for bosons the αi can be the same. If we write ni for the number of times each

distinct αi is repeated in the list, and take the |αi〉 to be orthonormal, then the normalized

physical orthobasis states are

|α1, α2, . . . , αN〉S =

√
N !

n1!n2! · · ·nN !
S|α1, α2, . . . , αN〉. (16.1.21)

This can also be written as

|α1, α2, . . . , αN〉S =

√
n1!n2! · · ·nN !

N !

∑′

P

P |α1, α2, . . . , αN〉, (16.1.22)

where
∑′

P means that the n1!n2! · · ·nN ! redundancies in the sum are eliminated, by including

each distinct ket P |α1, α2, . . . , αN〉 only once.

For example, consider N = 3 identical particles. Let us construct the physical states that

can be made using a finite number n of orthobasis states for the individual particles, |αi〉 with
i = 1, 2, . . . , n. If the three identical particles are bosons, then we have n(n+1)(n+2)/6 physical

orthobasis states, consisting of n(n− 1)(n− 2)/6 states with distinct i, j, k,

|αi, αj , αk〉S =
1√
6

(
|αi, αj, αk〉+ |αi, αk, αj〉+ |αj, αk, αi〉+ |αj, αi, αk〉

+|αk, αi, αj〉+ |αk, αj , αi〉
)
, (16.1.23)

and n(n− 1) orthobasis states with distinct i and j,

|αi, αi, αj〉S =
1√
3

(
|αi, αi, αj〉+ |αi, αj, αi〉+ |αj, αi, αi〉

)
, (16.1.24)

and n orthobasis states,

|αi, αi, αi〉S = |αi, αi, αi〉. (16.1.25)

Each of these is an eigenstate of each of P12, P13, and P23, with eigenvalue +1. For fermions,

there are only the n(n− 1)(n− 2)/6 orthobasis states,

|αi, αj, αk〉A =
1√
6

(
|αi, αj, αk〉 − |αi, αk, αj〉+ |αj, αk, αi〉 − |αj, αi, αk〉

+|αk, αi, αj〉 − |αk, αj , αi〉
)

(16.1.26)
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for distinct i, j, k.

An alternative way of specifying the orthobasis states forN identical particles is by giving the

occupation number for each of the 1-particle orthobasis states |αi〉. The occupation number

is simply the number of times ni that each αi appears in the symmetrized or antisymmetrized

state ket. For bosons, the occupation numbers are just the same as the numbers n1, n2, . . .

appearing in eq. (16.1.22). For fermions, each occupation number is always 0 or 1, due to the

Pauli exclusion principle. Then, in both cases, the orthobasis states can be written using the

occupation-number notation |n1, n2, n3, . . .〉, where some ordering has been chosen for the αi.

The individual occupation numbers can change with time, due to interactions. However, we will

usually treat the total of the occupation numbers as fixed at
∑

i

ni = N . (Quantum field theory

is what happens to you when you allow N to be variable.)

So far, we have considered orthobasis states for N identical particles, built out of the or-

thobasis states |αi〉 for the individual particles. It is crucial that the resulting states are indeed

an orthobasis for the full Hilbert state space of N identical particles, whether they are bosons

or fermions. This means that if we define any N linear combinations of 1-particle states

|φj〉 =
∑

i

cji|αi〉, (j = 1, . . . , N), (16.1.27)

which may be taken to have unit norm but are not necessarily the elements of an orthobasis,

then the allowed physical states for identical fermions can be written as

|φ1, φ2, . . . , φN〉A = A|φ1, φ2, . . . , φN〉, (16.1.28)

and the allowed physical states for identical bosons are

|φ1, φ2, . . . , φN〉S = S|φ1, φ2, . . . , φN〉, (16.1.29)

up to normalization. For fermions, a general Slater determinant ket

|φ1, φ2, . . . , φN〉A =

∣∣∣∣∣∣∣∣∣

|φ1〉1 |φ1〉2 · · · |φ1〉N
|φ2〉1 |φ2〉2 · · · |φ2〉N
...

...
. . .

...
|φN〉1 |φN〉2 · · · |φN〉N

∣∣∣∣∣∣∣∣∣

(16.1.30)

is physical (provided that it is not null), and can be shown to be a unique linear combination

of the orthobasis states |α1, α2, . . . , αN〉A defined by eq. (16.1.19). Here, the states |φi〉 must

be linearly independent, because otherwise the Slater determinant will vanish. Similarly, if the

identical particles are bosons, then the state

|φ1, φ2, . . . , φN〉S =
∑

P

P |φ1, φ2, . . . , φN〉, (16.1.31)
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is an allowed physical state, even if the |φi〉 are not orthobasis states or even linearly independent,

and any state of this form can be written in a unique way as a linear combination of the orthobasis

states |α1, α2, . . . , αN〉S defined by eq. (16.1.22).

Consider N identical particles, each of which has a single-particle Hamiltonian of the form

Hi =
P 2
i

2m
+ V (Ri). (16.1.32)

For now, we are neglecting any kind of Hamiltonian interaction between the particles [like

Vint in eq. (16.1.4)]. Suppose that the single-particle energy eigenstate position wavefunctions

(neglecting spin) are

φ0(r), φ1(r), φ2(r), φ3(r), . . . , (16.1.33)

with individual Hi energy eigenvalues

E0 < E1 ≤ E2 ≤ E3 ≤ · · · . (16.1.34)

We would like to now consider the eigenstates of the total unperturbed HamiltonianH0 =
∑

iHi.

Interactions between the particles can be treated later as a perturbation.

If N = 2, then the ground state has E = 2E0, with wavefunction

ψ(r1, r2) = φ0(r1)φ0(r2). (16.1.35)

Since this position-wavefunction part of the state is symmetric under exchange of the labels

1, 2, the spin state must also be symmetric if the particles are bosons, and the spin state must

be antisymmetric if the particles are fermions. Call the spins S1 and S2, so that the total spin

operator is S = S1 + S2, and denote the eigenvalue of the operator S2 as h̄2s(s+ 1) where s is

the total-spin quantum number. For spin-0 bosons, the total-spin quantum number is of course

s = 0, and for spin-1 bosons it must be either s = 0 or s = 2, because of the addition of angular

momentum rule

1⊗ 1 = 0S ⊕ 1A ⊕ 2S. (16.1.36)

For spin-1/2 fermions, the spin state must be s = 0, the antisymmetric combination in

1

2
⊗ 1

2
= 0A ⊕ 1S. (16.1.37)

We will explore this in more detail in the next two sections.

For any number N ≥ 2 bosons, one can have a completely symmetric position wavefunction

ψ(r1, r2, . . . , rN) = φ0(r1)φ0(r2)φ0(r3) · · ·φ0(rN ), (16.1.38)
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together with a symmetric spin state, with a total spin quantum number that is an even integer,

due to eq. (11.4.35). To minimize the energy, it is therefore favorable to simply maximize the

occupation number of the single-particle ground state, forming a Bose–Einstein condensate

with ground-state energy eigenvalue

E = NE0. (16.1.39)

The ground state in the occupation number notation is |N, 0, 0, . . .〉, where the ordering of

1-particle state labels is the same as for the energy eigenvalues.

However, forN ≥ 2 spin-1/2 fermions, at most two can be put into each spatial wavefunction,

due to the Pauli exclusion principle. So, one can assign two fermions to φ0 (with s = 0 for their

antisymmetric combined spin state), two more to φ1 (again with s = 0 for their spin state)

and so on. If N is even, then the last two fermions in an s = 0 state will occupy the φN
2
−1

wavefunction, while if N is odd then the last electron will have wavefunction φN−1

2

. The total

unperturbed energy for N fermions is therefore

E =

{
2E0 + 2E1 + · · ·+ 2EN

2
−1 (even N),

2E0 + 2E1 + · · ·+ 2EN−3

2

+ EN−1

2

(odd N).
(16.1.40)

One application of this counting is to the shell model for electrons in atoms. If one ignores

the electron-electron Coulomb repulsion, fine, and hyperfine interactions, and just considers

electrons as moving in a central potential, then each single particle state with eigenvalue En,l,m

for m = −l, . . . , l can be occupied by 2 electrons in an s = 0 state. So, in the ground state of

the multi-electron atom, the unperturbed energy level En,l can contain up to 2(2l+1) electrons.

We will explore this in more detail in section 16.4.

16.2 Wavefunctions and spin for two identical particles

In practice, the spin degrees of freedom often play a special role in specifying the orthobasis of

states for identical particles. As an example, consider a system of two electrons. We can write

the orthobasis kets as

|α1, α2〉 = |r1, m1, r2, m2〉, (16.2.1)

with possible values ±1/2 for each of the spin magnetic quantum numbers m1 and m2. The

total spin is S = S1 + S2, and the operator S2 has eigenvalues h̄2s(s + 1) where s = 0, 1, while

the Sz eigenvalue h̄mS can have mS = 0 (if s = 0) and mS = 1, 0,−1 (if s = 1). The state can

be specified in a hybrid form, with wavefunctions for the spatial degrees of freedom and kets for

the spin degrees of freedom, as

ψ0,0(r1, r2)χ0,0 +

1∑

mS=−1

ψ1,mS
(r1, r2)χ1,mS

. (16.2.2)
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Here χs,mS
is the orthobasis ket for a state with total spin quantum numbers (s,mS), so that in

terms of the product orthobasis kets,

χ0,0 =
1√
2
(|↑↓〉 − |↓↑〉) , (16.2.3)

χ1,1 = |↑↑〉, (16.2.4)

χ1,0 =
1√
2
(|↑↓〉+ |↓↑〉) , (16.2.5)

χ1,−1 = |↓↓〉. (16.2.6)

The pair-exchange operator separates into spatial and spin parts, as

P12 = P spatial
12 P spin

12 . (16.2.7)

The total spin singlet (s = 0) state is antisymmetric (eigenvalue −1 for P spin
12 ), while the total

spin triplet (s = 1) states are each symmetric (eigenvalue +1 for P spin
12 ). Since the total state

must be antisymmetric to describe identical fermions, we must have

ψ0,0(r1, r2) = ψ0,0(r2, r1), (16.2.8)

ψ1,mS
(r1, r2) = −ψ1,mS

(r2, r1). (16.2.9)

Thus ψ0,0 is a symmetric spatial wavefunction for the total spin singlet, and ψ1,mS
are three dis-

tinct antisymmetric spatial wavefunctions for the total spin triplets. In the context of the spatial

wavefunctions, “symmetric” (or “antisymmetric”) means eigenvalue +1 (or −1) for P spatial
12 . If

the operator S2 commutes with the Hamiltonian H , then they have common eigenstates, so one

can label the energy levels as either s = 1 or s = 0.

Suppose the two electrons are in a potential V (r) that is large in magnitude compared to

their Coulomb interaction with each other and any spin interactions, which we therefore neglect.

Then, in that approximation,

H =
1

2me
(P 2

1 + P 2
2 ) + V (R1) + V (R2), (16.2.10)

which could be the unperturbed Hamiltonian in a perturbative approach, and the Schrödinger

equation for the wavefunction ψ(r1, r2) is

[
− h̄2

2me

(∇2
1 +∇2

2) + V (r1) + V (r2)− E
]
ψ = 0. (16.2.11)

Let φa(r) be the wavefunction solutions to the single-particle eigenvalue differential equation

[
− h̄2

2me
∇2 + V (r)− Ea

]
φa(r) = 0. (16.2.12)
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Then, there are spin singlets (but not spin triplets) with energies E = 2Ea, and total spatial

wavefunctions

ψ0,0(r1, r2) = φa(r1)φa(r2). (16.2.13)

This will apply, for example, if Ea is the non-degenerate lowest eigenvalue for eq. (16.2.12), so

that, as already noted in the previous section, the ground state of the two-electron system is a

spin singlet state. Also, for each pair of distinct eigenfunctions φa(r) and φb(r) with eigenvalues

Ea and Eb, we have four energy eigenstates with E = Ea + Eb, with spatial wavefunctions

ψ0,0(r1, r2) =
1√
2
[φa(r1)φb(r2) + φb(r1)φa(r2)] , (s = 0), (16.2.14)

ψ1,mS
(r1, r2) =

1√
2
[φa(r1)φb(r2)− φb(r1)φa(r2)] , (s = 1, mS = 1, 0, −1), (16.2.15)

which are total spin singlets and triplets, respectively. The eigenvalues Ea may have degeneracies,

so that in the notation we are using here, Ea and Eb could be equal even if φa(r) and φb(r) are

distinct eigenfunctions.

For each of these possibilities, consider the probability to find one electron within a volume

d3r1 near r1 and the other within a volume d3r2 near r2. From Postulate 4 in section 3.1,

dP(r1, r2) = d3r1 d
3r2 |ψ(r1, r2)|2, (16.2.16)

where

|ψ(r1, r2)|2 =
1

2

(
|φa(r1)|2|φb(r2)|2 + |φb(r1)|2|φa(r2)|2 ± 2Re [φa(r1)φ

∗
b(r1)φb(r2)φ

∗
a(r2)]

)
,

(16.2.17)

with the + sign for spin-singlet states and the − sign for spin-triplet states. Note that for either

sign, eq. (16.2.17) is invariant under the exchange r1 ↔ r2.

The ± term in eq. (16.2.17) is known as the exchange density. As a consequence of it,

when the electrons are in the spin-triplet state, they avoid each other. To see this, note that the

probability density vanishes when r1 = r2, and therefore is small (by continuity) when r1 ≈ r2.

Conversely, in the spin-singlet state, the two electrons “attract”; there is an enhanced probability

density for r1 ≈ r2 due to constructive interference. This attraction and repulsion is not due to

any electromagnetic interaction or other Hamiltonian interaction between the identical fermions,

but rather due to the Fermi–Dirac statistics.

Electrons in Argonne are identical to those in Batavia. So, it is natural to wonder why do

we not need to worry about significant effects due to correlation effects from antisymmetriza-

tion of wavefunctions belonging to very distant electrons. Suppose that we define normalized
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wavefunctions that are peaked in Argonne and Batavia, with very little overlap, so that φA(r) is

insignificant outside of a small volume somewhere in Argonne, and φB(r) is insignificant outside

of a small volume in Batavia, and therefore

φA(r)φB(r) ≈ 0 (16.2.18)

everywhere. The total wavefunction is

ψ(r1, r2) =
1√
2

[
φA(r1)φB(r2)± φB(r1)φA(r2)

]
, (16.2.19)

where the + sign applies for spin singlets and the − sign for spin triplet states. Note that there

is no sense in which the electron labeled 1 is nearer to Argonne, or nearer to Batavia; it is always

equally likely to be found in either place.

Now we can ask: what is the probability of seeing an electron within an infinitesimal volume

d3r near r? The answer is

dP(r) = d3r

∫
d3r2 |ψ(r, r2)|2 + d3r

∫
d3r1 |ψ(r1, r)|2. (16.2.20)

The first term is the probability that the electron labeled 1 is near r, summed over all possible

electron 2 positions, and the second term is the same with 1↔ 2. This can be rewritten as

dP(r) = d3r

(
|φA(r)|2

∫
d3x |φB(x)|2 + |φB(r)|2

∫
d3x |φA(x)|2

± 2Re

[
φA(r)φB(r)

∗
∫
d3xφA(x)

∗φB(x)

])
. (16.2.21)

The important point is that the last term with ± is (doubly!) negligible, because of eq. (16.2.18).

In each of the first two terms, the integral is 1 by the assumed normalization, so

dP(r) = d3r
(
|φA(r)|2 + |φB(r)|2

)
(16.2.22)

to a very good approximation. This shows that, despite the form of the wavefunction in

eq. (16.2.19), and despite the fact that our labeling 1, 2 of the electrons did not distinguish ei-

ther one as being “the electron in Batavia”, the probability density decouples into two separate

contributions with negligible interference, for sufficiently separated identical particle wavefunc-

tions. It is the lack of wavefunction overlap that enforces the decoupling, not the electron labels.

(The same argument works if the particles are bosons.) When in Batavia, we can usually ignore

electrons in Argonne, and vice versa.

Suppose that two identical particles are bosons; let us consider the cases of spin 0 and spin

1. For spin 0, the spin degrees of freedom are trivial, and in place of eq. (16.2.2) we have simply

a symmetric wavefunction

ψ0,0(r1, r2) = ψ0,0(r2, r1). (16.2.23)
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The case of spin 1 bosons is more interesting, because the two individual spins can combine to

form nine different total spin states χs,mS
, with s = 0, mS = 0 and s = 1, mS = 1, 0,−1 and s =

2, mS = 2, 1, 0,−1,−2. By the addition of angular momentum method discussed in section 11.4,

one can write these in terms of the product orthobasis kets |ms1 : ms2〉, where the eigenvalues

of the individual spin operators S1z and S2z are h̄ms1 and h̄ms2, with ms1 , ms2 = −1, 0, 1. The
total spin S2, Sz eigenstates are, from eqs. (11.4.25)–(11.4.33),

χ2,±2 = |±1 : ±1〉, (16.2.24)

χ2,±1 =
1√
2

(
|±1 : 0〉+ |0 : ±1〉

)
, (16.2.25)

χ2,0 =
1√
6

(
|1 : −1〉+ 2|0 : 0〉+ |−1 : 1〉

)
, (16.2.26)

χ1,±1 =
1√
2

(
|±1 : 0〉 − |0 : ±1〉

)
, (16.2.27)

χ1,0 =
1√
2

(
|1 : −1〉 − |−1 : 1〉

)
, (16.2.28)

χ0,0 =
1√
3

(
|1 : −1〉 − |0 : 0〉+ |−1 : 1〉

)
. (16.2.29)

These expressions show that χs,mS
has P spin

12 eigenvalue equal to (−1)s. This same fact can be

expressed in the shorthand form for addition of angular momentum

1⊗ 1 = 2S ⊕ 1A ⊕ 0S. (16.2.30)

where the S,A indicate symmetry or antisymmetry under exchange of the two spins. Therefore,

the total state for two identical spin-1 bosons is, again in a hybrid notation with wavefunctions

for spatial degrees of freedom and kets for spin degrees of freedom,

Ψ = ψ0,0(r1, r2)χ0,0 +
1∑

mS=−1

ψ1,mS
(r1, r2)χ1,mS

+
2∑

mS=−2

ψ2,mS
(r1, r2)χ2,mS

. (16.2.31)

This contains nine component wavefunctions satisfying

ψs,mS
(r1, r2) = (−1)sψs,mS

(r2, r1). (16.2.32)

The position wavefunction for the total spin 0 and 2 states are symmetric, and the position

wavefunctions for total spin 1 are antisymmetric, under exchange of the boson labels.

16.3 Excited states of the helium atom

The binding energy of the ground state of the two-electron helium atom was studied in sections

13.3 and 14.4. In doing so, we ignored the spin degrees of freedom, as well as the fact that the

325



electrons are identical particles. This is now seen to be justified by the fact that the electrons

can arrange themselves into a total spin s = 0 state. Then the total spatial wavefunction is the

symmetric ψ0,0(r1, r2) = ψ0,0(r2, r1) appearing in eqs. (16.2.2), (16.2.8), and (16.2.13), just as we

had assumed (without bothering to justify it in detail) in sections 13.3 and 14.4. As we found

in section 14.4, the helium ground state spatial wavefunction is approximately just that of the

product of two identical 1s hydrogen-like states with Zeff ≈ 1.7. The ground state of helium does

not have a counterpart with total spin s = 1, because that would force the spatial wavefunction

to be antisymmetric under exchange of the two electron levels, which is inconsistent with it

being the product of two identical lowest-energy single particle states.

However, for the excited states of helium, we must explicitly take into account both spin and

the Fermi–Dirac statistics of the electrons. The Hamiltonian is once again given by eqs. (13.3.1)–

(13.3.3). We can start by neglecting the H12 = e2/|r1 − r2| interaction Hamiltonian, and later

include it as a perturbation. Consider the spatial wavefunctions that can be formed from the

individual Z = 2 hydrogen-like states, with one electron in the ground state (1s) and the other

in a higher level, 2s or 2p or 3s or 3p or 3d or 4s, etc.:

ψ(r1, r2) =
1√
2
[φ1,0,0(r1)φn,l,m(r2)± φ1,0,0(r2)φn,l,m(r1)] . (16.3.1)

Here, if the + sign applies, then the spatial wavefunction is symmetric, and so the total-spin

state must have s = 0; these are called para-helium states. (The ground state is also a para-

helium state.) Conversely, if the − sign applies, then the spatial wavefunction is antisymmetric,

and so the total-spin state must be symmetric with s = 1; these are called ortho-helium states.

For both of these, the unperturbed energy eigenvalues of H0 = H1 +H2 are

En,l,m = −Z
2e2

2a0

(
1 + 1/n2

)
. (16.3.2)

Now, treating H12 as a perturbation, we obtain the first-order energy correction

E
(1)
n,l,m = 〈ψ|H12 |ψ〉 = e2 (In,l,m ± Jn,l,m) , (16.3.3)

where again the + sign applies to para-helium (s = 0) and the − sign to ortho-helium (s = 1),

and

In,l,m =

∫
d3r1

∫
d3r2 |φ1,0,0(r1)|2 |φn,l,m(r2)|2

1

|r1 − r2|
, (16.3.4)

Jn,l,m =

∫
d3r1

∫
d3r2 φ1,0,0(r1)φ1,0,0(r2)φn,l,m(r1)φn,l,m(r2)

∗ 1

|r1 − r2|
. (16.3.5)

Here In,l,m, which is manifestly real and positive, is called the “direct integral”, while Jn,l,m

is called the “exchange integral”. Although we will not bother to evaluate them explicitly, it
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is worth knowing that Jn,l,m is also real and positive, but smaller in magnitude than In,l,m.

Therefore, each ortho-helium (s = 1) state is always lower in energy than the corresponding

para-helium (s = 0) state. A way of understanding this qualitatively is to note that in the s = 0

combination with antisymmetric spins, the symmetric spatial wavefunction results in a higher

electrostatic repulsion between the two electrons, due to their greater wavefunction overlap,

than for the s = 1 combination with antisymmetric spatial wavefunction.

For s = 0, the total angular momentum quantum number j is the same as the orbital angular

momentum of the excited electron state, l. For l = 0, j is the same as s. For s = 1 and l ≥ 1, one

can instead have j values l−1, l, or l+1. A sketch of the energy levels for the lowest few states

of the neutral helium atom is shown in Figure 16.3.1, classified by their unperturbed quantum

numbers on the left, and by their 2s+1lj angular momentum labels on the right. The excited

states are each split into s = 0, para-helium (upper) and s = 1, ortho-helium (lower) levels.

Transitions between para-helium states and ortho-helium states are highly suppressed, because

they require spin flips, so to a good approximation they form two distinct sets of spectral lines.

For this reason it was thought by early investigators that they might actually be two separate

kinds of helium.

Each of the ortho-helium levels with l > 1 is split by small fine-structure effects into its

separate j = l− 1, l and l+1 states. These splittings are not shown in Figure 16.3.1, but move

the states with larger j slightly lower in energy. We will discuss this in the next section in the

more general context of multi-electron atoms.

Regarding hyperfine effects, the helium nucleus exists in two stable isotopes. Almost all

naturally occurring helium nuclei are 4He, a boson with spin 0. A spin-0 particle has no special

direction and therefore cannot have a magnetic moment or electric quadrupole moment, so 4He

atoms have no hyperfine splitting. A small fraction of naturally occurring helium nuclei are 3He,

a fermion with spin 1/2. The 3He atomic states with a given j are therefore further split by the

hyperfine contribution.
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He+ ion, 1s, −54.42 eV

(1s)(1s) 1S0, −79.01

(1s)(2s)
3S1, −59.19

1S0, −58.39

(1s)(3s)
3S1, −56.29

1S0, −56.09

(1s)(2p)
3P0,1,2, −58.05

1P1, −57.79

(1s)(3p)
3P0,1,2, −56.00
1P1, −55.92 (1s)(3d)

3D1,2,3, −55.94
1D2, −55.94

Figure 16.3.1: The lowest few energy levels of the neutral helium atom, with electron con-
figurations, 2s+1lj spectroscopic notations, and energies in eV. Relative energies spacings are
indicated qualitatively, but not to scale. The ground state has both electrons in the lowest
energy level n = 1 and opposite spins (s = 0, para-helium). The remaining states have one
electron in the lowest level 1s and one in an excited energy level n > 1, and are split into
para-helium (upper, blue lines, s = 0) and ortho-helium (lower, red lines, s = 1) states.
Would-be states with both electrons in an excited level are above the ground-state energy
of the He+ ion, shown as the dashed line, for which one electron is in the ground state and
the other has been completely ionized away. Not shown are other states with (1s)(4s) and
(1s)(4p) etc., which fall below the dashed line and asymptotically approach it for large n
for one electron. Small fine structure effects, also not shown, split the ortho-helium levels
3P0,1,2,

3D1,2,3, etc., into their different j components, with larger j slightly lower in energy.

16.4 Multi-electron atoms

Consider the problem of finding the energy eigenstates for multi-electron atoms. To a good

approximation, the Hamiltonian depends on the non-relativistic kinetic energy of the electrons,

their electrostatic attraction to the nucleus, their pairwise electrostatic repulsion, and the cou-

plings between the electron spins and their angular momenta. These effects alone are enough

to provide a challenge that we cannot hope to solve exactly, and approximation methods must

be used. In the following, we will not consider other, usually smaller, effects, including the

contributions due to the relativistic correction to the electron kinetic energies, Darwin terms,
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and hyperfine contributions due to the magnetic dipole and electric quadrupole moments of the

nucleus. These can be added as further perturbations.

One way to make progress is the central-field method. We invent a central potential U(r),

a rotationally invariant function (of the radial coordinate only) that is chosen to approximate the

electrostatic potential seen by an electron at a given point due to the nucleus and the suitably

averaged effects of the other electrons. Although it is not easy to make a rigorous definition of

“suitably averaged”, there are motivated techniques for estimating U(r) by iteration (notably the

Hartree and Hartree–Fock approximations, due to Douglas Hartree and improved by Vladimir

Fock) that will not be discussed here. In any case, the choice of U(r) is arbitrary, in principle,

because we can add it to one part of the Hamiltonian (the unperturbed part, or the part used

to define trial states for use with the variational principle) and subtract it from another (the

perturbation part), so that the total Hamiltonian does not depend on it.

More specifically, we can write the approximate Hamiltonian as

H = H0 +W +HSO, (16.4.1)

H0 =

Ne∑

i=1

(
P 2
i

2me
+ U(Ri)

)
, (16.4.2)

W =
Ne∑

i=1

(
−U(Ri)−

Ze2

Ri

+
i−1∑

j=1

e2

|Ri − Rj |

)
, (16.4.3)

HSO =

Ne∑

i=1

Ωi · Si. (16.4.4)

This Hamiltonian is invariant under the exchange of any two electrons, as it must be. In the

spin-orbit term eq. (16.4.4),

Ωi = − e

2m2
ec

2

(
∇Φi

)
× Pi (16.4.5)

where the electric potential seen by the ith electron is

Φi(Ri) =
Ze

Ri
−
∑

j 6=i

e

|Ri −Rj |
. (16.4.6)

The contribution to the spin-orbit interaction HSO from each electron generalizes the case of a

spherically symmetric potential in eq. (15.1.4), and for hydrogen in eq. (15.1.17), which would

be recovered for Φ = e/R. Note that there is no operator ordering problem associated with the

placement of Pi in eq. (16.4.5), because of the vector calculus identity ∇× (∇Φ) = 0. We have

distinguished the number of protons in the nucleus Z from the number of electrons Ne, so that

the formulas apply to charged ions as well as neutral atoms.
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U(r)

r

Figure 16.4.1: The solid line shows the qualita-
tive shape of a choice for the central-field potential
energy function U(r) for the electrons in a neu-
tral atom with Ne = Z = 10. The upper dashed
and lower dashed lines show the potentials −e2/r
(maximally screened by 9 electrons closer to the
nucleus) and −10e2/r (no screening, all electrons
farther from the nucleus), respectively.

One should aim to choose U(R) in such a way that the eigenstates of H0 are as close as

possible to those of the full Hamiltonian. A reasonable choice might interpolate between

U(r) ≈
{ −Ze2/r (small r),

−(Z −Ne + 1)e2/r (large r).
(16.4.7)

The idea behind this choice is the principle from classical electrostatics, following from Gauss’

Law, that the electric field and electric potential at a point r in a spherically symmetric charge

distribution are both determined only by the total charge contained within r. Thus, at small r

there is no screening of the charge +Ze nuclear potential due to other electrons, because they

are likely to be found farther from the nucleus, while at large r the other Ne − 1 electrons are

all likely to be closer to the nucleus and so the effective number of charges seen by an outermost

very distant electron is only Z−Ne+1. A sketch of a plausible choice of U(r) is shown in Figure

16.4.1, compared to the asymptotic limits of no screening at small r and maximum screening

at large r. A choice of U(r) should be justified a posteriori by the successful convergence of

perturbation theory or the variational method.

The single-electron eigenstates of the central-field Hamiltonian H0, called orbital states or

orbitals, will have wavefunctions of the form

φn,l,ml,ms(r, θ, φ) = RU
n,l(r)Y

ml
l (θ, φ)χms, (16.4.8)

where χms = |↑〉 or |↓〉 for the spin states. The radial wavefunctions RU
n,l(r) will not be the same

as for a hydrogen-like atom, because U(r) is not proportional to 1/r. However, they will be

qualitatively similar. In particular, the label n is a positive integer, and then 0 ≤ l ≤ n−1, with

n−l−1 equal to the number of radial zeros for r > 0. In general, the orbital energy eigenvalues of

H0 will increase with n, but will also depend on l, unlike hydrogen-like atom energy eigenstates.

The unperturbed eigenstates of H0 will be Slater determinants formed out of Ne states of the

form of eq. (16.4.8). Then the effects of W and HSO can be added as perturbations.
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The set of orbitals with the same values of n and l are called a shell, and consist of

gshelln,l = 2(2l + 1) (16.4.9)

states, due to the ms and ml quantum numbers. (Here we are neglecting any further degeneracy

due to nuclear spins, which are different for distinct isotopes of the same element.) The orbital

states and shells are labeled nl, but with l = 0, 1, 2, 3, . . . replaced by the spectroscopic code

letter s, p, d, f, . . ., just as for the hydrogen atom states. The state of a given atom can be

specified by giving the occupation numbers of each shell, called the electron configuration,

subject to the Pauli exclusion principle, enforced by the Slater determinant, that we cannot

put two electrons in the same state due to their Fermi–Dirac statistics. Using eq. (16.4.9),

the maximum number of electrons in an s, p, d, f shell is 2, 6, 10, 14, respectively. For a given

l, smaller n tends to have lower energy, but this does not always mean that the shells fill up

from smaller to larger n, as we will soon see. For a given n, smaller l states tend to have lower

energies. The reason is that electrons with smaller l have support closer to the nucleus, and

that part of the wavefunction is less screened from the attractive nucleus by the other electrons

in the already-filled shells.

The 1s shell can fit up to 2 electrons, and so is the only shell necessary for H and He, but is

insufficient to accommodate larger Z atoms. The next to fill is the 2s shell, which again fits up

to 2 electrons, and so is the last shell needed for Li and Be. The 2p shell fills next, and can fit

up to 6 electrons, so it is enough to accommodate the neutral atoms with Z up to 10, namely

B, C, N, O, Fe, and Ne. Likewise, the 3s shell accommodates the last electron for Na and Mg,

while the 3p shell is used for Al, Si, P, S, Cl, Ar. However, the 4s shell tends to fill before the

3d shell, in K, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, and Zn. This tendency has two exceptions; within

this sequence from Z = 19 to Z = 30, Cr and Cu break the trend, by having only one electron

in the 4s shell, with the 3d shell containing the other five and ten electrons, respectively.

The shell filling order for multi-electron atoms is, empirically,

1s, 2s, 2p, 3s, 3p,

(
4s
3d

)
, 4p,

(
5s
4d

)
, 5p,



6s
4f
5d


 , 6p,



7s
5f
6d


 , (16.4.10)

where the cases in parentheses correspond to ambiguities due to close energies, with the most

common (but not universally followed) filling order from top to bottom. The fact noted earlier

that smaller l tends to give lower energy for a given n explains why 2s fills before 2p, and why

the 4s can compete with the 3d, and the 5s can compete with the 4d, etc.
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Some example electron configurations are

H: 1s1, He: 1s2, Li: 1s2 2s1, C: 1s2 2s2 2p2,

N: 1s2 2s2 2p3, Na: 1s2 2s2 2p6 3s1,

Hg: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10.

The chemical properties of a given element are mostly dependent on the electron configuration,

and the similarities between elements in a given column of the periodic table are due to having

similar configurations of electrons in the outermost (partially filled) shells.

The inert (noble) gases He, Ne, Ar, Kr, Xe, Rn are those that have a full p shell, and all

previous shells filled, leading to a very low tendency to form chemical bonds. It is common

to give the electron configuration for any element by just listing the filled orbitals in excess of

that for the previous inert gas. For example, for the inert gases themselves, one can write the

electron configurations as

He: 1s2, Ne: [He]2s2 2p6, Ar: [Ne]3s2 3p6, Kr: [Ar]4s2 3d10 4p6,

Xe: [Kr]5s2 4d10 5p6, Rn: [Xe]6s2 4f 14 5d10 6p6.

For the alkali metals, there is an s shell with only one electron,

Li: [He]2s1, Na: [Ne]3s1, K: [Ar]4s1,

Rb: [Kr]5s1, Cs: [Xe]6s1, Fr: [Rn]7s1,

while the halogens are all missing 1 electron in a p shell,

F: [He]2s2 2p5, Cl: [Ne]3s2 3p5, Br: [Ar]3d10 4s2 4p5,

I: [Kr]4d10 5s2 5p5, At: [Xe]4f 14 5d10 6s2 6p5.

A good periodic table of the elements will give the electron configuration for the atomic ground

state of each element.

The energy needed to remove a single electron from the ground state of a neutral atom is

called the first-ionization energy. Experimental results for the first-ionization energy as a

function of the atomic number Z are shown in Figure 16.4.2, including as the first two data

points 13.6 eV for H and 24.6 eV for He. (Note that the result for He can be obtained from

numbers given in Figure 16.3.1.) Because of the shielding of the nuclear charge by the innermost

electrons, the results do not depend very strongly on Z; the outermost electrons are attracted

to the nucleus as if they “see” a reduced net charge of order e rather than the full nuclear charge

Ze. The first-ionization energies are largest for the inert gases, which each have a complete
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Figure 16.4.2: The energy (in eV) needed to remove a single electron from the ground state
of a neutral atom, as a function of the atomic number Z. Atoms with the same highest-
energy shells (1s, 2s, 2p, 3s, . . . ) are connected by lines to guide the eye, as labeled. The
inert gas elements (He, Ne, Ar, Kr, Xe, Rn) each have completely filled s- and p-shells and
thus a large first-ionization energy, while the alkali metal atoms (Li, Na, K, Rb, Cs, Fr) each
have a lone s-shell electron and a small first ionization energy.

p shell, and are smallest for alkali metals, which each have a single, relatively weakly bound,

s-shell electron available for ionization.

A more complete specification of the structure of the atoms will include information about the

angular momentum quantum numbers. Suppose that we can treat the spin-orbit contribution

to the Hamiltonian HSO as small compared to H0 +W in eqs. (16.4.1)–(16.4.4). In practice,

this is especially likely to be a good approximation if Z is not too large. Now, all three of the

summed orbital, summed spin, and total angular momentum operators

L =

Ne∑

i=1

Li, S =

Ne∑

i=1

Si, J = L+ S (16.4.11)

commute with H0 (as well as W ). One can therefore choose unperturbed orthobasis states

that are not only eigenstates of H0, but also eigenstates of the operators L2, S2, Lz and Sz

with eigenvalues h̄2L(L + 1), h̄2S(S + 1), h̄mL, and h̄mS respectively. These states also carry

other quantum number labels (including the unperturbed H0 energy eigenvalue) which we will

symbolically denote as N , so that the states are labeled

|NLSmLmS〉 . (16.4.12)
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The H0 energy eigenvalues have energy degeneracy gN = (2S +1)(2L+1), due to the magnetic

quantum numbers mL, mS. Alternatively, one can choose as an orthobasis the linear combina-

tions of the same unperturbed states that are eigenstates of H0, S
2, L2, and J2 [with eigenvalue

h̄2J(J + 1)], and Jz (with eigenvalue h̄mJ),

|NLSJmJ〉 =
∑

mL,mS

CLSJ
mLmSmJ

|NLSmLmS〉 , (16.4.13)

where CLSJ
mLmSmJ

are the Clebsch–Gordan coefficients. The total number of such states for

fixed N,L, S is again (2S + 1)(2L + 1). The approximation in which the states constructed

in this way from eigenstates of H0 (or perhaps H0 +W ) are close to being eigenstates of the

full Hamiltonian is called the LS coupling (or Russell–Saunders coupling, after Henry

N. Russell and Frederick Saunders) approximation. Note that this approximation is only good

to the extent that HSO can be treated as small, since it does not commute with S2 or L2 if there

is more than one electron.

We now investigate the spin-orbit fine-structure energy corrections, using degenerate pertur-

bation theory. To do so, we must find the matrix elements of HSO on the degenerate subspaces of

H0, and diagonalize it. We start by working with the product orthobasis kets, which decompose

into linear combinations of tensor products of orbital and spin angular momentum eigenkets,

|NLSmLmS〉 =
∑

α,β

cα,β |αNLmL〉 ⊗ |βSmS〉 . (16.4.14)

Here α is a degeneracy label whose presence reflects the fact that there can be more than one

state with eigenvalues L,mL, and similarly β labels the different spin states with eigenvalues

S,mS. The whole state |NLSmLmS〉 is a Slater determinant incorporating the antisymmetry

under interchange of any two electrons. This puts constraints, which we will not explicitly

identify or make use of, on the coefficients cα,β.

The matrix elements of HSO from eq. (16.4.4) on the degenerate subspace of states are

〈NLSm′Lm′S|HSO|NLSmLmS〉 =

∑

α,β

∑

α′,β′

cα,βc
∗
α′,β′

Ne∑

i=1

〈α′NLm′L|Ωi|αNLmL〉 · 〈β ′Sm′S|Si|βSmS〉 . (16.4.15)

Electrons in complete shells can be omitted, because pairs of opposite spin expectation values

with the same orbital quantum numbers will always cancel in the sum over i. Now we will

invoke the Landé projection formula, eq. (12.2.10), twice. First, note that each Ωi is a vector

operator with respect to the total orbital angular momentum operator L, without involving

spin. Therefore, for L 6= 0, we have

〈α′NLm′L|Ωi|αNLmL〉 = 〈Lm′L|L|LmL〉
〈α′NL‖L · Ωi‖αNL〉

h̄2L(L+ 1)
. (16.4.16)
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As noted in Theorem 12.2.2, for the case L = 0, the matrix element simply vanishes, and there

is no spin-orbit splitting. Similarly, each of the individual electron spin operators Si is a vector

with respect to rotations generated by the total spin angular momentum operator S, without

involving orbital angular momentum, so we can write, for S 6= 0,

〈β ′Sm′S|Si|βSmS〉 = 〈Sm′S|S|SmS〉
〈β ′S‖S · Si‖βS〉
h̄2S(S + 1)

. (16.4.17)

while for S = 0 the matrix element again vanishes. Therefore, putting things together,

〈NLSm′Lm′S|HSO|NLSmLmS〉 = ζ(N,L, S) 〈LSm′Lm′S|L · S|LSmLmS〉 , (16.4.18)

where the factor

ζ(N,L, S) =
∑

α,β

∑

α′,β′

cα,βc
∗
α′,β′

Ne∑

i=1

〈α′NL‖L · Ωi‖αNL〉
h̄2L(L+ 1)

〈β ′S‖S · Si‖βS〉
h̄2S(S + 1)

(16.4.19)

may be quite difficult to evaluate exactly, but has the important property that it does not

depend on the magnetic quantum numbers mL, mS, m
′
L, m

′
S at all, because the reduced matrix

elements 〈α′NL‖L · Ωi‖αNL〉 and 〈β ′S‖S · Si‖βS〉 do not. For a given atom, ζ(N,L, S) can,

in principle, be evaluated, perhaps in approximations such as replacing the electric potential

Φi(Ri) in eq. (16.4.5) by a spherically symmetric approximation. This is beyond our scope here;

we will merely consider it to be an empirical function of N,L, S.

Equation (16.4.18) shows that the matrix elements ofHSO are proportional to those of L·S =

h̄2(J2 − L2 − S2)/2, where J2, L2 and S2 are understood to be operators. To properly conduct

degenerate perturbation theory, it is therefore clear that we should switch to the orthobasis

|NLSJmJ〉, in which this operator is diagonal. We therefore arrive at a formula for the spin-

orbit correction to the energies, at first order in degenerate perturbation theory,

∆E(N,L, S, J) = ζ(N,L, S)h̄2
[
J(J + 1)− L(L+ 1)− S(S + 1)

]
/2, (16.4.20)

where J , L, and S are now numbers. This vanishes in the special cases L = 0 (which then

implies J = S) and S = 0 (which then implies J = L), consistent with observations already

made in the previous paragraph. Equation (16.4.20) shows that the degeneracy (2S+1)(2L+1)

is partially broken by HSO, but states with a given J are not split, with remaining degeneracies

gJ = 2J + 1, since ∆E(N,L, S, J) does not depend on mJ .

We can now use eq. (16.4.20) to obtain a simple formula for the energy differences between

successive eigenvalues J − 1 and J , for fixed N , L, and S,

∆E(N,L, S, J)−∆E(N,L, S, J − 1) = h̄2ζ(N,L, S)J. (16.4.21)
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This result, that the spin-orbit fine-structure energy splitting between states J and J − 1 with

fixed N,L, S is proportional to J , is called the Landé interval rule, as observed in spectral

lines from transitions between atomic states. It can be used as a check of the validity of the LS

coupling scheme approximation.

The preceding discussion shows how, within the LS coupling approximation, energy eigen-

states can be built by first adding all of the spins, then adding all of the orbital angular momenta,

and then adding the two to get the total angular momentum. The angular momentum quantum

numbers of these states are then traditionally specified with the term symbol

2S+1LJ = Russell–Saunders (LS) spectroscopic notation, (16.4.22)

where the eigenvalues of operators J2, S2, and L2 are numbers h̄2J(J + 1), h̄2S(S + 1), and

h̄2L(L + 1), respectively, and then the value of L is replaced by its spectroscopic code S, P,D,

F,G,H, . . . for L = 0, 1, 2, 3, 4, 5, . . .. Thus, for example, the hydrogen and helium atom ground

states are given as 2S1/2 and
1S0, respectively. Many editions of the periodic table of elements list

the Russell–Saunders notation for the atomic ground states along with the electron configuration.

The list of possible term symbols 2S+1LJ of an atom can be obtained from looking only at

the valence electrons, the ones in the incompletely filled shells. This is because each electron

in a filled shell with a given ms, ml, and mj always has a partner with the opposite values of

those quantum numbers, giving no net contribution to S, L, and J . The parity of the state is

useful for selection rules for transitions. From eq. (8.7.7), it is π = (−1)
∑

i li , where li are the

individual orbital angular momenta, specified by the electronic configuration. [Note that for

orbitals the parity is defined with respect to the fixed nucleus as the origin, not the center of

mass of the valence electrons, so even for two electrons π is not necessarily equal to (−1)L.]
For an atom with a partly filled shell, there may be several candidates for the ground state

term symbol. Three empirical guidelines, known as Hund’s Rules after Friedrich Hund, can

be used to predict which the ground state will be, given the electron configuration. They are:

Hund’s Rule 1: The L, S, J multiplet with the lowest energy will have the largest S from

among the candidates.

(Qualitative justification: for larger S, the spin wavefunction is more symmetric, which

means the spatial wavefunction is more antisymmetric, which means the electrons are less

often near each other, which gives less repulsive forces between them, and so lower energy.

We have already seen this effect in action; it is why each ortho-helium S = 1 state is lower

in energy than its para-helium S = 0 counterpart.)

Hund’s Rule 2: If there are two or more candidates selected by the first rule that have the

same largest S, then the lowest energy will have the largest L among them.
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(Qualitative justification: larger L means that the orbital wavefunctions can be arranged

to have less overlap, again leading to smaller repulsive forces and thus lower energy.)

Hund’s Rule 3: If there are two or more candidates selected by the first two rules with

the same S and L, then the spin-orbit coupling splits apart the different levels of J =

|L−S|, . . . , L+S. If an incomplete shell is not more than half-filled, then the ground state

has J = |L−S|, otherwise the ground state has J = L+S.

(Qualitative justification: the form of eq. (16.4.20) immediately tells us that for fixed L, S,

the minimum energy will occur for one of the two extremes for J , either |L−S| or L+S.
Hund’s Rule 3 is equivalent to the empirical fact that ζ(N,L, S) in eq. (16.4.20) turns out

to be positive if the shell is not more than half-filled, and negative otherwise.)

We now illustrate the prediction of term symbols, using Hund’s rules where necessary, with

examples from the beginning of the periodic table. For the first four elements, Hund’s rules are

not needed.

Hydrogen (H, Z = 1) has electron configuration 1s1. Because there is one electron with

S = 1/2 and L = 0, the only possibility is J = 1/2, and the term symbol is 2S1/2.

Helium (He, Z = 2) has electron configuration 1s2. As always when there are no partially

filled shells, the ground state is 1S0. The same result is obtained for all inert (noble) gases.

Lithium (Li, Z = 3) has electron configuration 1s2 2s1. Just as for hydrogen, there is one

electron that is not in a filled shell, with S = 1/2 and L = 0, so the term symbol is 2S1/2. The

same applies for all alkali metals, the elements in the same periodic table column as Li, which

have a single s shell electron.

Beryllium (Be, Z = 4) has electron configuration 1s2 2s2, with only completely filled shells,

so the ground state is 1S0. The same applies for all elements in the Be periodic table column.

Boron (B, Z = 5) has electron configuration 1s2 2s2 2p1. Here, the 1s and 2s shells are

irrelevant, since they are completely filled. In the incomplete 2p shell, we have one electron with

L = 1 and S = 1/2. Since this is the only choice, we do not need Hund’s rules 1 or 2. The

possible candidates have J = 1/2 and J = 3/2, with term symbols 2P1/2 and
2P3/2. Because the

last incomplete shell is less than half filled (1 out of 6), Hund’s rule 3 tells us that the ground

state has J = |L− S| = 1/2 and is 2P1/2. The same result is obtained for all elements in the B

column of the periodic table, which have a single p electron.

Carbon (C, Z = 6) has electron configuration 1s2 2s2 2p2. We start by computing the total

number of allowed states associated with the incomplete 2p shell. The 2 electrons have 6 orbital

states from which to choose, so there are (6·5)/(2·1) = 15 antisymmetric states. Now, let us see

how these 15 states are divided into 2S+1LJ multiplets. Combining the two spin-1/2’s gives S = 0

(the antisymmetric combination) and S = 1 (the symmetric combination). Combining the two
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orbital angular momenta, each with l = 1, gives L = 0 (symmetric), and L = 1 (antisymmetric),

and L = 2 (symmetric). Therefore, requiring that the full state be antisymmetric under exchange

of the two electrons, we have the following allowed combinations. First, there is L = 2, S = 0,

which implies J = 2. This possibility 1D2 consists of 2J + 1 = 5 states. Second, there is

L = 1, S = 1, which allows J = 0, 1, 2, so the terms are 3P0,
3P1, and

3P2, with 1, 3, and 5

states respectively. Third, there is L = 0, S = 0, which of course allows only one state, 1S0 with

J = 0. As a check, the total of these possibilities is indeed 15. Now we are ready to use Hund’s

rules. Hund’s rule 1 selects the largest possible value of S, which is S = 1. Hund’s rule 2 tells

us nothing, because the remaining competitors all have L = 1. Finally, for Hund’s rule 3, we

note that the 2p shell is not more than half-filled (2 out of 6), so that J = |L − S| = 0 in the

ground state. We therefore have S = 1, L = 1, J = 0, and the ground state of carbon is 3P0.

The same logic and result applies to all elements in the C column of the periodic table, which

have two p electrons.

Nitrogen (N, Z = 7) has electron configuration 1s2 2s2 2p3. The total number of possible

electron states associated with the three electrons in the 2p shell is (6 · 5 · 4)/(3 · 2 · 1) = 20

antisymmetric states. To see which L, S, J combinations these correspond to, first consider the

combination of the orbital angular momenta, which gives 1⊗ 1⊗ 1 = 0⊕ 1⊕ 1⊕ 1⊕ 2⊕ 2⊕ 3

for the possible values of L. If L = 3, one can check that the spatial wavefunction constructed

by addition of angular momentum would be totally symmetric under exchange of the electrons,

but there is no totally antisymmetric spin state for ≥ 3 electrons; we conclude from this that

L cannot be 3. If L = 0, then the spatial wavefunction is instead totally antisymmetric, from

which we conclude that the spin state must be totally symmetric, so S = 3/2. Conversely, if

S = 3/2, then only the totally antisymmetric L = 0 combination is allowed. We conclude that

the only (L, S) combinations that are allowed are L = 0, S = 3/2 with J = 3/2 (term 4S3/2,

4 states), and L = 1, S = 1/2 with J = 1/2 and 3/2 (terms 2P1/2 and 2P3/2, 6 states), and

L = 2, S = 1/2 with J = 3/2 and J = 5/2 (terms 2D3/2 and
2D5/2, 10 states). As a check, these

indeed add up to 20 states. Hund’s rule 1 tells us that the ground state should have maximal

S, which selects the L = 0, S = 3/2, J = 3/2 combination. This is the only one that realizes

that maximal value of S, so the other two Hund’s rules are not needed, and the ground state

term is 4S3/2. The same logic and result applies to all elements in the N column of the periodic

table, which have three p electrons.

Oxygen (O, Z = 8) has electron configuration 1s2 2s2 2p4. As in the previous examples,

we start by doing the counting of the total number of physical antisymmetric electron states

for the incomplete shell. Since there are 4 electrons and 6 available states, that number is

(6 · 5 · 4 · 3)/(4 · 3 · 2 · 1) = 15. However, as a useful trick it is better to consider the 2 “holes”,
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by which we mean the electrons omitted from the completely filled 2p shell. Treating the holes

as equivalent spin-1/2 particles, we again obtain (6 · 5)/(2 · 1) = 15 states. A complete 2p shell

would have L = S = 0, so we treat the 2 holes as carrying the same S and L as the 4 electrons.

So, the allowed candidate multiplets are the same as we found for carbon with 2p2, namely

(L, S, J) = (2, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), and (0, 0, 0), with term symbols 1D2,
3P0,

3P1,
3P2, and

1S0. Hund’s rule 1 says the ground state has S = 1, and Hund’s rule 2 does not

differentiate between the remaining candidates which all have L = 1. To apply Hund’s rule 3,

we note that the 2p shell is now more than half-filled with electrons (4 out of 6), so J = L+S = 2

for the ground state. (Note that this is the difference between carbon and oxygen; although

the enumeration of the candidate terms is easier in terms of the holes, Hund’s rule 3 for the

selection of the ground state still applies to the actual electrons, not the holes.) So, the ground

state term for oxygen is 3P2. The same logic and result applies to all elements in the O column

of the periodic table, with four p electrons.

Fluorine (F, Z = 9) has electron configuration 1s2 2s2 2p5. Using the trick introduced in the

oxygen example, we get the allowed (L, S, J) multiplets by considering the 2p shell to consist of

just one hole, rather than 5 electrons. This means that, just as for boron, the only combinations

are L = 1, S = 1/2 with J = 1/2 or 3/2. Since these have the same L and S, Hund’s rules 1

and 2 provide no information. To apply Hund’s rule 3, we note that the 2p shell is more than

half full (5 out of 6), and so the ground state has J = L + S = 3/2, with term symbol 2P3/2.

The same applies to all halogens, the elements in the F column of the periodic table, with five

p electrons.

Hund’s rules correctly predict the ground state of all neutral atoms for which the ground

state term symbol is unambigously measured. They also often give the correct result for charged

ions, and for neutral atoms with an electron configuration different from the ground state. For

example, the singly ionized carbon ion C+ has electron configuration 1s2 2s2 2p, which is the

same as boron, and has the same term symbol 2P1/2, as correctly predicted by Hund’s rules.

Also, the neutral carbon atom has excited states with electron configuration 1s2 2s 2p3. Among

those excited states, Hund’s rules correctly predict that the lowest energy term is 5S2.

An important experimental tool for exposing the properties of atomic states is to observe

the behavior of energy levels and transition spectra as a function of an applied magnetic field,

called the Zeeman effect. In section 15.3, we studied the Zeeman effect for atomic hydrogen, and

much of that discussion can be adapted to the multi-electron case. Adding the contributions to

the Hamiltonian linear in a constant, uniform magnetic field B = Bẑ, one obtains a result of

the same form as eq. (15.3.6),

HB = µBB(Lz + 2Sz)/h̄, (16.4.23)
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but now with Lz and Sz respectively equal to the total orbital and spin angular momentum

operators, obtained as the sums of the operators for the individual electrons. Within the LS

coupling scheme approximation, the analysis for the weak-field (small-B) Zeeman effect in multi-

electron atoms just mimics what we already did for hydrogen from eqs. (15.3.8)–(15.3.13), so

one finds that atomic states characterized by N,L, S, J obtain energy splittings proportional to

the total angular momentum quantum number mJ ,

∆EB = g µBBmJ , (mJ = −J, −J+1, . . . , J−1, J), (16.4.24)

where the Landé g-factor is

g =
3

2
+
S(S+1)− L(L+1)

2J(J+1)
. (16.4.25)

(Of course, unlike the atomic hydrogen case, in general S need not be equal to 1/2, and J need

not be equal to L± 1/2.) For weak external magnetic fields, the magnetic moment of the atom

is therefore related to its total angular momentum by −gµBJ/h̄, and the splitting exposes the

degeneracies and angular momentum quantum numbers for the multi-electron atomic states.

The strong magnetic field (Paschen–Back) limit for multi-electron atoms is also quite similar

to the example of the hydrogen atom, as given in eqs. (15.3.20)–(15.3.24). This includes the use

of |NLSmLmS〉, in which HB is diagonal, as the degenerate unperturbed states to which HSO

is applied as a perturbation. For multi-electron atoms, the counterpart of eq. (15.3.22) is

〈NLSmLmS|HSO|NLSmLmS〉 = ζ(N,L, S) 〈NLSmLmS|L · S|NLSmLmS〉 , (16.4.26)

where ζ(N,L, S) is the quantity appearing in eqs. (16.4.19)–(16.4.21) and L · S = 1
2
(L+S− +

L−S+) + LzSz evaluates to h̄
2mLmS. Therefore, we have in the strong-field limit

∆EB, fine = µBB(mL + 2mS) + h̄2ζ(N,L, S)mLmS, (16.4.27)

where we have kept only the spin-orbit part of the fine-structure effect, which contains the

dependence on mL and mS. For the intermediate case that the fine-structure and external

magnetic fields are comparable, things are more complicated and one should find the energy

shift by treating HB + HSO together as a single perturbation, to be diagonalized using either

the basis of states |NLSJmJ〉 or the basis |NLSmLmS〉.
It is important to keep in mind that the LS coupling scheme is just an approximation. The

assumption that HSO can be treated as a small effect becomes less appropriate for atoms with

larger Z, and so the LS coupling scheme approximation is not as good for heavier atoms. To

understand this, consider an approximation in which the potential in the spin-orbit interaction
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is spherically symmetric, so that we have a sum of terms like eq. (15.1.4) for each electron,

HSO =

Ne∑

i=1

ξ(Ri)Li · Si, ξ(r) = − e

2m2
ec

2

1

r

∂Φ

∂r
. (16.4.28)

Now, as a qualitative approximation, suppose that the electrons are in hydrogen-like orbitals

arising from a potential Φ(r) = −Zeffe
2/r, where Zeff < Z roughly takes into account the effects

of partial screening of the nuclear charge by the other electrons. Then HSO scales like Zeff/R
3,

and the characteristic size of orbitals scales like 1/Zeff , as can be seen from eq. (10.1.65), for

example. This implies that the effects of HSO scale like Z4
eff .

In the limit that the effects of HSO are too large to be treated as a perturbation, one can

instead use the jj coupling approximation. Since eq.(16.4.28) involves the individual Li · Si,
it is useful to first perform addition of angular momentum on each electron, Ji = Li + Si, and

then construct J =
Ne∑

i=1

Ji. Then H0 +HSO is diagonal in an orthobasis labeled by the quantum

numbers li, si, and ji associated with the operators L2
i , S

2
i , and J

2
i . In particular, the dominant

spin-orbit coupling term is diagonal in that basis and can be evaluated according to

HSO =
h̄2

2

Ne∑

i=1

ξ(Ri)[ji(ji + 1)− li(li + 1)− si(si + 1)], (16.4.29)

where si = 1/2, and li is specified by the electron configuration. The W part of the Hamiltonian

in eq. (16.4.3) does not commute with the operators L2
i and J2

i , so it is treated as a perturba-

tion, which then splits the states into different values of the total angular momentum quantum

number J , with a remaining degeneracy 2J + 1 (neglecting small hyperfine effects associated

with electronic interactions with the nucleus). In the jj coupling scheme, the term symbols

specifying the angular momentum can thus be written as

(j1, j2, . . . , jn)J , (16.4.30)

where n is the number of electrons in the unfilled shell, and the remaining degeneracy is 2J +1.

The standard example of the jj coupling scheme is provided by the lead atom (Pb, Z = 82).

The electron configuration is [Xe]4f 14 5d10 6s2 6p2, so what matters is the two l = 1 electrons in

the unfilled 6p shell. Just as for carbon, the number of antisymmetric states that we can form

from two p electrons in the same shell is 6 ·5/2 = 15. Each electron has total angular momentum

j = 1/2 or 3/2. Now we can use

1

2
⊗ 1

2
= 0A ⊕ 1S (16.4.31)

3

2
⊗ 3

2
= 0A ⊕ 1S ⊕ 2A ⊕ 3S, (16.4.32)

1

2
⊗ 3

2
= 1⊕ 2 (16.4.33)
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Figure 16.4.3: Experimental results for energy levels of neutral atoms with two p electrons in
an incomplete shell. The vertical energy scales are adjusted independently for each element
(C, Si, Ge, Sn, Pb) so that the highest and lowest J = 0 energies are at the same level. On
the left side, the LS-coupling terms 2S+1LJ are given, and on the right the jj-coupling terms
(j1, j2)J are given. The dashed lines are to guide the eye, connecting atomic states with the
same J . In the limit of the perfect LS-coupling approximation, the states 3P0,1,2 would
be degenerate, while in the limit of perfect jj-coupling the states (3/2, 3/2)0,2 would be
degenerate and the states (1/2, 3/2)1,2 would be degenerate. The jj-coupling approximation
is seen to be approached (quite imperfectly) for the high-Z case of Pb.

to find that the possible jj coupling terms for two p electrons are

(j1, j2)J = (12 ,
1
2)0, (12 ,

3
2)1, (12 ,

3
2)2, (32 ,

3
2)2, (32 ,

3
2)0, (16.4.34)

with degeneracies 1, 3, 5, 5, 1, respectively (which indeed add up to 15 as a check). Experi-

mentally, it turns out that the order given in eq. (16.4.34) is in increasing energy, so the ground

state has J = 0. By way of comparison, the Hund’s rules prediction for the LS-coupling term

for Pb is 3P0 (by an argument identical to the one for carbon), which also has J = 0, so the

two schemes agree in that respect. However, in some respects the jj coupling scheme provides

a better numerical approximation to the energy levels and other properties of the lowest few

eigenstates of Pb than the LS coupling scheme does. Figure 16.4.3 shows the experimental

energy levels for neutral atoms with two p electrons in an incomplete shell, comparing the low-Z

case of C and Si, which nearly realize the perfect LS-coupling approximation, to the high-Z case

of Pb where the jj-coupling approximation does better, and the intermediate cases of Ge and

Sn. In general, for atoms with high and medium Z, neither the LS scheme nor the jj scheme

is very accurate, and more complicated descriptions are appropriate.
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17 Heisenberg and interaction representations

17.1 The Heisenberg picture and equations of motion

Everything we have done so far uses a formulation that is sometimes called the Schrödinger

picture of quantum mechanics. This just means that the state of the system evolves according

to Postulate 6 of section 3.1,

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉. (17.1.1)

However, there are other, equivalent, formulations of quantum mechanics, called “pictures”,

which are related to the Schrödinger picture by doing a time-dependent unitary transforma-

tion on the state of the system and a corresponding transformation to all operators. Done

consistently, this cannot affect the predictions for physically measurable quantities, but the in-

termediate steps for solving problems will differ. The main reason for considering other pictures

is to make some calculations easier to do and/or understand.

Recall from the discussion in section 3.4 that the solution to eq. (17.1.1), starting from an

initial state |ψ(t0)〉, is

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (17.1.2)

where U(t, t0) is a unitary operator satisfying the differential equation

ih̄
d

dt
U(t, t0) = HU(t, t0), (17.1.3)

with U(t, t0)
−1 = U(t, t0)

† = U(t0, t). If H has no explicit time dependence, then the solution

to eq. (17.1.3) is relatively easy, just U(t, t0) = e−i(t−t0)H/h̄. In that case, there is no particular

advantage to the Heisenberg or interaction pictures described in the following.

In the Heisenberg picture, all time dependence is transferred from the state of the system

to the operators. To accomplish this, define

|ψ(H)〉 = U(t, t0)
†|ψ(t)〉, (17.1.4)

A(H)(t) = U(t, t0)
†A(t)U(t, t0), (17.1.5)

where |ψ(H)〉 is the state ket in the Heisenberg picture, and for each Schrödinger picture operator

A(t), the corresponding Heisenberg picture operator is denoted A(H)(t). Combining eqs. (17.1.2)

and (17.1.4) gives

|ψ(H)〉 = |ψ(t0)〉. (17.1.6)

Thus the Heisenberg picture state ket |ψ(H)〉 is independent of the time t; it only depends on

the initial condition at t0. Note that there are really infinitely many Heisenberg pictures, one
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for each choice of the reference initial time t0. We include a superscript (H) to denote the state

of the system or an operator as being in the Heisenberg picture. If an object is not written with

such a superscript, it can be assumed to be in the Schrödinger picture. For convenience and

simplicity, we will often write U = U(t, t0) in the rest of this section.

A possible point of confusion is that it is only the state of the system that we are defin-

ing differently in the Heisenberg and Schrödinger pictures via the unitary transformation in

eq. (17.1.4). Both the Schrödinger picture state ket |ψ(t)〉 and the Heisenberg picture state

ket |ψ(H)〉 can be expressed as (different!) linear combinations of a set of fixed orthobasis kets,

which are defined independently of the choice of picture. A convenient way to choose the fixed

orthobasis kets is as time-independent eigenstates of some appropriate time-independent CSCO

in the Schrödinger picture. Once so chosen, the orthobasis kets do not depend on t, by definition.

Inner products and matrix elements are the same in both pictures, since they are related by

a unitary transformation. To see this, consider a matrix element of an arbitrary observable A

between two possible states of the system |ψ〉 and |χ〉 that both obey Schrödinger’s equation in

the Schrödinger picture. We have

〈χ(t)|A(t)|ψ(t)〉 = 〈χ(t)|UU †A(t)UU †|ψ(t)〉 = 〈χ(H)|A(H)(t)|ψ(H)〉. (17.1.7)

This shows the physical equivalence of the two pictures.

Even though many important observable operators (for example, A = position, momentum,

or spin) are time-independent in the Schrödinger picture, the corresponding Heisenberg picture

operators A(H)(t) will generally depend on t, and often in a complicated way, depending on the

Hamiltonian. This is the price to be paid in the Heisenberg picture for the convenience that the

state of the system has no t dependence.

However, there is an important special case in which A(H)(t) does not depend on t. Suppose

that in the Schrödinger picture, H and A do not depend on t, and [A,H ] = 0. Then A commutes

with U(t, t0) as well, since the latter is built out of H . In that case,

A(H) = U †AU = U †UA = A, (17.1.8)

and we say that A is a constant of motion, following classical physics terminology. Note that

this corresponds to a conserved quantity, as defined in section 5.1 in the Schrödinger picture.

In particular, if H does not depend explicitly on t, then H(H) = H , and the Schrödinger and

Heisenberg picture Hamiltonians are equal.

More generally, we can ask how A(H)(t) evolves in time. To find out, we calculate, using the

product rule for derivatives,

dA(H)

dt
=

[
d

dt
U(t, t0)

†
]
AU + U †A

[
d

dt
U(t, t0)

]
+ U †

∂A

∂t
U. (17.1.9)
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Evaluating the derivatives in square brackets using the differential equation (17.1.3) gives

dA(H)

dt
=

i

h̄
U †HAU − i

h̄
U †AHU + U †

∂A

∂t
U, (17.1.10)

which can be rewritten as

dA(H)

dt
=

i

h̄
[H(H), A(H)] +

(
∂A

∂t

)(H)

. (17.1.11)

The meaning of the last term is that we take the derivative of A with respect to its explicit

dependence on t in the Schrödinger picture, and then convert the result to the Heisenberg

picture. Equation (17.1.11) is called the Heisenberg equation of motion for the operator

A(H). Since the state of the system does not change in the Heisenberg picture in the absence

of a measurement, this equation captures all physical effects of unitary time evolution. It is a

direct analog in quantum mechanics of the classical equations of motion.

The form of equal-time commutation relations does not change if one switches pictures.

If one has a commutation relation

[A, B] = C, (17.1.12)

in the Schrödinger picture, then

[A(H)(t), B(H)(t)] = [U †AU, U †BU ] = U †[A,B]U = U †CU = C(H)(t). (17.1.13)

So, for example,

[X(H)(t), P (H)(t)] = [X,P ] = ih̄, (17.1.14)

and if J is an angular momentum operator, then

[J (H)
a (t), J

(H)
b (t)] = ih̄ǫabcJ

(H)
c (t), (a, b, c = x, y, z). (17.1.15)

It is crucial that we specified equal-time commutation relations, because in general the com-

mutator [A(H)(t), B(H)(t′)] does not have a simple relationship to [A,B] unless t′ = t. For

example,

[X(H)(t), P (H)(t′)] 6= ih̄ (17.1.16)

in general, unless t′ = t.

To illustrate how the Heisenberg picture works in the simple case that the Hamiltonian

does not explicitly depend on time, suppose that in the Schrödinger picture we have the usual

Hamiltonian for a spin-less particle of mass m moving in a potential,

H =
P 2

2m
+ V (X), (17.1.17)
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where V (x) =
∑

n vnx
n, with vn a set of fixed real numbers. Then

(
P (H)

)2
= U †PUU †PU = U †P 2U, (17.1.18)

and similarly

(
X(H)

)n
= U †XnU. (17.1.19)

Therefore, the Heisenberg picture Hamiltonian is

H(H) = U †HU =
(P (H))2

2m
+ V (X(H)). (17.1.20)

The Schrödinger picture position and momentum operators have no explicit time dependence,

∂X

∂t
= 0,

∂P

∂t
= 0, (17.1.21)

and so we obtain from eq. (17.1.11), by using eq. (17.1.14),

dX(H)

dt
=

i

h̄
[H(H), X(H)] =

P (H)

m
, (17.1.22)

dP (H)

dt
=

i

h̄
[H(H), P (H)] = −V ′(X(H)). (17.1.23)

The Heisenberg equations of motion (17.1.22) and (17.1.23) have the same form as the classical

equations of motion, but with the classical position and momentum promoted to the correspond-

ing Heisenberg-picture operators. Using them, one can check that

d

dt
H(H) = 0, (17.1.24)

which verifies that H(H) = H is indeed a constant of motion.

17.2 The interaction picture and transition amplitudes

Suppose that we have a Hamiltonian (in the Schrödinger picture) of the form

H(t) = H0 +W (t), (17.2.1)

where W (t) may depend explicitly on time, but H0 does not. Then one can define another

picture called the interaction picture, also known as the Dirac picture.

The idea of the interaction picture is to transfer from the state ket to the operators only the

part of the time dependence that H0 is responsible for. This is done by defining, for the ket

describing the Schrödinger picture state of the system |ψ(t)〉 and for all observables A,

|ψ(I)(t)〉 = ei(t−t0)H0/h̄ |ψ(t)〉, (17.2.2)

A(I)(t) = ei(t−t0)H0/h̄Ae−i(t−t0)H0/h̄ . (17.2.3)
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The superscript (I) is used to denote the interaction picture state and operators; when it is not

present, the state or operator should be assumed to be in the Schrödinger picture. Note that

H
(I)
0 = ei(t−t0)H0/h̄H0e

−i(t−t0)H0/h̄ = H0, so a distinguishing superscript for H0 is not needed.

However, in general, W (I)(t) 6= W (t), so we must be careful to distinguish them from now on.

As in the case of the Heisenberg picture, the interaction picture depends on a choice of reference

time t0, which is sometimes taken to be 0. Note that eqs. (17.2.2) and (17.2.3) can be considered

a change of basis, since e−i(t−t0)H0/h̄ is a unitary operator.

Clearly, if W (t) = 0, then the interaction and Heisenberg pictures are the same, while

if H0 = 0, then the interaction and Schrödinger pictures are the same. More generally, the

interaction picture is intermediate between the Schrödinger and Heisenberg pictures. At first,

it might seem that the interaction picture combines the worst features of both, since both the

state and observable operators evolve non-trivially in time. However, it turns out to be useful

for an elegant formulation of time-dependent perturbation theory, when the effects of H0 are

large but easily calculable, and the effects of W (t) can be treated as the perturbation.

By an argument exactly analogous to the derivation of eq. (17.1.11), one can find the equation

giving the time evolution of operators in the interaction picture,

dA(I)

dt
=

i

h̄
[H0, A

(I)] +

(
∂A

∂t

)(I)

. (17.2.4)

Here, the meaning of the last term is that one should take the derivative of A with respect

to its explicit time dependence in the Schrödinger picture, and then convert the result to the

interaction picture using eq. (17.2.3).

Let us now define the unitary operator UI(t, t0) which gives the time evolution of |ψ(I)(t)〉 in
terms of its initial condition at t = t0, according to

|ψ(I)(t)〉 = UI(t, t0)|ψ(I)(t0)〉. (17.2.5)

To avoid confusion, it is important to note that UI(t, t0) is not the same as U (I)(t, t0), which is

defined to be the interaction-picture version of the Schrödinger picture unitary time-evolution

operator U(t, t0). In fact, the relation between these three unitary operators is

UI(t, t0) = U (I)(t, t0)e
i(t−t0)H0/h̄ = ei(t−t0)H0/h̄U(t, t0). (17.2.6)

The last equality follows directly from the definition eq. (17.2.3), while the first equality then

follows from eqs. (17.1.2), (17.2.2), and (17.2.5).

Our goal now is to solve for UI(t, t0). To accomplish this, we calculate

ih̄
d

dt
|ψ(I)(t)〉 = ih̄

d

dt

(
ei(t−t0)H0/h̄|ψ(t)〉

)
(17.2.7)

= −ei(t−t0)H0/h̄H0|ψ(t)〉+ ih̄ei(t−t0)H0/h̄
d

dt
|ψ(t)〉. (17.2.8)
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Using the Schrödinger equation ih̄ d
dt
|ψ〉 = (H0 +W ) |ψ〉, this becomes

ih̄
d

dt
|ψ(I)(t)〉 = ei(t−t0)H0/h̄W |ψ〉 , (17.2.9)

which we can rewrite in a form involving only interaction picture objects, as

ih̄
d

dt
|ψ(I)(t)〉 = W (I)(t)|ψ(I)(t)〉. (17.2.10)

Plugging the definition eq. (17.2.5) into eq. (17.2.10), we get the operator equation

ih̄
d

dt
UI(t, t0) = W (I)(t)UI(t, t0). (17.2.11)

Integrating both sides gives

ih̄
[
UI(t, t0)− UI(t0, t0)

]
=

∫ t

t0

dt′W (I)(t′)UI(t′, t0), (17.2.12)

or, rewriting using UI(t0, t0) = I,

UI(t, t0) = I − i

h̄

∫ t

t0

dt′W (I)(t′)UI(t′, t0). (17.2.13)

Finally, this integral equation can be solved by iteration,

UI(t, t0) = I − i

h̄

∫ t

t0

dt′W (I)(t′) +

(
− i
h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′W (I)(t′)W (I)(t′′) + · · · , (17.2.14)

or, rewriting more systematically,

UI(t, t0) =

∞∑

N=0

(
− i
h̄

)N ∫ t

t0

dtN

∫ tN

t0

dtN−1 · · ·
∫ t2

t0

dt1W
(I)(tN )W

(I)(tN−1) · · ·W (I)(t1).

(17.2.15)

This solution can be verified by plugging it directly into eq. (17.2.11).

Equation (17.2.15) is the Dyson series solution for the time evolution of the state in the

interaction picture; compare to the similar structure of eq. (3.4.26). In general, W (I)(t) may not

commute with W (I)(t′) when t 6= t′. Therefore, we are careful to put the operators in increasing

time order, from right to left, as specified by the nested integrations with t0 < t1 < t2 < · · · <
tN−1 < tN < t. In practice, eq. (17.2.15) is usually approximated by truncating it to the first

few terms, treating W (I) as small. A more compact (but less directly useful) way of writing

eq. (17.2.15) is

UI(t, t0) = T exp

[
− i
h̄

∫ t

t0

dt′W (I)(t′)

]
, (17.2.16)
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where T is the time-ordering symbol introduced in the discussion surrounding eq. (3.4.25), to

which eq. (17.2.16) can be compared. The symbol T is an instruction to re-order the operators

following it, so that after expanding the exponential, W (I)(tj) appears to the right of W (I)(tk)

whenever tj < tk. The time-ordering rule is that earlier operators act first on kets.

Given our solution for UI(t, t0) in eq. (17.2.15), one can express the time dependence of the

state back in the Schrödinger picture. Using eqs. (17.1.2) and (17.2.6),

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 = e−i(t−t0)H0/h̄ UI(t, t0)|ψ(t0)〉. (17.2.17)

It is convenient to express this in terms of an orthobasis of eigenstates |n〉 of H0 with eigenvalues

En. Using completeness twice, we have

|ψ(t)〉 =
∑

m

∑

n

|m〉〈m| e−i(t−t0)H0/h̄ UI(t, t0) |n〉〈n|ψ(t0)〉 (17.2.18)

=
∑

m

∑

n

e−i(t−t0)Em/h̄ |m〉 〈m|UI(t, t0)|n〉 〈n|ψ(t0)〉. (17.2.19)

Now, define the transition amplitudes for the eigenstates of H0 as

an→m(t, t0) ≡ 〈m|UI(t, t0)|n〉. (17.2.20)

Then, given the initial state coefficients,

cn(t0) = 〈n|ψ(t0)〉, (17.2.21)

it follows that the Schrödinger picture state of the system at time t is

|ψ(t)〉 =
∑

m

cm(t)|m〉, (17.2.22)

where, from eq. (17.2.19),

cm(t) =
∑

n

e−i(t−t0)Em/h̄ an→m(t, t0) cn(t0). (17.2.23)

Note that an→m(t0, t0) = 〈m|n〉 = δn,m, so that eq. (17.2.23) is consistent for t = t0. The

non-trivial part of the time evolution of the system due to W (t) is encoded in the transition

amplitudes an→m(t, t0), which in turn rely on our solution for UI(t, t0) in eq. (17.2.15).

As a special case, suppose we are only interested in transitions between eigenstates of H0,

but with time evolution governed by the full Hamiltonian H = H0 +W (t). The probability to

start at time t0 in one of the H0 eigenstates |n〉 and find the system at time t in another H0

eigenstate |m〉 is

Pn→m = |an→m|2. (17.2.24)

More generally, the transition amplitudes an→m defined in eq. (17.2.20) can be used to find the

time evolution of an arbitrary state |ψ(t)〉, through eqs. (17.2.22) and (17.2.23).

349



18 Time-dependent perturbation theory

18.1 The short-time and sudden approximations

As a warm-up for a more general treatment of time-dependent perturbation theory, suppose

that the Hamiltonian for a system is

H(t) =





H0 (t < 0),

Hint (0 < t < δ),

H ′0 (t > δ).

(18.1.1)

The starting and ending Hamiltonians are assumed to have no time dependence, and to have

known eigenstates and eigenvalues, |n〉 and En for H0, and |m′〉 and Em′ for H ′0. In the interreg-

num 0 < t < δ, the Hamiltonian is Hint. Consider the short-time approximation, in which δ

is small compared to the time scales set by h̄ divided by characteristic energy differences. The

idea is to take advantage of the smallness of δ to develop an approximation for the state of the

system at late times, despite the possibly complicated form of Hint, and in particular even if we

do not know its eigenstates and eigenvalues. We assume that δ is so small that any explicit time

dependence of Hint over that time interval can be ignored.

For each of t ≤ 0 and t ≥ δ, we can use the Schrödinger equation to write the form of the

state as

|ψ(t)〉 =
∑

n

bne
−itEn/h̄|n〉 (t ≤ 0), (18.1.2)

|ψ(t)〉 =
∑

m′

cm′ e−i(t−δ)Em′ /h̄|m′〉 (t ≥ δ), (18.1.3)

for some constants bn and cm′ . For later convenience, a constant phase eiEm′δ/h̄ has been included

in eq. (18.1.3), by choice of the definition of cm′ . For 0 < t < δ, the Schrödinger equation is

ih̄
d

dt
|ψ(t)〉 = Hint|ψ(t)〉. (18.1.4)

So, to first order in δ,

|ψ(δ)〉 =

(
I − i δ

h̄
Hint

)
|ψ(0)〉. (18.1.5)

Comparing this to eq. (18.1.2) with t = 0, and eq. (18.1.3) with t = δ, we find

∑

m′

cm′ |m′〉 =

(
I − i δ

h̄
Hint

)∑

n

bn|n〉. (18.1.6)

Now taking the inner product with another H ′0 eigenstate 〈k′|, and then relabeling k′ → m′, we

get the solution

cm′ =
∑

n

bnan→m′, (18.1.7)
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where the transition amplitude is

an→m′ = 〈m′|n〉 − i δ
h̄
〈m′|Hint|n〉. (18.1.8)

Given the initial state, specified by the coefficients bn of the H0 eigenstates, the final state is

determined by the coefficients cm′ of the H ′0 eigenstates.

One application of eq. (18.1.8) is to the special case H ′0 = H0, so that Hint − H0 acts as a

perturbation for a short time interval on an otherwise constant Hamiltonian. Then 〈m|n〉 = δn,m,

and

an→m = δn,m − i
δ

h̄

∑

n

〈m|Hint|n〉. (18.1.9)

For example, if the initial state is an eigenstate |n〉 of H0, so that only one of the bn is non-zero,

then the probability of finding the system in a different H0 eigenstate |m〉 after t > δ is

Pn→m =
δ2

h̄2
|〈m|Hint|n〉|2. (18.1.10)

In the next section, we will see that this result can be obtained as a special case application of a

general treatment that we will develop for time-dependent perturbation theory; see eqs. (18.2.8)

and (18.2.9), with W = Hint −H0 for 0 < t < δ.

The sudden approximation is obtained if we assume that δ is so small that Hint is irrel-

evant, but H ′0 6= H0. Then, if the system was originally in an H0 eigenstate |n〉 for t < 0, the

probability of finding the system in an H ′0 eigenstate |m′〉 for t > 0 is

Pn→m′ = |cm′ |2 = |〈m′|n〉|2. (18.1.11)

This follows from the δ → 0 limit of eq. (18.1.8).

As an example, suppose that a one-dimensional harmonic oscillator is in its ground state,

when the angular frequency in the Hamiltonian suddenly doubles, due to some outside agent.

Let us compute the probability that the oscillator will be found in the ground state of the

new Hamiltonian. Working in the position representation, the normalized wavefunctions of the

ground states are

〈x|0〉ω =
(mω
πh̄

)1/4
exp(−mωx2/2h̄) (before), (18.1.12)

〈x|0〉2ω =

(
2mω

πh̄

)1/4

exp(−mωx2/h̄) (after). (18.1.13)

Then, in the sudden approximation, we compute

2ω〈0|0〉ω =

∫ ∞

−∞
dx 2ω〈0|x〉〈x|0〉ω =

√√
2mω

πh̄

∫ ∞

−∞
dx exp(−3mωx2/2h̄) =

23/4

31/2
, (18.1.14)
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which results in P0ω→02ω = 2
√
2/3 ≈ 0.9428.

As a more practical example, consider the effect of the decay of the tritium (3H) nucleus on

the atomic electron state. The tritium nucleus consists of 1 proton and 2 neutrons, so Z = 1.

It undergoes a β decay to a helium isotope and an electron and antineutrino,

3H → 3He + e− + νe. (18.1.15)

The antineutrino has only weak interactions, and so can be ignored for the present purposes.

The β-decay electron is emitted with average (maximum) kinetic energy 0.0057 MeV (0.0186

MeV), so that its average (maximum) speed can be computed to be 0.15c (0.26c). These are

much larger than the typical semi-classical speeds of electrons in a Z = 1 atom, v = αc ≈ c/137.

Therefore, it is a good approximation to also ignore the β-decay electron, as it leaves the scene

very quickly.

The remaining 3He atom consists of the nucleus with 2 protons and 1 neutron, so Z =

2, together with the left-over atomic electron from the 3H atom. Therefore, in the sudden

approximation the probability of the atomic electron starting in the ground state of 3H and

ending up in the ground state of the 3He+ ion is P1,0,0→1,0,0 = |a1,0,0→1,0,0|2, where

a1,0,0→1,0,0 =

∫
d3r

[
ψZ=2
1,0,0(r )

]∗
ψZ=1
1,0,0(r ). (18.1.16)

Recalling that

ψZ1,0,0(r ) =

√
Z3

πa30
e−Zr/a0 , (18.1.17)

we have

a1,0,0→1,0,0 = 4π

∫ ∞

0

dr r2
23/2

πa30
e−3r/a0 = 29/2/33, (18.1.18)

and the probability of the electron remaining in the atomic ground state after the decay is

P1,0,0→1,0,0 = 29/36 = 512/729 ≈ 0.702. (18.1.19)

18.2 Transition amplitudes and probabilities in perturbation theory

In section 3.4, we learned how to solve for the time-dependence of quantum state. If the

Hamiltonian does not depend on time, and one can solve its eigenvalue problem, then the time

evolution can always be found by writing the unitary operator U(t, t0) in terms of the stationary

states with appropriate phases factors that depend on the energy; see eqs. (3.4.1) and (3.4.7).

However, if the Hamiltonian does depend on time, then as we saw in section 17.2, the time
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evolution is given in terms of a Dyson series that typically cannot be obtained exactly in closed

form. The approximation that follows from truncating the Dyson series in the interaction picture

is known as time-dependent perturbation theory.

Just as in our discussion of the interaction picture, we suppose that the full Hamiltonian is

H(t) = H0 +W (t), (18.2.1)

where H0 does not depend explicitly on time, and we assume that we know (at least approxi-

mately) the solutions to its eigenvalue problem,

H0|n〉 = En|n〉. (18.2.2)

Since H0 is an observable, the kets |n〉 form a complete orthobasis. The remaining part of the

full Hamiltonian, W (t), contains the explicit time dependence. Then, given the state of the

system at time t0, the solution for the state at a later time t is found in terms of the transition

amplitudes an→m defined by eq. (17.2.20), which relies on eq. (17.2.15), where

W (I)(t) = ei(t−t0)H0/h̄W (t) e−i(t−t0)H0/h̄ (18.2.3)

is the perturbation part of the Hamiltonian, translated into the interaction picture.

The time-dependent perturbative expansion simply amounts to assuming thatW (t) is small,

so that we can expand the transition amplitude in eq. (17.2.20) as

an→m(t, t0) = a(0)n→m + a(1)n→m + a(2)n→m + a(3)n→m + · · · , (18.2.4)

where each term a
(N)
n→m contains N factors of W , following from the corresponding terms in

eq. (17.2.15). In practice, eq. (18.2.4) is then truncated at some finite N , usually at N = 1 or

N = 2. Note that the zeroth order contribution is just

a(0)n→m = 〈m|n〉 = δn,m, (18.2.5)

as follows from the identity operator (N = 0) part of UI .
The preceding tells us that the first-order contribution to the transition amplitude is

a(1)n→m = − i
h̄

∫ t

t0

dt1 〈m|ei(t1−t0)H0/h̄W (t1) e
−i(t1−t0)H0/h̄|n〉. (18.2.6)

Fortunately, each H0 can be evaluated acting on a neighboring eigenket or eigenbra. So, defining

ωmn = (Em − En)/h̄, (18.2.7)

we obtain

a(1)n→m = − i
h̄

∫ t

t0

dt1 e
i(t1−t0)ωmn 〈m|W (t1) |n〉. (18.2.8)
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This result provides the time evolution of a general state from t0 to t, at the leading order in

time-dependent perturbation theory, using eqs. (17.2.22)–(17.2.23) with an→m = δn,m + a
(1)
n→m.

Before moving on to consider the higher-order contributions, consider the special case that

the system starts at time t0 in an eigenstate |n〉 of H0, and we then measure H0 at time t. The

transition probability to transfer from the stationary state |n〉 to a different eigenstate |m〉 of
H0, at the leading non-trivial order in the perturbation, is simply

Pn→m = |a(1)n→m|2, (for m 6= n). (18.2.9)

The validity of the approximation requires that we find |a(1)n→m| ≤ 1, so that the probability

does not exceed 1. This is a necessary but not sufficient condition, because the sum of |a(1)n→m|2

for multiple final states |m〉 could still exceed 1. And, even if that does not happen, the series

expansion in eq. (18.2.4) could still fail to converge when higher-order terms are included. The

perturbation expansion is often, but not always, more reliable if |a(1)n→m| ≪ 1.

It is also instructive to consider what happens if we try to use the first-order approximation

to directly compute the probability to remain in the initial stationary state |n〉. Since a(0)n→n = 1,

we get, instead of eq. (18.2.9):

Pn→n = |1 + a(1)n→n + a(2)n→n + · · · |2. (18.2.10)

Now, as part of the Hamiltonian, W (t1) must be Hermitian, so its expectation values are always

real, and

a(1)n→n = − i
h̄

∫ t

t0

dt1 〈n|W (t1)|n〉 (18.2.11)

is a pure imaginary number. Therefore, although one might naively neglect a
(2)
n→n as being

of higher order, eq. (18.2.10) would then give 1 + |a(1)n→n|2, which is clearly unacceptable for

a probability unless the first-order correction vanishes. To get a meaningful result from this

direct calculation, we must work consistently to at least second order, by also including the

contribution from a
(2)
n→n in the transition amplitude, with the result [dropping contributions of

third order in W (t)]

Pn→n = 1 + |a(1)n→n|2 + 2Re[a(2)n→n]. (18.2.12)

Alternatively, the probability to remain in the initial eigenstate of H0 can be obtained indirectly,

from the complementary probability,

Pn→n = 1−
∑

m6=n
Pn→m = 1−

∑

m6=n
|a(1)n→m|2, (18.2.13)
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which is also second order in the perturbation. Comparing these, we learn that

2Re[a(2)n→n] = −
∑

m

|a(1)n→m|2, (18.2.14)

with the sum over m now including n.

Now consider the second-order contribution to the transition amplitude, obtained from

eqs. (17.2.15), (18.2.3), and eq. (17.2.20),

a(2)n→m =

(
− i
h̄

)2 ∫ t

t0

dt2

∫ t2

t0

dt1 〈m|ei(t2−t0)H0/h̄W (t2)e
i(t1−t2)H0/h̄W (t1)e

−i(t1−t0)H0/h̄|n〉.

(18.2.15)

To evaluate this, we use completeness, by inserting a sum over all eigenstates of H0,

I =
∑

k1

|k1〉〈k1|, (18.2.16)

immediately before W (t1). This puts every H0 adjacent to one of its eigenstate bras or kets,

allowing it to be replaced by En, Em, or Ek1, with the result

a(2)n→m =

(
− i
h̄

)2 ∫ t

t0

dt2

∫ t2

t0

dt1
∑

k1

ei(t2−t0)ωmk1 〈m|W (t2)|k1〉 ei(t1−t0)ωk1n 〈k1|W (t1)|n〉.

(18.2.17)

It is left as an exercise to perform the check of taking the special case |m〉 = |n〉 and manipulating

the result to verify that eq. (18.2.14) indeed holds.

In the same way, the third-order contribution is found to be

a(3)n→m =

(
− i
h̄

)3 ∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1
∑

k1

∑

k2

ei(t3−t0)ωmk2 〈m|W (t3)|k2〉

ei(t2−t0)ωk2k1 〈k2|W (t2)|k1〉 ei(t1−t0)ωk1n 〈k1|W (t1)|n〉. (18.2.18)

A diagrammatic representation of the contributions a
(N)
n→m is shown in Figure 18.2.1. Each line

with an arrow represents an eigenstate of H0, as labeled. The vertices represent insertions of

the perturbation Hamiltonian, and can be interpreted in two equivalent ways. For a vertex with

incoming state line k, outgoing state line k′, and time label tj , one can assign either

− i
h̄
〈k′|W (I)(tj)|k〉 (18.2.19)

in the interaction picture, or

− i
h̄
ei(tj−t0)ωk′k 〈k′|W (tj)|k〉 (18.2.20)

in the Schrödinger picture. Then one integrates
∫ tj+1

t0
dtj for each of the intermediate times

t1, . . . , tN in the diagram for a
(N)
n→m, with the identification tN+1 = t. All internal state labels kj

are summed over. This diagrammatic mnemonic allows us to quickly write down the formula

for a
(N)
n→m, corresponding to each sub-diagram starting with n and ending with m.
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t0 t

n m
=

t0 t

n m
+

t0 t1 t

n m
+

t0 t1 t2 t

n mk1

+
n mk1 k2

t0 t1 t2 t3 t
+

n mk1 k2 k3

t0 t1 t2 t3 t4 t
+ · · ·

Figure 18.2.1: A diagrammatic representation of the time-dependent perturbation theory
expansion for the transition amplitude an→m(t, t0), represented by the double line with
arrow. In the sum on the right side of the equality, each sub-diagram with N vertices
represents a

(N)
n→m(t, t0). Each single line with arrow represents an H0 eigenstate, as labeled.

Each vertex labeled by a time tj and incoming line k and outgoing line k′ represents a factor

of − i
h̄
ei(tj−t0)ωk′k 〈k′|W (tj)|k〉, with an integration

∫ tj+1

t0
dtj . This is done for each of the

intermediate times t1, . . . , tN , with the identification tN+1 = t. All internal H0 eigenstate
labels kj are summed over.

18.3 Applying first-order time-dependent perturbation theory, and
Fermi’s golden rule

In this section and the next, we consider the application of time-dependent perturbation theory

in the approximation of keeping only the first-order contribution to the transition amplitude,

eq. (18.2.8).

As a first example, consider a one-dimensional harmonic oscillator with the usual unper-

turbed Hamiltonian H0 =
P 2

2m
+ 1

2
mω2X2, taken to be in its ground state |0〉 in the far past, at

time t = −∞. A perturbation

W (t) = −qE0e
−t2/τ2X (18.3.1)

is applied, corresponding to a continuous turning on and then off of a uniform electric field E0

that couples to the particle’s charge q. The constant τ controls the time scale of the turn-on

and turn-off. Our goal is to find the probability that the particle is found in a given excited

state |n〉 when the perturbation has become negligible in the far future as t→∞.

Applying eq. (18.2.8) with En = h̄ω(n + 1/2), the amplitude for the transition in the far

future, when the perturbation has effectively turned off, is

a
(1)
0→n(t =∞, t0) = − i

h̄
e−inωt0

∫ ∞

t0

dt1 e
inωt1(−qE0e

−t2
1
/τ2)〈n|X|0〉. (18.3.2)

The necessary matrix element is

〈n|X|0〉 =

√
h̄

2mω
δn,1, (18.3.3)
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so that within the first-order approximation, there is a selection rule that only the first excited

state can be reached. We now drop the constant phase e−iωt0 , since we will be taking the squared

magnitude to find the probability. Then, taking the limit t0 → −∞,

a
(1)
0→1 =

iqE0√
2mh̄ω

∫ ∞

−∞
dt1 exp

(
iωt1 − t21/τ 2

)
. (18.3.4)

The integral can be done by completing the square, using the change of variables u = t1/τ −
iωτ/2, resulting in a transition probability

P(0→ 1) =
πq2E2

0τ
2

2mh̄ω
e−ω

2τ2/2, (18.3.5)

while a
(1)
0→n and P(0 → n) vanish for all n > 1. Since P cannot exceed 1, the approximation

leading to eq. (18.3.5) must fail if the applied field is too large, that is if q2E2
0τ

2 is too large in

comparison to mh̄ωeω
2τ2/2.

As a second example with many applications, we consider a generic unspecified H0, and a

perturbation that turns on at t = 0 and is constant thereafter,

W (t) =

{
0 (for t < 0),

V (for t > 0).
(18.3.6)

To be as general as possible, let V be an arbitrary Hermitian operator, with the only restriction

that it has no time dependence. Now consider the probability that the perturbation will induce a

transition from an initialH0 eigenstate |i〉 to a different finalH0 eigenstate |f〉. From eq. (18.2.8),

the amplitude for the transition is

a
(1)
i→f = − i

h̄
〈f |V |i〉

∫ t

0

dt1 e
iωfit1 , (18.3.7)

where we have exploited the fact that the matrix element of V does not depend on time to pull

it out of the integral, and defined ωfi = (Ef − Ei)/h̄. Evaluating the integral, and squaring the

magnitude of the result, we obtain the transition probability for t > 0,

Pi→f (t) = |a(1)i→f |2 =
4 sin2(tωfi/2)

h̄2ω2
fi

|〈f |V |i〉|2, (18.3.8)

valid at first order in perturbation theory. For future convenience, we define the function

F (Ef − Ei, t) ≡
4

(Ef − Ei)2
sin2

(
t(Ef − Ei)

2h̄

)
, (18.3.9)

so that

Pi→f(t) = F (Ef − Ei, t) |〈f |V |i〉|2. (18.3.10)
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0 1 2 3 4 5 6

tωfi/π

Pi→f

4|〈f |V |i〉|2/(Ef − Ei)2

Figure 18.3.1: The transition probability at first-order in time-dependent perturbation theory,
Pi→f = |a(1)i→f |2, as a function of the time t, for a constant perturbation V that turns on at

time t = 0. For short times, the probability grows quadratically like t2|〈f |V |i〉|2/h̄2, and for
longer times oscillates between 0 and a maximum value 4|〈f |V |i〉|2/(Ef − Ei)2.

The transitions at first order in perturbation theory are limited to those that satisfy

〈f |V |i〉 6= 0, (18.3.11)

an example of a matrix element selection rule.

When applying eq. (18.3.10) in practice, it is important to distinguish the cases for which |f〉
is a discrete state with an isolated H0 eigenvalue Ef (for example, a bound state of an electron

in an atom) from those in which |f〉 is a state in a continuum (for example, a free-particle plane

wave, or an unbound state of an electron ionized from an atom but still under the influence of

the Coulomb potential of the nucleus).

First suppose that |f〉 is discrete. In that case, eq. (18.3.10) can be directly applied. For

very small t, the transition probability grows quadratically, because for small t,

F (Ef − Ei, t) ≈ t2/h̄2, (18.3.12)

which is independent of the unperturbed energies. Therefore, eq.(18.3.10) becomes

Pi→f ≈
t2

h̄2
|〈f |V |i〉|2 (small t). (18.3.13)

Of course, this must fail for sufficiently large t, as the probability cannot exceed 1. Equa-

tion (18.3.13) agrees with the result we had already found in the short-time approximation in

eq. (18.1.10). For longer time scales, the transition probability for a given discrete final state

oscillates between 0 and a maximum value 4|〈f |V |i〉|2/(Ef −Ei)2, as illustrated in Figure 18.3.1.

Due to the denominator, the final states |f〉 that have Ef ≈ Ei will tend to have the largest

probabilities, provided that the matrix element 〈f |V |i〉 is not too small in magnitude. Also,
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the probability for a given final state |f〉 vanishes whenever t = 2πn/ωfi = 2πh̄n/(Ef − Ei) for
integer n. These features are illustrated by the graph of F (Ef − Ei, t) as a function of Ef − Ei,
shown in Figure 18.3.2. The final states |f〉 most likely to be reached at a given time t are those

with energies that lie under the main peak around Ei, which is bounded by

|Ef − Ei| < 2πh̄/t. (18.3.14)

The main peak gets narrower and taller for larger t, so that in the limit of long times, the

most likely transitions are those for which the difference in unperturbed energies is constrained,

increasingly strongly, by eq. (18.3.14).

Now consider the case that |f〉 is not discrete, so that the unperturbed energy eigenvalues

Ef and the matrix elements 〈f |V |i〉 each form a continuum. In that case, we write

|f〉 = |Ef , uEf 〉, (18.3.15)

where uEf represents the degeneracy label (or labels) for the unperturbed energy. (For example,

the degeneracy labels could include the angular direction of a final-state momentum vector,

and/or an unobserved spin.) We also define the density of states ρ(Ef , uEf ) according to

ρ(Ef , uEf ) dEf duEf =

(
number of states between Ef and Ef + dEf ,

and between uEf and uEf + duEf

)
, (18.3.16)

where, for now, the degeneracy labels are also assumed continuous. The corresponding contri-

F (Ef − Ei, t)

Ef − Ei

t2/h̄2

2πh̄/t0−2πh̄/t
Figure 18.3.2: The function F (Ef − Ei, t) defined by eq. (18.3.9) and appearing in the tran-
sition probability for first-order time-dependent perturbation theory in eq. (18.3.10), as a
function of Ef − Ei. The main peak height t2/h̄2 grows quadratically with time, while its
width shrinks proportionally to 1/t. The total area under the curve is 2πt/h̄.
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bution to the transition probability is, from eq. (18.3.10),

dPi→f = |〈f |V |i〉|2 F (Ef − Ei, t) ρ(Ef , uEf ) dEf duEf , (18.3.17)

in terms of the function F defined in eq.(18.3.9). In practice, eq. (18.3.17) must always be

integrated over some ranges of Ef and uEf in order to give the probability of transition to that

range of states,

∆P =

∫
dPi→f . (18.3.18)

If we want only the transition probability for some of the final states (for example, those with

energy in some range, or momentum direction inside some cone), this can be enforced either by

integrating only over the appropriate ranges of energy and degeneracy labels, or by putting a

projection operator before V within the matrix element 〈f |V |i〉.
In the limit of large time t, we can take advantage of the fact that F (Ef −Ei, t) as a function

of Ef becomes increasingly sharply peaked near Ei, and so approaches proportionality to a delta

function. To understand the proportionality, we note that

∫ ∞

−∞
dEf F (Ef − Ei, t) = 2πt/h̄, (18.3.19)

so that we can make the replacement

F (Ef − Ei, t) →
2πt

h̄
δ(Ef − Ei) (18.3.20)

for large t. The transition probability eq. (18.3.17) is then directly proportional to t,

dPi→f = t dRi→f , (18.3.21)

where the proportionality can therefore be interpreted as a transition rate per unit time,

dRi→f =
2π

h̄
|〈f |V |i〉|2 δ(Ef − Ei) ρ(Ef , uEf ) dEf duEf . (18.3.22)

For a group of states with Ef ≈ Ei, the total transition rate to those states is obtained by

integration over Ef , and integrating (or summing) over the degeneracy label(s) uEf for it. Doing

the energy integration, and using the notation of eq. (18.3.15), we get the transition rate

R =
2π

h̄

∫
duEf ρ(Ef , uEf )

∣∣〈Ef , uEf |V |i〉
∣∣2, (18.3.23)

where it is now understood that only final states with Ef = Ei are included, and again projection

operators can be used inside the matrix element to restrict to particular classes of final states

with some desired properties. Either eq. (18.3.23) [or its equivalent (18.3.22)] is one version of
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Fermi’s golden rule. (It was actually originally obtained by Dirac, but Fermi popularized

it.) If the energy degeneracy labels uEf are discrete rather than continuous, then one makes the

replacement
∫
duEf →

∑
u
Ef

.

Although the derivation of the golden rule turned F into a delta function by assuming that

t is large, we have to be careful if it is too large. This is simply because interpretation of

eq. (18.3.23) as a constant rate clearly requires that t < 1/R, so that the probability does not

exceed 1. More generally, for times that are not short compared to 1/R, the transition rate

decreases as the initial state |i〉 is depleted. If we write Pi→i(t) = e−Rtott for the probability of

remaining in the initial state, including the effects of changing to all possible final states, then

the transition rate to a particular class of final states approaches Re−Rtott at late times.

The golden rule can also be applied as an approximation in the case of a group of many dis-

crete but closely spaced final states with approximately the same matrix elements 〈Ef , uEf |V |i〉.
This works if the unperturbed energy differences ∆Ef between neighboring discrete final states

are small enough that there are many states under the main peak in the function F (Ef − Ei, t).
This provision requires that

t∆Ef ≪ 2πh̄, (18.3.24)

so that the elapsed time is short compared to the inverse energy spacing between adjacent states.

18.4 Harmonic time-dependent perturbations

An even more common application of time-dependent perturbation theory is the case of a har-

monic time-dependent perturbation, in which W (t) is proportional to a sine or cosine

function of time. For example, this includes the case of electromagnetic waves interacting with

a charged particle. Suppose that the Hamiltonian perturbation turns on at time t = 0, so

W (t) =

{
0 (for t < 0),

V e−iωt + V †eiωt (for t > 0),
(18.4.1)

where V is an operator that does not depend on time. Note that W (t) is Hermitian, but V need

not be. This perturbation can also be written as (V + V †) cos(ωt) + i(V †− V ) sin(ωt) for t > 0,

with (V + V †) and i(V † − V ) both Hermitian operators.

Applying first-order time-dependent perturbation theory in the form of eq. (18.2.8), the

transition amplitude is

a
(1),ω
i→f (t) = − i

h̄

∫ t

0

dt′
(
ei(ωf−ωi−ω)t′〈f |V |i〉+ ei(ωf−ωi+ω)t′〈f |V †|i〉

)
(18.4.2)

=
1− ei(ωf−ωi−ω)t

h̄(ωf − ωi − ω)
Vfi +

1− ei(ωf−ωi+ω)t

h̄(ωf − ωi + ω)
V †fi, (18.4.3)
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where we have used a short-hand notation for the time-independent matrix elements,

Vfi = 〈f |V |i〉, V †fi = 〈f |V †|i〉. (18.4.4)

Requiring that these do not vanish provides a selection rule for first-order time-dependent per-

turbation theory.

The first term in eq. (18.4.3) is resonant only if ωf ≈ ωi + ω, and the second term only if

ωf ≈ ωi−ω. For ω 6= 0, at most one of these conditions can be satisfied for any particular Ef , so
only one term will be important within the resonance approximation. Therefore, we can make

the approximation of ignoring the cross terms in |a(1),ωi→f (t)|2. Then the probability of transition

between eigenstates of H0 is

Pi→f = F (Ef − Ei − h̄ω, t)|Vfi|2 + F (Ef − Ei + h̄ω, t)|V †fi|2, (18.4.5)

where the same function F defined by eq. (18.3.9) appears again. The application of eq. (18.4.5)

is slightly different depending on whether the final state is discrete or part of a continuum,

although the final results will have a similar appearance.

First, consider the continuum case, for which we write

|f〉 = |Ef , uEf 〉 (18.4.6)

for the group of final states with H0 eigenvalue Ef and degeneracy label uEf . For large t, the

same argument that led to eq. (18.3.22) now gives

dPi→f = t dRi→f , (18.4.7)

where the differential contribution to the transition rate is

dRi→f =
2π

h̄

[
δ(Ef − Ei − h̄ω) |Vfi|2 + δ(Ef − Ei + h̄ω) |V †fi|2

]
ρ(Ef , uEf ) dEf duEf . (18.4.8)

The effect of the first term can be referred to as absorption; since Ef = Ei+h̄ω, the Hamiltonian

perturbation V causes the initial state to gain energy h̄ω and jump up to the final state. The

second term is emission, as the perturbation V † cause the initial state to lose energy h̄ω and

jump down to the final state. Since we ignored the cross-terms, and the final state energies must

be different in the two cases anyway, it makes sense to separate these, and write

dRabs
i+h̄ω→f =

2π

h̄
|Vfi|2 δ(Ef − Ei − h̄ω) ρ(Ef , uEf ) dEf duEf , (18.4.9)

dRem
i→f+h̄ω =

2π

h̄
|V †fi|2 δ(Ef − Ei + h̄ω) ρ(Ef , uEf ) dEf duEf . (18.4.10)
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After integration over Ef ,

dRabs
i+h̄ω→f =

2π

h̄
|〈Ef , uEf |V |i〉|

2 ρ(Ef , uEf ) duEf , (18.4.11)

dRem
i→f+h̄ω =

2π

h̄
|〈Ef , uEf |V

†|i〉|2 ρ(Ef , uEf ) duEf , (18.4.12)

where it is now understood that the energy conservation conditions

Ef = Ei + h̄ω, (absorption), (18.4.13)

Ef = Ei − h̄ω, (emission), (18.4.14)

are enforced, due to the delta functions. Equations (18.4.11) and (18.4.12), or their equivalents

(18.4.9) and (18.4.10), are Fermi’s golden rule for harmonic perturbations. If the energy

degeneracy labels uEf are continuous, then they should be integrated over, and if they are discrete

then the differential duEf is removed and they can be summed over.

If the transition from |i〉 to |f〉 by absorbing energy h̄ω from V is allowed, then it follows

that for the same ω one can also have the reverse process of |f〉 to |i〉 by emitting energy h̄ω to

V †; both the energy conservation and matrix element selection rules work. For both absorption

and emission, we can obtain the differential rate for the opposite process dRf→i by interchanging

Ef ↔ Ei and |Vfi|2 ↔ |V †if |2. Note that the relevant matrix elements are simply related by

V †if = 〈i|V †|f〉 = (〈f |V |i〉)∗ = (Vfi)
∗ , (18.4.15)

so |V †if |2 = |Vfi|2. Let us now change the i and f labels to a more neutral notation a and b,

since each can play the role of initial and final state. If we multiply eq. (18.4.12) with i = a and

f = b by ρ(Ea, uEa)duEa , the result is the same as multiplying eq. (18.4.11) with i = b and f = a

by ρ(Eb, uEb)duEb, after integrating over the same intervals in the degeneracy labels in each case.

This shows that

ρ(Ea, uEa)
dRem

a→b+h̄ω
duEb

= ρ(Eb, uEb)
dRabs

b+h̄ω→a
duEa

. (18.4.16)

This is known as the detailed balance relation between emission and absorption rates and the

densities of states.

Let us now reconsider eq. (18.4.5), this time assuming that the final state |f〉 is discrete.

We now suppose that the perturbations occur as an incoherent distribution with a range of

angular frequencies. By “incoherent”, it is implied that interference contributions will be neg-

ligible, so that to a good approximation the probabilities, not the amplitudes, add for different

driving frequencies. To see how this works, consider instead of eq. (18.4.1), a perturbation that

is a superposition of many such terms with infinitesimally spaced ω’s with smoothly varying

363



real amplitudes cω and, crucially, phases ϕω that are assumed to be random, with no relation

(coherence) whatsoever between neighboring values of ω,

W (t) =
∑

ω

cω
(
eiϕωV e−iωt + e−iϕωV †eiωt

)
(for t > 0). (18.4.17)

After isolating the emission and absorption resonant pieces as before, the square of the transition

amplitude a
(1)
i→f will contains terms of the form

∣∣a(1)i→f
∣∣2 =

∑

ω

∑

ω′

cωcω′ei(ϕω−ϕω′) · · · , (18.4.18)

where the · · · represents quantities that are relatively slowly varying functions of ω and ω′.

Because of the random phases and the slow variation of the summand, all terms with ω′ 6= ω

now cancel in the limit of infinitesimal spacing of the sums, leaving behind a single sum of the

form
∑

ω c
2
ω · · · , coming from the subset of terms with ω′ = ω, which add with constructive

interference. This sum can now be converted to an integral

∑

ω

c2ω →
∫
dω ρ(ω), (18.4.19)

described by some density per unit frequency ρ(ω). This means that the transition probabilities

for continuous ω are assumed† to be weighted by a function ρ(ω) that characterizes the pertur-

bation. For example, if the perturbations take the form of electromagnetic radiation, one can

relate ρ(ω) to the intensity spectrum of the incoherent light, as we will do in section 19.2. In

the presence of the integral over continuous ω, even though Ef is discrete, we can again replace

F (Ef − Ei ± h̄ω, t) →
2πt

h̄
δ(Ef − Ei ± h̄ω), (18.4.20)

and so obtain the differential transition rates

dRabs
i+h̄ω→f =

2π

h̄
|Vfi|2 δ(Ef − Ei − h̄ω) ρ(ω)dω, (18.4.21)

dRem
i→f+h̄ω =

2π

h̄
|V †fi|2 δ(Ef − Ei + h̄ω) ρ(ω)dω. (18.4.22)

After integrating over ω according to

∫
dω δ(Ef − Ei ± h̄ω) = 1/h̄, we have

Rabs
i+h̄ω→f =

2π

h̄2
|〈f |V |i〉|2 ρ(ω), (18.4.23)

Rem
i→f+h̄ω =

2π

h̄2
|〈f |V †|i〉|2 ρ(ω), (18.4.24)

†It is also possible to take the distribution of perturbations to be coherent, which means that the phases are
slowly varying functions of ω. In that case one cannot neglect interference cross-terms in the transition amplitude

a
(1)
i→f for given initial and final states. We will not consider that case here.
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where it is understood now that ω is fixed in terms of Ef and Ei by eqs. (18.4.14) and (18.4.13).

The energy degeneracies of the final state |f〉 are assumed here to be also discrete, and so are

not indicated explicitly, but can be summed over.

Although eqs. (18.4.11)–(18.4.12) and (18.4.23)–(18.4.24) look similar, it bears emphasis

that they apply in slightly different circumstances. In eqs. (18.4.23)–(18.4.24), the final states

are discrete, and the driving angular frequency is selected (by energy conservation) from an

incoherent continuum of perturbations to the Hamiltonian with some assumed density function

with respect to angular frequency, ρ(ω). In eqs. (18.4.11)–(18.4.12), it is the final state that

is selected by energy conservation from among the continuous final states with density with

respect to energy, ρ(Ef , uEf ), for a driving angular frequency that can be treated as a single

monochromatic Hamiltonian perturbation. In the latter case, the results could also be summed

over an incoherent continuous distribution. Both of these situations arise in the interaction of

matter with electromagnetic waves, depending on whether the final state is a bound or unbound

electronic state. This is the subject of the next chapter.
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19 Absorption and emission of light

19.1 Electrons in the presence of electromagnetic waves

In this chapter, we will be discussing the interactions of electrons with a classical electromagnetic

wave. The Hamiltonian is obtained from the Coulomb gauge result in eq. (4.3.35), with q = −e
and γ = −gee/2mec ≈ −e/mec for electrons,

H = H0 +
e

mec
A · P +

e2

2mec2
A2 − eΦ +

e

mec
S · B, (19.1.1)

where the electron’s Hamiltonian in the absence of the electromagnetic wave is

H0 =
P 2

2me
+ U(R). (19.1.2)

We have included here an additional potential U , which includes all effects not associated with

the wave, for example the Coulomb attraction of the electron to a fixed heavy nucleus, or

repulsion by other electrons. Let the wave have unit polarization vector ε̂, and wavevector

k = k̂ω/c, (19.1.3)

so that the classical electric and magnetic fields are

E(r, t) = ε̂E0 sin(k · r − ωt), (19.1.4)

B(r, t) = (k̂ × ε̂)E0 sin(k · r − ωt), (19.1.5)

which satisfy Maxwell’s equations provided that ε̂ · k̂ = 0. In Coulomb gauge, the potentials

describing this classical wave are

Φ(r, t) = 0, (19.1.6)

A(r, t) = −ε̂ c
ω
E0 cos(k · r − ωt), (19.1.7)

as one can check using eqs. (4.3.8)–(4.3.9) and (4.3.33).

If the wave is not too intense, it is a good approximation to drop the non-linear term

proportional to A2, so that our Hamiltonian simplifies to H = H0 +W , where

W (t) =
e

mec

(
A · P +B · S

)
(19.1.8)

=
eE0

meω

[
− cos(k · R− ωt) ε̂ · P + sin(k · R− ωt) (k × ε̂) · S

]
. (19.1.9)

This can be treated as a perturbation using the formalism of section 18.4, specifically by writing

W (t) = V e−iωt + V †eiωt, (19.1.10)
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as in eq. (18.4.1), with

V = − eE0

2meω
ei
~k·~R
[
ε̂ · P + i(k × ε̂) · S

]
. (19.1.11)

To put this into a more compact form, we use the identity (k × ε̂) · S = −ε̂ · (k × S) to obtain

V = − eE0

2meω
ε̂ · P~k, (19.1.12)

where we have defined a vector operator

P~k ≡ ei
~k·~R(P − ik × S

)
. (19.1.13)

Note that P~k has the same units as momentum, but it is not Hermitian. Its matrix elements

will be used in our discussion of absorption and emission of electromagnetic waves in the next

few sections. The polarization vector ε̂ can now be taken to be complex, for example to describe

circularly polarized waves, but must satisfy ε̂ · k̂ = 0 and ε̂∗ · ε̂ = 1.

The Hamiltonian for a system of Ne electrons in an external classical electromagnetic wave

can be similarly treated using an appropriate H0 (which will include the repulsive potentials

between each pair of electrons, their attractive potentials due to the heavy nucleus, and spin-

orbit and spin-spin couplings) together with a harmonic perturbation

V = − eE0

2meω

Ne∑

i=1

ε̂ · P~k,i, (19.1.14)

Here, each P~k,i is defined in terms of the position, momentum, and spin operators Ri, Pi, and

Si for the individual electrons, as in eq. (19.1.13). This is the linearized approximation of a

Hamiltonian perturbation describing the interaction with an external electromagnetic wave.

19.2 Absorption of electromagnetic waves

Consider an electron described by some Hamiltonian H0, which then encounters a classical

electromagnetic wave. As described in the previous section, we can now apply time-dependent

perturbation theory as discussed in section 18.4, with

V = − eE0

2meω
ε̂ · P~k (19.2.1)

in eq. (18.4.1), where E0 and ε̂ are the electric field amplitude and unit polarization vector of

the wave, and the operator P~k was defined in eq. (19.1.13) in terms of the wavevector. We

will compute results in terms of matrix elements of P~k, and then work out the simpler electric

dipole and higher multipole approximations in sections 19.4 and 19.5, using an expansion in the

angular frequency ω.
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Consider the rate for an initial H0 eigenstate |i〉 to absorb energy from the wave and end up

in a group of final H0 eigenstates

|f〉 = |Ef , uEf 〉. (19.2.2)

For now, we take these to have continuous eigenvalues Ef and degeneracy labels uEf and density

of states ρ(Ef , uEf ) as defined in eq. (18.3.16). Fermi’s golden rule, eq. (18.4.9), then gives the

rate for absorption transitions,

dRabs
i+h̄ω→f =

2π

h̄

(
eE0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf δ(Ef − Ei − h̄ω) dEf . (19.2.3)

The time-averaged flux of energy in the incident wave that is causing these transitions is

energy flux in wave =
energy

(time)(area)
=

cE2
0

8π
. (19.2.4)

This can be obtained by time-averaging either cuEM in eq. (4.3.6), or the magnitude of the

Poynting vector |S| in eq. (4.3.7). Since both eq. (19.2.3) and eq. (19.2.4) are proportional to E2
0 ,

it make sense to define a measurable quantity proportional to their ratio, in which the incident

wave intensity cancels out. The appropriate ratio is called the absorption cross-section:

σabs =
absorbed energy/time

energy flux in incident wave
. (19.2.5)

Note that σabs has units of area. The energy absorbed in each i→ f transition is h̄ω, so

dσabs
i+h̄ω→f = h̄ω dRabs

i+h̄ω→f/(cE
2
0/8π), (19.2.6)

or, in terms of the fine-structure constant α = e2/h̄c,

dσabs
i+h̄ω→f =

4π2αh̄

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf δ(Ef − Ei − h̄ω) dEf . (19.2.7)

If the final state energies Ef are continuous near Ei + h̄ω, one can immediately integrate over

them, with the result

dσabs
i+h̄ω→f =

4π2αh̄

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf , (19.2.8)

where it is now implicitly required that Ef = Ei + h̄ω. Equation (19.2.8) also applies as an

approximation if the relevant final states are discrete but very closely spaced. If some of the

degeneracy labels are discrete rather than continuous, then one should remove duEf and sum

over them rather than integrating.
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Now suppose instead that the final states selected by energy conservation have discrete H0

eigenvalues Ef . We will discuss this situation in three different ways, appropriate for different

circumstances.

First, suppose that the electromagnetic fields are plane waves with fixed propagation direc-

tion k̂ and polarization ε̂, but with incoherent phases and a range of angular frequencies wide

enough to cover the final state in question. Then, as discussed in section 18.4, the incoherent

phases mean that we can sum the probabilities (not the amplitudes) to obtain a transition rate.

From using eq. (19.2.1) in eq. (18.4.21),

Rabs
i+h̄ω→f =

∫ ∞

0

dω ρ(ω)
2π

h̄
δ(Ef − Ei − h̄ω)

(
eE0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2, (19.2.9)

where ρ(ω) is the density per unit angular frequency of incoherent electromagnetic wave per-

turbations of the form eq. (18.4.1). Let I be the total intensity (power per unit area) in the

electromagnetic radiation, so that

dI =
cE2

0

8π
ρ(ω)dω. (19.2.10)

We thus obtain, in terms of the intensity per unit angular frequency, dI/dω,

Rabs
i+h̄ω→f =

∫ ∞

0

dω
dI

dω
δ(Ef − Ei − h̄ω)

4π2α

m2
eω

2

∣∣〈f |ε̂ · P~k |i〉
∣∣2. (19.2.11)

Doing the integration over ω, we find† an absorption rate

Rabs
i+h̄ω→f =

4π2α

m2
eh̄ω

2

dI

dω

∣∣〈f |ε̂ · P~k |i〉
∣∣2, (19.2.12)

where ω = (Ef − Ei)/h̄ has now been implicitly fixed.

As a second scenario, suppose that the system is bathed in electromagnetic radiation that

is not only phase-incoherent and broad-band in ω, but may be coming from all directions and

with all possible polarization vectors. Although we have been discussing the electromagnetic

field as a classical wave, in this case we choose to frame our discussion in terms of the numbers

of photon quanta with energy h̄ω and particular wavenumbers and polarizations. To do so, we

take the system to be in a large cubic box of side L, with periodic boundary conditions giving

allowed wavevectors

k = k̂ω/c =
2π

L
(x̂nx + ŷny + ẑnz) (19.2.13)

where (nx, ny, nz) are integers. In the large-volume continuum limit, a discrete sum over these

wavevectors will correspond to the integration

∑

~k

→
(
L

2π

)3 ∫
d3k =

(
L

2πc

)3 ∫ ∞

0

dω ω2

∫
dΩ~k. (19.2.14)

†This could also be obtained directly from eq. (18.4.23).
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Denote by N~k,ε̂ the occupation number of photons in a mode with wavevector k and polarization

vector ε̂. Then the energy associated with that mode is

h̄ω N~k,ε̂ = (volume)
( energy

volume

)
= L3

(
E
~k,ε̂
0

)2
/8π, (19.2.15)

where E
~k,ε̂
0 is the corresponding classical electric field amplitude.

Going back to eq. (18.4.5), and using the assumption of incoherence to sum the probabilities

rather than amplitudes, the total probability for absorption is

Pabs
i+h̄ω→f =

∑

~k

∑

ε̂

(
eE

~k,ε̂
0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2 F (Ef − Ei − h̄ω, t). (19.2.16)

Now, using eqs. (19.2.14) and (19.2.15), this becomes

Pabs
i+h̄ω→f =

∫ ∞

0

dω

∫
dΩ~k

∑

ε̂

e2h̄ω

4π2m2
ec

3
N~k,ε̂

∣∣〈f |ε̂ · P~k |i〉
∣∣2 F (Ef − Ei − h̄ω, t). (19.2.17)

Note that the polarizations ε̂ that are being summed over depend on the direction of k, because

of the transversality constraint ε̂ · k = 0 for electromagnetic waves. As usual, we now apply

F (Ef − Ei − h̄ω, t) = (2πt/h̄)δ(Ef − Ei − h̄ω), and do the integral over ω to obtain Pabs
i+h̄ω→f =

tRabs
i+h̄ω→f , where the absorption rate is

Rabs
i+h̄ω→f =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

N~k,ε̂

∣∣〈f |ε̂ · P~k |i〉
∣∣2, (19.2.18)

in terms of the photon occupation numbers N~k,ε̂ for modes with ω = c|k| = (Ef − Ei)/h̄. As

one might expect, the contribution to the rate from each mode is proportional to the number of

photons available in that mode. Comparing eq. (19.2.12) to eq. (19.2.18), we see that

dI

dω
→ h̄ω3

8π3c2

∫
dΩ~k

∑

ε̂

N~k,ε̂ (19.2.19)

is the effective intensity per unit angular frequency in the bath of photons.

The third way of treating the absorption to a discrete final state is to compute a cross-

section, as we have already done for the case of absorption by a continuous group of final states,

in eq. (19.2.8). To do so, it is necessary to realize that there will always be at least a small

effective broadening of the discrete energy level of the final-state, for two reasons. First, |f〉
must be able to decay, at least back to the lower-energy initial state |i〉 if not others, leading to

a finite lifetime. The second reason, which is often more important in practice, is that there are

environmental effects on the H0 system from perturbations due to nearby atoms with a thermal

distribution of velocities, and from fluctuations in the electromagnetic fields.
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Both types of line-broadening effects imply that the energy level of the final state is not

perfectly sharp, but is described by a Breit–Wigner resonance, with a small finite width that

may need to be obtained empirically. Therefore, when using eq. (19.2.7), the density of final

states, which naively would be a delta function in the case of discrete |f〉, should be

ρ(Ef , uEf ) = fBW(Ef − Ef0, h̄γ) ≡
h̄γ

2π

1

(Ef − Ef0)2 + h̄2γ2/4
. (19.2.20)

Here Ef0 is the nominal discrete H0 eigenvalue before the line-broadening is taken into account,

and h̄γ is the full width at half maximum (FWHM) of the Breit–Wigner line-shape (named

after Gregory Breit and Wigner, and also known as the Lorentzian line-shape) distribution

for the energy Ef , which is now continuous. Note that the normalization is

∫ ∞

−∞
dEf fBW(Ef − Ef0, h̄γ) = 1, (19.2.21)

so that in the narrow-width approximation,

lim
γ→0

fBW(Ef − Ef0, h̄γ) = δ(Ef − Ef0), (19.2.22)

as expected. The absorption cross-section for a nominally discrete final state |f〉 becomes, after

using eq. (19.2.20) in eq. (19.2.7) and integrating over dEf ,

σabs
i+h̄ω→f =

2παh̄2γ

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2

(Ef0 − Ei − h̄ω)2 + h̄2γ2/4
. (19.2.23)

Here we have removed the duEf under the assumption that the degeneracy labels for the final

state, such as angular momentum quantum numbers, are also discrete and can be summed over.

This cross-section is a strongly peaked function of ω, becoming sharper in the limit γ → 0.

19.3 Induced and spontaneous emission of light

We now turn to the case of transitions between electronic states involving emission of energy

in the form of electromagnetic radiation. The presence of a classical electromagnetic wave with

angular frequency ω will cause an initial H0 eigenstate |i〉 to fall to a state |f〉 of lower energy,
provided that the H0 eigenvalues satisfy Ei − Ef = h̄ω. If dI/dω is the intensity of incoherent

electromagnetic waves per unit ω, then we can apply exactly the same reasoning we used to

arrive at eq. (19.2.12), except that we use eq. (18.4.22) for emission rather than eq. (18.4.21)

for absorption. The result is the rate for induced emission (or stimulated emission),

Rind. em.
i→f+h̄ω =

4π2α

m2
eh̄ω

2

dI

dω

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2, (19.3.1)
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where now ω = (Ei − Ef)/h̄ is implicit. This assumes that the wavevector direction k̂ is fixed.

For the case of light incoming from all directions, the transition rate can be expressed in terms

of the photon occupation numbers using eq. (19.2.19), again just as we did for the absorption

case in arriving at eq. (19.2.18),

Rind. em.
i→f+h̄ω =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

N~k,ε̂

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2. (19.3.2)

The reason for referring to this as “induced” is that it is proportional to the intensity of incident

light, or equivalently to the numbers of photons already present.

Despite the fact that our calculations so far do not show it, the transition from |i〉 to |f〉
with the emission of a photon can also occur even if there are no incident classical waves or

photons present. That process is called spontaneous emission, and we will now show that it

yields a result equal to eq. (19.3.2) but with the factor N~k,ε̂ replaced by 1. The phenomenon of

spontaneous emission, in which an electronic state decays to a lower energy state by emitting a

photon, is the quantum mechanical analog of the classical Larmor radiation of an accelerating

charge. However, it can only occur if there is a quantum state with lower energy, while classical

Larmor radiation would always occur; compare to the discussion in section 1.1.

To obtain the rate for spontaneous emission in the most direct way, the electromagnetic fields

should be treated quantum mechanically, rather than classically as we have done. Recall that

our method so far was to treat the potentials Φ and A and their derivatives E and B as classical

quantities, which are then evaluated in terms of the position and momentum operators for the

electron that witnesses them. In a more logical and complete approach, both the electronic and

radiation degrees of freedom should be treated as a unified quantum system. Then Φ and A will

be operators in their own right, rather than just functions of the position operator, and will act on

a Hilbert space that describes not just the electronic state, but the photons as well. This allows a

direct computation of spontaneous emission (and more complicated phenomena). In this section,

instead of pursuing that direct method, we will derive the results for spontaneous emission using

an indirect argument, based on inference from requiring the consistency of statistical mechanics,

called the Einstein A and B coefficients method.

Consider the thought experiment of a cavity kept in thermal equilibrium at temperature T

with the electromagnetic radiation inside of it. The walls of the cavity are made of a very large

number of atoms that include two states |a〉 and |b〉 with energy difference

Eb − Ea = h̄ω, (19.3.3)

so that the photon absorption process a + h̄ω → b and the emission process b → a + h̄ω are

both constantly occurring to ensure the equilibrium. According to statistical mechanics, and
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our discussion in section 3.5, the relative probability for a state with energy E is proportional

to the Boltzmann factor e−E/kBT , where kB is Boltzmann’s constant. Therefore, since h̄ωN~k,ε̂

is the energy of a state with N~k,ε̂ photons in the mode with wavevector k (with k = ω/c) and

polarization ε̂, the average number of photons in that mode is

N~k,ε̂ =

( ∞∑

n=0

ne−nh̄ω/kBT
)/ ∞∑

n=0

e−nh̄ω/kBT =
1

eh̄ω/kBT − 1
. (19.3.4)

In equilibrium, each N~k,ε̂, which we will refer to as N for short in the following, is constant and

equal to the mean number given by eq. (19.3.4). Therefore, we must have
(
dN

dt

)

spon. em.

+

(
dN

dt

)

ind. em.

+

(
dN

dt

)

absorption

= 0, (19.3.5)

with contributions from spontaneous emission, induced emission, and absorption rates that are

respectively of the forms
(
dN

dt

)

spon. em.

= nbA, (19.3.6)

(
dN

dt

)

ind. em.

= NnbBba, (19.3.7)

(
dN

dt

)

absorption

= −NnaBab. (19.3.8)

Here, we have used the fact that the spontaneous and induced emission contributions to the rate

for creation of photons must both be proportional to the number of atoms nb in the state |b〉,
while the absorption rate contribution to the rate for subtraction of photons is proportional to

the number of atoms na in the state |a〉. Also, the induced emission and absorption rates are both

proportional to the number of photons already present N , but by definition the spontaneous

emission rate has no such factor. Our goal is to determine the ratios of the coefficients† of

proportionality, A, Bba, and Bab. These are in turn proportional to the transition rates Rspon. em.
b→a+h̄ω ,

Rind. em.
b→a+h̄ω, and Rabs

a+h̄ω→b, respectively, but with the corresponding factors of N extracted from

the last two, since we have put them explicitly in eqs. (19.3.7) and (19.3.8).

The numbers na and nb are unknown, but since the system is in thermal equilibrium, we

know their ratio, as they are each proportional to the corresponding Boltzmann factor. So,

na/nb = e−(Ea−Eb)/kBT = eh̄ω/kBT . (19.3.9)

Using eqs. (19.3.6)–(19.3.9) in eq. (19.3.5), we can solve for the photon occupation number,

N =
A

Babeh̄ω/kBT − Bba
. (19.3.10)

†Einstein’s original coefficients were normalized differently.
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Now the key point is that A, Bab, and Bba should depend only on the properties of the states

|a〉 and |b〉, but not on the temperature. Therefore, the only way to reconcile the functional

dependences on T of eqs. (19.3.4) and (19.3.10) is

A = Bab = Bba, (19.3.11)

and, reassuringly, this indeed does give eq. (19.3.4).

The equality Bab = Bba is just a check of the detailed balance equality between Rabs
a+h̄ω→b

and Rind. em.
b→a+h̄ω, which we had already found by direct computation in eqs. (19.2.18) and (19.3.2).

The new requirement that A = Bba says that, because N was already factored out of Bba, the

rate we calculated for induced emission alone is related to the total emission rate by

induced → induced + spontaneous (19.3.12)

N~k,ε̂ → N~k,ε̂ + 1. (19.3.13)

Thus, the rate for spontaneous emission is obtained by simply removing the factor of N~k,ε̂ from

the formula eq. (19.3.2) for induced emission,

Rspon. em.
i→f+h̄ω =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2. (19.3.14)

A more direct calculation that treats the electromagnetic fields quantum mechanically gives the

same result.

19.4 Electric dipole approximation

The case in which the wavelength of the electromagnetic wave is much larger than the spatial

extent of the initial-state wavefunction is called the electric dipole approximation. To see

why this might apply as a valid approximation, suppose that the electron is in a hydrogen-

like atomic orbital state with principal quantum number n and atomic number Z. Then the

minimum photon energy needed to ionize the state obeys h̄ω = Z2e2/2a0n
2 from eq. (10.1.16),

while the characteristic spatial extent of the initial wavefunction is 〈R〉 = 3n2a0/2Z, using

eq. (10.1.65) with l = 0. For larger l in the initial state, the characteristic size 〈R〉 is even

smaller (for fixed n), according to eq. (10.1.65). To compare the atomic size scale to the inverse

wavenumber of the light (with minimum ionizing energy),

k〈R〉 = ω〈R〉
c
∼ 3αZ

4
. (19.4.1)

This is smaller than 1, even when Z is large, since α = e2/h̄c ≈ 1/137. For transitions between

bound states, the relevant wavelength is even longer because the change in energy is smaller.
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As an extreme case, the wavelength is macroscopic for transitions between states with the

same principal quantum number, which have very nearly the same energy. This means that in

transitions between bound states we can make the long-wavelength limit approximation

ei
~k·~R ≈ 1 (19.4.2)

over the relevant spatial extent of the atom. In the same limit, one can can also neglect the

k×S contribution compared to the momentum operator P in P~k of eq. (19.1.13). This is made

plausible by the rough estimate

|k × S|
|P |

∼ (ω/c)h̄

h̄/〈R〉 (19.4.3)

(using the uncertainty relation for position and momentum in the denominator), which is para-

metrically the same as eq. (19.4.1), and so again suppressed by a factor αZ.

Therefore, the electric dipole (long-wavelength) approximation is defined by taking

〈f |P~k |i〉 ≈ 〈f |P |i〉 (19.4.4)

in the absorption and emission rates. Now we can use a trick, by noticing that if the only

momentum dependence of H0 is in the kinetic term, then

[
H0, R

]
=

1

2me

[
P 2, R

]
= −i h̄

me

P, (19.4.5)

so that in the case of absorption,

〈f |ε̂ · P |i〉 = ime

h̄
ε̂ · 〈f |[H0, R]|i〉 =

ime

h̄
(Ef − Ei) 〈f |ε̂ ·R |i〉 = imeω〈f |ε̂·R |i〉. (19.4.6)

For the emission case, the only difference is that ε̂→ ε̂∗ and ω → −ω, so

〈f |ε̂∗ · P |i〉 = −imeω〈f |ε̂∗ ·R |i〉. (19.4.7)

The sign change makes no difference, and the complex conjugation of the polarization vector has

no effect for linear polarizations, but makes a difference for circular polarization vectors [such

as ε̂ = (x̂± iŷ)/
√
2 if k̂ = ẑ].

For example, using eq. (19.4.6) in eq. (19.2.8), we have for the absorption cross-section in

the case of continuous final state energies

dσabs, dipole
i→f = 4π2αh̄ω

∣∣〈f | ε̂ · R |i〉
∣∣2 ρ(Ef , uEf ) duEf . (19.4.8)

Recalling that ε̂ is the direction of the polarization of the absorbed electromagnetic wave, we see

that the relevant matrix element in the electric dipole approximation is proportional to the posi-

tion operator along the polarization direction. More generally, the electric dipole approximation

amounts to making the substitutions

|〈f | ε̂ · P~k |i〉|2 → m2
eω

2 |〈f | ε̂ · R |i〉|2 (electric dipole absorption) (19.4.9)
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in the absorption rates for discrete final states with incoherent plane-wave light in eq. (19.2.12),

incoherent light from all directions in (19.2.18), and in the cross-section for a line-broadened

discrete final state in eq. (19.2.23). Similarly, one makes the replacement

|〈f | ε̂∗ · P†~k |i〉|
2 → m2

eω
2 |〈f | ε̂∗ · R |i〉|2 (electric dipole emission) (19.4.10)

in the induced emission rates eq. (19.3.1) for plane waves with a fixed direction of propagation

and eq.( 19.3.2) for light from all directions in terms of the photon occupation numbers, and in

eq. (19.3.14) for spontaneous emission.

In the case of spontaneous emission in eq. (19.3.14), the matrix element 〈f |ε̂∗ · R|i〉 in the

electric dipole approximation does not depend directly on the wavevector magnitude, but does

depend indirectly on the wavevector direction because of the requirement ε̂∗ · k̂ = 0. Temporarily

fixing k̂ = ẑ, the two independent polarization directions to be summed over can be taken along

x̂ and ŷ, so that

∑

ε̂

∣∣〈f |ε̂∗ · R |i〉
∣∣2 =

∣∣〈f |X|i〉
∣∣2 +

∣∣〈f |Y |i〉
∣∣2. (19.4.11)

Then, integrating over all possible directions for k̂ will effectively give an average of the two

terms over three possible directions, so
∫
dΩ~k

∑

ε̂

∣∣〈f |ε̂∗ · R |i〉
∣∣2 = (4π)

2

3

(∣∣〈f |X|i〉
∣∣2 +

∣∣〈f |Y |i〉
∣∣2 +

∣∣〈f |Z|i〉
∣∣2
)

(19.4.12)

=
8π

3
〈f |R |i〉 · 〈i|R |f〉. (19.4.13)

This reduces eq. (19.3.14) to the simple formula

Rspon. em.
i→f+h̄ω =

4αω3

3c2
∣∣〈f |R |i〉

∣∣2 (19.4.14)

for the rate for an initial state |i〉 to decay to a final state |f〉 by the spontaneous emission of a

photon. Note that the right side involves

∣∣〈f |R |i〉
∣∣2 ≡ 〈f |R |i〉 · 〈i|R |f〉, (19.4.15)

the complex square of the magnitude of a vector matrix element.

Suppose that there is no background electromagnetic radiation to induce emission or absorp-

tion, and let the number of atoms in the state |i〉 be Ni(t) at time t. Then at time t+∆t,

Ni(t +∆t) = Ni(t)−∆t RiNi(t), (19.4.16)

where the total decay rate of the initial state is

Ri =
∑

f

Rspon. em.
i→f+h̄ω . (19.4.17)
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Then

Ni(t+∆t)−Ni(t)

∆t
= −RiNi(t), (19.4.18)

which in the limit ∆t→ 0 becomes the differential equation

dNi

dt
= −RiNi, (19.4.19)

with the solution

Ni(t) = Ni(t0)e
−(t−t0)Ri . (19.4.20)

Therefore τi = 1/Ri is the lifetime of the state |i〉, defined as the amount of time needed for the

number of atoms in that state to decrease by a factor of 1/e ≈ 0.367879 in the absence of other

perturbations. The half-life, defined as the amount of time required for the number to decrease

by half, is related to this by t1/2 = τi ln 2 = 0.693147/Ri.

The preceding results imply matrix element selection rules that govern both absorption

and emission in the electric dipole approximation when |i〉 and |f〉 are angular momentum

eigenstates. These follow immediately from eqs. (12.2.15)–(12.2.18). First, eq. (12.2.15) tells

us that the change in the the orbital angular momentum quantum number l must be exactly

1 unit, ∆l = lf − li = ±1. As a corollary, the parities of the initial and final states must be

opposite, since the parity of a state with orbital angular momentum l is (−1)l from eq. (8.7.5);

this can also be seen directly from the parity selection rule, since the operator R has odd parity.

Also, eqs. (12.2.16)–(12.2.18) tell us that the z-component of the orbital angular momentum

changes by 1 unit or less: ∆ml = ml,f − ml,i = 0,±1. As special cases, if the polarization of

the wave is along ε̂ = ẑ, then eq. (12.2.16) says ∆ml = 0, and if it is in the x, y plane, then

eqs. (12.2.17)–(12.2.18) demand ∆ml = ±1. The spin is not affected by the position operator,

so that ms,f = ms,i.

We therefore have the electric dipole selection rules for single-electron transitions,

∆l = ±1, ∆ml = 0,±1 ∆ms = 0, (electric dipole). (19.4.21)

These can be generalized to the case of multi-electron transitions (where more than one electron

changes orbitals in going from the initial to the final state), for which the electric dipole selection

rules are

πiπf = −1, ∆J = 0,±1, ∆mJ = 0,±1, Ji + Jf > 0, (electric dipole). (19.4.22)

The first three of these follow from requiring the non-vanishing of the matrix element of the

parity-odd electric dipole operator ε̂ · R. The ∆J rule follows from the fact that R is a vector
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operator, and therefore carries total angular momentum 1 in the sense explained in Chapter 12.

In terms of addition of angular momentum, J ⊗ 1 = (J−1)⊕ J ⊕ (J+1) for J ≥ 1.

The last selection rule in eq. (19.4.22) is completely general, even if we do not make the

electric dipole approximation. It says just this: a total angular momentum J = 0 state can

never go to another J = 0 state by absorbing or emitting a single photon. The reason is that a

single photon can always be written as a linear combination of transverse circular polarizations,

carrying intrinsic angular momentum component along the propagation direction with eigenvalue

either +h̄ or −h̄, which cannot be matched by the initial and final electronic states if they both

have no angular momentum. Therefore, we have a general rule

Ji + Jf > 0, (all single-photon transitions). (19.4.23)

However, this rule (and all other selection rules listed here) can be violated if one considers

emission or absorption of multiple photons, either as distinct sequential events involving inter-

mediate states, or by going beyond first order in time-dependent perturbation theory or through

perturbations caused by the environment of the atom. Multi-photon transition rates at higher

order in perturbation theory are suppressed by additional powers of the fine-structure constant,

however, and so can often be neglected when they compete with single-photon transitions.

In the approximation of the LS coupling scheme, the total spin, total orbital, and total

angular momentum orthobasis quantum numbers L, S, J,mJ are good quantum numbers for the

initial and final stationary states. Then, because the total spin is not involved at all in the

electric dipole moment operator, one has the additional rules

∆S = 0, ∆L = 0,±1, Li + Lf > 0, (electric dipole, LS coupling) (19.4.24)

Recall, from the discussion in section 16.4, that the LS coupling scheme holds to a good ap-

proximation for atoms with atomic number Z not too large.

19.5 Magnetic dipole, electric quadrupole, and higher orders

Transitions that violate the electric dipole selection rules of eqs. (19.4.21) and (19.4.22) have

rates that are typically suppressed by extra powers of Zα, or by extra inverse powers of the

wavelength of the photon emitted or absorbed. For this reason, they are often referred to as

“forbidden”. Traditionally, this terminology does not mean that they are literally forbidden,

but rather that they take place at highly suppressed rates. By the same terminology, transitions

that take place through the electric dipole operator are often called “allowed”.

To go beyond the electric dipole approximation and its selection rules for absorption and

emission of electromagnetic radiation, consider the expansion in small k of eq. (19.1.13). To
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make things a little simpler, let us temporarily choose the wavevector of the light as k = kẑ and

the polarization as ε̂ = x̂, so

ε̂ · P~k = ei
~k·~R ε̂ · (P − ik × S) = eikZ(Px + ikSy). (19.5.1)

Now, expanding eikZ ≈ 1 + ikZ + · · · , and using ZPx = (ZPx − XPz)/2 + (ZPx +XPz)/2 =

Ly/2 + (ZPx + PzX)/2, we have

ε̂ · P~k = Px + i
ω

2c
[Ly + 2Sy + (ZPx + PzX)] + · · · . (19.5.2)

Recasting this back into a form valid for general orthogonal k̂ and ε̂ gives

ε̂ · P~k = ε̂ · P + i
ω

2c

[
(k̂ × ε̂) · (L+ 2S) + (k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R)

]
+ · · · , (19.5.3)

which is the result to next-to-leading order in the long-wavelength expansion. In the last term,

the ordering of operators R and P does not matter; they commute because of the transversality

condition ε̂ · k̂ = 0

Therefore, for the harmonic perturbation to be used in eq. (18.4.1) and subsequent equations,

we can write

V = VE1 + VM1 + VE2 + · · · , (19.5.4)

where the separated contributions,

VE1 = − eE0

2meω
ε̂ · P, (19.5.5)

VM1 = −i eE0

4mec
(k̂ × ε̂) · (L+ 2S), (19.5.6)

VE2 = −i eE0

4mec
(k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R) (19.5.7)

are called electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2), respectively.

Note that in the magnetic dipole operator, the vector (k̂×ε̂) is the unit vector along the magnetic

field direction in the wave; the magnetic field couples to the combination L+ 2S.

Single-photon transitions that are dominantly magnetic dipole in character can now be eval-

uated from the general formulas in sections 19.2-19.3, by using

∣∣〈f |ε̂ · P~k|i〉
∣∣2 → ω2

4c2
∣∣〈f |(k̂ × ε̂) · (L+ 2S)|i〉

∣∣2 (M1 absorption), (19.5.8)

∣∣〈f |ε̂∗ · P†~k|i〉
∣∣2 → ω2

4c2
∣∣〈f |(k̂ × ε̂∗) · (L+ 2S)|i〉

∣∣2 (M1 emission). (19.5.9)

For the electric quadrupole term, we can do a trick similar to the one we used in the electric dipole

case to get eqs. (19.4.9) and (19.4.10). Assuming that H0 does not depend on the momentum

operator except through the kinetic term P 2/2me, we find from eq. (19.4.5) that

[
H0, k̂ ·R ε̂ ·R

]
= −i h̄

me

(
k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R

)
, (19.5.10)
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where we have made use of ε̂ · k̂ = 0. Therefore,

VE2 =
eE0

4h̄c

[
H0, k̂ ·R ε̂ ·R

]
, (19.5.11)

and in the matrix elements, one can evaluate H0 on the adjacent ket |i〉 or bra |f〉, giving a

factor of Ef − Ei = h̄ω for absorption and −h̄ω for emission. It follows that in matrix elements

for single-photon absorption, one can make the replacement

VE2 →
eE0ω

4c
k̂ · ←→Q · ε̂, (19.5.12)

where† the symmetric, traceless rank-2 tensor quadrupole moment operator is

Qab = RaRb − δabR2/3, (19.5.13)

for a, b = x, y, z. This uses the fact that the δab part of Qab does not contribute to VE2 because

of ε̂ · k̂ = 0. Within matrix elements for single-photon emission,

V †E2 → −eE0ω

4c
k̂ · ←→Q · ε̂∗ (19.5.14)

similarly applies. Comparing eqs. (19.5.12) and (19.5.14) to eq. (19.2.1), we see that for domi-

nantly electric quadrupole transitions, the general formulas in sections 19.2-19.3 apply with

∣∣〈f | ε̂ · P~k |i〉
∣∣2 → m2

eω
4

4c2
∣∣〈f | k̂ · ←→Q · ε̂ |i〉

∣∣2 (E2 absorption), (19.5.15)

∣∣〈f | ε̂∗ · P†~k |i〉
∣∣2 → m2

eω
4

4c2
∣∣〈f | k̂ · ←→Q · ε̂∗ |i〉

∣∣2 (E2 emission), (19.5.16)

for single-photon absorption and emission, respectively.

We now turn to the selection rules for M1 and E2 transitions. First, let us use eqs. (19.5.8)

and (19.5.9) to find the requirements on the initial and final states in order for a magnetic

dipole transition to occur. In transitions involving a single electron, neither L nor S changes the

orbital quantum number l, and the spin quantum number s is of course fixed at 1/2. However,

the components of L are linear combinations of Lz, L±, and the components of S are linear

combinations of Sz, S±, so they can change ml and ms by zero or one unit. Furthermore, mag-

netic dipole transitions cannot occur between states with different principal (radial) quantum

numbers, because L and S do not operate on the radial wavefunctions and do not change l, so

the matrix element calculation in the position representation will be proportional to
∫ ∞

0

dr r2Rnl(r)Rn′l(r) = δn,n′. (19.5.17)

†For two vectors v and w with components va and wa, and a rank-2 tensor
←→
T with components Tab, the

notation v · ←→T · w means
∑

a=x,y,z

∑
b=x,y,z vaTabwb. We have already encountered the quadrupole moment

operator Qab in eqs. (12.1.32) and (12.1.33).
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Therefore, the magnetic dipole selection rules are, for single-electron transitions,

∆n = 0, ∆l = 0, ∆ml = 0,±1, ∆ms = 0,±1, (magnetic dipole). (19.5.18)

For multi-electron transitions, the selection rules from eqs. (19.5.8) and (19.5.9) are

πiπf = +1, ∆J = 0,±1, ∆mJ = 0,±1, Ji + Jf > 0, (magnetic dipole). (19.5.19)

The parity selection rule follows from the fact that the operator L+2S has even parity, and the

∆J and ∆mJ selection rules follow from the fact that it is a vector, and therefore as explained

in Chapter 12 it carries total angular momentum 1. The rule Ji + Jf > 0 is completely general,

as we already noted in our discussion of the electric dipole case. In the LS coupling scheme

approximation, where initial and final stationary states can be assigned total angular momentum

basis quantum numbers L, S, J,mJ , there are additional rules

∆L = 0, ∆S = 0 (magnetic dipole, LS coupling). (19.5.20)

Note that the electric dipole and magnetic dipole contributions cannot both be relevant for a

given initial and final state. Magnetic dipole transitions never change the parity, while electric

dipole transitions always do.

The famous 21 centimeter hyperfine transition line within the ground state of hydrogen is

a magnetic dipole transition, as it involved a spin flip but does not change the orbital angular

momentum or principal quantum number, which are l = 0 and n = 1 in both the initial and

final state. Since the resulting photon has an extremely long wavelength compared to the atomic

size, the hyperfine transition occurs at a highly suppressed rate (compared to what one might

expect if it were an electric dipole transition), because k = ω/c≪ 1/a0.

Now consider the matrix element selection rules that apply to the electric quadrupole term.

Depending on the choices for k̂ and ε̂, the matrix elements in eqs. (19.5.15) and (19.5.16) can

involve linear combinations of the operators XY , XZ, Y Z, X2−Y 2, and X2+Y 2−2Z2, which

are the components of the quadrupole tensor
←→
Q. These operators all have parity πQ = +1, so

electric quadrupole transitions can only connect states with the same parity. Acting on single-

electron orbital angular momentum eigenstates, these operators can change l by 0 or 2 units

(but not 1 unit, as that would not satisfy the parity selection rule), and ml by 0, 1, or 2 units.

Unlike the magnetic dipole interaction, the electric quadrupole operator does act non-trivially on

the radial wavefunction, so there is no restriction on changes in the principal quantum number.

However, it does not change the spin state. So, we have the electric quadrupole selection

rules for single-electron transitions,

∆l = 0,±2, ∆ml = 0,±1,±2, ∆ms = 0, (electric quadrupole). (19.5.21)
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For transitions involving multiple electrons, the selection rules are

πiπf = +1, |∆J | ≤ 2, |∆mJ | ≤ 2, Ji + Jf > 1, (electric quadrupole), (19.5.22)

and in the LS coupling scheme approximation in which the initial and final multi-electron

stationary states have good quantum numbers L, S, J,mJ , there are additional selection rules

∆S = 0, |∆L| ≤ 2, Li + Lf > 1 (electric quadrupole, LS coupling). (19.5.23)

The general constraint that angular momentum can change by at most two units in electric

quadrupole transitions follows from the Wigner–Eckart Theorem 12.3.1 and the fact that the

quadrupole operator is an irreducible tensor of order j = 2, as we noted in section 12.1. The

electric quadrupole transitions can only occur between states that have the same parity, so they

can never occur if electric dipole transitions are allowed. If the initial and final states in question

have ∆l = 0 or ∆L = 0, then the transition can be both magnetic dipole and electric quadrupole

in character, but if ∆L = 2 or ∆J = 2 or it changes ml or mJ by two units, then it will be

electric quadrupole at leading order in the long-wavelength approximation.

If one continues the expansion in k · R of P~k, the resulting electric and magnetic multipole

contributions are called Eq and Mq with q = 1, 2, 3, . . ., where M2 is magnetic quadrupole, E3

is electric octopole, etc. The general selection rules for these contributions are

πiπf = (−1)q, (Eq), (19.5.24)

πiπf = (−1)q−1, (Mq), (19.5.25)

|∆J | ≤ q ≤ Ji + Jf , |∆mJ | ≤ q, (Eq) and (Mq). (19.5.26)

In the long wavelength limit, the leading Eq or Mq contributions for a transition between two

states are those with the smallest q that satisfies these selection rules. For a possible transition

between an odd-parity state with J = 2 and an even-parity state with J = 0, the single-photon

transition would be uniquely determined to be M2, magnetic quadrupole. For two states with

the same parity and both with J = 1, the transition could be either M1 or E2. For two states

both with J = 0, there is no allowed single-photon transition as we have already discussed, and

there will instead be a highly suppressed double-photon emission.

19.6 Photo-electric effect for atoms

In this section, we will compute the photo-electric effect cross-section for atoms, as an application

of the results obtained in section 19.2. Instead of considering the photo-electric effect for a metal

surface, we will take an initial hydrogen-like atomic bound state |i〉 for an electron. The light

to be absorbed has angular frequency ω, polarization ε̂, and wavenumber k = k̂ω/c. The final
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state |f〉 is taken to be a continuum momentum eigenstate with momentum eigenvalue pf = h̄K.

This final state is an approximation, as we are neglecting the influence on its wavefunction of

the nuclear electric field; this is to make the problem more tractable, and works best in the limit

that the final-state electron energy h̄2K2/2me is large compared to the binding energy of the

initial state. Since we are not assuming that the wavelength of the electromagnetic wave is large

compared to the de Broglie wavelength 2π/K of the final state, we will not use the multipole

expansion of the previous two sections in the following derivation.

To be specific, let the initial state of the electron be a hydrogen-like atomic ground-state

wavefunction

〈r |i〉 = ψ1,0,0(r) =

√
Z3

πa30
e−Zr/a0 , (19.6.1)

which also applies approximately for 1s electrons in multi-electron atoms, with

Ei = −Z2e2/2a0. (19.6.2)

The final state electronic wavefunction is approximated by

〈r|f〉 = ψ ~K(r) = Aei
~K·~r, (19.6.3)

where A is a normalization constant and the momentum and energy are

pf = h̄ ~K, and Ef =
h̄2K2

2me
. (19.6.4)

The delta function in eq. (19.2.7) then reveals that the photon energy is

h̄ω = h̄ck =
h̄2K2

2me
+
Z2e2

2a0
. (19.6.5)

This shows that there is a minimum possible value of h̄ωmin = Z2e2/2a0 in order for the process

to take place, achieved when the kinetic energy of the final-state electron is small. This is

in agreement with the observation that the photo-electric effect requires a minimum incident

photon energy quantum h̄ω, regardless of the intensity of the light, as noted in section 1.3.

However, our calculation will work best in the opposite limit of large K compared to the

binding energy, so that the plane-wave approximation of eq. (19.6.3) is more nearly valid. In

that limit, we have h̄2K2/2me ≫ Z2e2/2a0, which can be rewritten as K ≫ Z/a0 by using

a0 = h̄2/mee
2. This also implies h̄ω ≫ Z2e2/2a0, so ω/c ≫ Z2e2/2a0h̄c, or ω/c ≫ Z2α/2a0.

The velocity of the ejected electron is then

vf =
pf
me

=
h̄K

me
≈ 2ω

K
, (19.6.6)
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where we used eq. (19.6.5) with the approximation that the binding energy is small compared

to the photon energy. Therefore, since we will be treating the electron as non-relativistic, we

need ω ≪ cK so that vf ≪ c. So, the following results will be most reliable when

K ≫ ω/c ≫ Z2α/2a0, and K ≫ Z/a0. (19.6.7)

The first condition allows us to neglect the spin contribution k×S = (ω/c)k̂×S in eq. (19.1.13)

compared to the P term.

In order to have a well-defined normalization factor A in eq. (19.6.3), the final state is taken

to be confined to a very large cubic box with side L≫ a0/Z; as a check, we will show that the

dependence on L cancels in the final result. Then the normalization condition is

1 =

∫

box

d3r |ψ ~K(r)|2 = |A|2
∫

box

d3r = |A|2L3, (19.6.8)

so A = L−3/2. Imposing periodic boundary conditions on the wavefunction implies that

ψ ~K(r) = ψ ~K(r + L[nxx̂+ nyŷ + ny ŷ]), (19.6.9)

for integers nx, ny, nz, so we obtain the allowed wavenumber components

Kx =
2π

L
nx, Ky =

2π

L
ny, Kz =

2π

L
nz. (19.6.10)

We will need the density of final states, ρ(Ef , cos θf , φf), as defined by eq. (18.3.16), where

(θf , φf) are the spherical coordinate angles of the final-state electron’s momentum vector ~K,

and serve as the degeneracy labels for the energy. For a volume of ~K-space dKxdKydKz, the

number of allowed final states is

(
L

2π

)3

dKxdKydKz =

(
L

2π

)3

d3 ~K =

(
L

2π

)3

K2dK d(cos θf ) dφf . (19.6.11)

Now, since

dEf =
h̄2

me

K dK, (19.6.12)

we have

(
number of states in the
range dEf dφf d(cos θf)

)
=

(
L

2π

)3
me

h̄2
K dEf dφf d(cos θf ), (19.6.13)

from which we obtain, by comparison with eq. (18.3.16), the density of final electron states

ρ(Ef , cos θf , φf) =

(
L

2π

)3
meK

h̄2
(19.6.14)
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in the plane-wave approximation.

Because we are assuming that the spin can be neglected due to eq. (19.6.7), eq. (19.1.13)

becomes P~k = ei
~k·~Rε̂ · P . Applying eq. (19.2.8), we now obtain the differential cross-section for

absorption,

dσ

dΩf
=

4π2αK

meh̄ω

(
L

2π

)3 ∣∣〈f |ei~k·~R ε̂ · P |i〉
∣∣2, (19.6.15)

where dΩf = d(cos θf ) dφf . It remains to evaluate the matrix element. Because of the transverse

nature of electromagnetic waves ε̂ · k = 0, we have the commutator
[
k ·R, ε̂ · P

]
= 0, so

〈f |ei~k·~Rε̂ ·P |i〉 = 〈f |ε̂ ·Pei~k·~R|i〉 = h̄ ε̂ · ~K 〈f |ei~k·~R|i〉 , (19.6.16)

where we used pf = h̄ ~K. The last matrix element is evaluated in the position representation as

〈f |ei~k·~R|i〉 =

∫
d3r

(
1√
L3
e−i

~K·~r
)
ei
~k·~r
(√

Z3

πa30
e−Zr/a0

)
=

√
Z3

πa30L
3
I(q), (19.6.17)

where we have defined the integral

I(q) =

∫
d3r e−Zr/a0ei~q·~r. (19.6.18)

in terms of

q ≡ k − ~K, (19.6.19)

so that h̄q is the momentum transferred from the photon to the atom.

Due to the spherical symmetry of the initial-state wavefunction, we see that I(q) only de-

pends on the magnitude of q, not its direction. So, for the purpose of evaluating I(q), we can

temporarily choose q = qẑ so that q · r = qr cos θ, giving

I(q) =

∫ ∞

0

dr r2
∫ 1

−1
d(cos θ)

∫ 2π

0

dφ e−r(Z/a0−iq cos θ). (19.6.20)

The φ integration trivially gives a factor of 2π. Doing the cos θ integration next, and the r

integration last,

I(q) = −2πi
q

∫ ∞

0

dr r
(
e−r(Z/a0−iq) − e−r(Z/a0+iq)

)
=

8πa30
Z3(1 + q2a20/Z

2)2
. (19.6.21)

Putting together eqs. (19.6.15)-(19.6.17) and (19.6.21) we arrive at

dσ

dΩf
=

32αh̄K

meω

∣∣ε̂ · ~K
∣∣2 a30
Z3(1 + q2a20/Z

2)4
, (19.6.22)
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in which the dependences on the size of the box L (from the density of states, and from the

matrix element) have canceled, as promised. Note that the differential cross-section is largest

when the electron is ejected in the direction of the polarization of the electric field of the wave.

It is now convenient to choose a coordinate system in which (without loss of generality, since

the initial electron wavefunction is spherically symmetric) the incident photon momentum is in

the ẑ direction, and has polarization along the x̂ direction, so

k = ẑk = ẑω/c, ε̂ = x̂. (19.6.23)

Writing, from here on, θ = θf and φ = φf for the ejected electron’s momentum spherical

coordinate direction angles, with ~K = r̂K, we have

ε̂ · ~K = K sin θ cos φ, (19.6.24)

q2 = (k − ~K)2 = K2 + (ω/c)2 − 2K(ω/c) cos θ, (19.6.25)

so that eq. (19.6.22) becomes

dσ

dΩ
=

32αh̄

meω

a30K
3

Z3(N1 −N2 cos θ)4
sin2 θ cos2 φ, (19.6.26)

in which we have introduced dimensionless quantities

N1 = 1 + a20(K
2 + ω2/c2)/Z2, (19.6.27)

N2 = 2a20Kω/cZ
2. (19.6.28)

To find the total cross-section, we use the integrals

∫ 2π

0

dφ cos2 φ = π, (19.6.29)

∫ 1

−1
d(cos θ)

sin2 θ

(N1 −N2 cos θ)4
=

4

3(N2
1 −N2

2 )
2
, (19.6.30)

to obtain

σ =

∫
dΩ

dσ

dΩ
=

128παh̄

3meω

a30K
3

Z3(N2
1 −N2

2 )
2
. (19.6.31)

If the light is polarized along ŷ rather than x̂, then cos2 φ should be replaced by sin2 φ in

the differential cross-section eq. (19.6.26). If the light is unpolarized we should instead make

the replacement based on the average of the two transverse polarizations, cos2 φ → (cos2 φ +

sin2 φ)/2 = 1/2, which gives, after integrating over φ,

dσ

d(cos θ)
=

32παh̄

meω

a30K
3

Z3(N1 −N2 cos θ)4
sin2 θ. (19.6.32)
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The total cross-section is independent of the polarization, because the angle φ is integrated over.

Now consider the high-energy limit K ≫ ω/c and K ≫ Z/a0 of eq. (19.6.7), which we

showed was appropriate for our plane-wave approximation for the final state. Expanding to

next-to-leading order in large K, we have

1

(N1 −N2 cos θ)4
=

(
Z

Ka0

)8 (
1 +

8ω

cK
cos θ + · · ·

)
, (19.6.33)

so that eqs. (19.6.26) and (19.6.31) become

dσ

dΩ
=

32αh̄

meω

(
Z

Ka0

)5 (
1 +

8ω

cK
cos θ

)
sin2 θ cos2 φ, (19.6.34)

σ =
128παh̄

3meω

(
Z

Ka0

)5

. (19.6.35)

This can be rewritten to eliminate K in favor of ω using the energy conservation condition

K =
√
2meω/h̄, which follows from eq. (19.6.5) in the limit of small binding energy compared

to the photon energy. The result for the total cross-section is

σ =
256π

3
α
(a0
Z

)2( |Ei|
h̄ω

)7/2

, (19.6.36)

where a0/Z is the characteristic length scale of the initial state, and |Ei| = Z2e2/2a0 is the

binding energy, and h̄ω is the incident photon energy.

The preceding results apply not just to single-electron wavefunctions for hydrogen-like ions,

but to the ejection of electrons from the K-shell† of heavier atoms. There are two K-shell

electrons (one for each spin), so the cross-section we obtained should be multiplied by 2 to find

the total K-shell ejection cross-section for multi-electron atoms. The most important qualita-

tive features are that the cross-section grows with increasing Z like Z5, and falls sharply with

increasing incident photon energy like 1/(energy)7/2. The ejected electrons are preferentially

emitted along the photon’s electric field polarization, which is perpendicular to the photon’s

propagation direction, but with a slight preference for the forward direction (cos θ > 0) as a

subleading effect in the high-energy expansion in eq. (19.6.34).

In the opposite limit of small K, eqs. (19.6.26) and (19.6.31) appear to show a threshold

behavior proportional to K3. However, in that regime, the calculation we did is not to be

trusted, because the plane-wave approximation for the final state is quite bad.

†The execrable but traditional jargon “K-shell” just means the innermost shell with principal quantum number
n = 1, called 1s in section 16.4. The 2s, 2p electrons are called L-shell, and 3s, 3p and 3d are called M -shell,
etc. For each shell with principal quantum number n, there can be up to 2

∑n−1
l=0 (2l + 1) = 2n2 electrons.
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20 Scattering in three dimensions

20.1 Cross-sections and scattering amplitudes

Consider the problem of scattering of free particles from a localized target in three dimensions.

Suppose that the incoming particles are in a mono-energetic beam, all moving in the same

direction, which we will take to be ẑ by a choice of coordinate system. If the beam is uniform

over some area large compared to the size of the target, it can be described by a flux

n =
number of incident particles

(area)(time)
. (20.1.1)

Here, the area is measured in the xy plane, perpendicular to the beam propagation direction.

The experiment then counts (or infers, perhaps from measurements of energy deposited in a

detector) the number of particles scattered in a differential of solid angle

dΩ = dφ d(cos θ). (20.1.2)

Let the number of scattered particles as a function of direction be described by

ds =
number of scattered particles in dΩ

time
. (20.1.3)

Clearly, ds must be proportional to n, and to dΩ. We therefore define the proportionality factor

to be the scattering differential cross-section,

dσ

dΩ
=

ds

n dΩ
. (20.1.4)

Note that this has units of area. The total cross-section is then defined as

σ =

∫
dΩ

dσ

dΩ
=

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

dσ

dΩ
, (20.1.5)

also with units of area. Intuitively, the cross-section is the effective area of the target for the

type of scattering under consideration.

It is often true that the differential cross-section has azimuthal symmetry, which means

that it does not depend on φ. This occurs if the target and the properties of the scattering

process are invariant under rotations about the initial beam propagation direction. In that case,

one can give the differential cross-section in terms of

dσ

d(cos θ)
=

∫ 2π

0

dφ
dσ

dΩ
= 2π

dσ

dΩ
. (20.1.6)

In particular, this will occur if the target is spherically symmetric and the incident particles are

either spin-less or have randomly oriented spins.
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Figure 20.1.1: A classical trajectory for scattering from a hard sphere of radius R, with
impact parameter b and scattering angle θ measured from the forward direction ẑ (the
direction pointing to the right). The geometry gives the relation b = R cos(θ/2).

For classical scattering problems, the cross-section can be computed in terms of specific

trajectories followed by the incident particles. It is useful to define the impact parameter b as

the distance between a particular initial particle trajectory line (when it is still very far from the

target) and the line parallel to it through a suitably chosen central point in the target, which

we take to be the origin of our coordinate system.

Consider first a classical† example, hard-sphere scattering. Some (very small) particles

are fired at a target ball (of radius R, suspended in mid-air, and heavy enough that it doesn’t

move when hit). Gravitational effects are neglected, so that the incident particles move in

straight lines. For a particular scattering event, the impact parameter b is the distance between

the initial particle trajectory line and the line parallel to it through the center of the target ball,

as shown in Figure 20.1.1. To find the differential cross-section, the general strategy is to relate

b to the scattering angle θ. Using elementary geometry, the angles α and θ are related to each

other and the impact parameter by

α = sin−1(b/R), θ = π − 2α, (20.1.7)

which implies

b = R sin(π/2− θ/2) = R cos(θ/2). (20.1.8)

Assuming a uniform flux n of incident particles moving in the ẑ direction, the number of them

per unit time with impact parameter between b and b+ db is equal to the product of n with the

area of the annulus in the xy plane with inner radius b and outer radius b+ db,

n(2πb db) = n2πR cos(θ/2)Rd(cos(θ/2)) =
1

2
nπR2 d(cos θ). (20.1.9)

†We will later obtain the result for the corresponding quantum mechanical problem, in section 20.5.
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This means that the rate of scattered particles in solid angle dΩ in eq. (20.1.3) is

ds =
1

2
nπR2d(cos θ)

dφ

2π
=

1

4
nR2dΩ. (20.1.10)

We therefore obtain, from the definition eq. (20.1.4), the differential cross-section

dσ

dΩ
= R2/4. (20.1.11)

Because of the azimuthal symmetry, this is equivalently

dσ

d(cos θ)
= πR2/2, (20.1.12)

which integrates to give the total cross-section

σ =

∫ 1

−1
d(cos θ)

dσ

d(cos θ)
= πR2. (20.1.13)

This example has two rather special features. First, the differential cross-section is isotropic;

it does not depend on θ. Second, the total cross-section is simply equal to the geometrical

cross-sectional area of the target; the scattering takes place if and only if the impact parameter

does not exceed the radius R.

Another classical (and classic) example is Rutherford scattering of a light spin-less particle

with charge Z1e (for example, an α particle with Z1 = 2) and initial energy E from a static

Coulomb potential

V (r) = Z2e/r, (20.1.14)

for example, caused by a heavy nucleus containing Z2 protons. From the classical hyperbolic

trajectories, one can show (again by finding θ in terms of the impact parameter distance defined

when the scattering particle is very far away) that

dσ

dΩ
=

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
. (20.1.15)

This differential cross-section is certainly not constant, and in fact blows up with a non-integrable

divergence for small θ. To get a finite value for the total cross-section, one must modify the

question slightly and count only those events in which the electron is scattered by some minimal

cut-off angle θmin. (In real-world experiments, this is justified by the finite resolution of detectors,

and by the difficulties encountered if one tries to put a detector too close to the beam.) Then

σ(θ > θmin) =

∫ 2π

0

dφ

∫ cos θmin

−1
d(cos θ)

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
=

πZ2
1Z

2
2e

4

4E2

(
1 + cos θmin

1− cos θmin

)
. (20.1.16)
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The divergence is recovered in the limit θmin → 0. The interpretation is that in scattering from

a 1/r potential, the initial charged particle is always scattered at least a little, with sufficient

strength that the unrestricted total cross-section is infinite; we say that the Coulomb potential

has infinite range.

Most scattering problems are intermediate between the extremes of hard-sphere scattering

(with a sharp cut-off limited range of interaction) and Coulomb scattering (with an infinite

range). Even if scattering occurs for every impact parameter or scattering angle, the integrated

total cross-section σ can still be finite, if the differential cross-section rises less quickly than

1/(1− cos θ) for small θ. If so, then the potential giving rise to it is said to have finite range.

Enough classical warm-ups; we now turn to the quantum theory of scattering. Consider a

beam of particles with fixed momentum p = h̄k that encounter a target in the form of a potential

V (r) that has support within a finite volume near the origin. If the potential were completely

absent, the beam could be described by a plane wavefunction

ψ(r) = 〈r|k〉 = 1

(2π)3/2
ei
~k·~r =

1

(2π)3/2
eikz. (20.1.17)

In writing the last equality, we chose our coordinate system so that the initial beam momentum

is along the z direction, so

k = ẑk. (20.1.18)

The wavefunction eq. (20.1.17) cannot be normalized to unity, so we have chosen to instead

normalize it so that it satisfies orthonormality and completeness relations

〈k′|k〉 = δ(3)(k′ − k),
∫
d3k |k〉〈k| = I, (20.1.19)

and the probability of finding a particle per unit volume is

probability

volume
= |ψ(r, t)|2 = |e−iEt/h̄ψ(r)|2 =

1

(2π)3
, (20.1.20)

a constant in both time and position. This normalization is rather arbitrary, but will cancel in

the differential cross-section. The total flux of particles (probability for a particle in the incident

beam to pass through a unit area, per unit time) described by the wavefunction is therefore

n =
probability

(area)(time)
=

(
probability

volume

)
(speed) =

1

(2π)3
h̄k

m
. (20.1.21)

Let us next anticipate the form of the wavefunction for large r, taking into account the

scattering potential,

ψ(r) =
1

(2π)3/2

[
eikz +

eikr

r
fk(θ, φ)

]
, (r →∞). (20.1.22)
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We will justify this form before the end of section 20.2. For now, we just note that the first

term represents the incident wave, while the quantity

fk(θ, φ) (20.1.23)

characterizes the outgoing flux of probability density, and is called the scattering amplitude.

It multiplies a factor eikr, which corresponds to a wave traveling away from the origin, and a

factor 1/r which indicates that the probability amplitude falls linearly with distance. This gives

a probability density that falls off like 1/r2, which is the requisite behavior so that the probability

to detect a particle scattering within a given solid angle dΩ with area r2dΩ is independent of the

distance to the detector r, when r is large. Due to energy conservation and the assumption that

the scattering potential vanishes at large distances, the magnitude of the wavenumber is the

same k for both incoming and outgoing waves. The scattering amplitude fk(θ, φ) has units of

[length] and depends only on the magnitude k and the spherical coordinate angles, interpreted

as those of the propagation direction of a scattered particle. In cases with azimuthal symmetry,

we will write the scattering amplitude as fk(θ).

A small detector at (θ, φ) covering a solid angle dΩ, at a large distance r from the target,

will see a total probability flux

ds =

(
probability

volume

)
(area)(speed) =

∣∣∣∣
1

(2π)3/2
fk(θ, φ)

eikr

r

∣∣∣∣
2 (
r2dΩ

)( h̄k
m

)
(20.1.24)

=
|fk(θ, φ)|2
(2π)3

h̄k

m
dΩ. (20.1.25)

Here we have neglected the interference with the incident part of the wavefunction proportional

to eikz, with the justification that in the real world the incoming particle beam has only a finite

extent that will not overlap with sufficiently distant detectors measuring the scattered particles.

(To summarize the assumptions made: the beam size is large compared to the target, but small

compared to the distance to the detector.) Using eqs. (20.1.21) and (20.1.25) in eq. (20.1.4), we

obtain the important result

dσ

dΩ
= |fk(θ, φ)|2. (20.1.26)

The differential cross-section is equal to the squared magnitude of the scattering amplitude.

20.2 Lippmann–Schwinger equation and scattering Green function

Our goal in this section is to obtain the form of the wavefunction claimed in eq. (20.1.22), and

in the process to find out how to calculate the scattering amplitude fk(θ, φ) for a given potential

V . Start by writing the Hamiltonian operator as

H = H0 + V (R), (20.2.1)
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where H0 = P 2/2m is the pure kinetic term, and the scattering potential V (R) is assumed to

be significant only within a localized region. The eigenkets of H0, with wavefunctions as in

eq. (20.1.17), obey the eigenvalue equation

H0|k〉 = E|k〉, E = h̄2k2/2m, (20.2.2)

and we will have in mind specifically h̄k = h̄kẑ = p for the incident beam particles.

We now look for stationary-state scattering solutions |ψ〉 to the full Schrödinger equation,

with the same energy eigenvalue E as the incident particles, so

(H0 + V ) |ψ〉 = E |ψ〉 . (20.2.3)

Let us rewrite this as (E −H0) |ψ〉 = V |ψ〉, and then add 0 = (E −H0)|k〉 to the right side:

(E −H0) |ψ〉 = V |ψ〉+ (E −H0)|k〉. (20.2.4)

We now act with the operator (E −H0)
−1 on each side to get

|ψ〉 = |k〉+ 1

E −H0

V |ψ〉 . (20.2.5)

However, the inverse operator can be problematic ifH0 formally approaches E. To avoid dividing

by 0, we regulate the inverse operator by deforming E into the complex domain, away from the

real line by an infinitesimal amount ±ǫ, with ǫ positive and to be taken to 0 later. The result

is the Lippmann–Schwinger equation

|ψ±〉 = |k〉+ 1

E −H0 ± iǫ
V |ψ±〉, (20.2.6)

named after Bernard Lippmann and Julian Schwinger. We now wish to solve for the full ket

|ψ±〉, which includes the effects of scattering from the potential. It will later become apparent

that the + sign is what we want, but let us keep both for now.

In the position representation, completeness with respect to position eigenstates |r′〉 turns
the Lippmann–Schwinger equation into its wavefunction form,

〈r |ψ±〉 = 〈r |k〉+
∫
d3r ′ 〈r | 1

E −H0 ± iǫ
|r ′〉〈r ′| V |ψ±〉. (20.2.7)

The last term involves a matrix element that we now write as

〈r | 1

E −H0 ± iǫ
|r ′〉 =

2m

h̄2
G±(r, r

′), (20.2.8)

which defines G±(r, r
′) as a function independent of the scattering potential V . The normal-

ization factor 2m/h̄2 has been introduced for future convenience.
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To evaluate the function G±(r, r
′), we will now use completeness twice more, this time with

respect to plane-wave states with momenta h̄q and h̄q′, normalized just as in eq. (20.1.17), so

〈r|q〉 =
1

(2π)3/2
ei~q·~r, (20.2.9)

with orthonormality and completeness relations

〈q′|q〉 = δ(3)(q′ − q),
∫
d3q |q〉〈q| = I. (20.2.10)

Thus eq. (20.2.8) becomes

G±(r, r
′) =

h̄2

2m

∫
d3q′

∫
d3q 〈r |q′〉〈q′ | 1

E −H0 ± iǫ
|q〉〈q|r ′〉. (20.2.11)

The reason for doing this is that now the operator H0 can be evaluated as a number, using

H0|q〉 =
h̄2q2

2m
|q〉, (20.2.12)

so that

〈q′| 1

E −H0 ± iǫ
|q〉 = δ(3)(q′ − q) 1

E − h̄2q2/2m± iǫ
. (20.2.13)

Doing the
∫
d3q′ integration in eq. (20.2.11) using the delta function, and remembering that

E = h̄2k2/2m is the energy of the incident beam particles, we find an integral expression for the

function defined by eq. (20.2.8),

G±(r, r
′) =

∫
d3q

(2π)3
ei~q·(~r−~r

′)

k2 − q2 ± iǫ . (20.2.14)

Before doing this integral, as an aside we note that G±(r, r
′) could also be defined mathe-

matically as the solution to a differential equation. To see this, note that

∇2G±(r, r
′) =

∫
d3q

(2π)3
(−q2) ei~q·(~r−~r ′)

k2 − q2 ± iǫ , (20.2.15)

where the Laplacian was taken with respect to the coordinate r, taking advantage of the simple

exponential dependence. Therefore,

(∇2 + k2)G±(r, r
′) =

∫
d3q

(2π)3
ei~q·(~r−~r

′) = δ(3)(r − r ′), (20.2.16)

which shows that G±(r, r
′) is a Green function (named after mathematician George Green)

for the Helmholtz differential operator ∇2 + k2, with a delta-function source at r′.
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To evaluate the Green function, go back to eq. (20.2.14) and put the integral
∫
d3q into

spherical coordinates,

G±(r, r
′) =

1

(2π)3

∫ ∞

0

dq q2
∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

eiq|~r−~r
′| cos θ

k2 − q2 ± iǫ , (20.2.17)

where the angles θ and φ of q are measured from the direction r − r ′. Now do the angular

integrals to get

G±(r, r
′) =

i

4π2|r − r ′ |

∫ ∞

0

dq
q

q2 − k2 ∓ iǫ
(
eiq|~r−~r

′| − e−iq|~r−~r ′|
)
. (20.2.18)

Let x = |r− r ′ |, and call the integral I(x, k). It can be evaluated (using the method of complex

variable contour integration, for example) as I(x, k) = iπe±ikx. Therefore, the Green function is

G±(r, r
′) = − e±ik|~r−~r

′|

4π|r − r ′ | . (20.2.19)

Plugging this result into the Lippmann–Schwinger equation (20.2.7), using eq. (20.2.8), gives

〈r|ψ±〉 = 〈r|k〉 − 2m

h̄2

∫
d3r ′

e±ik|~r−~r
′|

4π|r − r ′ | 〈r
′ | V |ψ±〉. (20.2.20)

We now complete the translation into the position representation by noticing that

〈r ′ | V |ψ±〉 =

∫
d3r ′′ 〈r ′ | V |r ′′ 〉〈r ′′ |ψ±〉 = V (r ′ )〈r ′ |ψ±〉, (20.2.21)

where we have used 〈r ′ | V |r ′′ 〉 = δ(3)(r ′−r ′′)V (r′). Therefore, the Lippmann–Schwinger equa-

tion in the position representation is

ψ±(r) =
eikz

(2π)3/2
− 2m

h̄2

∫
d3~r ′

e±ik|~r−~r
′|

4π|r − r ′ |V (r ′)ψ±(r ′). (20.2.22)

Here, ψ±(r) is the total wavefunction, split into the part describing the incident particle beam,

and the integral coming from the effect of scattering by the potential.

We now specialize to points r that are very far away from the points r ′ in the neighborhood

of the origin where V (r ′) has its support. We do this by expanding for r′ ≪ r, so that

|r − r ′ | =
√
r2 − 2r · r ′ + r′2 = r

√
1− 2r̂ · r ′/r + · · · = r − r̂ · r ′ + · · · . (20.2.23)

Let us define a wavevector k′, with the same magnitude as the incoming wavevector k = kẑ,

but directed away from the scattering region (in the radial direction),

k′ = kr̂. (20.2.24)
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Then eq. (20.2.23) implies

e±ik|~r−~r
′| ≈ e±ikre∓i

~k ′·~r ′

. (20.2.25)

and eq. (20.2.22) becomes, for large r,

ψ±(r) =
1

(2π)3/2
eikz − m

2πh̄2
e±ikr

r

∫
d3r ′ e−i

~k ′·~r ′

V (r ′)ψ±(r ′). (20.2.26)

Both of the sign choices ± that we introduced in eq. (20.2.6) are mathematically valid solutions,

but we now see that we want to choose the + sign, because the factor e+ikr corresponds to a

scattered wave moving away from the target potential. A factor e−ikr in eq. (20.2.26) would

correspond to the strange situation of an incoming radial wave converging on a target from all

directions and cleverly matching itself onto a plane wave; while mathematically allowed, this

does not correspond to real-world scattering processes. Thus the physically relevant solution for

scattering problems (dropping the + superscript from now on) is, for large r,

ψ(r) =
1

(2π)3/2

[
eikz +

eikr

r
fk(θ, φ)

]
, (r →∞), (20.2.27)

where we have now identified an expression for the scattering amplitude,

fk(θ, φ) = − m

2πh̄2
(2π)3/2

∫
d3r ′ e−i

~k ′·~r ′

V (r ′)ψ(r ′). (20.2.28)

Equation (20.2.27) indeed has the form promised in eq. (20.1.22). However, eqs. (20.2.27) and

(20.2.28) do not yet a constitute a solution, because eq. (20.2.27) writes ψ in terms of fk(θ, φ),

which in turn depends on ψ. Our remaining task in this section is to see how to solve these

equations for fk(θ, φ) by eliminating ψ.

An equivalent way of writing eq. (20.2.28) is

fk(θ, φ) = −4π
2m

h̄2
〈k′|V |ψ〉, (20.2.29)

where, for general k′, the ket |k′〉 is the state with position wavefunction ei
~k′·~r/(2π)3/2. Equation

(20.2.29) allows us to find at least a formal solution for the scattering amplitude, by the following

maneuver. We first define the transition operator T by

T |k〉 = V |ψ〉 (20.2.30)

for every plane wave ket |k〉, where |ψ〉 is the corresponding scattering state. Since the kets

|k〉 form an orthobasis, by superposition this defines T acting on any state. In terms of this

operator, eq. (20.2.29) becomes a matrix element between known (plane-wave) states,

fk(θ, φ) = −4π
2m

h̄2
〈k′|T |k〉. (20.2.31)
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The angles (θ, φ) here are defined to be the spherical coordinate angles of k′ when the coordinate

system has been chosen so that k = ẑk. The problem of finding the scattering amplitude has

therefore been reduced to solving for T .

From the Lippmann–Schwinger equation (20.2.6) with the + sign now selected,

T |k〉 = V

(
|k〉+ 1

E −H0 + iǫ
V |ψ〉

)
=

(
V + V

1

E −H0 + iǫ
T

)
|k〉. (20.2.32)

Since this is true for every plane-wave ket |k〉, we have an operator relation between T , V , H0,

and the incident particle energy E,

T = V + V
1

E −H0 + iǫ
T. (20.2.33)

This can be formally solved for T , with the result

T =

(
I − V 1

E −H0 + iǫ

)−1
V. (20.2.34)

Together with eq. (20.2.31), we can finally say that we have a solution for the scattering am-

plitude. However, practical evaluation of it is still a non-trivial task that typically requires

approximation. Different approximation schemes amount to practical methods for evaluating

the formal inverse operator on the right side of eq. (20.2.34).

20.3 The Optical Theorem

TheOptical Theorem is an identity relating the total integrated cross-section to the imaginary

part of the forward scattering amplitude fk(θ = 0), as follows:

σ =
4π

k
Im [fk(0)] . (20.3.1)

This is useful for at least two reasons. First, it can provide a check of the consistency of a

calculation. Second, it is sometimes easier to obtain Im[fk(0)] than it is to find the total cross-

section directly. Note that we write fk(0) for θ = 0 even though we are not assuming azimuthal

symmetry, because the coordinate φ is meaningless and irrelevant when θ = 0.

To prove the Optical Theorem, start with

Im [fk(0)] = −4π
2m

h̄2
Im
(
〈k |V |ψ〉

)
, (20.3.2)

which is obtained from eq. (20.2.29) by setting 〈k′| = 〈k| for forward scattering, and then taking

the imaginary part. To evaluate the right side, we can apply the Hermitian adjoint of the

Lippmann–Schwinger equation (20.2.6) with the + sign selected,

〈k| = 〈ψ| − 〈ψ|V 1

E −H0 − iǫ
, (20.3.3)
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to obtain

Im
(
〈k |V |ψ〉

)
= Im (〈ψ|V |ψ〉)− Im

(
〈ψ|V 1

E −H0 − iǫ
V |ψ〉

)
. (20.3.4)

The first term on the right side is 0, because V is Hermitian, and therefore always has real

expectation values. In contrast, the second term does not vanish, because the operator 1/(E −
H0 − iǫ) is not Hermitian, due to the iǫ. To make better sense of this operator, consider an

analogous complex function of a real number x,

1

x− iǫ =
1

x− iǫ

(
x+ iǫ

x+ iǫ

)
=

x

x2 + ǫ2
+ i

ǫ

x2 + ǫ2
. (20.3.5)

Although it may be tempting to say that this is real in the limit of small ǫ, special care must

be taken when x = 0, where we recall that

lim
ǫ→0

ǫ

x2 + ǫ2
= πδ(x). (20.3.6)

It is also useful to define the Cauchy principal value as

Pr (1/x) =
x

x2 + ǫ2
, (20.3.7)

for ǫ assumed to be infinitesimal. This is just equal to 1/x when x 6= 0, but is equal to 0 when

x = 0. Then we can write, formally valid for all x including x = 0,

1

x− iǫ = Pr(1/x) + iπδ(x). (20.3.8)

The expressions on the right are distributions, which means that they are defined only inside

integrations over x, according to the following rules, which apply for −a < 0 < b,

∫ b

−a
dx δ(x)f(x) = f(0), (20.3.9)

∫ b

−a
dx Pr(1/x) f(x) =

∫ 0

−a
dx

f(x)

x
+

∫ b

0

dx
f(x)

x
. (20.3.10)

For our present purposes, the operator application of eq. (20.3.8) is

1

E −H0 − iǫ
= Pr

(
1

E −H0

)
+ iπδ(E −H0), (20.3.11)

where the principal value and delta functions are Hermitian operators, just as Pr(1/x) and δ(x)

are real functions. Thus, the first term on the right is Hermitian and has real expectation values,

but the second term is anti-Hermitian and has imaginary expectation values simply because of

the factor of i. Plugging in to eq. (20.3.4), we learn

Im
(
〈k|V |ψ〉

)
= −π 〈ψ|V δ(E −H0)V |ψ〉 = −π 〈k|T †δ(E −H0)T |k〉 , (20.3.12)
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where we have used the definition of T from eq. (20.2.30) to get the last equality. Next, we use

completeness, by inserting I =
∫
d3k′ |k′〉 〈k′|, and using H0 |k′〉 = (h̄2k′2/2m) |k′〉, so that

Im
(
〈k|V |ψ〉

)
= −π

∫
d3k′ δ(E − h̄2k′2/2m) 〈k|T †|k′〉 〈k′|T |k〉 (20.3.13)

= −π
∫
dΩ′

∫ ∞

0

d(k′2)
mk′

h̄2
δ(k′2 − k2) |〈k|T |k′〉|2 (20.3.14)

= −πmk
h̄2

∫
dΩ′ |〈k|T |k′〉|2, (20.3.15)

where we have separated the integration over k′ into an angular and radial part, done a change of

variable on the delta function, and then done the radial integral over k′2 using the delta function.

Putting this into eq. (20.3.2) gives the imaginary part of the forward scattering amplitude in

terms of the matrix elements of the transition operator,

Im [fk(0)] =
4π3m2k

h̄4

∫
dΩ′ |〈k|T |k′〉|2. (20.3.16)

Since we defined the operator T acting on general plane-wave states, |〈k|T |k′〉|2 depends

only on the common magnitude of k and k′ and the angle between them. We can therefore view

it as a function of (θ′, φ′) with k held fixed, and use eqs. (20.2.31) and (20.1.26) to write

|〈k|T |k′〉|2 =
h̄4

16π4m2
|fk(θ′, φ′)|2 =

h̄4

16π4m2

dσ

dΩ′
, (20.3.17)

where the angles (θ′, φ′) are measured with respect to the k direction. Inserting this in eq. (20.3.16)

and doing the dΩ′ integration gives

Im [fk(0)] =
k

4π
σ, (20.3.18)

which is the Optical Theorem.

20.4 Born approximation

The Born approximation is a type of perturbative expansion applied to scattering problems,

in which the wavefunction within the target region is assumed to be only mildly altered by the

potential. In the first-order (or “leading”) Born approximation, for the purposes of eq. (20.2.28)

we simply take the wavefunction inside the target to be the same as the incident plane wave,

ψ(r ′) ≈ 1

(2π)3/2
eikz

′

. (20.4.1)

Recall that the wavevectors of the incident and scattered wavefunctions are k = kẑ and k′ = kr̂

respectively, so that kz′ = k · r′. Equation (20.2.28) then reduces to an integral that can be

evaluated for any given potential,

fk(θ, φ) ≈ − m

2πh̄2

∫
d3r ′ ei(

~k−~k ′)·~r ′

V (r ′). (20.4.2)
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Note that in this first-order Born approximation, the sign of the potential does not make any

difference, since it enters linearly in the scattering amplitude, which then gets squared to give
dσ
dΩ

= |fk(θ, φ)|2. In particular, within the leading Born approximation, an attractive potential

gives the same differential cross-section as a repulsive potential with the same magnitude.

Before proceeding to use it, let us first address the question of the validity of the Born

approximation. Intuitively, this relies on the potential not being too strong. Consider the

wavefunction form of the Lippmann–Schwinger equation valid inside the target region, as it

appeared in eq. (20.2.22) before we took the large r limit. To make a rough estimate, let us

call a the characteristic range of the potential, meaning that V (r) is significant only for r < a.

Then we can require that in the right side of eq. (20.2.22) the correction term is much smaller

in magnitude than the plane wave term,

2m

h̄2

∣∣∣∣
∫
d3r ′

eik|~r−~r
′|

4π|~r − ~r ′|V (r′) eikz
′

∣∣∣∣ ≪ 1, (20.4.3)

for r < a, where we have presumptively replaced the wavefunction ψ by its putative approxi-

mation eq. (20.4.1). To make things easier, we can just consider r close to the origin, where the

correction might be expected to be largest, or at least not much smaller than at other points.

Then a rough condition for validity of the Born approximation is

m

2πh̄2

∣∣∣∣
∫
d3r ′

1

r′
eik(r

′+z′)V (r′)

∣∣∣∣ ≪ 1. (20.4.4)

Now, we make the further approximation of taking k ≈ 0 and replacing the potential by its

average over r′ < a, a constant factor that we will call V . The rest of the integral is then

∫
d3r ′

1

r′
= 4π

∫ a

0

dr′ r′ = 2πa2. (20.4.5)

Thus our estimate for the validity condition of the Born approximation is

ma2

h̄2
|V | ≪ 1, (20.4.6)

where a and V are the characteristic range and strength of the potential. This could have been

guessed merely on dimensional grounds, at least in the low-energy limit of small k. However,

this estimate for the range of validity of the Born approximation can often be too conservative,

particularly for larger k, because then the oscillation of the integrand can produce efficient

cancellation in the left side of eq. (20.4.3), not accounted for in our rough estimate. In that

case, dimensional analysis suggests that the weaker condition ma|V |/h̄2k ≪ 1 could suffice.

Let us now consider examples of the leading Born approximation. An important special

case is that of a spherically symmetric potential, so that the scattering amplitude has azimuthal
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k

qk ′

θ/2

Figure 20.4.1: Geometry of vectors involved in elastic scattering
from a potential. The initial and final wavevectors k and k′ have
equal length k. The vector q = k−k′, where h̄q is the momentum
transferred from the initial particle to the scattering potential, has
length q = 2k sin(θ/2), where θ is the angle between k and k′.

symmetry (no dependence on φ). Define

q = k − k′, (20.4.7)

so that h̄q is the momentum transferred from the initial particle to the scattering potential. (See

Figure 20.4.1.) Then fk(θ) only depends on k and θ through the combination

q = |k − k′ | = 2k sin(θ/2). (20.4.8)

Indeed, eq. (20.4.2) becomes

fk(θ) = − m

2πh̄2

∫
d3r ′ V (r′) eiqr

′cos θ′, (20.4.9)

where we have taken advantage of the spherical symmetry to choose our r′ coordinate system

in the integral so that q is in the cos θ′ = 0 direction. It follows that

fk(θ) = − m

2πh̄2

∫ ∞

0

dr′r′2
∫ 2π

0

dφ′
∫ 1

−1
d(cos θ′) V (r′) eiqr

′ cos θ′ (20.4.10)

=
im

h̄2q

∫ ∞

0

dr′r′V (r′)
(
eiqr

′ − e−iqr′
)
, (20.4.11)

which we can rewrite, without the distracting primes, as

fk(θ) = −2m

h̄2q

∫ ∞

0

dr rV (r) sin(qr). (20.4.12)

This is the first-order Born approximation result for the scattering amplitude with an arbitrary

spherically symmetric potential. Note that in this case, fk(θ) is always real. In the low-energy

approximation q → 0, one can use sin(qr) ≈ qr to find that

fk(θ) = −2m
h̄2

∫ ∞

0

dr r2V (r), (small q limit), (20.4.13)

which is independent of q, and therefore independent of θ. In the opposite limit of very large q,

eq. (20.4.12) gives fk(θ)→ 0 because of the q in the denominator together with the cancellation

due to the very rapid oscillation of sin(qr) in the integrand.

As an example, consider the Yukawa potential, named after Hideki Yukawa, who used it

in 1935 to model the strong interactions between nucleons due to the exchange of mesons. It is

V (r) = −g
r
e−r/a, (20.4.14)
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where g and a are constants with units of [(energy)(length)] and [length], respectively. For

r ≪ a, this has the same form as a Coulomb potential. However, for large r ≫ a, the potential

approaches 0 exponentially faster than the Coulomb potential does. For that reason it is some-

times also known as the screened Coulomb potential, and a can be thought of as the range

of the potential. Applying eq. (20.4.12) gives

fk(θ) =
2mg

h̄2q

∫ ∞

0

dr e−r/a sin(qr) =
2mg

h̄2
1

q2 + 1/a2
. (20.4.15)

Now we can use q2 = 4k2 sin2(θ/2) = 2k2(1− cos θ), to find

dσ

dΩ
= |fk(θ)|2 =

(
2mg

h̄2

)2
1

[2k2(1− cos θ) + 1/a2]2
(20.4.16)

in the Born approximation. If we take the long-range limit a→∞ and let −g = Z1Z2e
2, then

dσ

dΩ
=

Z2
1Z

2
2e

4m2

4h̄4k4 sin4(θ/2)
=

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
, (20.4.17)

where in the last expression we used E = h̄2k2/2m. This is the same differential scattering cross-

section as we found for the corresponding classical Rutherford scattering problem in section 20.1.

In the limit of low-energy scattering from the Yukawa potential, the rough condition for

validity of the Born approximation is obtained by taking V = g/a in eq. (20.4.6), so

|g| ≪ h̄2/ma. (20.4.18)

This can be compared to the condition necessary for a bound state to exist, which can be shown

(for example, using an appropriate trial wavefunction for the ground state and applying the

variational principle) to be approximately g > 0.84h̄2/ma. The general lesson is that if the

potential allows a bound state, then it is too strong for the Born approximation to be valid for

low E. However, it can be valid for larger E, meaning k ≫ 1/a.

Returning to the general scattering problem, let us consider how to extend the Born approx-

imation beyond leading order. We can start with the expression eq. (20.2.34) for the transition

operator, and use the expansion (I −X)−1 = I +X +X2 +X3 + · · · . The result is

T = V + V
1

E −H0 + iǫ
V + V

1

E −H0 + iǫ
V

1

E −H0 + iǫ
V + · · · . (20.4.19)

The ordering of operators matters, because H0 and V do not commute unless the latter is a

trivial (constant) potential. Recalling, from eq. (20.2.31), that

fk(θ, φ) = −4π
2m

h̄2
〈k′ |T |k〉, (20.4.20)
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V (r1)ei
~k·~r1

e−i
~k′·~r1

V (r1)

V (r2)

G+(r1, r2)

ei
~k·~r1

e−i
~k′·~r2

V (r1)

V (r2)

V (r3)

G+(r1, r2)

G+(r2, r3)

ei
~k·~r1

e−i
~k′·~r3

Figure 20.4.2: Diagrammatic representation of the first three terms in the Born approxima-
tion expansion for the scattering amplitude, f

(1)
k , f

(2)
k , and f

(3)
k from eqs. (20.4.25)–(20.4.27).

Each of the vertex positions rn is integrated over, with an associated factor of 2m/h̄2.

we obtain an expansion in powers of the potential,

fk(θ, φ) = f
(1)
k (θ, φ) + f

(2)
k (θ, φ) + f

(3)
k (θ, φ) + · · · , (20.4.21)

where f (N)(θ, φ) has N factors of the potential V . In particular,

f
(1)
k (θ, φ) = −4π

2m

h̄2
〈k′ |V |k〉 (20.4.22)

is just the leading Born approximation that we have already studied, and the second-order and

third-order contributions in the Born expansion are now seen to be

f
(2)
k (θ, φ) = −4π

2m

h̄2
〈k′ |V 1

E −H0 + iǫ
V |k〉, (20.4.23)

f
(3)
k (θ, φ) = −4π

2m

h̄2
〈k′ |V 1

E −H0 + iǫ
V

1

E −H0 + iǫ
V |k〉, (20.4.24)

etc. Note that the leading Born approximation just amounts to setting T = V in eq. (20.4.20).

We can now work out these contributions in the wavefunction representation, in terms of the

Green function, by using completeness with respect to position and eqs. (20.2.9) and (20.2.8)

for the plane wave and Green function. The results are

f
(1)
k (θ, φ) = − 1

4π

(
2m

h̄2

)∫
d3r1 e

i~k·~r1V (r1)e
−i~k′·~r1, (20.4.25)

f
(2)
k (θ, φ) = − 1

4π

(
2m

h̄2

)2∫
d3r1

∫
d3r2 e

i~k·~r1V (r1)G+(r1, r2)V (r2)e
−i~k ′·~r2, (20.4.26)

f
(3)
k (θ, φ) = − 1

4π

(
2m

h̄2

)3∫
d3r1

∫
d3r2

∫
d3r3 e

i~k·~r1V (r1)G+(r1, r2)V (r2)G+(r2, r3)V (r3)e
−i~k ′·~r3 .

(20.4.27)

A diagrammatic version of these contributions is shown in Figure 20.4.2. The formula for

f
(N)
k (θ, φ) contains N vertices where the scattering potential acts. At each scattering vertex,

labeled n = 1, . . . , N , there is an integration

vertex ↔ 2m

h̄2

∫
d3rn V (rn), (20.4.28)
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and we assign factors

internal lines ↔ G+(rn, rn+1) (20.4.29)

to the lines between consecutive vertices rn and rn+1. There are also two factors

external lines ↔ ei
~k·~r1e−i

~k ′·~rN (20.4.30)

associated with the initial and final momenta, and a single factor of −1/4π.
An intuitive interpretation for the Born expansion is that the particle is described by plane

waves except for interactions with the potential. Between potential interactions, it propagates

according to the Green function of the Helmholtz operator, and the initial and final wavefunc-

tions are free plane-waves. All possible numbers of interactions are summed over, and then all

possible interaction positions are integrated over, to give the total scattering amplitude.

20.5 Spherical potential scattering and the partial wave expansion

Consider scattering from a spherically symmetric potential V (r) = V (r). As usual, we take

the initial particle wavenumber to be k = ẑk, so that we have azimuthal symmetry and the

scattering amplitude can only depend on θ, not φ. This implies that we can write a partial

wave expansion in the orbital angular momentum quantum number l,

fk(θ) =

∞∑

l=0

(2l + 1)Pl (cos θ) fl(k). (20.5.1)

The Pl(cos θ) are the Legendre polynomials, and the factor of 2l + 1 is a convention. This

equation defines the quantities fl(k), called partial wave amplitudes, that appear on the

right side. They can equivalently be viewed as functions fl(E) of the energy E = h̄2k2/2m.

To better understand the partial wave expansion, recall the expansion of a plane wave in the

absence of scattering, worked out at the end of section 9.2,

eikz = eikr cos θ =
∞∑

l=0

(2l + 1)Pl(cos θ) i
ljl(kr). (20.5.2)

The jl(kr) are spherical Bessel functions. For large r, we find from eq. (9.2.18) that

iljl(kr) ≈
eikr − e−ikr+iπl

2ikr
, (r ≫ 1/k). (20.5.3)

Plugging eqs. (20.5.1)-(20.5.3) into eq. (20.2.27) gives the scattering wavefunction

ψ(r) =
1

(2π)3/2

[
eikz + fk(θ)

eikr

r

]
(20.5.4)

=
1

(2π)3/2

[ ∞∑

l=0

(2l + 1)Pl(cos θ)

(
eikr − e−ikr+iπl

2ikr

)
+

∞∑

l=0

(2l + 1)Pl(cos θ)fl(k)
eikr

r

]
,

(20.5.5)
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where the large r condition is implicit. Collecting like terms, we find

ψ(r) =
1

(2π)3/22ik

∞∑

l=0

(2l + 1)Pl(cos θ)

(
[1 + i2kfl(k)]

eikr

r
+ (−1)l+1 e

−ikr

r

)
(20.5.6)

for r → ∞. The terms proportional to eikr and e−ikr are outgoing and incoming spherical

waves, respectively; compare to the discussion around eqs. (9.2.25)–(9.2.28). They are called

the partial waves of angular momentum l. Note that the outgoing spherical waves depend on

the potential V (r) through fl(k). In contrast, the incoming spherical waves do not depend on

fl(k) and therefore do not depend on V (r); they are just a re-writing of the incoming beam.

We are about to prove a crucial fact called partial wave unitarity: the factor 1+ 2ikfl(k)

in eq. (20.5.6) has unit norm, so we can write

1 + i2kfl(k) = ei2δl . (20.5.7)

This defines a set of real numbers δl called the phase shifts of the angular momentum l partial

waves. (The factor of 2 in the exponent is a traditional normalization convention.) Equation

(20.5.7) implies that the effect of the scattering potential is just that each outgoing partial wave

of orbital angular momentum l acquires a phase relative to the corresponding incoming partial

wave, parameterized by the phase shift δl.

To prove that eq.(20.5.7) holds with real δl, we use conservation of probability, based on

the assumption that the potential V (r) just scatters the incoming particles without absorbing

them. For any wavefunction solution ψ(r, t) to the Schrödinger equation, consider the following

integration over the volume of a sphere at very large constant r = R,

0 = − d

dt

∫

r<R

d3r |ψ(r, t)|2 =

∫

r<R

d3r ∇ · J =

∮

r=R

da · J = R2

∫
dΩ Jr

∣∣∣
r=R

. (20.5.8)

Here, the first equality expresses that the conservation of probability dictates that the norm of

the state is fixed in time, the second equality uses the local conservation of probability equation

(5.6.3) in terms of the probability current vector J defined in eq. (5.6.6), and the third equality

uses the Divergence Theorem to express the result in terms of an integral over the surface of

the sphere, with an outward-pointing area element da. Therefore, using

Jr =
ih̄

2m

(
ψ
∂ψ∗

∂r
− ψ∗∂ψ

∂r

)
(20.5.9)

from eq. (5.6.6), we obtain

lim
r→∞

r2
∫
dΩ Im

(
ψ∗
∂ψ

∂r

)
= 0. (20.5.10)
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Since we are considering a spherically symmetric potential, we can consider separately each

common eigenstate of the Hamiltonian and the total angular momentum. So, applying to any

stationary-state wavefunction of the form (for large r),

ψl(r) = (2l + 1)Pl(cos θ)

[
al
eikr

r
+ bl

e−ikr

r

]
, (20.5.11)

we find from eq. (20.5.10),

|al|2 − |bl|2 = 0, (20.5.12)

in which it is notable that the cross-terms containing a∗l bl and alb
∗
l have canceled. Now, in our

case of eq. (20.5.6), we have |bl| = 1 for each l in the superposition (not counting the overall

normalization outside of the summation sign), so |1+2ikfl(k)| = 1 also, establishing eq. (20.5.7).

The intuitive explanation is that the magnitude of each incoming partial wave of fixed angular

momentum l must be equal to the magnitude of the corresponding outgoing partial wave, since

the potential is not creating or destroying particles.

The general scattering problem for a spherically symmetric potential thus reduces to finding

the phase shifts δl appearing in the wavefunction for large r obtained by re-writing eq. (20.5.6),

ψ(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)
[
ei2δleikr − e−i(kr−lπ)

]
/2ikr, (r →∞). (20.5.13)

In the limit that the potential V (r) vanishes, then δl = 0, and more generally the δl parameterize

the effect of V (r) on each l partial wave. We will show before the end of this section that it is

a sufficient approximation to use only the lowest few partial waves l = 0, 1, 2, . . ., except in the

case of very high-energy scattering.

Some useful equivalent ways of writing the relation between the phase shifts and the partial

wave amplitudes fl(k) are, from eq. (20.5.7),

fl(k) =
ei2δl − 1

2ik
=

eiδl sin δl
k

=
1

k(cot δl − i)
. (20.5.14)

Using the next-to-last expression of eq. (20.5.14) in eq. (20.5.1), we have the scattering amplitude

in terms of the phase shifts,

fk(θ) =
1

k

∞∑

l=0

(2l + 1)eiδl sin δl Pl(cos θ). (20.5.15)

This can be used to compute the total cross-section:

σ = 2π

∫ 1

−1
d(cos θ)|fk(θ)|2 (20.5.16)

=
2π

k2

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)ei(δl−δl′) sin(δl) sin(δl′)

∫ 1

−1
d(cos θ)Pl′(cos θ)Pl(cos θ). (20.5.17)
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To simplify this, apply the Legendre polynomial orthogonality condition
∫ 1

−1 duPl′(u)Pl(u) =

δl,l′2/(2l + 1). We arrive at

σ =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl. (20.5.18)

Note that even though the differential cross-section dσ/dΩ = |fk(θ)|2 certainly has interferences

between partial wave amplitudes with different l, there is no such interference in the total

cross-section. As a check, or an alternative derivation, the Optical Theorem tells us that

σ =
4π

k
Im
[
fk(θ = 0)

]
=

4π

k

(
1

k

∞∑

l=0

(2l + 1)Pl(1) sin(δl)Im[eiδl ]

)
, (20.5.19)

which reproduces eq. (20.5.18) after using Im[eiδl ] = sin δl and the Legendre polynomial normal-

ization condition Pl(1) = 1.

An important consequence of eq. (20.5.14), as encoded in eq. (20.5.18), follows if we write

σ =

∞∑

l=0

σl, (20.5.20)

where σl is the contribution from orbital angular momentum l. Then sin2 δl ≤ 1 implies

σl ≤
4π

k2
(2l + 1). (20.5.21)

This is known as the partial wave unitarity bound. Equality is achieved only if sin2 δl = 1,

which implies δl = (n+ 1/2)π for integer n. In that case, σl is said to saturate the partial wave

unitarity bound. Remarkably, this bound on the contribution σl for each partial wave applies

no matter how strong the scattering potential is. It becomes stronger with increasing energy, as

it can be rewritten

σl ≤
2πh̄2

mE
(2l + 1), (20.5.22)

and it should be viewed as a requirement imposed by the conservation of probability.

Partial wave unitarity also restricts the values that fl(k) can take to a circle of radius 1/2k

in the complex plane, as given by the first equality of eq. (20.5.14) and illustrated in Figure

20.5.1. If δl is small, then fl(k) is near the origin, and is almost purely real. This is realized

in the leading Born approximation limit. If instead |fl(k)| is maximal, so that the partial wave

unitarity bound eq. (20.5.21) is saturated, then fl(k) is at the top of the circle and is almost

pure imaginary, equal to i/k.
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Im[fl(k)]

Re[fl(k)]

1/k

1/2k−1/2k

2δl

Figure 20.5.1: Partial wave unitarity illustrated:
the possible values of the partial wave amplitude
fl(k) = (ei2δl − 1)/2ik lie on a circle with ra-
dius 1/2k in the upper-half complex plane, and
are related to the phase shift angle δl as shown.
The Born approximation limit is realized near
the bottom of the circle, for small sin δl, which
gives small and nearly real fl(k). The partial
wave unitarity bound eq. (20.5.21) is saturated
for fl(k) ≈ i/k, near the top of the circle, with
sin2 δl = 1, so δl = (n + 1/2)π for integer n.

Consider potentials that vanish completely† outside of a finite range, so that V (r) = 0 for

r > R. Then the exact (not just the large r limit) wavefunction for a stationary scattering state

can be written as, taking into account the azimuthal symmetry,

ψ(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)Fl(r), (20.5.23)

where the radial wavefunction for the angular momentum l partial wave is

Fl(r) =

{
Al(r) (for r ≤ R),

Bl(r) (for r ≥ R).
(20.5.24)

The exact form of the function Al(r) may be quite difficult to obtain, since it depends on the

scattering potential. However, since we are taking the potential to vanish for r ≥ R, the function

Bl(r) must be a superposition of the free-particle solutions that we found in section 9.2,

Bl(r) = clh
(1)
l (kr) + dlh

(2)
l (kr), (20.5.25)

where cl and dl are constant coefficients, and h
(1)
l and h

(2)
l are the spherical Hankel functions

h
(1)
l (kr) = jl(kr) + inl(kr) ∼

ei(kr−lπ/2)

ikr
, (20.5.26)

h
(2)
l (kr) = jl(kr)− inl(kr) ∼ −

e−i(kr−lπ/2)

ikr
, (20.5.27)

where the large r asymptotic forms are shown. Matching to our scattering wavefunction for

large r, eq. (20.5.13), we can solve for the constants cl and dl in terms of the phase shifts δl.

The result is

Bl(r) =
1

2
eiπl/2

[
ei2δlh

(1)
l (kr) + h

(2)
l (kr)

]
, (20.5.28)

†This is done mostly for convenience; such potentials are not completely realistic. However, the results we
are about to obtain are often a good approximation, provided that the potential V (r) is instead suitably small
at r = R and decreases for large r faster than 1/r. This can often be realized just by choosing R large enough.
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or equivalently,

Bl(r) = eiπl/2eiδl [cos(δl) jl(kr)− sin(δl)nl(kr)] . (20.5.29)

To obtain scattering state solutions, one can now adopt the following strategy. First, the

difficult part: solve the time-independent Schrödinger differential equation for Al(r) in the region

of non-zero potential, r ≤ R. Because this is a second-order differential equation in r, in general

there will be two linearly independent solutions with arbitrary coefficients. To fix the coefficients,

match these solutions to eq. (20.5.29) at r = R, using continuity of the wavefunction,

Al(R) = Bl(R), (20.5.30)

and, if the potential is finite at r = R, continuity of the derivative

A′l(R) = B′l(R). (20.5.31)

Since the Bl(R) are given in eq. (20.5.29) in terms of known functions, one can solve for the δl.

To write the solution as compactly as possible, it is useful to define the quantities

αl ≡ A′l(R)/Al(R), (20.5.32)

in which the overall normalization cancels. Then, since eqs. (20.5.30) and (20.5.31) imply

αl = B′l(R)/Bl(R), (20.5.33)

we obtain the general solution for the phase shift using eq. (20.5.29),

tan δl =
αljl(kR)− kj′l(kR)
αlnl(kR)− kn′l(kR)

. (20.5.34)

Summarizing: once the αl have been found using eq. (20.5.32), the phase shifts can be calcu-

lated from eq.(20.5.34), and then used in eq. (20.5.15) to obtain fk(θ), which in turn gives the

differential cross-section |fk(θ)|2.
The expansions of the spherical Bessel and Neumann functions as given in eqs. (9.2.15) and

(9.2.16) can now be used to expand eq. (20.5.34) as a series in kR. At leading order in the

expansion, the result is

tan δl =
(kR)2l+1(l − Rαl)

(2l − 1)!! (2l + 1)!! (l + 1 +Rαl)
. (20.5.35)

For l = 0, 1, 2, 3, and 4, the denominator factor (2l−1)!! (2l+1)!! is respectively 1, 3, 45, 1575, and

99225, so the coefficient of (kR)2l+1 gets smaller rapidly as l increases. For low and intermediate
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energies (meaning as long as kR is not very large compared to 1), it is therefore justified to keep

only the first few partial wave contributions, as we had promised to show earlier.

Let us now specialize to the low energy limit, kR≪ 1, where it is justified to neglect all but

the s-wave phase shift δ0 contribution, which behaves like tan δ0 ∝ k and provides an isotropic

differential cross-section. Expanding the l = 0 case of eq. (20.5.34) to the next-to-leading order

in k, the result can be parameterized in the form

k cot δ0 = −1

a
+

1

2
r0k

2 + · · · , (20.5.36)

which defines length scales a and r0, called the scattering length and the effective range

respectively. In terms of R and α0 = A′0(R)/A0(R), one finds

a =
α0R

2

1 + α0R
(20.5.37)

and the determination of r0 is left as an exercise. The scattering length a can be either positive

or negative depending on the sign of α0, and can be much larger in magnitude than the length

scale R built into the potential, as we will see. In terms of these parameters, we can evaluate

the low-energy, and therefore s-wave, cross-section from eq. (20.5.18),

σ =
4π

k2
1

1 + cot2 δ0
=

4πa2

1 + (1− r0/a)a2k2
, (20.5.38)

where terms of higher order than k2 have been consistently neglected in the denominator. In

the extreme low-energy approximation, σ has a simple dependence on the scattering length,

σ ≈ 4πa2. (20.5.39)

In principle, a, r0, and higher order contributions to eq. (20.5.36) can be obtained experimentally

from the energy dependence and interference effects in the low-energy limit.

20.6 Bound states, resonances, and poles in scattering amplitudes

The partial wave scattering amplitudes and cross-sections, viewed as functions of the energy E

analytically continued to the complex domain, have an analytic structure that conveys informa-

tion about the potential. As we will explain in this section, a pole (divergence) in the partial

wave scattering amplitude corresponds either to a true bound state, or to a resonance, also

known as a quasi-bound state, of the potential V (r).

First, consider the case that the potential has one or more discrete bound states. We assume

that the constant part of the potential has been fixed so that it vanishes at large distances,

V (∞) = 0, so that the condition for a bound state is an isolated eigenvalue Ebound < 0 for
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the time-independent Schrödinger equation. To uncover the connection between such states

and the scattering amplitude, consider the unbound scattering solutions for the wavefunction

ψE(~r) with positive E = h̄2k2/2m. Here k is the wavenumber far from the origin as discussed

in section 20.1 and 20.2, with the asymptotic form of the wavefunction for large r as given in

eq. (20.5.13). Suppose we try making the replacement k → iκ in that wavefunction, where κ is

now taken to be a real number. It follows that the solution so obtained, if it exists, will have

energy Ebound = −h̄2κ2/2m < 0 and therefore will be a bound state.

The only obstacle to constructing bound state wavefunction solutions in this way is that

they will almost always be hopelessly non-normalizable, and therefore unphysical. To see this,

note that the asymptotic form for large r given in eq. (20.5.13) will be, after k → iκ,

ψ(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)
[
−ei2δle−κr + (−1)leκr

]
/2κr, (r →∞). (20.6.1)

The term proportional to e−κr is sensible, but the term eκr evidently gives a probability density

that diverges exponentially for large r. It appears that this wavefunction would describe a

physically absurd state in which the probability to find the particle in any finite region is

vanishingly small compared to the probability to find it arbitrarily far away from the origin.

However, this solution can be salvaged for special, isolated values of the energy. Since we are

studying spherically symmetric potential, we can look for eigenstates of the total orbital angular

momentum. Taking a term of fixed l in eq. (20.6.1), and re-normalizing the wavefunction by

multiplying by a constant factor −2(2π)3/2e−i2δl/(2l + 1), we have

ψl(r) = Pl(cos θ)

[
e−κr +

(−1)l+1

ei2δl
eκr
]
/κr, (r →∞). (20.6.2)

In order to re-interpret this wavefunction as a sensible (normalizable) energy and angular mo-

mentum eigenstate wavefunction at large r, it is necessary to eliminate the offending second

term by requiring

ei2δl →∞. (20.6.3)

We conclude that a true bound state for the potential V (r) with negative energy Ebound must

correspond to a pole in ei2δl , and thus in the scattering amplitude fl(k) = (ei2δl−1)/(2ik), when

viewed as a function of energy analytically continued to E = Ebound < 0. The orbital angular

momentum quantum number of the bound state is l. So, one can relate the bound state energies,

and even their angular momenta, to the poles in the partial-wave scattering amplitudes.

Since scattering solutions always have positive energy, and the bound states always have

negative energy, one never actually hits the bound state pole directly in scattering experiments.
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Indeed, this is clear from the fact that for positive E, partial wave unitarity tells us that ei2δl

has norm 1. Nevertheless, the presence of the bound states can be inferred from the functional

dependence of ei2δl (and thus the cross-section) on E, particularly if −Ebound is small.

As an example, consider low-energy (small k) scattering as discussed in equations (20.5.36)–

(20.5.39) of the previous section. Taking k → iκ in eq. (20.5.36), we see from eq. (20.5.14) that

the s-wave scattering amplitude can have a pole at the solution to

κ =
1

a
+

1

2
r0κ

2, (20.6.4)

with κ positive to ensure that the bound-state wavefunction is well-behaved at r → ∞. Thus,

if the scattering length a is found to be positive and not too small, one can predict a weakly

bound state with κ ≈ 1/a and energy close to

Ebound ≈ − h̄2

2ma2
. (20.6.5)

Including the effect of r0, this is more precisely

Ebound ≈ − h̄
2κ2

2m
, (20.6.6)

where κ is the smaller solution to the quadratic equation (20.6.4), approximately

κ ≈ 1

a
+

r0
2a2

. (20.6.7)

The low-energy s-wave cross-section eq. (20.5.38) in the presence of a weakly bound state with

energy Ebound < 0 can now be written in the convenient form

σ0 ≈
4πa2

1−E/Ebound
, (20.6.8)

as dictated by the E = 0 limit found in eq. (20.5.39), together with the requirement of a pole

at E = Ebound.

Returning to the case of general (not necessarily small) k, the bound-state energies are not

the only possible poles in the partial wave amplitude. To see this, let us look for peaks in the

cross-section. The partial wave cross-section from eq. (20.5.18) can be rewritten as

σl =
4π

k2
2l + 1

1 + cot2 δl
, (20.6.9)

where cot2 δl is often quite large, as for example in the Born approximation limit. However, if

it happens for some E that cot δl ≈ 0, then σl will peak at that energy, saturating the partial

wave unitarity bound. Suppose that E = Eres is a resonant energy that makes cot δl = 0. For

energies that are close to this, we can expand cot δl in E −Eres, so that

cot(δl) = cot(δl)
∣∣∣
E=Eres

+(E − Eres)
d

dE
cot(δl)

∣∣∣
E=Eres

+O(E − Eres)
2. (20.6.10)
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σl
2πh̄2(2l+1)
mEres

0
EEres

Γ

δl

(n+ 1)π

(n+ 1
2 )π

nπ

EEres

slope = 2/Γ

Figure 20.6.1: Behavior of the partial-wave cross-section σl and the phase shift δl as a
function of the scattering energy E near a resonance pole Eres − iΓ/2. In the left figure,
the partial-wave cross-section is given by the Breit–Wigner lineshape. The phase shift δl
increases by π near each resonance, and for the lowest such resonance n in the right figure
can be taken to be 0.

The first term on the right vanishes by assumption, and we define the quantity Γ, with units of

energy, according to

2

Γ
= − d

dE
cot(δl)

∣∣∣
E=Eres

, (20.6.11)

so that, near the resonant energy,

cot(δl) ≈ −2(E −Eres)/Γ. (20.6.12)

Using this in eq. (20.6.9) gives, for E close to Eres,

σl ≈
4π(2l + 1)

k2
Γ2/4

(E − Eres)2 + Γ2/4
. (20.6.13)

Excluding the energy dependence of the 1/k2 = h̄2/2mE factor, this is the Breit–Wigner, or

Lorentzian, lineshape with full width at half maximum (FWHM) Γ for the quasi-bound state

resonance with angular momentum l and energy Eres. It is depicted in Figure 20.6.1.

Near E = Eres, eq. (20.6.12) tells us that the phase shift behaves like

δl ≈ π (n + 1/2) + tan−1
(
E − Eres

Γ/2

)
, (20.6.14)

for some integer n. This behavior is also sketched in Figure 20.6.1, showing that the phase shift

rises through π(n + 1/2) near a resonant energy. These resonances correspond to poles in the

partial wave scattering amplitude as a function of complex energy, at E = Eres − iΓ/2, because

fl(k) =
1

k (cot δl − i)
≈ − Γ/2k

E − Eres + iΓ/2
, (20.6.15)
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Veff(r)

0
r

Ebound < 0

Veff(r)

0 r

Eres > 0

Figure 20.6.2: Sketches of example effective potentials Veff(r) and energies for a true bound
state with l = 0 (left) and a quasi-bound state resonance (right), which will cause the
scattering amplitude and the cross-section to have poles at E = Ebound < 0 or at E =
Eres − iΓ/2, respectively. In the latter case, the local minimum of the effective potential
could be either negative (as shown) or positive, and could arise from the combination of an
attractive potential V (r) < 0 and the repulsive centrifugal core h̄2l(l + 1)/2mr2.

which follows from eq. (20.5.14). The assignment of complex energy Eres − iΓ/2 is appropriate

for an unstable state, as discussed at the end of section 5.6.

Figure 20.6.2 shows plausible potential shapes that could give rise to true bound state (left

panel) and resonant quasi-bound state (right panel) poles in the scattering amplitude. Recall

from our discussion at the end of section 9.4 that in three dimensions, the existence of a true

bound state with energy Ebound < 0 is not guaranteed unless the potential well is sufficiently

deep. Unlike a true bound state, a quasi-bound state resonant energy Eres is positive. One

way that such a quasi-bound state can arise is from the interplay between an attractive central

potential V (r) and the orbital angular momentum contribution to the effective potential for the

radial wavefunction in the Schrödinger equation (recall the discussion in section 9.1),

Veff(r) = V (r) +
h̄2l(l + 1)

2mr2
. (20.6.16)

For l 6= 0, the centrifugal term is repulsive and grows stronger at small r. The potential shown

in the right panel of Figure 20.6.2 has a finite barrier height between its minimum well and the

asymptotic region at very large distances where it vanishes. Any corresponding state peaked

inside the effective well with positive energy is not a true bound state; the wavefunction will

always leak outside by tunneling. This is the reason for the terminology “quasi-bound state”.

Since a quasi-bound state resonant pole occurs only for complex E, it again can never be hit

directly in scattering experiments, but can be inferred from the complex analytic singularity

structure of the scattering amplitudes. The smaller Γ is, the closer one can approach the
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Re[E]

Im[E]

resonances
(quasi-bound states)

true bound states

Figure 20.6.3: Positions of poles of the partial wave
amplitudes and ei2δl , in the complex energy plane.
Quasi-bound state resonances have poles in the ana-
lytic continuation to complex E below the real E axis,
at E = Eres − iΓ/2. True bound states have poles on
the negative real E axis, at E = Ebound < 0. Physical
scattering energies are only on the positive real E axis.
Therefore, these poles are never directly accessed in
scattering, where ei2δl is always finite with unit norm,
but their influence can be seen in the dependence of
the cross-section on energy.

resonance pole. However, ei2δl always has unit norm for physical (real positive) values of the

scattering energy E.

A schematic map of the two kinds of poles in the complex E plane for ei2δl , and therefore

for fl(k), are shown in Figure 20.6.3. They consist of true bound states on the negative real E

axis and quasi-bound states below the positive real E axis.

20.7 Examples of scattering from spherical potentials

Consider the scattering of a particle from a hard (impenetrable) sphere, so that the potential is

V (r) =

{ ∞ (for r ≤ R),

0 (for r ≥ R).
(20.7.1)

This is the quantum mechanical version of the classical scattering of a particle from a hard

sphere, discussed in section 20.1. In this particular case, it is not necessary to use eqs. (20.5.31)–

(20.5.34), because the solution for r ≤ R is trivial,

ψ(r) = 0 (r ≤ R), (20.7.2)

corresponding to Al(r) = 0. Meanwhile, for r ≥ R, we write

ψ(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)Bl(r), (20.7.3)

with Bl(r) given by eq. (20.5.29). To match to the vanishing solution at r = R, we need

Bl(R) = 0, so

tan δl = jl(kR)/nl(kR), (l = 0, 1, 2, . . .) (20.7.4)

for each of the s-wave, p-wave, d-wave, . . . partial shifts. This is especially simple for the s-wave,

tan δ0 = [sin(kR)/kR] / [− cos(kR)/kR] = − tan(kR), (20.7.5)
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rF0(r)

R r

Figure 20.7.1: The solid line shows the s-wave radial wavefunction rF0(r) as a function of
r, for scattering from a hard sphere with V = ∞ in the shaded region r < R. The dashed
line shows what rF0(r) would be if the potential were absent, corresponding to free particle
propagation. The potential pushes out the wavefunction by a distance R, giving a phase
shift δ0 = −kR.

with the solution

δ0 = −kR. (20.7.6)

Therefore, for l = 0,

B0(r) ∝ cos δ0
sin(kr)

kr
+ sin δ0

cos(kr)

kr
=

1

kr
sin(kr + δ0) =

1

kr
sin(k(r − R)). (20.7.7)

As illustrated in Figure 20.7.1, the outgoing s-wave is just shifted out by a distance R, compared

to the free-particle solution.

More generally, consider all δl in the low-energy limit kR ≪ 1 in which the wavenumber is

much smaller than the inverse size of the hard sphere. In that case,

jl(kR) ≈
(kR)l

(2l + 1)!!
, nl(kR) ≈ −

(2l − 1)!!

(kR)l+1
, (20.7.8)

so, from eq. (20.7.4),

tan δl = − (kR)2l+1

(2l − 1)!! (2l + 1)!!
, (20.7.9)

which quickly becomes very small as l is increased. [Note that this result for tan δl could also

be obtained simply as the αl →∞ limit of eq. (20.5.35).]

In the extreme low energy limit kR≪ 1, only the s-wave contributes, resulting in

dσ

dΩ
≈ |f0(k)|2 =

sin2 δ0
k2

=
sin2(kR)

k2
≈ R2, (kR≪ 1). (20.7.10)

Since this is isotropic (constant in both φ and cos θ), the total cross-section is

σ =

∫
dΩ

dσ

dΩ
= 4πR2, (kR≪ 1), (20.7.11)
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which is 4 times the classical result σclassical = πR2 that we found in section eq (20.1.13).

In the opposite limit of very high scattering energy, many δl can contribute. For kR≫ 1, one

can show that σ ≈ 2πR2, which is still twice the classical result. This can be understood from

the fact that since V (r) is discontinuous at r = R, no matter how big E is, the wavefunction

varies sharply on length scales ≪ 1/k. To get σ = πR2 = σclassical, it is necessary to take a

smoothed potential (a “softened hard sphere”), in which the the potential decreases to V = 0

over a distance scale much smaller than R but much larger than 1/k.

As another example, consider a finite well or barrier, with potential

V (r) =

{
V0 (for r ≤ R),

0 (for r ≥ R),
(20.7.12)

where the constant V0 can be either negative (an attractive well) or positive (a repulsive core

potential). Let us only consider s-wave scattering, valid at low energy. Outside the potential’s

range, the radial wavefunction is proportional to

F0(r) = eiδ0 [cos δ0j0(kr)− sin δ0n0(kr)] = eiδ0
sin(kr + δ0)

kr
, (r ≥ R), (20.7.13)

with the normalization chosen arbitrarily, and

h̄2k2

2m
= E. (20.7.14)

Inside the potential’s range, assuming E > V0, the radial wavefunction is

F0(r) = Cj0(k
′r) = C sin(k′r)/k′r, (r ≤ R), (20.7.15)

with a relative normalization constant C, and

h̄2k′2

2m
= E − V0. (20.7.16)

The solution n0(k
′r) is rejected here, because it is not normalizable at r = 0, as discussed in

section 9.2. Now we match the solutions at r = R, to obtain an equation that determines C,

C sin(k′R)/k′R = eiδ0 sin(kR + δ0)/kR. (20.7.17)

We also match dψ/dr at r = R, by specializing the convenient general results of eqs. (20.5.32)

and (20.5.34),

tan δ0 =
(k/k′) sin(k′R) cos(kR)− cos(k′R) sin(kR)

(k/k′) sin(k′R) sin(kR) + cos(k′R) cos(kR)
. (20.7.18)

The preceding assumed E > V0. If instead E < V0, then k
′ will be imaginary, but eqs. (20.7.17)

and (20.7.18) are valid after making the replacements sin(k′R)/k′ → sinh(κR)/κ and cos(k′R)→
cosh(κR), where h̄2κ2/2m = V0 − E.
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rF0(r)

r

δ0/k

rF0(r)

r

|δ0|/k

Figure 20.7.2: The solid lines show examples of the s-wave radial wavefunction rF0(r) as
a function of r, for scattering from a spherical-well potential in the shaded region, if the
potential is attractive (top) or repulsive (bottom). The dashed line shows the corresponding
result if the potential is absent. The potential pulls in (for the attractive case, δ0 > 0) or
pushes out (for the repulsive case, δ0 < 0) the wavefunction by a distance |δ0|/k.

Graphs of the l = 0 wavefunction normalized by a factor of the radial coordinate are shown

in Figure 20.7.2 for the attractive case V0 < 0 so that k′ > k, and the repulsive case V0 > 0 so

that k′ < k, respectively. In the attractive case, δ0 is positive, and the potential “pulls in” the

l = 0 wave by a shift δ0/k in the position of the nodes. In contrast, for the repulsive case, δ0 is

negative, and the potential can be thought of as “pushing out” the l = 0 wave by an amount

|δ0|/k. Things are a little more complicated for the partial waves with l > 0, and for potentials

that are not piecewise constant. However, the essential qualitative feature remains that outgoing

partial waves are pulled in by attractive potentials (because the Schrödinger equation dictates

that the wavefunction oscillates faster in the region where the potential energy is smaller) and

pushed out by repulsive potentials (because the wavefunction oscillates more slowly, or not at

all, in regions with larger potential energy).

The phase shift δ0 is small in magnitude for E ≫ |V0|. In the case of an attractive potential

(V0 < 0), the phase shift increases as E decreases until it reaches δ0 = π/2, where the s-wave

cross-section is as large as it can possibly be, for a given energy,

σl=0

∣∣∣
max

=
4π

k2
sin2(π/2) =

2πh̄2

mE
. (20.7.19)

In this case, the scattering has saturated the partial wave unitarity bound. Decreasing E even
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more, eventually one may reach δ0 = π, for which

σl=0

∣∣∣
min

=
4π

k2
sin2(π) = 0. (20.7.20)

This is the Ramsauer–Townsend effect; there is no scattering even though V (r) is non-negligible

and attractive, because the de Broglie wavelength happens to match the characteristic length

scale of the potential. We have seen this type of behavior already in a one-dimensional scattering

example, at the end of section 6.6, and in the real world it is seen in a suppression of the cross-

section for electron scattering from inert gas atoms Ar, Kr, and Xe.

In the low-energy limit, one can find the scattering length and effective range defined in

eq. (20.5.36), by expanding eq. (20.7.18) for small k. The results are

a = R− tan(k0R)/k0, (20.7.21)

r0 = R− R3

3a2
− 1

ak20
, (20.7.22)

where we have defined

k0 =
√
−2mV0/h̄. (20.7.23)

If k0R happens to be slightly larger than π/2, then the scattering length can be large, a ≫ R.

This corresponds to the existence of an s-wave bound state with small binding energy Ebound ≈
−h̄2/2ma2, and then σ ≈ 4πa2/(1− E/Ebound) as discussed in the previous section.

20.8 Neutron-proton scattering and the deuteron

The low-energy scattering of neutrons and protons provides a famous practical illustration of

some of the ideas discussed in sections 20.5–20.7. The masses of the proton and neutron are

respectively mp = 938.272 MeV/c2 and mn = 939.565 MeV/c2, with a reduced mass in the

two-body problem (see section 4.2),

µ =
mnmp

mn +mp
≈ 469.459 MeV/c2. (20.8.1)

The potential between nucleons arises from the rather complicated strong nuclear force, but the

spectrum of bound states for two nucleons is very simple. There are no pp or nn bound states,

and there is only one bound state for the neutron and the proton. This is the deuteron (d), a

state with spin 1 and binding energy

−Ed
bound = 2.2246 MeV, (20.8.2)

which is determined by measuring the energy of the photon (γ) emitted when a proton captures

a neutron, n+p→ d+γ. The binding energy 2.2246 MeV is rather small in comparison to other
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nuclear binding energies per nucleon pair. Since the deuteron is weakly bound, there should be

a pole in the neutron-proton scattering cross-section when extrapolated to negative energy.

Let us now understand the angular momentum and parity quantum numbers of the deuteron,

as a prerequisite to figuring out its role in neutron-proton scattering. Since the full Hamiltonian

must be invariant under rotations, the energy eigenstates are also eigenstates of the square

of the total angular momentum operator J , obtained by combining the spins of both of the

constituents Sp and Sn and their total orbital angular momentum L in the center-of-mass frame.

The statement that the deuteron has spin 1 means that the operator J2 has eigenvalue h̄2J(J+1),

where J = 1. The neutron and proton each have spin 1/2, so the possible total constituent spin

combinations for the deuteron are S = 0 and S = 1. The J = 1 spin of the deuteron is then

obtained by combining this with the total orbital angular momentum quantum number L in

the center-of-mass frame, which can therefore only be L = 0, 1, or 2. Now, the magnetic dipole

moment of the deuteron is known experimentally to be µd = 0.85744µN , which is very close to

the sum of the dipole moments of the neutron and proton, µp+µn = 2.79285µN − 1.91304µN =

0.87981µN . This indicates that the deuteron magnetic moment is very nearly realized when

the spins are aligned in the S = 1 state, without much contribution from the orbital motion

of the charged proton. Therefore, the deuteron must have predominantly L = 0. However,

there are also two clear experimental indications that it cannot be a pure L = 0 eigenstate.

First, there is the small but significant discrepancy in the magnetic moment sum noted above.

Second, the deuteron is found experimentally to have a non-zero electric quadrupole moment,

which would be inconsistent with the perfect spherical symmetry of a pure L = 0 eigenstate.

The strong interaction Hamiltonian responsible for binding the deuteron is known (from its

more fundamental formulation, quantum chromo-dynamics, or QCD) to commute with parity.

Therefore, eq. (8.7.8) applies, and it must be possible to assign the deuteron a definite parity

eigenvalue ηd = (−1)Lηpηn. Here, ηp and ηn are the intrinsic parities of the proton and neutron,

which are conventionally taken to be ηp = ηn = 1. To have a definite parity eigenvalue ηd = ±1,
the deuteron must be a superposition of states with either all L even, or all L odd. Since we

already know that the state is mostly L = 0, this implies ηd = +1 and rules out the possibility

of any L = 1 component. Therefore, the deuteron must be a linear combination of L = 0 and

L = 2. In order to give J = 1, it follows that the combination of constituent spins can only be

pure S = 1. In spectroscopic notation, the deuteron state is predominantly 2S+1LJ = 3S1, but

with a few percent 3D1 component.

For our present purposes, the most important feature of the previous paragraph is that the

deuteron is a pure S = 1 combination. The absence of a bound state in the S = 0 combination

shows that the strong nuclear force is spin-dependent, which means that we should also keep
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track of the S = 0 and S = 1 combinations separately in scattering. The data for low-energy

scattering of neutrons and protons in the S = 0 and S = 1 combinations yield scattering lengths

and effective ranges, as defined in eq. (20.5.36), of

aS=1 = 5.42 fm, rS=1
0 = 1.75 fm, (20.8.3)

aS=0 = −23.7 fm, rS=0
0 = 2.7 fm, (20.8.4)

in units of 1 fm = 10−15 meters. The positive scattering length in the S = 1 channel supports

the hypothesis of a bound state. Solving eq. (20.6.4) gives a prediction for the bound state of

κ = 0.231 fm−1, (20.8.5)

which then yields the estimate

Ebound = − h̄
2κ2

2µ
= −2.22 MeV, (20.8.6)

in good agreement† with the experimental deuteron binding energy quoted in eq. (20.8.2). Now,

using the facts that the E = 0 cross-section for s-wave scattering is 4πa2, and that it must have

a pole at E = Ed
bound, we have as in eq. (20.6.8),

σS=1 =
4π
(
aS=1

)2

1−E/Ed
bound

≈ 3.69 b

1 + E/2.2246 MeV
, (20.8.7)

where we have used the traditional nuclear physics unit of cross-section

1 b = 100 fm2 = 10−28 meters2, (20.8.8)

called‡ a barn.

In the S = 0 channel for neutron-proton scattering, the fact that the scattering length aS=0

is negative confirms that there is no bound state. Still, we can write the cross-section in a form

similar to eq. (20.8.7), by using eq. (20.5.38),

σS=0 =
4π
(
aS=0

)2

1 + (kaS=0)2(1− rS=0
0 /aS=0)

≈ 70.6 b

1 + E/(0.066 MeV)
. (20.8.9)

However, it should be emphasized that there really is no neutron-proton bound state with

energy near −0.066 MeV. Such a pole in the scattering cross-section at negative real E, but

†Neglecting rS=1
0 here would give much worse agreement. However, it must be admitted that the excellence of

the agreement as presented here is partly accidental. Since eq. (20.5.36) was truncated beyond order k2, rather
than solving the quadratic equation (20.6.4) for κ, one could just as consistently approximate it by eq. (20.6.7),
which would have given instead κ = 0.214 fm−1 and thus Ebound = −1.91 MeV.

‡The origin of the unit name refers to the fact that, by nuclear physics standards, this is not a small area,
jokingly considered as easy to hit as “the broad side of a barn” in idiomatic North American English. Collider
experiments at the present high-energy frontier often discuss cross-sections in units of picobarns or femtobarns.
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with a negative scattering length a and therefore not associated with an actual bound state, is

sometimes called a virtual bound state. It can be interpreted as an indication that if the

S = 0 neutron-proton potential were just slightly more attractive, then the scattering length

would be positive and a bound state would exist. Such virtual bound state poles should not be

confused with the quasi-bound state resonances with positive energy discussed in section 20.6.

The initial neutron and proton spins are often random and unmeasured, so that the four

spin states (1 for S = 0 and 3 for S = 1) are equally likely. Averaging over them, the prediction

for the total neutron-proton cross-section in the E → 0 limit is

σ =
1

4
σS=0 +

3

4
σS=1 = 20.4 b, (20.8.10)

in good agreement with experimental observation.

The data eqs. (20.8.3) and (20.8.4) can also be used to make a crude model for the neutron-

proton potential in the form of a spherical well as in (20.7.12), by solving eqs. (20.7.21)–(20.7.23)

numerically for R and k0 =
√
−2µV0/h̄. The results are

RS=1 = 2.07 fm, kS=1
0 = 0.91 fm−1, V S=1

0 = −34 MeV, (20.8.11)

RS=0 = 2.59 fm, kS=0
0 = 0.58 fm−1, V S=0

0 = −14 MeV. (20.8.12)

From the analysis of section 9.4, the condition for such a spherical-well potential to have n

bound states with l = 0 can be written as [see eq. (9.4.12), and recall that V0 and a there are

−V0 and R here]

k0R/π > n− 1/2. (20.8.13)

Putting in the numbers, the S = 1 potential model predicts exactly one bound state, and the

S = 0 potential model barely misses having a bound state, in accord with the observed facts.

The deuteron is surprisingly weakly bound, in the sense that the binding energy (2.2246 MeV)

is more than an order of magnitude smaller than the depth of the potential (34 MeV).

20.9 Scattering of identical particles

So far, we have neglected the possibility that the scattering particles might be identical. To

remedy this, first consider the scattering of two identical bosons with no spin (for example, α

particles, also known as 4He nuclei). The total wavefunction will then be of the form

Ψ(r1, r2) = ei~p·(~r1+~r2)/2h̄ψ(r), (20.9.1)

where, following eqs. (4.2.4) and (4.2.5), p is the total momentum of the two particles, (~r1+~r2)/2

is the center-of-mass position, and

r = r1 − r2 (20.9.2)
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is the relative position vector. By choosing the center-of-mass reference frame, we can take

p = 0. Because the particles are spin-less bosons, this wavefunction must be symmetric under

r1 ↔ r2, so the relative-position wavefunction must obey

ψ(r) = ψ(−r), (20.9.3)

in other words, it must have even parity. Therefore, instead of a scattering wavefunction pro-

portional to eikz + fk(θ)
eikr

r
, we must have (dropping the overall normalization in this section)

ψ(r) = eikz + e−ikz + [fk(θ) + fk(π − θ)]
eikr

r
(20.9.4)

for the scattering wavefunction in the center-of-momentum frame. In this way, both incoming

particles, and both outgoing particles, are described on an equal footing. The differential cross-

section is therefore of the form

dσ

dΩ
= |fk(θ) + fk(π − θ)|2 = |fk(θ)|2 + |fk(π − θ)|2 + 2Re [f ∗k (θ)fk(π − θ)] . (20.9.5)

This incorporates the fact that if one outgoing particle is detected at angle θ, then by momentum

conservation the other must be found at angle π−θ. It is a necessary feature that the differential

cross-section should be equal at those two angles, due to the intrinsic indistinguishability of the

particles.

As a consequence, there must be constructive interference in the amplitudes for identical

spin-less bosons for right-angle scattering,

dσ

dΩ

∣∣∣
θ=π/2

= 4|fk(π/2)|2. (20.9.6)

Also, only even-l partial waves can contribute in the identical boson scattering case, because

fk(θ) + fk(π − θ) =
∞∑

l=0

(2l + 1) [Pl(cos θ) + Pl(cos(π − θ))] fl(k) (20.9.7)

= 2
∑

even l

(2l + 1)Pl(cos θ)fl(k), (20.9.8)

where the terms with odd l have canceled because Pl(cos(π − θ)) = (−1)lPl(cos θ).
Now consider the case of scattering of electrons, or other identical spin-1/2 fermions. This

can be divided into two cases, depending on the total spin quantum number S.

First, suppose that S = 0. Since that is an antisymmetric spin state, the spatial wavefunction

must be symmetric under exchange of the labels 1, 2, so ψ(r) = ψ(−r), and

dσ

dΩ

S=0

= |fk(θ) + fk(π − θ)|2 , (20.9.9)
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and so all of the remarks just made for scattering of identical bosons go through as before.

If instead the total spin state is the symmetric S = 1 combination, then the spatial wave-

function must be antisymmetric under exchange of the labels 1, 2, so ψ(r) = −ψ(−r) with odd

parity. Therefore, the scattering wavefunction must be proportional to

ψ(r) = eikz − e−ikz + [fk(θ)− fk(π − θ)]
eikr

r
, (20.9.10)

which implies

dσ

dΩ

S=1

= |fk(θ)|2 + |fk(π − θ)|2 − 2Re [f ∗k (θ)fk(π − θ)] . (20.9.11)

It follows that there is perfect destructive interference for right-angle scattering,

dσ

dΩ

S=1∣∣∣
θ=π/2

= 0 (20.9.12)

for identical fermions in the symmetric spin state. Furthermore, only partial waves with odd l

contribute.

In many cases, the fermion spins are random and unmeasured. If so, then four spin states

(1 for S = 0 and 3 for S = 1) are equally likely, so the observed unpolarized cross-section for

identical fermions is the weighted average:

dσ

dΩ

∣∣∣
unpolarized

=
1

4

dσ

dΩ

S=0

+
3

4

dσ

dΩ

S=1

(20.9.13)

= |fk(θ)|2 + |fk(π − θ)|2 − Re [f ∗k (θ)fk(π − θ)] , (20.9.14)

where the absence of a factor of 2 in front of the interference term is not a typographical error.

For right angle scattering, the result is partial destructive interference.

In all of the cases of scattering of identical particles, it is important to note that when

integrating the differential cross-section to get the total cross-section, one must include a factor

of 1/2 to avoid double counting. This is because a state with one particle at (θ, φ) also has an

identical particle at (π − θ, φ + π). Therefore, the state specified by the presence of a particle

at (θ, φ) and the state specified by (π− θ, φ+ π) are actually the same state, and should not be

counted twice. So, one has

σ =
1

2

∫
dΩ

dσ

dΩ
(identical particles) (20.9.15)

for both the identical boson and identical fermion case. Note that this factor of 1/2 for identical

particles comes in at the level of the total cross-section, not the differential cross-section.
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21 Entanglement and correlations in measurements

21.1 The Einstein–Podolsky–Rosen and Bohm problem

Although Einstein played an important role in the early development of quantum mechanics, like

many others he was troubled by some of its implications. This was in part due to his discomfort

with the reliance of Postulates 4 and 5 on probabilities for the result of a measurement and the

subsequent state, rather than completely deterministic time evolution. Even after he grudgingly

accepted the possibility of non-determinism, Einstein found the implications of entanglement

of quantum states to be difficult to accept, and doubted whether quantum mechanics as then

formulated could be regarded as a complete framework.

In 1935, Einstein, Boris Podolsky, and Nathan Rosen [Phys. Rev. 47, 777, (1935)] described

a thought experiment that highlighted the perceived weirdness associated with measurements

involving entangled states. This problem is often called the EPR paradox, but it should be

emphasized at the outset that although it may be troubling to humans accustomed to classical

ways of thinking, in the end we will find that there is really nothing paradoxical about it.

(Indeed, EPR themselves did not call it a “paradox”.) EPR described the problem in terms of

measurements of position and momentum, but David Bohm later distilled the basic ideas into a

simpler form in terms of measurements of components of spins, and that is the version we will

now describe.

Consider a system of two spin-1/2 particles, labeled 1 and 2, in a state with the total spin

~S = ~S1 + ~S2 equal to 0,

|S = 0〉 =
1√
2

(
|+ẑ,−ẑ〉 − |−ẑ,+ẑ〉

)
. (21.1.1)

Throughout this chapter, we will employ spin operators with a factor of h̄/2 extracted, so

~σk =
2

h̄
~Sk (21.1.2)

for particle k, represented by the Pauli matrices. All three components of ~σ1 commute with

all three components of ~σ2, because they operate on distinct one-particle Hilbert spaces. The

notation in eq. (21.1.1) is such that, for example, |+ẑ,−ẑ〉 ≡ |+ẑ〉1 ⊗ |−ẑ〉2 is an eigenstate of

both σ1z and σ2z, with eigenvalues +1 and −1, respectively. The state of the system is thus

represented by a ket in the tensor product of the Hilbert spaces for the two individual particles.

We are purposely avoiding the usual ↑ and ↓ notations for the spins, because we will want to

consider components of the spins other than the z component. Indeed, since the S = 0 state

is spherically symmetric, there is nothing special about the ẑ direction, and up to irrelevant

phases we could just as easily write the state in eq. (21.1.1) as

|S = 0〉 =
1√
2

(
|+n̂,−n̂〉 − |−n̂,+n̂〉

)
(21.1.3)
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π0e± e∓

A B

Figure 21.1.1: The setup for Bohm’s version of the EPR problem. Decays of neutral pions at rest
produce two spin-1/2 particles moving in opposite directions, in an entangled spin state with
total spin 0, and with spatial wavefunctions that have no overlap at late times. Two distant
observers Alice and Bob can each measure any component they choose of the spin of the particle
that arrives at their respective detector A or B.

for any unit vector direction n̂. In any case, there is no way to write this total spin-0 ket as a

single product of kets in the individual spin-1/2 particle Hilbert spaces; no matter the choice

of bases for the individual spins, it is always a non-trivial linear combination of such products.

Therefore, it is an example of an entangled state as defined in section 2.9.

The particles also have spatial wavefunctions that we need not write explicitly. The only

thing important for us is that they describe localized wavepackets moving away from each other.

The two spins, although entangled, are therefore separated by a large distance at late times.

This is sometimes called non-local entanglement.

One way to realize such a state would be an electron-positron pair from the decay of a neutral

pion at rest in a suitable reference frame,†

π0 → e−e+. (21.1.4)

The pion has spin 0, and since we are in its rest frame, the total angular momentum is also 0.

We imagine that this experiment will be conducted many times, with two ideal observers Alice

and Bob located on opposite sides of the point where the pions decay, and far away, as shown

in Figure 21.1.1. They each have a small detector capable of measuring any desired component

of the spin of a particle moving through it. Since the detectors are far apart, where the spatial

wavefunctions for the two particles have no overlap, Alice can only measure one of the spins,

and Bob can only measure the other. Let us choose the labeling of the particles so that Alice

always makes measurements on particle 1 (which on an event-by-event basis might be either the

electron or the positron), and Bob always on particle 2. They can each measure any component

of that spin, or choose to make no measurement. For simplicity, we assume that the Hamiltonian

is just that of free particles, so that the spin states have no Hamiltonian time evolution.

Now suppose that Alice measures σ1z. The result will be either +1 or −1, with equal

probability. If the result was +1, then if Bob measured σ2z the result will necessarily be −1.
†This is a very rare decay, occurring for less than 10−7 of all neutral pions. Also, it is not easy to produce

neutral pions at rest in a laboratory frame in the first place. But this is a thought experiment; we only care that
it is possible in principle, not about such practical difficulties.
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This follows from the form of the state eq. (21.1.1). We can say that Alice has collapsed the state

to |+ẑ,−ẑ〉 by her measurement of σ1z , so that the only possible outcome for Bob is σ2z = −1.
Conversely, if Alice instead measured σ1z to be −1, then if Bob measures σ2z the result must be

+1. There is a perfect anticorrelation between their measurements.

This perfect anticorrelation in Alice’s and Bob’s measured results for σ1z and σ2z is not at

all surprising. In fact, it is actually much more general, in the sense that it does not even rely

on quantum mechanics being correct. It would inevitably be true in any alternative theory, just

as long as angular momentum is conserved. There is a similar perfect anticorrelation between

the measured electric charges; if Alice sees that particle 1 is an electron, then she can be sure

that Bob’s particle 2 will be a positron, due to conservation of charge.

However, spins are much more interesting than electric charges, in the sense that they reveal

the nontrivial aspects of measurement correlations in quantum mechanics. This is because spins

can point in arbitrary directions, and Alice and Bob could choose to make measurements of

different spin components. For example, suppose Alice measures σ1x but Bob still measures σ2z .

If Alice obtains the result σ1x = +1, then from eq. (21.1.3) with n̂ = x̂, we can say that the

total state collapses to |+x̂,−x̂〉. Then, since |−x̂〉2 = (|+ẑ〉2 − |−ẑ〉2)/
√
2, Bob will obtain the

results σ2z = ±1 randomly, and with equal probability. The same random results will occur for

Bob’s measurement of σ2z if the result of Alice’s measurement was instead σ1x = −1, or if she
decided to make no measurement at all.

To be more general, suppose that Alice and Bob measure arbitrary spin components â·~σ1 and
b̂ · ~σ2, respectively, for unit vectors â and b̂. Neither can predict with certainty what the other

will measure on an event-by-event basis (unless â and b̂ are parallel), but there is a statistical

correlation between their measurements, which can be expressed as the expectation value

C(â, b̂) = 〈â · ~σ1 b̂ · ~σ2〉 (21.1.5)

in the state |S = 0〉. This can be straightforwardly evaluated. One labor-saving trick for doing

so is to note that when acting on the state |S = 0〉, one can always replace b̂ · ~σ2 with −b̂ · ~σ1,
followed by use of the Pauli matrix identity (â · ~σ)(b̂ · ~σ) = â · b̂+ i(â× b̂) · ~σ from eq. (8.2.17).

Then, since the expectation value of ~σ1 in the S = 0 state vanishes, the prediction from quantum

mechanics is

C(â, b̂) = −â · b̂. (21.1.6)

This agrees with the special cases that we have already discussed; for â = b̂, the measurements

of Alice and Bob are perfectly anticorrelated, and when â and b̂ are orthogonal there is no

correlation. More generally, C(â, b̂) is always in the range from −1 (perfect anticorrelation) to

+1 (perfect correlation).
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The issue that bothered EPR and Bohm is that Alice and Bob might be so far apart from

each other that there is no possibility of communication between them when they each choose

which spin measurement to make. They could even make their individual decisions about which

spin components to measure at random for each individual pion decay after it has occurred

and while the electron and positron are already in flight. Despite this, the possible results

obtained by Bob would seem to depend on the choices made by Alice, and vice versa. At the

last moment before particle 1 arrives, Alice could decide to measure σ1z. Then, from the results

of Alice’s measurement alone, she can be immediately certain of the result if Bob measures σ2z ,

a measurement occurring far away and quite out of her control. Or, she could decide instead

to measure σ1x, in which case (regardless of the outcome of her own measurement) she would

correctly assign a probability of 50% to the outcome of a measurement by Bob of σ2z. The same

follows if she decided to make no measurement at all. This is all despite the fact that no signal

carrying the news of her last-moment decision could reach Bob before his measurement occurs.

Einstein referred to this sort of thing as “spooky action at a distance”, and believed that it

pointed to an incompleteness of the quantum theory as a description of reality, but Nature does

not care whether we, or even Einstein, find a phenomenon peculiar or spooky. There are two

things to check to make sure that there is not a problem with the quantum theory, let alone a

true paradox.

The first thing to check is that the predictions of quantum mechanics are really consistent

and unambiguous. In the preceding, we have phrased things in terms of Alice’s measurement

collapsing the state, with implications for what Bob will see. But the situation is symmetrical;

we could just as easily phrase any pair of measurements in terms of Bob collapsing the state,

with implications for what Alice will see. For the case in which Alice measured σ1z = +1

and Bob measured σ2z = −1, we could choose to say that Bob has collapsed the total state

to |+ẑ,−ẑ〉, which means that the only possible result for Alice’s measurement was, indeed,

σ1z = +1. This outcome is fully consistent with the interpretation in which Alice’s measurement

collapses the state. A third way is to view the collapse symmetrically, by taking Alice’s and

Bob’s measurements to be a single measurement. (This is possible because all components of

~σ1 and ~σ2 commute with each other.) Again, the state collapses to |+ẑ,−ẑ〉. For any given

outcome of both measurements, quantum mechanics indeed always gives the same result for the

collapse of the state regardless of what order we assign to the measurements.‡ To see this more

generally, suppose that Alice measures â · ~σ1 to be +1 and Bob measures b̂ · ~σ2 to be +1. All

‡This is necessary, because the measurements of Alice and Bob are space-like separated events, so special
relativity tells us that there is no invariant way of saying which measurement occurred first. In some inertial
reference frames, Alice’s measurement came first, but in other reference frames Bob’s came first, and in still
others they are exactly simultaneous.
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Figure 21.1.2: If instantaneous communication were
possible, then you could send a signal to a relay R
which would be instantaneous (at constant time) in
some other reference frame, but would arrive at an
earlier time in your own reference frame. The relay
could then send a signal, instantaneous in a different
reference frame, which could be used to somehow pre-
vent your parents from meeting, preventing your own
birth. Fortunately, instantaneous communication is
not a consequence of quantum mechanics.

three ways of describing the state collapse give the same probabilities for this outcome, and the

same final state after both measurements. The simple, but essential, reason for this consistency

is that the projection operators Pâ·~σ1 = |+â〉1 〈+â|1 and Pb̂·~σ2 = |+b̂〉2 〈+b̂|2 commute.

The second thing to check is that quantum mechanics does not provide any instantaneous

communication between the distant Alice and Bob, whose measurements are events occurring at

a space-like separation in the language of special relativity. In general, an instantaneous (or even

faster-than-light) communication between space-like separated points in one inertial reference

frame would appear to travel backwards in time in some other inertial frame that is moving with

respect to the first. This would imply causality paradoxes, because signals by combinations of

actors in different inertial frames can be constructed in such a way that a message could be

received on a time-like path before it is sent from a previous point on the same path. For

example, you could use instantaneous communications to prevent your parents from meeting,

thus preventing your own birth, as illustrated in Figure 21.1.2.

To see that Alice and Bob’s experiments do not actually allow instantaneous communica-

tion, we need only note that no matter what each of them chooses to measure, the results of

their individual measurements will always appear to be completely random, until they meet to

compare them or at least send a conventional signal at a speed not exceeding that of light. Even

if Alice and Bob agree to seek maximum anticorrelation by measuring σ1z and σ2z respectively

(and even assuming that they do not break their promises!), each will record their data as a

random sequence of +1 and −1, containing no information. After communicating by conven-

tional means, they can check that their results do have correlations in agreement with quantum

mechanics, but there is no information transmitted in either direction until that happens.

Why, then, did EPR and Bohm view the situation as disturbing? The essential issue is that

one must not fall into the trap of thinking of the state of a system as always defined only by local

information, a viewpoint sometimes called local realism. If you try to think about particle

2 only in terms of non-entangled kets such as |+ẑ〉2 or |−x̂〉2, then it might indeed appear
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paradoxical that Alice’s distant measurement of S1z can affect what Bob measures. However,

that way of thinking about the state of particle 2 is explicitly rejected by quantum mechanics,

which insists that we take into account the full non-local entanglement in order to get correct

and consistent predictions. The real value of the EPRB problem is that it forces us to recognize

this essential truth about how quantum mechanics works.

One sometimes sees grand pronouncements, inspired by the EPRB problem, along the lines

of “quantum mechanics is non-local”. However, one must be careful about what this means,

because the word “non-local” has several completely different meanings in physics. For example,

it is possible to define a Hamiltonian that has non-local dynamics; that is what quantum field

theorists usually mean when they talk about the possibility of non-locality. That is certainly

not the case in the preceding discussion, as we took H = 0 for the spin degrees of freedom,

and even the H describing the time evolution of the spatial wavefunctions was (implicitly) just

that of free particle propagation. The entanglement of the state occurred due to perfectly local

processes. The rejection of local realism in favor of allowing non-local entanglement of states

does not imply that we need to accept a non-local Hamiltonian, for which there is absolutely no

experimental evidence.

21.2 Hidden variables and Bell’s inequality

Having learned in the previous section that standard quantum mechanics rejects local realism in

favor of allowing non-local entanglement, it must be recognized that this is a falsifiable hypothesis

to be experimentally tested against alternatives. There is a general class of alternatives called

hidden variables theories, which attempt to incorporate local realism in a way consistent with

experiment. In the remaining sections of this chapter, we will consider local hidden variables

theories, see how they make predictions that are incompatible with quantum mechanics, and

understand why experiments show that they cannot be correct.

Hidden variables are supposed to be quantities that we cannot directly measure or control,

but are necessary to completely characterize the state of a system. They could be part of

some completely deterministic proposed alternative to quantum mechanics, or could be an extra

part of a framework that otherwise looks like conventional quantum mechanics. In the latter

version, it is not just a ket |ψ〉 that describes the state of the system, but rather the state ket

together with the hidden variable(s), which we will generically call λ. They are supposed to be

distributed in a way that is either truly random, or just appears to be random because of our

lack of knowledge of them. For any given system, the distribution of the hidden variables can
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be described by a probability density function ρ(λ) with the properties

∫
dλ ρ(λ) = 1, (21.2.1)

ρ(λ) ≥ 0, (21.2.2)

so that ρ(λ) dλ is the probability that it will be found between λ and λ+ dλ. The function ρ(λ)

might depend on the particulars of the system and the type of experiment one is doing.

The presence of λ is supposed to be responsible for the illusion of random outcomes of

measurements. For some observable A, and a state fully characterized by non-hidden properties

ψ and hidden variables λ, the hypothesis is that the outcome of a measurement is not random,

but rather determined as some function

measured value of A = fA,ψ(λ). (21.2.3)

The function fA,ψ(λ) can be chosen so that as λ runs over all possible values, it returns all

allowed values predicted by quantum mechanics for the measurement of A in the state ψ. Since

we have no way of knowing what λ is, the results of individual measurements appear random.

Then, the mean value of many measurements of A for apparently identical states ψ will be

A =

∫
dλ ρ(λ) fA,ψ(λ). (21.2.4)

This is the counterpart of the expectation value 〈A〉 = 〈ψ|A|ψ〉 in standard quantum theory.

For example, let us consider how this would work for a system with two spin-1/2’s combined

to have total spin S = 0 in an entangled state coming from π0 decay, as considered in section

21.1. To be general, consider the measurements by Alice and Bob of arbitrary components of

the spins of particle 1 and 2, say â · ~σ1 and b̂ · ~σ2, where â and b̂ are unit vectors. Then the

outcomes for Alice’s and Bob’s measurements are respectively determined by some functions

â · ~σ1 = fA(â, λ) = ±1, (21.2.5)

b̂ · ~σ2 = fB(b̂, λ) = ±1. (21.2.6)

To incorporate local realism, the value of λ is assumed to be the same for both particles 1 and 2,

and is fixed at the moment that the parent pion decays. Thus, in each event, λ has an unknown,

but specific, value, which already determines what the ensuing measurement of any component

of the spins will be, through the functions fA and fB.

In the case of spins, the functions determining the measurement outcomes must satisfy some

constraints. First, a measured value for n̂ · ~σk is the same as the negative of a measured value

for −n̂ · ~σk, so fA(n̂, λ) = −fA(−n̂, λ) and fB(n̂, λ) = −fB(−n̂, λ), for any n̂. Also, to be
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consistent with angular momentum conservation, it must be true that whenever â = b̂ = n̂, the

measurement results are perfectly anticorrelated in the case of the EPRB setup. Thus,

fB(n̂, λ) = −fA(n̂, λ) (21.2.7)

so that the measurements are consistent with total spin S = 0.

We can now write down the hidden-variables prediction for the statistical correlation of

Alice’s and Bob’s measurements. It is given by the product of the possible measurement results,

integrated over the hidden variables weighted by their probability density,

C(â, b̂) =

∫
dλ ρ(λ) fA(â, λ)fB(b̂, λ). (21.2.8)

This hidden variables result should be contrasted with the prediction of quantum mechanics

that we found in eq. (21.1.6), which was C(â, b̂)QM = −â · b̂.
The hidden variables result for C(â, b̂) is clearly less specific than the quantum mechanics

prediction, because we have not committed to a particular form for the functions ρ, fA, and fB.

Nevertheless, it is possible to draw some specific conclusions. In the case that b̂ = â, the hidden

variables prediction is

C(â, â) =

∫
dλ ρ(λ) fA(â, λ)fB(â, λ) = −

∫
dλ ρ(λ) fA(â, λ)

2 = −
∫
dλ ρ(λ)

= −1, (21.2.9)

where we have used eq. (21.2.7) to get the second equality, then the fact that fA(â, λ) = ±1, and
finally eq. (21.2.1). In this special case, the hidden variables prediction does agree with that of

quantum mechanics. This had to be true simply because in our hidden variables theory we built

in the perfect anticorrelation required by angular momentum conservation, through eq. (21.2.7).

However, for more general â and b̂, it is not immediately clear whether the hidden variables

predictions for C(â, b̂) can be made to always agree with the predictions of quantum mechanics.

In 1964, John S. Bell† answered the question by discovering that the correlations predicted by

hidden variables theories must satisfy an inequality that is clearly violated by the correlations

predicted by quantum mechanics. Surprisingly, this is true for any choices of the functions ρ(λ),

fA(â, λ), and fA(b̂, λ) in the hidden variables theory. This provides a way for experiment to

decisively settle the question of whether the general hidden variables idea or standard quantum

mechanics is true.

Bell’s inequality is remarkably simple to derive. We start with

C(â, b̂)− C(â, ĉ) =

∫
dλ ρ(λ)

[
fA(â, λ)fB(b̂, λ)− fA(â, λ)fB(ĉ, λ)

]
(21.2.10)

= −
∫
dλ ρ(λ)

[
fA(â, λ)fA(b̂, λ)− fA(â, λ)fA(ĉ, λ)

]
, (21.2.11)

†Physics, 1, 195, (1964), reprinted in J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, (1987).
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where we have used eq. (21.2.7) to replace fB in favor of fA. Multiply the second term on the

right side by 1 = [fA(b̂, λ)]
2, and rearrange to get

C(â, b̂)− C(â, ĉ) = −
∫
dλ ρ(λ)

[
1− fA(b̂, λ)fA(ĉ, λ)

]
fA(â, λ)fA(b̂, λ). (21.2.12)

Now, take the absolute value of both sides, and use the general fact that the absolute value of

any integral is always less than or equal to the integral of the magnitude of the integrand:

∣∣∣∣
∫
dλF (λ)

∣∣∣∣ ≤
∫
dλ |F (λ)| . (21.2.13)

Let F (λ) be the integrand on the right side of eq. (21.2.12). Then since fA(â, λ)fA(b̂, λ) is

always equal to ±1, and both ρ(λ) and 1 − fA(b̂, λ)fA(ĉ, λ) are always non-negative, we have

|F (λ)| = ρ(λ)
[
1− fA(b̂, λ)fA(ĉ, λ)

]
. Therefore we obtain

∣∣C(â, b̂)− C(â, ĉ)
∣∣ ≤

∫
dλ ρ(λ)

[
1− fA(b̂, λ)fA(ĉ, λ)

]
(21.2.14)

or, using eqs. (21.2.1) and (21.2.7) and (21.2.8) again,

∣∣C(â, b̂)− C(â, ĉ)
∣∣ ≤ 1 + C(b̂, ĉ). (21.2.15)

This is Bell’s original inequality governing correlations of spin-1/2 measurements in a total spin

S = 0 state in hidden variables theories.

To see that Bell’s inequality is predicted to be violated by quantum mechanics, consider

what happens if we substitute the quantum prediction of the correlation from eq. (21.1.6) into

eq. (21.2.15),

∣∣â · b̂− â · ĉ
∣∣ ≤ 1− b̂ · ĉ. (21.2.16)

This reduces the question to a purely geometric claim about three arbitrary unit vectors. A

single example will be sufficient. Take â = x̂, b̂ = ŷ, and ĉ = (x̂ + ŷ)/
√
2. The left side

of eq. (21.2.16) is 1/
√
2, while the right side is 1 − 1/

√
2, which is less, so the inequality is

violated. Thus, quantum mechanics makes a specific prediction that cannot be satisfied in any

local hidden variables theory.

21.3 Quantum mechanics vs. hidden variables, without inequalities

There are various other versions of Bell’s inequality, which show that quantum mechanics and

hidden variables theories can be distinguished by measuring correlations. In this section we will

discuss another way, which is theoretically even sharper because it does not rely on inequalities
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or statistics, although in practical terms it is harder to realize experimentally. The result in

this example is that quantum mechanics and hidden variables theories make predictions that

disagree, not just for correlations on a statistical basis, but for certain measurements on an

event-by-event basis with 100% probability.

Consider the following entangled state involving three spin-1/2 particles,†

|ψ〉 =
1√
2

(
|+ẑ,+ẑ,+ẑ〉 − |−ẑ,−ẑ,−ẑ〉

)
, (21.3.1)

We assume that the three particles, labeled 1, 2, and 3, start from a central point and are

spatially separated without disturbing the spins. The particles are observed by Alice, Bob,

and Charlie at three remote sites. It is agreed that each of them will independently measure a

random choice of either the x or y component of the spin, so that Alice always measures either

σ1x or σ1y, while Bob always measures σ2x or σ2y, and Charlie always measures σ3x or σ3y. The

experiment is repeated many times, always with the same state |ψ〉, and then the observers meet

to compare their results.

Let us first analyze the situation according to the standard rules of quantum mechanics. The

state |ψ〉 is not an eigenstate of any of the individual spin operators σ1x, σ1y, σ2x, σ2y, σ3x, or

σ3y, and each of the individual measurements of Alice, Bob, and Charlie will have a random

result ±1 with equal probability. However, you can check that |ψ〉 has the remarkable property

that it is an eigenstate of all eight of the operators of the form

Ωabc = σ1aσ2bσ3c, (21.3.2)

where a, b, c are each equal to x or y. For the two operators with a = b = c, the eigenvalue is

−1, and for the other six operators the eigenvalue is +1.

Before meeting, Alice, Bob, and Charlie have not learned anything except that their own

individual measurement results appear completely random. However, consider what they find

when they finally get together to compare their results. They decide to first look only at the

results for cases in which two of them had chosen to measure the y component of the spin, and

the other had measured the x component of the spin. In those cases, we can equivalently say

that they had measured one of the observables Ωxyy or Ωyxy or Ωyyx, and because

Ωxyy |ψ〉 = Ωyxy |ψ〉 = Ωyyx |ψ〉 = |ψ〉 , (21.3.3)

they must find that the product of their measured results was definitely +1, every time. (Some-

times all three of them will have measured the result to be +1, and sometimes two of them will

†This state and the discussion below follows N. David Mermin Am. J. Phys. 58, 731, (1990), which in turn
follows a similar four-spin state proposed by Daniel Greenberger, Michael Horne, and Anton Zeilinger, in Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe (1989).
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have obtained −1 and the other will have obtained +1.) On the other hand, in the cases where

all three had chosen to measure the x component of the spin, we can equivalently say that their

choices amounted to measuring Ωxxx. Now, since

Ωxxx |ψ〉 = − |ψ〉 , (21.3.4)

it must be that the product of their three measurements is −1. (Sometimes they will all get the

result −1, and sometimes two will get +1 and the other will get −1.)
So far, we have analyzed the experiment assuming the predictions of quantum mechanics.

Now let us try to explain these results in terms of a general local hidden variables theory, in

which the measurement of σ1x is supposed to be determined to be some fA(x̂, λ) = ±1 and the

measurement of σ2y is fB(ŷ, λ) = ±1, etc. The hidden variable(s) λ are supposed to be different

for each repetition of the experiment, giving the illusion of randomness. Then, the observed

results for Ωxyy,Ωyxy,Ωyyx would imply that, respectively,

fA(x̂, λ) fB(ŷ, λ) fC(ŷ, λ) = 1, (21.3.5)

fA(ŷ, λ) fB(x̂, λ) fC(ŷ, λ) = 1, (21.3.6)

fA(ŷ, λ) fB(ŷ, λ) fC(x̂, λ) = 1, (21.3.7)

for every λ. Now, multiplying these three equations together, and using fA(ŷ, λ)
2 = fB(ŷ, λ)

2 =

fC(ŷ, λ)
2 = 1, we discover that

fA(x̂, λ) fB(x̂, λ) fC(x̂, λ) = 1. (21.3.8)

This tells us that in those cases where they had all measured the x component of spin, the

product of their measurements should have been +1, with 100% certainty, according to the

hidden variables theory. This is in direct contradiction to the quantum mechanics prediction.

To recapitulate: if we stipulate that the measurement of Ωxyy, Ωyxy, or Ωyyx always gives +1,

then, according to hidden variables theories, measurement of Ωxxx must always give +1 as well.

However, the prediction of quantum mechanics, for the given state |ψ〉, is that Ωxxx always gives
−1. The hidden variables and quantum mechanics hypotheses make contradictory predictions

and cannot both be correct.

21.4 Aspect’s experiments and the demise of local hidden variables

In practice, the most decisive real-world experimental tests, many conducted by Alain Aspect

and collaborators, involve polarizations of photons in entangled states, rather than spin-1/2

systems. In a series of increasingly sensitive experiments, the Bell-type inequalities of local

hidden variables theories have been put to the test and found to be clearly violated. In this
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section, we will describe a Bell-type inequality for hidden variables, and the corresponding

quantum prediction, as tested by A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804

(1982), referred to in the following as the ADR experiment.

Consider observables A(â) and B(b̂) that can only take on the values ±1, and depend on

unit vectors â and b̂, and are associated with spatially separated detectors. These generalize

the spin-1/2 observables â · ~σ1 and b̂ · ~σ2 of Alice and Bob in the previous two sections. The

experiment can change â and b̂ independently at any time. According to the hidden variables

proposal, the measured values are supposed to be determined by some functions

A(â) = fA(â, λ) = ±1, (21.4.1)

B(b̂) = fB(b̂, λ) = ±1. (21.4.2)

The hidden variables λ are assumed to be local, implying that they are the same for A and

B, since they will have originated from a single location and event. Their probability density

distribution is some non-negative function ρ(λ) just as in eqs. (21.2.1). The correlation between

measurement results C(â, b̂) is again given by the formula eq. (21.2.8). However, since the

observables are not necessarily components of angular momenta (and will not be in the ADR

experiment), we will not assume or use eq. (21.2.7). This means that the Bell inequality we are

about to derive applies more generally than the original one.

Consider the following combination of correlations:

C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′) =

∫
dλ ρ(λ)

[
fA(â, λ)fB(b̂, λ)− fA(â, λ)fB(b̂′, λ)

+fA(â
′, λ)fB(b̂, λ) + fA(â

′, λ)fB(b̂
′, λ)

]
(21.4.3)

for arbitrary unit vectors â and â′ associated with observable A, and b̂ and b̂′ associated with

observable B. Since each of the four terms is bounded by −1 and +1, in any conceivable theory

the left side must be in the range from −4 to 4, inclusive. However, in hidden variables theories, a

stronger statement holds. This is because a simple brute-force enumeration of all of the possible

results for the contents of the square brackets on the right side shows that it can only be 2 or

−2. (See Table 21.4.3.) Using eq. (21.2.1), this implies that the magnitude of the integral on the

right side of eq. (21.4.3) is bounded by 2, and so we have another Bell-type result, the CHSH

inequality, named for John Clauser, Michael Horne, Abner Shimony, and Richard Holt,

∣∣C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′)
∣∣ ≤ 2, (21.4.4)

which must be obeyed in any local hidden variables theory.

In the ADR experiment, an excited state of a calcium atom with total angular momentum

J = 0 decays to an intermediate state with J = 1 by emitting one photon in an electric dipole
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fA(â, λ) fA(â
′, λ) fB(b̂, λ) fB(b̂

′, λ) [result]
1 1 1 1 2
1 1 1 −1 2
1 1 −1 1 −2
1 −1 1 1 −2
1 1 −1 −1 −2
1 −1 1 −1 2
1 −1 −1 1 −2
1 −1 −1 −1 2

Table 21.4.3: Enumeration of possible measurement results pertaining to the ADR experiment,
as dictated by eqs. (21.4.1)–(21.4.3), in a theory of local hidden variables. In addition to the
eight possibilities shown, there are eight more in which all measurements have the opposite
signs. The [result] in the last column is the quantity inside the square brackets on the right side
of eq. (21.4.3). It is 2 or −2 in all cases.

transition, and then to another J = 0 state by emitting a second photon in another electric

dipole transition. The photons travel in opposite directions to distant detectors A and B, which

by a choice of coordinates are located on the positive and negative z axis, respectively. Both

photons are emitted with circular polarization, with angular momenta S1z = ±h̄ and S2z = ∓h̄,
in a total spin S = 0 state by angular momentum conservation. Thus, if one photon is in a

L-circular polarization state, then the other also has L-circular polarization, because both its

momentum direction and its spin are opposite to the first. Similarly, the two photons could

both have R-circular polarization.

However, the detectors A and B measure the linear polarizations of the photons, not circular

polarizations, as follows. A linear polarizer sends each photon into one photomultiplier if the

linear polarization is along a selected direction, and into a different one if the linear polarization

is in the orthogonal direction. (The allowed polarizations are always orthogonal to the photon

momentum direction.) If detector A measures the linear polarization along the chosen direction

â, then it records A(â) = +1, and if it instead detects the polarization perpendicular to â, then

it records A(â) = −1. Similarly, if B sees the linear polarization along the chosen direction b̂,

then it records B(b̂) = +1, and if it detects the polarization perpendicular to b̂, then it records

B(b̂) = −1. The experiment is designed so that detector A can switch between two choices

â and â′, and detector B can switch between b̂ and b̂′. The switching is done randomly and

quickly, with times shorter than the light travel time between the two detectors. This avoids

any possibility of a bias of the results by some hypothetical mechanism that might relate the

choices made by the detectors.

Let us now work out the quantum mechanics prediction for the correlations of measurements
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of A(â) and B(b̂). As already noted, the photons are produced in a state where the circular

polarizations are the same, but could be either both L or both R. Since the atomic transitions

have equal amplitudes for these two possibilities due to spherical symmetry, we can write

|S = 0〉 =
1√
2

(
|L, L〉+ |R,R〉

)
. (21.4.5)

where the first and second ket labels refer to the photons that are seen by detectors A and

B, respectively. The single-photon orthobasis states obey 〈R|R〉 = 〈L|L〉 = 1 and 〈L|R〉 =
〈R|L〉 = 0. To make contact with the measurements made by the experiment, it is convenient

to rewrite the state using a linear polarization orthobasis. Our chosen coordinates imply that

the momenta of the photons that reach detectors A and B point in the directions k̂A = ẑ and

k̂B = −ẑ. Then the transformations from the circular polarization orthobases to the linear

polarization orthobases are

|L〉A =
1√
2

(
|x̂〉A − i |ŷ〉A

)
, (21.4.6)

|R〉A =
1√
2

(
|x̂〉A + i |ŷ〉A

)
, (21.4.7)

|L〉B =
1√
2

(
|x̂〉B + i |ŷ〉B

)
, (21.4.8)

|R〉B =
1√
2

(
|x̂〉B − i |ŷ〉B

)
, (21.4.9)

where |x̂〉 and |ŷ〉 are states with linear polarizations along the x and y axes respectively, and

〈x̂|x̂〉 = 〈ŷ|ŷ〉 = 1 and 〈x̂|ŷ〉 = 〈ŷ|x̂〉 = 0 in each case. Using eqs. (21.4.6)–(21.4.9) in eq. (21.4.5),

|S = 0〉 =
1√
2

(
|x̂, x̂〉+ |ŷ, ŷ〉

)
. (21.4.10)

Note that this state has even parity, because it is invariant under (x̂, ŷ)→ (−x̂,−ŷ), in agreement

with the fact that the transition occurred between two even-parity atomic states.

A state |n̂〉 describing a photon with linear polarization n̂ has, up to an arbitrary phase,

〈n̂|x̂〉 = n̂x, 〈n̂|ŷ〉 = n̂y. (21.4.11)

Therefore, if we use |â, b̂〉 to denote the state in which the linear polarizations are â and b̂, then

〈â, b̂|S = 0〉 =
1√
2

(
âxb̂x + ây b̂y

)
, (21.4.12)

again up to an irrelevant phase. So, the probability for the linear polarizations to be observed

as A(â) = 1, B(b̂) = 1 is

1

2
(â · b̂)2 =

1

2
cos2 θab, (21.4.13)
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â

b̂

â′
b̂′

θ

θ

θ

Figure 21.4.1: The configuration for the unit vectors â,
â′, b̂, and b̂′ that provides the maximum violation of the
Bell-type inequality eq. (21.4.4) in the ADR photon po-
larization experiment, using the quantum mechanics pre-
diction of eq. (21.4.15). The three angles labeled θ are
all equal to π/8, so that θab = θa′b = θa′b′ = π/8, and
θab′ = 3π/8.

where θab is the angle between â and b̂. The same result is obtained for the probability to observe

the polarizations both orthogonal to â and b̂, so that A(â) = −1, B(b̂) = −1. The probabilities

to observe A(â) = 1, B(b̂) = −1 and A(â) = −1, B(b̂) = 1 are both

1

2
|â× b̂|2 =

1

2
sin2 θab. (21.4.14)

Weighting each of the outcomes for A(â)B(b̂) by these respective probabilities, we arrive at

C(â, b̂) = 〈A(â)B(b̂)〉 =
1

2
cos2 θab +

1

2
cos2 θab −

1

2
sin2 θab −

1

2
sin2 θab

= cos(2θab). (21.4.15)

This is the quantum mechanics prediction for the correlation.

The local hidden variables Bell inequality, eq. (21.4.4), is incompatible with the quantum

mechanics result of eq. (21.4.15) for many choices of â, â′, b̂, and b̂′. (Note that due to the

geometry of the experiment and the transverse polarization of photons, these four unit vectors

must all lie in the xy plane.) The most extreme violation of the inequality, used in the actual

ADR experiment, occurs if one chooses the unit vectors as depicted in Figure 21.4.1, with

C(â, b̂) = C(â′, b̂) = C(â′, b̂′) = cos(π/4) =
1√
2
, (21.4.16)

C(â, b̂′) = cos(3π/4) = − 1√
2
. (21.4.17)

The (idealized) quantum mechanics prediction for that particular geometry is therefore

∣∣C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′)
∣∣ = 2

√
2 ≈ 2.828. (21.4.18)

The expected quantum mechanics prediction for the ADR experiment as performed was slightly

lower at 2.70 ± 0.05, due to experimental non-ideal realities. This was in excellent agreement

with the actual experimental result 2.697 ± 0.015 reported by ADR. This experimental result

is also completely incompatible with the upper bound of 2 from eq. (21.4.4) in all theories with

local hidden variables.
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Further experiments have only sharpened the result that local hidden variables cannot explain

observed phenomena, and non-local entanglement of states as predicted by quantum mechanics

is both consistent and supported by the experimental evidence. “Local realism” is not real.

Since local hidden variables theories cannot work, one might entertain the possibility of

“non-local hidden variables”, which could allow instantaneous interactions between space-like

separated points. This is hard to rule out in general because it could predict anything, including

causality violation; one might as well explain experiments by invoking sorcery. Furthermore,

non-local hidden variables abandon the original motivation of local realism, and in any case are

a cure for a disease that does not exist.
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22 Feynman path integral approach

22.1 Propagators

Consider a quantum system with a complete set of commuting observables Qa, where a is an

index 1, . . . , n. For example, for a single spin-less particle moving in three-dimensional space,

we have n = 3, and the Qa with a = 1, 2, 3 could be chosen to be the components of the

position coordinate vector R. Alternatively, we could choose the Qa to be the components of

the momentum vector P . For simplicity, we will often suppress the index a, and let the whole

set of CSCO eigenvalues be represented simply as the generic symbol q. We do this to make

room for other subscript labels that will distinguish the values of the q’s at various times. Given

the state ket |ψ〉 of the system, we can then write a wavefunction

ψ(q, t) = 〈q|ψ(t)〉 , (22.1.1)

where |q〉 are the CSCO eigenstates in which each of the observables Qa is known to be equal to

the corresponding eigenvalue qa. This is only possible because the observables Qa are compatible

(commuting).

Recall, from section 3.4, that if the state of the system at time t0 was |ψ(t0)〉, then the state

at time t is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (22.1.2)

where U(t, t0) is the unitary time evolution operator. Using completeness of the Q eigenstates

at some initial time t0, the wavefunction at any later time t is

ψ(q, t) =

∫
dq0 〈q|U(t, t0)|q0〉 〈q0|ψ(t0)〉 . (22.1.3)

It is now useful to define the propagator as the function obtained as the relevant matrix element

of the unitary time-evolution operator,

U(q, t; q0, t0) ≡ 〈q|U(t, t0)|q0〉 , (22.1.4)

so that

ψ(q, t) =

∫
dq0 U(q, t; q0, t0)ψ(q0, t0). (22.1.5)

The utility of the propagator function is that, given the wavefunction ψ(q0, t0) at an initial time

t0, the wavefunction at any other time t can be obtained by doing this integral over q0.

The propagator is the solution to a differential equation, which we can derive by making use

of eq. (3.4.2),

ih̄
∂

∂t
U(q, t; q0, t0) = ih̄ 〈q| ∂

∂t
U(t, t0)|q0〉

]
= 〈q|HU(t, t0)|q0〉 . (22.1.6)
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Consider, for example, the case of a particle moving in three dimensions in a potential V , so

that the Hamiltonian is H = P 2/2m+ V (R). Interpreting the q as the position r, eq. (22.1.5)

becomes

ψ(r, t) =

∫
d3r0 U(r, t; r0, t0)ψ(r0, t). (22.1.7)

where eq. (22.1.6) tells us that

[
ih̄
∂

∂t
+
h̄2∇2

2m
− V (r)

]
U(r, t; r0, t0) = 0. (22.1.8)

Since this is a first-order differential equation in t, it can in principle be solved given the boundary

condition at t = t0, which is U(r, t0; r0, t0) = δ(3)(r−r0). In practice, this might be very difficult,

depending on the choice of potential.

Returning to the general case, suppose that the Hamiltonian does not depend explicitly on

time, so that U(t, t0) = e−i(t−t0)H/h̄, from eq. (3.4.3). If we know all of the H eigenstates |n〉,
with energies En, then using completeness we get

U(q, t; q0, t0) =
∑

n

e−i(t−t0)En/h̄ 〈q|n〉 〈n|q0〉 =
∑

n

e−i(t−t0)En/h̄ψn(q)ψn(q0)
∗, (22.1.9)

where ψn(q) = 〈q|n〉 are the wavefunctions of the orthonormal Hamiltonian eigenstates with

energies En. Thus, the propagator can be evaluated as a sum over products of energy eigenstate

wavefunctions, weighted by phases that vary linearly with time.

As a simple example, consider the propagator for a free particle of mass m, moving in one

dimension, with the position x playing the role of q in the preceding. We have already done the

work for this case, in section 6.2, and the result of eq. (6.2.9) can be rewritten as

U(x, t; x0, t0) =

[
m

2πih̄(t− t0)

]1/2
exp

[
im(x− x0)2
2h̄(t− t0)

]
. (22.1.10)

Repeating these steps for a spin-less free particle moving in three dimensions gives

U(r, t; r0, t0) =

[
m

2πih̄(t− t0)

]3/2
exp

[
im|r − r0|2
2h̄(t− t0)

]
(22.1.11)

for the position-representation propagator.

For a somewhat more involved example, consider the one-dimensional harmonic oscillator,

with the familiar Hamiltonian H = P 2

2m
+ 1

2
mω2X2. One way of writing the propagator is to use

the spectral decomposition as in eq. (22.1.9), which says

U(x, t; x0, t0) =
∞∑

n=0

ψn(x)ψn(x0)
∗e−iω(t−t0)(n+1/2), (22.1.12)
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where ψn(x) are the stationary state wavefunctions of eq. (7.2.28), involving Hermite polynomi-

als. It may therefore come as a surprise that the propagator can be written in a nice form that

does not involve Hermite polynomials or an infinite sum,

U(x, t; x0, t0) =

[
mω

2πih̄ sin(ω(t− t0))

]1/2
exp (iScl[x, t; x0, t0]/h̄) , (22.1.13)

where, for general initial and final positions and times,

Scl[xf , tf ; xi, ti] =
mω

2 sin(ω(tf − ti))
{
(x2f + x2i ) cos(ω(tf − ti))− 2xixf

}
. (22.1.14)

Remarkably, this is the action for the classical trajectory that starts at xi at time ti, and ends

at xf at time tf . Recall that in general the action is defined by

S =

∫ tf

ti

dt L(x, ẋ), (22.1.15)

where L(x, ẋ) is the Lagrangian. In the present case, L = 1
2
mẋ2 − 1

2
mω2x2, and you can check

that eq. (22.1.14) follows from

xcl(t) =
xf sin(ω(t− ti))− xi sin(ω(t− tf ))

sin(ω(tf − ti))
, (22.1.16)

which is the classical trajectory that satisfies the equation of motion ẍ = −ω2x and the initial

and final boundary conditions.

To derive the form of the quantum harmonic oscillator propagator claimed in eq. (22.1.13)

is somewhat non-trivial, but once it has been written down, it is not too hard to verify. This

consists of checking that it obeys the first-order (in time) differential equation

(
ih̄
∂

∂t
+

h̄2

2m

d2

dx2
− 1

2
mω2x2

)
U(x, t; x0, t0) = 0, (22.1.17)

as in eq. (22.1.8), and that it satisfies the correct boundary condition

U(x, t0; x0, t0) = δ(x− x0), (22.1.18)

which is checked by taking the t→ t0 limit of eq. (22.1.13), with the help of eq. (2.2.21).

The propagator for the oscillator in eq. (22.1.13) has several features worthy of note. First,

it is manifestly periodic in time, with the same period 2π/ω as the classical oscillator. Second,

one recovers the free particle propagator of eq. (22.1.10) by taking the limit ω → 0. Finally, it

is intriguing that the only dependence of the quantum propagator on the starting and ending

positions x and x0 comes through the eiS/h̄ factor for the classical trajectory that connects them.

This is a clue for the developments in the next section.
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22.2 Summing over paths

An alternative way of computing the propagator for a quantum system uses the Feynman

sum over paths or sum over histories, developed by Richard P. Feynman in his 1942 PhD

thesis, fulfilling an inspiring but less concrete proposal made earlier by Dirac. Let us write, very

schematically for now,

U(qf , tf ; qi, ti) ∼
∑

paths

(something). (22.2.1)

In this section, we will denote the initial and final CSCO eigenvalue variables and time by (qi, ti)

and (qf , tf) respectively, in order to distinguish them from intermediate times t and positions q

in the following discussion. The “paths” here are trajectories q(t) starting from qi at time ti and

ending with qf at time tf . In the case of a spin-less particle in three dimensions, a path could

be a trajectory given by a function r(t), but it could just as easily be instead a function p(t)

for the momentum vector of the particle. Once we have chosen the CSCO eigenvalue variables,

these paths are arbitrary, in the sense that all paths are included as long as they obey the initial

and final boundary conditions.

The task before us now is to make eq. (22.2.1), including its mysterious summand, more

precise. To motivate this form, note that

U(qf , tf ; qi, ti) = 〈qf |U(tf , t1)U(t1, ti)|qi〉 =
∫
dq1 〈qf |U(tf , t1)|q1〉〈q1|U(t1, ti)|qi〉 , (22.2.2)

where we have chosen an arbitrary time t1 between ti and tf , divided the unitary time evolution

operator accordingly using eq. (3.4.24), and then used completeness of the eigenstates |q1〉. This
can be rewritten as a composition rule for propagators,

U(qf , tf ; qi, ti) =

∫
dq1 U(qf , tf ; q1, t1)U(q1, t1; qi, ti). (22.2.3)

In words, to propagate from time ti to time tf , we can integrate over all of the ways to propagate

from ti to t1, and then from t1 to tf , as indicated in Figure 22.2.1.

We now use the same idea to subdivide the time interval from ti to tf into N time steps

instead of just two, with intermediate times t1, t2, . . . , tN−1, as shown in Figure 22.2.2. At

each time step, we sum (actually, integrate) over all possible qj for j = 1, 2, . . . , N − 1, using

completeness of the states |qj〉 at each step. The result is

U(qf , tf ; qi, ti) =

∫
dq1

∫
dq2 · · ·

∫
dqN−1 U(qf , tf ; qN−1, tN−1)U(qN−1, tN−1; qN−2, tN−2) · · ·

U(q2, t2; q1, t1)U(q1, t1; qi, ti). (22.2.4)

Although this formula is not very practically useful in its present form, it illustrates the truth

of the idea that we can sum over all possible ways to get from qi at time ti to qf at time tf .
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ti

tf

qi

qf

=

∫
dq1

qi

qf

q1

ti

t1

tf

Figure 22.2.1: A diagrammatic representation of the fact that the propagator U(qf , tf ; qi, ti)
obeys a composition law eq. (22.2.3); it is equal to the integral over all possible q1 of the
product U(qf , tf ; q1, t1)U(q1, t1; qi, ti), for any choice of t1.

ti = t0

t1

t2

tN−1

tf = tN

qi

qf

Figure 22.2.2: One possible trajectory, or path, q(t) with initial boundary condition qi at time
ti and final boundary condition qf at time tf . Time increases moving up in the figure, and is
divided into equal slices with variables q1, q2, . . . , qN−1 at intermediate times t1, t2, . . . , tN−1.
The path integral is obtained by taking the limit of N → ∞ time steps with infinitesimal
time intervals ǫ = tj − tj−1 = (tf − ti)/N , and integrating over all q1, q2, . . . , qN−1.

To realize this idea in a more useful way, Feynman proposed that the propagator can be

computed as a sum over all possible space-time paths connecting the initial and final configu-

rations specified by the arguments of the propagator, weighted by a complex phase determined

by the classical action for the path. The path is any function q(t) defined for ti ≤ t ≤ tf and

constrained to obey the boundary conditions

q(ti) = qi, q(tf ) = qf . (22.2.5)

The action for a given path is

S[q(t)] =

∫ tf

ti

dt L(q, q̇, t), (22.2.6)

where L(q, q̇, t) is the classical Lagrangian for the system, often the kinetic energy minus the

potential energy. For example, for a spin-less particle moving in three dimensions, the position
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vector r(t) plays the role of q(t), and the Lagrangian is

L(r, ṙ, t) =
1

2
mṙ

2 − V (r). (22.2.7)

The action is an example of a functional, an object that takes as its input a function [here the

path q(t)] and returns a number. Feynman therefore proposed that eq. (22.2.1) should be

U(qf , tf ; qi, ti) ∝
∑

paths q(t)

eiS[q(t)]/h̄, (22.2.8)

following a suggestion by Dirac.

Because the number of paths is continuously infinite, it makes more sense to think of in-

tegrating over all paths rather than summing them. This suggests the arguably better names

Feynman path integral or functional integral, and the notational change

∑

paths q(t)

eiS[q(t)]/h̄ →
∫
d[q(t)] eiS[q(t)]/h̄. (22.2.9)

Just as ordinary definite integration takes a function and returns a number, a functional in-

tegral takes a functional (in this case, the action) and returns a number. The constant of

proportionality implied in eq. (22.2.8) can then be absorbed into the normalization for the func-

tional differential, denoted by d[q(t)]. The following can now be taken as an alternative to the

Schrödinger equation Postulate 6 of section 3.1:

Postulate 6′: Time evolution as a sum over paths. For a system with eigenvalues q for a

complete set of commuting observables, the propagator is

U(qf , tf ; qi, ti) =

∫
d[q(t)] exp (iS[q(t)]/h̄) . (22.2.10)

where S[q(t)] =
∫ tf
ti
dt L(q, q̇) is the action functional, and the functional integral is over all

paths satisfying q(ti) = qi and q(t) = qf . Equivalently, the wavefunction satisfies

ψ(qf , tf ) =

∫
d[q(t)] exp (iS[q(t)]/h̄)ψ(qi, ti), (22.2.11)

but now the functional integral is over all paths satisfying q(tf ) = qf , but with no constraint on

q(ti), since those initial values are being integrated over, as in eq. (22.1.5).

Note that while the Schrödinger version of Postulate 6 requires us to specify the Hamiltonian,

the Feynman version Postulate 6′ instead requires that the Lagrangian is the object to be

specified to determine the dynamics of the system.

Although path integration has proved to be a very useful tool, especially in quantum field

theory, it is not as straightforward to define as the Schrödinger differential equation. One way
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to define the functional integral, inspired by the composition rule for the propagator as in

eq. (22.2.4) and Figure 22.2.2, is to discretize the path into steps, integrate over the values of q

on each step, and then take the limit in which the number of steps is infinitely large.

As a specific example, consider the case of a spin-less particle moving in a potential V (r) in

three dimensions, with the coordinates r playing the role of q. To compute the path integral,

we partition the time interval (ti, tf) into N equal steps of duration

ǫ = (tf − ti)/N, (22.2.12)

so that

tj = ti + jǫ, (j = 0, 1, 2, . . . , N), (22.2.13)

with ti = t0 and tf = tN . We then define the discretized version of a path from ri to rf by

positions rj for each tj for j = 1, . . . , N − 1, with r0 = ri and rN = rf . The velocity of the

particle in the interval between times tj−1 and tj is v = (rj − rj−1)/ǫ, so the kinetic energy is
1
2
mv2 = 1

2
m(|rj − rj−1|/ǫ)2. Therefore, we can write the discretized version of the action for the

path as

S[path] = S(ri, r1, r2, . . . , rN−1, rf) = ǫ

N∑

j=1

[
m|rj − rj−1|2

2ǫ2
− V (rj)

]
. (22.2.14)

In the limit ǫ→ 0 with N = (tf − ti)/ǫ→∞, this will give the action for the continuous path.

We now write eq. (22.2.10) as

ψ(rf , tf) = lim
N→∞

∫
d3r0
a3

∫
d3r1
a3

∫
d3r2
a3
· · ·
∫
d3rN−1
a3

exp
[
iS[path]/h̄

]
ψ(r0, t0), (22.2.15)

where a is a normalization factor, with units of [length], to be found soon. So, removing the

integration over r0 and the initial wavefunction ψ(r0, t0),

U(rf , tf ; ri, ti) = lim
N→∞

1

a3

∫
d3r1
a3

∫
d3r2
a3
· · ·
∫
d3rN−1
a3

exp
[
iS[path]/h̄

]
, (22.2.16)

in which it is important that there is one more factor of 1/a3 than the remaining number of

integrations, in accord with the fact that the propagator has dimension 1/[length]3. Equation

(22.2.16) is one possible meaning of the notation

U(rf , tf ; ri, ti) =

∫
d[r(t)] exp (iS[r(t)]/h̄) (22.2.17)

for the path integral.

Let us now show that the preceding proposal is indeed equivalent to the Schrödinger equation.

It is sufficient to consider only time evolution over a single infinitesimal time interval, since longer
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time intervals can be obtained by using the composition law eq. (22.2.3). For simplicity, we write

ti = t0 = t, and after one infinitesimal time step, tf = t + ǫ. Then, using the N = 1 version of

eq. (22.2.15), the wavefunction at the final time in terms of the wavefunction at the initial time

is

ψ(r, t+ ǫ) =

∫
d3r0
a3

eiS(~r, ~r0)/h̄ψ(r0, t). (22.2.18)

Expanding the left side in small ǫ gives

LS of (22.2.18) = ψ(r, t+ ǫ) = ψ(r, t) + ǫ
∂

∂t
ψ(r, t) + · · · . (22.2.19)

The right side of eq. (22.2.18) is

RS of (22.2.18) =

∫
d3r0
a3

exp

(
i

h̄

[
m|r − r0|2

2ǫ
− ǫV (r)

])
ψ(r0, t), (22.2.20)

or, expanding the exponential part involving V (r) to order ǫ, and then shifting the integration

variable according to r0 → r0 + r,

RS of (22.2.18) =
[
1− i ǫ

h̄
V (r)

] ∫ d3r0
a3

eimr
2
0/2h̄ǫψ(r + r0, t). (22.2.21)

Now, in the limit of small ǫ, there will be almost complete cancellation from the rapidly varying

phase inside the integral. The only region that contributes as ǫ → 0 is where r20 ≈ 0, so that

the phase factor eimr
2
0
/2h̄ǫ is close to 1. Therefore, we can use the expansion for small r0,

ψ(r + r0, t) = ψ(r, t) + r0 · ∇ψ(r, t) +
1

2
(r0 · ∇)2ψ(r, t) + · · · . (22.2.22)

Inside the integration over r0, this can be simplified because the part odd under (x0, y0, z0) →
−(x0, y0, z0) will cancel. Thus, the linear term does not contribute at all, and using rectangular

coordinates and the spherical symmetry of the integrand you can check that inside the integral

the last term can be replaced according to (r0 · ∇)2 → 1
3
r20∇2. So, we have

∫
d3r0 e

imr2
0
/2h̄ǫψ(r + r0, t) = ψ(r, t)

∫
d3r0 e

imr2
0
/2h̄ǫ +

1

6
∇2ψ(r, t)

∫
d3r0 r

2
0e
imr2

0
/2h̄ǫ + · · · ,

(22.2.23)

in which the neglected terms have higher powers of r20, and so can be checked to contribute only

at higher order in ǫ. Using

∫
d3r0 e

imr2
0
/2h̄ǫ = 4π

∫ ∞

0

dr0 r
2
0 e

imr2
0
/2h̄ǫ =

(
2πih̄ǫ

m

)3/2

, (22.2.24)

∫
d3r0 r

2
0 e

imr2
0
/2h̄ǫ = 4π

∫ ∞

0

dr0 r
4
0 e

imr2
0
/2h̄ǫ = i

3h̄ǫ

m

(
2πih̄ǫ

m

)3/2

, (22.2.25)
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and plugging into eq. (22.2.21) gives

RS of (22.2.18) =
1

a3

(
2πih̄ǫ

m

)3/2 [
1 + i

ǫ

h̄

(
h̄2∇2

2m
− V (r)

)
+O(ǫ2)

]
ψ(r, t). (22.2.26)

Now compare eqs. (22.2.19) and (22.2.26). Matching at leading order in ǫ just informs us that

the normalization factor is

a =

(
2πih̄ǫ

m

)1/2

. (22.2.27)

Then, matching the terms at first order in ǫ gives

ih̄
∂

∂t
ψ(r, t) =

[
− h̄

2∇2

2m
+ V (r)

]
ψ(r, t), (22.2.28)

which is the Schrödinger equation in the position wavefunction representation. This completes

the demonstration that the Feynman sum over paths formulation is equivalent to the Schrödinger

equation time evolution.

22.3 Evaluation of the path integral for the harmonic oscillator

In the previous section we demonstrated the equivalence of the path integral formulation and

the Schrödinger equation, but this is not the same as actually computing a useful result directly

in terms of the path integral. In this section we will show how to arrive at the propagator for

the one-dimensional harmonic oscillator in the path integral approach.

Consider the propagator as a path integral, starting at time t = 0 and ending at time t = T ,

U(xf , T ; xi, 0) =

∫
d[x(t)] eiS[x(t)]/h̄. (22.3.1)

In the case of the harmonic oscillator, we have a great advantage, that there is a unique classical

trajectory, given by eq. (22.1.16) with tf = T and ti = 0. It will help us greatly to do a change

of variables

x(t) = xcl(t) + y(t), (22.3.2)

where the new coordinate y(t) can be interpreted as the quantum fluctuation. It satisfies the

boundary conditions

y(0) = y(T ) = 0. (22.3.3)

Now we can evaluate the action functional, with the result

S[x(t)] = S[xcl(t)] +
m

2

∫ T

0

dt
(
ẏ2 − ω2y2

)
, (22.3.4)
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where the cross-terms involving both xcl and y have conveniently canceled. To see this cancela-

tion, note that those cross-terms are

m

∫ T

0

dt
(
ẋclẏ − ω2xcly

)
= −m

∫ T

0

dt
(
ẍcl + ω2xcl

)
y, (22.3.5)

where we have integrated by parts, making use of the vanishing of the boundary terms from

eq. (22.3.3). The last expression vanishes due to the equation of motion for xcl.

Now, since S[xcl(t)] is a constant with respect to the new functional integration variable y(t),

we can pull it out of the path integral, to get

U(xf , T ; xi, 0) = I eiS[xcl(t)]/h̄ (22.3.6)

where it remains to evaluate the function integral over y(t),

I ≡
∫
d[y(t)] exp

[
im

2h̄

∫ T

0

dt
(
ẏ2 − ω2y2

)]
. (22.3.7)

We have already made good progress, since we have successfully obtained the correct eiS[xcl(t)]/h̄

factor in eq. (22.1.13). Indeed, from its definition, the remaining factor I clearly has no depen-

dence on xf or xi. Our remaining task is to show that, in accord with eq. (22.1.13),

I =

(
mω

2πih̄ sin(ωT )

)1/2

. (22.3.8)

We will do the path integral to get I in two different ways.

First, we use the discretization of the same type used in eq. (22.2.16),

I = lim
N→∞

1

a

(
N−1∏

j=1

∫ ∞

−∞

dyj
a

)
exp

(
im

2h̄ǫ

N∑

k=1

[
(yk − yk−1)2 − ǫ2ω2y2k

]
)
, (22.3.9)

where ǫ = T/N , and we have already obtained the normalization a in eq. (22.2.27). Then,

letting zj = yj/a and assembling z1, z2, . . . , zN−1 into an (N −1)-dimensional vector z, we have

I = lim
N→∞

1

a

∫
dNz exp

(
−πzTBNz

)
(22.3.10)

where BN is the (N−1)× (N−1) matrix

BN =




2− δ −1 0 0 · · · 0
−1 2− δ −1 0 · · · 0
0 −1 2− δ −1 · · · 0
0 0 −1 2− δ · · · 0
...

...
...

...
. . . −1

0 0 0 0 −1 2− δ




, (22.3.11)
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which only has non-zero entries on the main diagonal and immediately above and below it, and

for convenience we have defined

δ ≡ ǫ2ω2 = ω2T 2/N2. (22.3.12)

Now, since B is a real symmetric matrix, we can do a rotation in the (N−1)-dimensional space

to new coordinates u = Oz, where O is an orthogonal matrix, in such a way that the rotated

matrix B̃N = OBNO
T is diagonal. Since a real symmetric matrix is just a special kind of

Hermitian matrix, and an orthogonal matrix is just a special kind of unitary matrix, Theorems

2.6.7 and 2.6.9 apply to tell us that the diagonal entries of B̃N are the same as the eigenvalues

λj of BN , so

I = lim
N→∞

1

a

N−1∏

j=1

∫ ∞

−∞
duj e

−πλju2j . (22.3.13)

Now each of the uj integrals can be done separately, using
∫∞
−∞ du e

−πλu2 = λ−1/2, giving

I = lim
N→∞

1

a

N−1∏

j=1

(λj)
−1/2 = lim

N→∞

1

a
(detBN)

−1/2 (22.3.14)

where we have used the fact from matrix algebra that the determinant of BN is equal to the

product of its eigenvalues.

Let us now find the determinant of the (N −1)× (N −1) matrix BN , temporarily taking δ

to be general even though in our case it depends on N through eq. (22.3.12). We have

B2 = 2− δ, (22.3.15)

B3 = (2− δ)2 − 1, (22.3.16)

and for larger N we can evaluate BN in terms of its minors for the two non-zero entries in

the first row. Conveniently, these involve determinants of versions of the same matrix with

dimension smaller by 1 and 2. This gives the recurrence relation

BN = (2− δ)BN−1 − BN−2, (N = 4, 5, 6, . . .). (22.3.17)

It is possible to solve this recurrence relation systematically, but we will take the shortcut of

writing down the answer and checking that it works. To do so, we define numbers β1,2 by

β1 + β2 = 2− δ, β1β2 = 1. (22.3.18)

Then we claim that

BN =
βN1 − βN2
β1 − β2

. (22.3.19)
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This is easily checked to work for N = 2 and 3, and then for the recurrence relation eq. (22.3.17),

by direct substitution.

We are now ready to take the large N limit. First, solving eq. (22.3.18), we find that

β1,2 = 1− δ

2
± i
√
δ − δ2/4 = 1± iωT/N + . . . , (22.3.20)

where the ellipses involves terms of higher order in 1/N . Therefore, for large N ,

detBN =
(1 + iωT/N)N − (1− iωT/N)N

2iωT/N
=

eiωT − e−iωT
2iωT/N

=
N sin(ωT )

ωT
, (22.3.21)

where the definition of the exponential function, ex = limN→∞(1 + x/N)N , was used to get the

second equality. Using this in eq. (22.3.14) along with a = (2πih̄T/mN)1/2, we find

I = lim
N→∞

(
mN

2πih̄T

)1/2(
ωT

N sin(ωT )

)1/2

=

(
mω

2πih̄ sin(ωT )

)1/2

, (22.3.22)

which agrees with the result found before.

Let us now consider a second way to calculate I, using a different realization of the path

integral. Instead of enumerating the possible paths by discretizing in time, we write the quantum

fluctuation as a general Fourier series expansion of terms that satisfy the boundary conditions

y(0) = y(T ) = 0,

y(t) =
∞∑

n=1

yn sin(nπt/T ). (22.3.23)

We then interpret the path integral in eq. (22.3.7) as an integration over all of the Fourier

coefficients yn,

I =
1

c

( ∞∏

n=1

∫ ∞

−∞

dyn
bn

)
exp

[
im

2h̄

∫ T

0

dt
(
ẏ2 − ω2y2

)]
(22.3.24)

where we have introduced normalization factors c and bn with dimensions of [length]. Now the

action integral over t in the exponent can be easily computed, yielding

I =
1

c

( ∞∏

n=1

∫ ∞

−∞

dyn
bn

)
exp

[
−
∞∑

n=1

imT

4h̄

(
ω2 − n2π2/T 2

)
y2n

]
. (22.3.25)

This nicely separates into one-dimensional integrals over the yn, as

I =
1

c

∞∏

n=1

(∫ ∞

−∞

dyn
bn

exp

[
−imT

4h̄

(
ω2 − n2π2/T 2

)
y2n

])
. (22.3.26)

Doing the individual Gaussian integrals,

I =
1

c

∞∏

n=1

1

bn

(
4πih̄

mT (n2π2/T 2 − ω2)

)1/2

. (22.3.27)
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To make further progress, we make use of a famous formula due to Euler,

∞∏

n=1

(
1− x2

n2π2

)
=

sin(x)

x
, (22.3.28)

with x = ωT in our present case, to obtain

I =
1

c

(
ωT

sin(ωT )

)1/2 ∞∏

n=1

1

bn

(
4ih̄T

n2πm

)1/2

(22.3.29)

Comparing with eq. (22.3.22), we see that we have correctly obtained the ω dependence, and

that the whole formula for I is correct provided that the normalization factors are

bn =

(
4ih̄T

n2πm

)1/2

, c =

(
2πih̄T

m

)1/2

. (22.3.30)

The advantage of this Fourier expansion method for the harmonic oscillator path integral is

that the separation into individual integrals was automatic. The disadvantage is that the ω-

independent normalization factors 1/c and 1/bn associated with the path integral had to be

obtained by comparison to the known result for I. In the discretized version of the path integral,

the normalization factor 1/a was known already from the case of infinitesimal T in section 22.2.

The case of a free particle can be obtained from the ω → 0 limit. Beyond that, the path inte-

gral method is usually not very efficient compared to other methods in non-relativistic quantum

mechanics. Note that in the preceding, we were able to make use of a very special property of the

free particle and the harmonic oscillator, namely that the action is quadratic in the configuration

variable(s) and its time derivatives, leading to Gaussian integrations in either eq. (22.3.13) or

eq. (22.3.26), which we were therefore able to do analytically. This applies only for the very lim-

ited number of situations in which the Lagrangian is quadratic, so in other cases approximation

methods will be necessary. However, the path integral approach is still extremely valuable, for in

addition to the beautiful conceptual understanding it brings, it turns out to provide a practically

useful way of systematically organizing such approximation methods. In the case of relativis-

tic quantum field theories, this includes both Feynman rules for perturbative calculations, and

other methods for non-perturbative ones, topics beyond the scope of this book.

22.4 Classical limit of the sum over paths

Consider a path q(t), and suppose we make a small change δq(t) to it,

q(t)→ q(t) + δq(t), (22.4.1)

as illustrated in Figure 22.4.1. This will result in a change in the action, which we write as

S[q(t)]→ S[q(t)] + δS. (22.4.2)
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ti

tf

t

qi qf q

Figure 22.4.1: A path q(t) (solid line), and a nearby path q(t) + δq(t) (dashed line), both
subject to the boundary condition δq(ti) = δq(tf) = 0. The path is a stationary path if the
change in the action δS vanishes for every infinitesimal change in path δq(t).

Because we must maintain the boundary conditions at t = ti and t = tf when computing the

propagator, we must require

δq(ti) = δq(tf ) = 0. (22.4.3)

In general, if δS is non-zero, then the integrand of the path integral will acquire an additional

phase eiδS/h̄ compared to the result from the original path. If we take h̄→ 0, which we associate

with the classical limit, this additional phase varies rapidly as δS changes, leading to very

efficient cancellation between the contributions for nearby paths.

Therefore, in the classical limit, the propagator is dominated by stationary paths, which

are defined to be those for which δS = 0 for every δq(t) that satisfies the boundary conditions

eq. (22.4.3). The point is that those are the only paths that do not suffer efficient cancellations

from the neighboring paths, with cancellation becoming perfectly efficient in the h̄ → 0 limit.

We can thus write the condition for a stationary path q(t) as the vanishing of the functional

derivative,

δS[q(t)]

δq(t)
≡ lim

δq(t)→0

S[q(t) + δq(t)]− S[q(t)]
δq(t)

= 0. (22.4.4)

In quantum mechanics, the path integral samples all paths, but in the classical limit h̄ → 0,

only stationary paths contribute non-negligibly.

Suppose we are given a Lagrangian L(q, q̇, t) for a system, so that

S[q(t)] =

∫ tf

ti

dt L(q, q̇, t). (22.4.5)
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The change in the action due to the change in path δq(t) can be written as

δS =

∫ tf

ti

dt

[
δq(t)

∂L

∂q
+ δq̇(t)

∂L

∂q̇

]
, (22.4.6)

or, using δq̇(t) = d
dt
δq(t),

δS =

∫ tf

ti

dt

[
δq(t)

∂L

∂q
+
d

dt
δq(t)

∂L

∂q̇

]
. (22.4.7)

Integrating the second term by parts, we have

δS =

∫ tf

ti

dt δq(t)

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
+

(
δq(t)

∂L

∂q̇

) ∣∣∣∣
tf

ti

. (22.4.8)

The last surface term is 0 because of the boundary conditions eq. (22.4.3). In order to have

δS = 0 for all small variations δq(t), we conclude that the integrand in eq. (22.4.8) must vanish,

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (22.4.9)

This is the Lagrangian equation of motion familiar from classical mechanics. More generally, if

there are multiple variables qa with a = 1, . . . , N , with a Lagrangian L(qa, q̇a, t), then one can

show by the same argument that the classical limit implies the equations of motion

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0 (22.4.10)

for each a. Thus we have derived classical mechanics from the h̄ → 0 limit of Feynman’s path

integral formulation of quantum mechanics.

In the case of a single spin-less particle moving in three dimensions, we could of course take

our CSCO eigenvalues to be (q1, q2, q3)→ r. However, in more general situations, we often need

to describe processes that change the number of particles. Such processes include decays of one

particle into two or more particles, like the decay of a Higgs boson into a quark-antiquark pair,

or two gluons, or two photons. They also include the joining of two particles to make particles

of a different type, for example the annihilation of an electron and positron pair to make a

Z boson, which then turns into a quark-antiquark pair. In such cases, the way we have been

treating quantum mechanics is rather clumsy, because even the number of coordinates needed

to describe the positions or momenta of the particles changes depending on the state; in other

words, they are not a good CSCO.

Furthermore, special relativity teaches us that time and space are on the same footing,

while we have been treating spatial coordinates as operators, but using the time coordinate

as a parameter, not an operator. This is particularly embarrassing when we realize that the
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symmetries of special relativity mix space and time coordinates when we change our inertial

reference frame.

The simultaneous resolution of these issues is that instead of associating the position coor-

dinates r with operators, they are taken to be labels, just like the time t. In other words, there

are different operators

Φ(r, t) (22.4.11)

for each label (r, t). The operators Φ(r, t), called quantum fields, are associated with the

different types of particles in the theory, and can also carry indices associated with their spin

and other quantum numbers. The field operators can act on a vacuum state |0〉 (which describes

empty space with no particles, and is the lowest energy state) to give other states that have

any number of particles and antiparticles. In the path integral formulation, the classical action

functional looks schematically like

S[φ(r, t)] =

∫ tf

ti

dt

∫
d3r L(φ, φ̇,∇φ), (22.4.12)

where L is called the classical Lagrangian density, and φ is the classical field corresponding to

the quantum field Φ.

The resulting type of theory, which also obeys the other postulates of section 3.1, is called

a quantum field theory. Relativistic quantum field theories have the important property

that energies are bounded from below, which is not the case in relativistic one-particle quantum

mechanics. In quantum field theory, the Schrödinger equation formulation is valid, but often

less useful than the equivalent path integral formulation, which provides elegant methods for

both conceptual understanding and practical calculations, using both perturbative and non-

perturbative methods. But that’s another story. . .
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Index

21 centimeter line (from hyperfine splitting of

hydrogen), 228, 303, 381

A and B coefficients, Einstein, 372–374

α (fine structure constant), 217–218

α particles, 6

absorption (harmonic time-dependent pertur-

bation), 362–365

absorption of light, 367–371

electric dipole approximation, 375–376

absorption spectrum, hydrogen atom, 219

action, 87, 443

active view of translation, 101

addition formula for spherical harmonics, 184–

185

addition of angular momentum, 223–240

general case, 232–237

more than two, 238–240

orbital and spin, 229–231

two spins, 224–226

adjoint, 29, 33–34

alkali metals, 332, 333

allowed (electric dipole) transitions involving

emission and absorption of light, 378

allowed results of measurements, 65

ambiguity

operator ordering, 68

phase, 24, 41, 100

angular frequency, Planck–Einstein relation to

photon energy, 11

angular momentum

addition of, 223–240

and spherical harmonics, 179–182

and the Laplacian, 177, 184

as generator of rotations, 104–110

commutation relations, 104, 108

conservation from rotation symmetry, 110

dot product trick, 227, 298, 308

eigenvalue problem, general, 164–168

eigenvalue problem, orbital, 177–180

general, 108

intrinsic, 14–15, 108, 168–169

multiplet, 168

orbital, 104

relative and center-of-mass, 109

spin, 14–15, 108, 168–169

squared, 109

total, 109–110

annihilation operator (harmonic oscillator), 151

anomalous magnetic moment of electron, 94

anti-Hermitian operator, 34

anticommutator, 31

antisymmetric (singlet) spin combination, 226–

228

antisymmetric Levi-Civita symbol ǫabc, 105

antisymmetrization for fermions, 228, 315–318

Argonne, interference with Batavia, 323–324

Aspect’s experiments, 435–440

associated Laguerre polynomials, 204–205

differential equation, 205

explicit form, 205

for 3-dimensional harmonic oscillator, 204–

205

for hydrogen atom, 210–211

orthogonality

for 3-dimensional harmonic oscillator, 205

for hydrogen atom, 211
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associated Legendre functions, 180–181

associativity axiom for operators, 31

associativity property of vector space, 20

atom

classical instability, 6–7

hydrogen-like, 206–219

multi-electron, 328–342

azimuthal symmetry, 388

Baker–Campbell–Hausdorff formula, 35

Balmer series, 219

barn (unit of area), 421

basis, 21

orthonormal, 25

Batavia, interference with Argonne, 323–324

Bayes’ Theorem, 82

Bell inequality, 432–436

beryllium (electron configuration and term), 337

Bessel functions, spherical, 191–192

modified, 193

beta decay

inverse, 120

of tritium, 352

black-body radiation, 8–10

Bohm’s version of the EPR problem, 425–430

Bohr magneton (µB), 95

Bohr radius of hydrogen atom, 209, 217

Boltzmann entropy, 81

Boltzmann factor, 9, 85, 373

derivation of, 84–85

Boltzmann’s constant, 9, 81

Born approximation, 399–404

beyond first-order, 402–404

diagrammatic representation, 403–404

first-order, 399–401

validity condition, 400

Born rule (probabilistic interpretation of the

wavefunction), 54, 61, 66

boron (electron configuration and term), 337

Bose–Einstein condensate, 320–321

Bose–Einstein statistics, 315

boson, 228

bound state, 56, 127

energy quantization, 7

in 1 dimension, 127–128

boundary condition

bound state wavefunction at infinite dis-

tance, 127

continuity of wavefunction, 189

derivative of wavefunction, 126–127

finiteness of radial wavefunction at r = 0,

188–189

impenetrable walls, 56

periodic, 8, 56

radial wavefunction, 189

wavefunction, 126–127

box

particle in a 1-dimensional, 56, 128–130

very large, 56

bra vector, 29

bra-ket notation, 20, 29

Brackett series, 219

Breit–Wigner (Lorentzian) lineshape, 371, 413

Brillouin–Wigner perturbation theory, 268–269

c (speed of light in vacuum), 7

canonical commutation relations, 88

canonical ensemble, 84–86

canonical momentum, 87–88

and translations, 103

vs. kinetic momentum, 93–94

carbon (electron configuration and term), 337
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cardinality of vector space dimension, 21

Cartan subalgebra, 98

Cartesian tensor operator, 247

Cauchy principal value, 398

center-of-mass coordinates and momenta, 90

central-field method for multi-electron atoms,

329–330

centrifugal term, 189, 203, 414

change of orthobasis, unitary, 38–39

characteristic equation for eigenvalues, 40

charge of electron, 6, 92

charge radius of proton, 264–265

classical instability of charged matter, 6–7

classical limit, 68, 210, 217, 453–455

coherent states, 155–161

Clebsch–Gordan coefficients, 232–237

computation algorithm, 234–237

phase convention, 233

closure (completeness) relation, 32

closure property

for Lie groups, 97–98

for vector spaces, 20

co-factor matrix, 37

coherent states of harmonic oscillator, 155–161

time evolution, 159–160

collapse-of-state postulate, 66–67

controversy and unease, 76–77

for mixed ensembles, 82–83

commutativity property of vector space, 20

commutator, 31

canonical, 88

position and momentum, 59, 60

compatible (commuting) operators, 50–52

complete orthobasis and observables, 48–49

complete set of commuting observables (CSCO),

51–52

completeness relation, 32, 65

angular momentum, 164, 168, 178, 179

momentum (1-dimensional), 56

momentum (3-dimensional), 60

position (1-dimensional), 53

position (3-dimensional), 60

spherical harmonics, 179

complex linear vector space, 20

basis and dimension, 21

examples, 21

subspace, 22

components of a vector, 22

for an orthobasis, 28, 29

composition rule for propagators, 444–445

Compton wavelength, 217

Condon–Shortley phase convention, 180

confluent hypergeometric function, 207–208

conservation

of angular momentum, 110

of charge, 92

of energy, 100

of momentum, 102–104

of probability, 117–120

conserved quantities from symmetries, 97–100

angular momentum from rotations, 110

energy from time translation, 100

general theorem (Noether’s principle), 99

momentum from translations, 102–104

constant of motion, 99, 344

continuity of wavefunctions, 54, 126–127, 189

conventions for units, 6, 9, 11, 91–92

Copenhagen interpretation, 77

correlation for entangled states, 427, 432–439

correspondence principle, 82, 88–89
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Coulomb gauge, 96, 366

Coulomb potential, 206

unbound states, 219–222

creation operator (harmonic oscillator), 151

cross-section

absorption of light, 368, 371

electric dipole approximation, 375–376

differential, 388

photo-electric effect, 385–387

relation to scattering amplitude, 392

scattering, 388

CSCO (Complete Set of Commuting Observ-

ables), 51–52

current density

electric, 92, 118

probability, 117–119

Dalgarno–Lewis method, 270–271

applied to quadratic Stark effect, 279–280

Darwin term, 296–299

Davisson–Germer experiments, 13–14

de Broglie wavelength, 13

decay of unstable states, 119–120

degeneracy label, 44, 65

and CSCO, 51

continuous, 49

for energy, 73

degeneracy of eigenvalue, 40, 44

degeneracy of energy levels

3-dimensional harmonic oscillator, 163

absence in 1-dimensional bound states, 127–

128

hydrogen atom bound states, 209

particle confined to a sphere, 198–199

delta function, 25–27

3-dimensional, 60

and Fourier transforms, 27

integral representation, 26

delta, Kronecker, 25

density (matrix) operator, 79–86

density of modes for electromagnetic radiation,

8

density of states, 359

electron in cubic box, 384

derivative operator, 54–55

destruction operator (harmonic oscillator), 151

detailed balance, 363, 374

determinant of matrix, 37

deuteron, 419–422

diagonalization

of Hermitian matrix by a unitary matrix,

45, 51

of real symmetric matrix by orthogonal ma-

trix, 143

differential cross-section, 388

relation to scattering amplitude, 392

diffraction, 12

for electrons, 13–14

diffuse (l = 2 in spectroscopic notation), 210

dimension of vector space, 21

dipole selection rules, 250–251

Dirac bra-ket notation, 20, 29

Dirac delta function, 25–27

3-dimensional, 60

and Fourier transforms, 27

integral representation, 26

Dirac equation, 297, 300

Dirac orthonormality, 25–26, 30, 49, 65

momentum eigenstates, 56, 60

position eigenstates, 53, 60

spherical coordinate eigenstates, 178
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Dirac picture (interaction picture), 346–349

Dyson series solution, 348–349

time evolution of operators, 347

time evolution of state, 347–349

distribution, 25, 398

distributive property of vector space, 20

dot product of angular momenta trick, 227,

298, 308

dots and lines trick, 163

double factorial notation, 191–192

double-counting avoidance in identical particle

scattering, 424

dual vector space, 29–30

duality, Gaussian position and momentum wave-

functions, 122

duality, wave-particle, 11–13

Dyson series, 76

interaction picture, 348–349

e (proton charge in Gaussian cgs units), 6, 92

effective potential, 189, 203, 414

effective range, 410

for neutron-proton scattering, 421

for spherical well scattering, 419

Ehrenfest’s Theorem, 74, 88

eigenstate (eigenket), 40

eigenvalues, 40

and trace of operator, 45

characteristic equation, 40

continuous, 52–53

degenerate, 40, 44

Hermitian operator, 43

identity operator, 41

multi-component, 60, 67–68

parity, 111

projection operator, 41

unitary operator, 48

eigenvector, 40

Einstein A and B coefficients, 372–374

Einstein’s energy quantization for photons, 11

Einstein–Podolsky–Rosen (EPR) problem, 425–

430

electric dipole (long wavelength) approximation,

374–378

selection rules, 377–378

electric quadrupole (E2) transitions, 379–382

selection rules, 381–382

electromagnetic energy density, 92

electromagnetic potentials, 92

electromagnetic wave, 366–367

absorption, 367–371

electric dipole approximation, 375–376

emission, 371–374

electric dipole approximation, 376

electron

charge, 6, 92

mass, 7

spin, 14

electron configuration for multi-electron atom,

330–334

electron diffraction, 13

emission (general harmonic time-dependent per-

turbation), 362–365

emission of light, 371–374

electric dipole approximation, 376

induced (stimulated), 371–372

spontaneous, 372–374

energy conservation from time translation sym-

metry, 100

energy density, electromagnetic, 92

ensemble
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average, 78

completely random, 80–81

mixed, 77–86

probabilities, 78, 80

pure, 69

entanglement, 63

non-local, 426

entropy, 81

EPR problem, 425–430

epsilon symbol ǫabc, 105

equal-time commutation relations, 345

equations of motion

Hamiltonian, 88

Lagrangian, 87

Lagrangian, derived, 455

Euler angles, 176

exchange degeneracy, 315–316

exchange density, 323

exclusion principle for identical fermions, 228,

316–318, 321, 331

expectation value, 69, 78

explicit time dependence, 73

exponentiation of operator, 34–35, 39–40

Fermi’s golden rule, 360–361

harmonic perturbations, 362–363

Fermi–Dirac statistics, 240, 315–316, 323, 326,

331

fermion, 228

Feynman sum over paths (path integral), 444–

456

classical limit, 453–455

discretized version, 446–448

equivalence to Schrödinger equation, 447–

449

fiction, convenient, 22

fine structure

of hydrogen atom, 296–300, 306

of multi-electron atoms, 334–336

fine structure constant α, 217–218

finite range scattering potential, 391, 407–410

fluorine (electron configuration and term), 339

flux of particles

in 1-dimensional scattering, 135

in 3-dimensional scattering, 388

forbidden transitions involving emission and ab-

sorption of light, 378

Fourier transform, 26–27

3-dimensional, 61

momentum and position wavefunctions, 58

free energy, Helmholtz, 86

free particle

in 1 dimension, 56, 123–126

wavefunction, 57–58

in 3 dimensions, 60

in spherical coordinates, 189–196

time evolution, 124, 442

frequency, Planck–Einstein relation to photon

energy, 9, 11

full width at half maximum

Breit–Wigner (Lorentzian) lineshape, 371,

413

Gaussian, 26, 121

functional, 446

functional derivative, 454

functional integral, 446–449

for harmonic oscillator, 449–453

functions of operators, 34–35

spectral decomposition, 50

fundamental (l = 3 in spectroscopic notation),

210
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fundamental theorem of algebra, 40, 44

fundamental theorem of calculus, 126, 136

g-factor

electron, 94

Landé

hydrogen atom, 308

multi-electron atom, 340

neutron, 94

proton, 94, 300

Γ(z) (Gamma function), 205

Γ (for unstable states), 119

Γ (width in resonant scattering), 413

gauge transformation, 92

in quantum mechanics, 114

gauge-invariant observable, 114–116

Gaussian wavefunction, 121–126

full width at half maximum, 121

momentum, 122

time evolution for free particle, 124, 125

uncertainty relation for, 123

generalized (non-normalizable) kets, 26, 30, 53

generalized (Robertson–Schrödinger) uncertainty

relation, 70–71

generator

of symmetry, 98–100

of transformation, 97–98

rotations (with spin), 109–110

rotations (without spin), 105–106

translations, 102

Gibbs entropy, 81

giraffes hiding in kitchens, 210

global phase, 73

gluon, 6

gold, 6

golden rule, 360–361

harmonic perturbations, 362–363

good quantum number, 51

Gram–Schmidt process, 27–28

Grand Unified Theories, 92

graphical solution

1-dimensional square well, 131–132

particle confined to a sphere, 197–198

Green function

3-dimensional scattering, 393–395

Greenberger–Horne–Zeilinger–Mermin state, 434–

435

grotesque (silly name for l = 4 in spectroscopic

notation), 210

ground state, 21

group velocity

of Gaussian wavepacket, 125

vs. phase velocity, 123–124

gyromagnetic ratio, 94

h̄, 11

half-life, 377

halogens, 332, 339

Hamiltonian, 67

classical, 87

equations of motion, 88

free-particle, 123

harmonic oscillator, 1-dimensional, 144

harmonic oscillator, 3-dimensional isotropic,

201

hydrogen-like atoms, 206

non-Hermitian, 119–120

particle in electromagnetic field, 95–96

time-dependent, 74–76

Hankel functions, spherical, 192–193, 408

hard-sphere scattering

classical, 389–390
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quantum, 415–417

harmonic oscillator, 142–163, 200–205

algebraic method, 151–155

anisotropic 3-dimensional, 162–163

coherent states, 155–161

differential equation method, 145–151

energy representation, 151–155

ground-state wavefunction, 149–150

Hamiltonian, 144

isotropic 3-dimensional, 163, 200–205

momentum representation, 149–151

number operator, 154

path integral approach, 449–453

position representation, 145–149

positivity of energy eigenvalues, 144, 145

propagator, 442–443

stationary state wavefunctions, 149–150

Heisenberg equation of motion for operators,

345

Heisenberg picture, 343–346

Heisenberg uncertainty relation, 71

helium atom

excited states, 326–328

ground state

and spin, 325–326

first-order perturbation theory, 266–268

variational method, 293–295

Hamiltonian, 266

hyperfine structure, 327

para (total spin 0) and ortho (total spin 1),

326–328

Helmholtz free energy, 86

Hermite polynomials, 148

algebraic derivation, 154–155

Hermitian adjoint, 29, 33–34

Hermitian operator, 34

constraint for infinite-dimensional Hilbert

space, 55

corresponding orthobasis, 44

hidden variables, 18, 19, 430–440

demise of, 435–440

Hilbert space, 22, 65

hole (absence of electron), 338–339

horrendous (silly name for l = 5 in spectro-

scopic notation), 210

Humphreys series, 219

Hund’s rules, 336–339

hydrogen atom, 206–219

absorption spectrum, 219

classical instability, 6–7

energy spectrum and degeneracy, 208–209

expectation values of powers of R, 214–216,

275–277

fine structure, 296–300, 306

hyperfine structure, 227–228, 300–306

impact of proton radius, 264–265

in external magnetic field, 306–312

Paschen–Back effect, 309–312

polarizability, 280–281

relativistic corrections, 218, 296–300

Stark effect, 277–282

stationary state wavefunctions, 210–214

unbound states, 219–222

wavefunction at the origin, 212, 265

Zeeman effect, 306–312

hyperfine structure

helium atom, 327

hydrogen atom, 227–228, 300–306

identical particles, 228, 313–342

and spin, 321–325
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constraint on Hamiltonian, 315

constraint on observables, 314

constraint on states, 315–316

factor of 1/2 for cross-section, 424

pair-exchange operators, 314–315

permutation operators, 316–317

scattering, 422–424

identity operator, 31–32

eigenvalue, 41

impact parameter, 388–389

incoherent superposition of harmonic perturba-

tions, 363–365

incompatibility of position and momentum, 67–

68

incompatible operators, 52, 67–68

index relabeling trick, 146, 202, 241, 252

index summation convention, 105, 143

induced (stimulated) emission, 371–372

electric dipole approximation, 376

inert (noble) gases, 332, 337

electron scattering, 140, 419

infinite-dimensional vector space, 21

infinite-range scattering potential, 390–391

inner product, 22–23

in terms of wavefunctions, 53, 57, 59, 61

matrix representation, 35

preservation under unitary transformation,

38–39

instability of charged matter in classical me-

chanics, 6–7

intensity and photon occupation numbers, 370

interaction picture (Dirac picture), 346–349

Dyson series solution, 348–349

time evolution of operators, 347

time evolution of state, 347–349

interference, 12–13

interval rule, Landé, 335–336

intrinsic angular momentum, 14–15, 108, 168–

169

intrinsic parity, 186–187

inverse Fourier transform, 27

inverse of an operator, 31

inverse of matrix, 37

ionization energy

first, multi-electron atoms, 332–333

hydrogen (Rydberg), 209

total, helium, 268, 295

irreducible representation of the rotation group,

173

irreducible tensor operator, 244–247, 251–254

Jacobi coordinates, 91

jj coupling approximation, 341–342

K-shell electrons, 387

ket, 20

generalized (non-normalizable), 26, 30, 53

null, 20–21

kinetic (mechanical) momentum, 93

operator, 95–96, 115, 118

vs. canonical momentum, 93–94

Klein’s inequality, 83–84

Kramers–Pasternack recurrence relation, 215–

216

Kronecker delta symbol, 25

label for degeneracy, 44, 65

continuous, 49

for energy, 73

ladder operator

angular momentum, 165

harmonic oscillator, 151
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Lagrangian, 87, 445–446, 455

Laguerre polynomials, associated, 204–205

differential equation, 205

explicit form, 205

for 3-dimensional harmonic oscillator, 204–

205

for hydrogen atom, 210–211

orthogonality

for 3-dimensional harmonic oscillator, 205

for hydrogen atom, 211

Lamb shift, 305–306, 312

Landé g-factor

hydrogen atom, 308

multi-electron atom, 340

Landé interval rule, 335–336

Landé projection formula, 249–250, 253, 303

Laplacian and angular momentum, 177, 184

Larmor formula for electromagnetic radiated

power, 7

lead atom, LS vs. jj coupling, 341

Legendre functions, associated, 180–181

Legendre polynomials, 181

level repulsion, 284

Levi-Civita symbol ǫabc, 105

Lie algebras and groups, 97–98

lifetime due to spontaneous emission, 377

light

absorption, 367–371

electric dipole approximation, 375–376

and hydrogen transitions, 218, 219

emission, 371–374

electric dipole approximation, 376

interference, 12–13

Planck–Einstein energy-frequency relation,

9, 11

quanta (photons), 11

line broadening, 370–371

linear (in)dependence of vectors, 21

linear operator, 30–31

linear Stark effect, 281–282

linearity property of inner product, 23

Liouville’s Theorem, 81

Lippmann–Schwinger equation, 393–395

lithium (electron configuration and term), 337

local conservation of probability, 117–120

local realism, 429–431

demise of, 435–440

Lorentz force law, 93

Lorentzian (Breit–Wigner) lineshape, 371, 413

lowering operator

angular momentum, 165

harmonic oscillator, 151

LS coupling scheme, 334–339

Lyman series, 218–219

Lyman-alpha line, 219

magnetic dipole (M1) transitions, 379–381

selection rules, 380–381

magnetic moment

and spin, 17, 94

deuteron, 420

electron, 17, 94, 297

multi-electron atom, 340

neutron, 94–95

proton, 94–95, 300–301

magnetic quantum number m, 108, 309

magneton, Bohr (µB) and nuclear (µN), 95

matrix element of an operator, 31

matrix element, reduced, 248–250, 253

matrix inversion, 37

matrix representation in an orthobasis, 35–37
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Maxwell’s equations, 92

measurement

allowed results, 65

and collapse of state, 66–67

controversy and unease, 76–77

for mixed ensembles, 82–83

and probability, 66

for mixed ensembles, 79–80

mechanical (kinetic) momentum, 93

operator, 95–96, 115, 118

vs. canonical momentum, 93–94

Millikan photo-electric effect experiment, 12

mixed ensemble, 77–86

mixed state, 80

modified spherical Bessel functions, 193

momentum, 55

3-dimensional, 59

as generator of translations, 102, 103

canonical, 87–88, 103

canonical vs. kinetic, 93–94

eigenstates, 56–61

Hermiticity, 55

kinetic (mechanical), 95–96, 115, 118

uncertainty in Gaussian wavefunction, 123

momentum conservation from translation sym-

metry, 102–104

momentum wavefunction and representation, 56–

57, 61

multi-electron atoms, 328–342

multiplet of angular momentum, 168

multipole expansion for absorption and emis-

sion of light, 378–382

muonic hydrogen, 265

Neumann functions, spherical, 191–192

neutron

magnetic moment, 94–95

mass, 419

neutron-proton scattering, 419–422

Newton-John, Olivia, 54

nitrogen (electron configuration and term), 338

noble (inert) gases, 332, 337

electron scattering, 140, 419

Noether’s principle, 99–100

non-locality, 430

non-normalizable (generalized) kets, 26, 30, 53

norm, 23

in terms of wavefunction, 53, 61

normal ordering, 152

normalizable wavefunctions, 54

nuclear magneton (µN), 95

nuclear size, 6, 264–265

null ket, 20–21

number operator (harmonic oscillator), 154

observable, 48–49, 65

completeness of orthobasis, 48–49

gauge-invariant, 114–116

quantum counterpart of classical, 68–69

occupation numbers, 319

of atomic electrons in shells, 331

photons, 370

operator, 30

multi-component, 60, 67–68

operator order ambiguities, 68–69

Optical Theorem, 397–399

orbital angular momentum, 104

orbital states, 330

Orion nebula, 219

orthobasis (orthonormal basis), 25

corresponding to a CSCO, 51

corresponding to Hermitian operator, 44
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Gram–Schmidt construction, 27–28

orthogonal kets, 25

orthonormality, 25

angular momentum eigenstates, 164, 168

Dirac, 25–26, 30, 49, 65

momentum eigenstates, 56, 60

position eigenstates, 53, 60

spherical coordinate eigenstates, 178

Hermite polynomials, 148

Legendre polynomials, 181

spherical Bessel functions, 193

spherical harmonics, 179

outer product, 32

oxygen (electron configuration and term), 338

pair-exchange operators for identical particles,

314–315

paradox, instantaneous communication, 429

parity, 110–113

eigenvalues, 111

angular momentum eigenstates, 185–187

composite particle, 187

intrinsic, 186–187

multi-electron atom, 187, 336

of operators, 111

angular momentum, 112, 381

position and momentum, 111

violation, 187

parity selection rule, 112–113

partial wave amplitudes, 404

partial wave expansion, 404–407

partial wave unitarity, 405–408

bound from, 407

particle in a 1-dimensional box, 128–130

particle in a 1-dimensional square-well poten-

tial, 130–133

particle-wave duality, 11–13

partition function, 86

Paschen series, 219

Paschen–Back effect

hydrogen atom, 309–312

multi-electron atoms, 340

passive view of translation, 101

path integral, 446–449

for harmonic oscillator, 449–453

paths, sum over, 444–456

Pauli exclusion principle for identical fermions,

228, 316–318, 321, 331

Pauli matrices, 169–170

periodic boundary condition, 8, 56

periodic table of elements, 332, 336–339

permutation operators for identical particles,

316–317

perpendicular kets, 25

perturbation theory

stationary-state (time-independent), 255–

286

almost-degenerate, 282–286

Brillouin–Wigner, 268–269

Dalgarno–Lewis method, 270–271

degenerate, 272–277

non-degenerate, 255–268

time-dependent, 352–361

harmonic, 361–365

Pfund series, 219

phase

ambiguity, 24, 41, 100

global and relative, 24–25, 73

phase shift (scattering), 405–407

phase velocity vs. group velocity, 123–124

phase-space coordinates, 88
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photo-electric effect, 10–12

for atoms, 382–387

photon, 11

pictures of quantum mechanics

Heisenberg, 343–346

interaction (Dirac), 346–349

Schrödinger, 343

Planck’s constant (h), 9

reduced (h̄), 11

Planck’s formula for black-body radiation, 10

plane wave

in 1 dimension, 57–58

in 3 dimensions, 60

relation to spherical wave, 194–196

Poisson bracket, 88

Poisson distribution (coherent state), 157

polarizability of hydrogen atom, 280–281

polarization vector for electromagnetic wave,

366–367

pole in scattering amplitude

bound state, 410–412, 414, 415

resonance, 412–415

position operator

in 1 dimension, 52

in 3 dimensions, 59–60

position wavefunction and representation, 53,

61

positivity of inner product, 23

postulates of quantum mechanics, 65–67

collapse (controversy and unease), 76–77

Feynman’s alternative for time evolution,

446

in terms of density matrix operator, 77–83

spin-statistics principle for identical parti-

cles, 315

potentials, electromagnetic, 92

Poynting vector, 92

principal (l = 1 in spectroscopic notation), 210

principal quantum number n (hydrogen atom),

208

principal value (Cauchy), 398

probability

current, 117–119

density, 54, 61

in momentum space, 57, 61

local conservation, 117–120

of a measurement result, 66

for mixed ensembles, 79–80

product basis, addition of angular momenta,

223

projection formula, Landé, 249–250, 253, 303

projection operator, 32, 66

and collapse of state, 66–67

and measurement probability, 66

as observable, 69

eigenvalues, 41

propagator, 441–444

composition rule, 444–445

free particle, 442

harmonic oscillator, 442–443

proton

charge, 6, 92

magnetic moment, 94–95, 300–301

mass, 300, 419

size, 6

impact on hydrogen energy, 264–265

spin, 14, 227

proton-neutron scattering, 419–422

pure ensemble, 69

quadratic Stark effect, 277–281
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quadrupole moment operator, 247, 380

quantum field theory, 319, 456

quantum tunneling, 139–140

quark, 6, 92

quasi-bound state (resonance), 412–415

radial wavefunction, 188–189

3-d isotropic oscillator, 204–205

finiteness at r = 0, 188–189

hydrogen atom, 210–212

radius of proton, 264–265

raising operator

angular momentum, 165

harmonic oscillator, 151

Ramsauer–Townsend effect, 140, 419

Rayleigh–Jeans formula for black-body radia-

tion, 9–10

Rayleigh–Ritz variational method, 287–295

examples, 290–295

for excited states, 288–290

example, 292

forgiving nature, 287–288

helium atom ground state, 293–295

recurrence relation

1-d oscillator, 147

3-d isotropic oscillator, 203

coherent states of harmonic oscillator, 156

hydrogen atom radial expectation values,

215–216

reduced Compton wavelength, 217

reduced mass (in 2-body problem), 90

hydrogen-like atoms, 206

neutron-proton scattering, 419

reduced matrix element, 248–250, 253

reduced Planck’s constant h̄, 11

reducible tensor operator, 247

reflection and transmission ratios R, T , 135–

136

relabeling summation index trick, 146, 202, 241,

252

relative phase, 24–25

relativistic corrections for hydrogen atom, 296–

300

naive estimate, 218

relativity, special, 67, 217

repeated index summation convention, 105, 143

representation

angular momentum, coordinate, 176–185

angular momentum, matrix, 168–172

momentum, 56–58, 61

of operator in an orthobasis, 35–37

of rotation operators, 173–176

position, 53, 61

spin, 168–170

resonances in scattering, 412–415

1-dimensional, 138, 140

Robertson–Schrödinger uncertainty relation, 70–

71

rotation operator, unitary, 106–107, 173

matrix representations, 173–176

rotation symmetry and angular momentum con-

servation, 110

rotations, 104–110

Russell–Saunders coupling approximation, 334–

339

Rutherford scattering, 390–391

Rutherford–Geiger–Marsden experiment, 6

Rydberg (unit of energy), 209, 217

Rydberg formula for spectral lines of hydrogen,

218

scalar operator, 245
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selection rules, 248

scalar product, 22

scattering, 133–134, 388

Born approximation, 399–404

hard-sphere

classical, 389–390

quantum, 415–417

identical particles, 422–424

in 1 dimension, 133–140

rectangular barrier potential, 137–139

rectangular well potential, 139–140

step-function potential, 136–137

neutron-proton, 419–422

Rutherford, 390–391

spherical potential well, 417–419

Yukawa (screened Coulomb) potential, 401–

402

scattering amplitude, 392

relation to differential cross-section, 392

scattering cross-section, 388

scattering length, 410

for neutron-proton scattering, 421

for spherical well, 419

scattering resonances

in 1 dimension, 138, 140

in 3 dimensions, 412–415

scattering states, 56, 133–134

Schrödinger equation, 67, 72–73

time-independent, 73

differential equation in 1 dimension, 126

differential equation in 3 dimensions, 188

Schrödinger picture, 343

Schwarz inequality, 23–24

screened Coulomb (Yukawa) potential and scat-

tering, 401–402

selection rules, 43

J = 0 to J = 0 forbidden, 378

Clebsch–Gordan coefficients, 232–233, 243,

253–254

dipole, 250–251

electric dipole transitions, 377–378

electric quadrupole transitions, 381–382

general multipole transitions, 382

inner product, 43–44

magnetic dipole transitions, 380–381

matrix element, 43

parity, 112–113

tensor operator, 253–254

time-dependent perturbation theory, first-

order, 358

vector operator, 251

self-adjoint operator, 34

separable states, 63

Shannon entropy, 81

sharp (l = 0 in spectroscopic notation), 210

shell model for multi-electron atom, 331–334

short-time approximation, 350–351

silver, in the Stern–Gerlach experiment, 15–16

simultaneous measurement of compatible oper-

ators, 68

singlet state of two spins, 226–228

Slater determinant, 317–319

solid angle differential, dΩ, 178, 388

space inversion (parity), 110–113

special relativity, 67, 217

spectral decomposition, 49–50

of time-evolution operator, 73

spectroscopic notation, 209–210, 239–240, 336–

339

speed of light in vacuum (c), 7
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spherical Bessel functions, 191–192

modified, 193

spherical Hankel functions, 192–193, 408

spherical harmonics, 179–182

addition formula, 184–185

and parity, 185–186

combinations and products, 240–243

non-existence for half-integer angular mo-

menta, 175

spherical Neumann functions, 191–192

spherical potential well

bound states, 198–200

scattering, 417–419

spherical tensor operator, 244–247, 251–254

spin, 14–15, 108, 168–169

combination of two, 224–226

combination with orbital angular momen-

tum, 229–231

matrix representation, 168–170

spin-orbit interaction Hamiltonian, 296–297, 301,

329

spin-statistics principle, 315–316

spinor, 170

spinor operator, 245

spontaneous emission of light, 372–374

electric dipole approximation, 376

spooky action at a distance, 428

square-well potential (1-dimensional)

bound states, 130–133

scattering, 139–140

standard deviation and uncertainty, 70

Stark effect

linear, 281–282

quadratic, 277–281

state vector (or state ket), 20, 65

stationary paths, 454–455

stationary state, 73

stationary-state perturbation theory, 255–286

almost-degenerate, 282–286

Brillouin–Wigner, 268–269

Dalgarno–Lewis method, 270–271

degenerate, 272–277

non-degenerate, 255–260

examples, 260–268

Stern–Gerlach experiment, 15–19

analogy with photon polarization, 19

sequential, 18–19

stimulated (induced) emission, 371–372

electric dipole approximation, 376

structure constants of Lie algebra, 98

subspace of a vector space, 22

sudden approximation, 351–352

summation convention for repeated indices, 105,

143

superposition, 20, 24

principle, 42–43

symmetric (triplet) spin combination, 226–228

symmetries and conserved quantities, 97–100

general (Noether’s principle), 99

rotations and angular momentum, 110

time translation and energy, 100

translations and momentum, 102–104

temperature, 85

tensor operator

Cartesian, 247

irreducible, 244–247, 251–254

reducible, 247

tensor product of Hilbert spaces, 61–64

and entanglement, 63

term symbol (spectroscopic notation), 336–339
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Thomas precession, 297

time evolution of states, 67, 72, 74–76

in terms of density matrix operator, 81–82

time ordering of operators, 76, 348–349

time translation symmetry and energy conser-

vation, 100

time-dependent perturbation theory, 352–361

harmonic, 361–365

time-evolution operator, 72–73, 75–76

spectral decomposition, 73

unitarity of, 72

time-independent Schrödinger equation, 73

time-independent perturbation theory, 255–286

almost-degenerate, 282–286

Brillouin–Wigner, 268–269

Dalgarno–Lewis method, 270–271

degenerate, 272–277

non-degenerate, 255–260

examples, 260–268

total angular momentum, 109–110

total angular momentum basis, 223–224

trace of operator, 45

transformation, 97

as unitary operator, 97

generator, 97–98

rotation, 104–110

space inversion (parity), 110–113

time translation, 100

translation, 100–104

transition amplitude, 349

diagrammatic representation, 355–356

perturbative expansion, 353–356

transition operator (3-dimensional scattering),

396–397

translation operator, 100–104

3-dimensional, 103–104

translation symmetry and momentum conser-

vation, 102–104

transmission and reflection ratios T , R, 135–

136

transparency in potential scattering, 138, 140,

419

transverse (Coulomb) gauge, 96, 366

trial state for the variational method, 287

triangle inequality, 24

trick

completing the square, 121–122, 124, 125

dot product of angular momenta, 227, 298,

308

dots and lines, 163

evaluation of 1/R and 1/R2 expectation val-

ues of hydrogen atom, 275–277

evaluation of matrix element using Hamil-

tonian commutator, 375, 379

hole as absence of electron, 338–339

relabeling of summation index, 146, 202,

241, 252

spectral decomposition of operator, 49–50

triplet state of two spins, 226–228

tritium decay, 352

tunneling, 139–140

21 centimeter line (from hyperfine splitting of

hydrogen), 228, 303, 381

two-body problem, 89–91

angular momentum, 109

ultraviolet catastrophe, 9–10

unbound states, 56, 133–134

uncertainty, 70

uncertainty relation, 70–71

for Gaussian wavefunction, 123
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position-momentum, 71

Robertson–Schrödinger, 70–71

unitary operator, 34, 37

and time evolution, 72–73, 75–76

as a change of basis, 38–39

as a transformation, 97

eigenvalues, 48

matrix, construction from orthobasis com-

ponents, 37–38, 45

units conventions, 6, 9, 11, 91–92

unstable states, 119–120

valence electrons, 336

variational method, 287–295

examples, 290–295

for excited states, 288–290

example, 292

forgiving nature, 287–288

helium atom ground state, 293–295

vector operator, 245–246

projection formula, 248–250

selection rules, 251

vector space, complex linear, 20

basis and dimension, 21

dual, 29–30

examples, 21

subspace, 22

velocity

group vs. phase, 123–124

of electrons in hydrogen, 217

of light in vacuum (c), 7

virtual bound state, 422

von Neumann entropy, 81

wave-particle duality, 11–13

wavefunction, 13, 53

continuity, 127

momentum, 1-dimensional, 56–57

momentum, 3-dimensional, 61

position, 1-dimensional, 53

position, 3-dimensional, 61

width (Γ) in resonant scattering, 413

Wigner functions (for rotations), 173–176

general formula, 175–176

Wigner–Eckart theorem, 251–254

and selection rules, 253–254

for spherical harmonics, 243

Yukawa (screened Coulomb) potential and scat-

tering, 401–402

Z2 discrete group, 110

Zeeman effect

hydrogen atom, 306–312

multi-electron atoms, 339–340

zero-point energy (harmonic oscillator), 149
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