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Preface

This book is intended as a text for a core graduate course on quantum physics. Quantum

mechanics started to assume its modern form in a brilliant flash of activity from 1924-1930. In

the subsequent century, there have been many excellent textbooks written on the topic, and one

might well wonder why someone might decide to create another. The short answer is this: I’ve

attempted to imagine, and then write, the book that would have made me happiest to read, as

a graduate student. Whether my selection of topics, explanations, and derivations works well

for someone else is an entirely different and personal question, of course!

Quantum mechanics is a big subject, and it is not possible to cover everything. So I didn’t.

Even so, there is more material in this book than can be reasonably covered in a typical academic

year of lectures. This is intentional, because every course and every student will have different

priorities. I did consider it essential to include certain modern subjects that are not always

covered in older books at this level, notably the hidden variables alternative, Bell inequalities,

entangled subsystems and open systems, generalized measurements, decoherence, and quantum

information. The instructor will likely have to make some hard choices of what to leave out,

informed by the interests and preparation of the students.

Although this book aims to be a self-contained discussion, starting from the basics, it will

probably be more readily accessible for those who have already taken undergraduate courses

in classical mechanics, electromagnetism, and quantum mechanics, with at least some exposure

to the concepts of wavefunctions, operators, commutators, Schrödinger’s equation, and the

uncertainty principle. It is also assumed that the reader is already familiar with matrices

and linear algebra, multivariable calculus, simple differential equations, the algebra of complex

numbers, and basic concepts of probability.

The exercises at the end of each chapter vary in length and difficulty. For this I make

no apology, since at the wild frontiers of research, problems do not present themselves with

convenient labels saying “I am easy, you can solve me in one line” or “I am challenging, good

luck”. With that said, none of the exercises given here are remotely close to research level, and

each has been chosen to reinforce some concept or method.

I am grateful to the many students who have provided feedback, with special thanks to those

who pointed out corrections to earlier drafts: Sameneh Ahmadinejad, Jared Coles, Matthew

Dudak, William Emark, David Iglesias Tinoco, Abdulrahman Kauther, Spencer Kelham, Mark

Mekosh, Dillon Merenich, Olabisi Olayinka, Zhenghao Pan, Cassandra Phillips, Deeksha Sinha,

Vladimir Tsitrin, and Tasfia Yeashna.

Stephen P. Martin
Northern Illinois University, DeKalb, Illinois, USA
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1 Introduction: the quantum revolution

1.1 Classical instability of charged matter

Quantum mechanics is often portrayed as nonintuitive, weird, or even paradoxical. We begin

with a retort: it is actually classical physics that is conspicuously incompatible with basic

features of the world we live in. Most strikingly, if classical mechanics governed the universe,

then matter made up of charged particles would necessarily be unstable against rapid and

catastrophic collapse.

Consider, for example, a classical model of the hydrogen atom, consisting of a point-like†

electron and much heavier proton, separated by a distance r. The electric potential energy is

V (r) = − Q2
e

4πǫ0 r
= −e

2

r
, (1.1.1)

where in SI metric system units, Qe = −1.60218 × 10−19C is the electronic charge and ǫ0 =

8.85419× 10−12C2/N ·m2 is the permittivity of free space. The positive quantity e, which will

appear often in this book, is equal to the proton’s charge in the Gaussian cgs metric system

units. Its square is given numerically by

e2 = 1.43996× 10−9 eV·m = 2.30708× 10−28 J·m = 2.30708× 10−19 erg·cm. (1.1.2)

Clearly, classical physics has a serious problem: the potential V (r) is unbounded from below

as r approaches 0, implying that a classical atom should release an arbitrarily large amount of

energy as it shrinks to zero size.

While this may seem dangerous (or possibly useful, depending on your imagination!), it is

certainly not what is observed. One might suppose that a way to achieve safety is to somehow

force the electron to travel in a fixed orbit about the much heavier proton. However, this cannot

work in a classical theory, because of energy conservation. Maxwell’s equations imply that the

classical electron will continuously lose energy in the form of electromagnetic radiation, due to

its centripetal acceleration. For a circular orbit, the acceleration is

a =
v2

r
=

F

me

=
e2

mer2
, (1.1.3)

†The small size of the electron compared to atoms was understood in 1897 by Joseph J. Thomson from
observations of cathode rays. All experiments to the present day are consistent with the electron having no
substructure. Protons and nuclei are certainly not point-like, as they are now known to be composed of quarks
and gluons. However, the important thing for the following discussion is just that they are tiny (∼ 10−15

meters) compared to atoms (∼ 10−10 meters). This had become apparent by 1911, before the development of
the quantum theory, from the results of Ernest Rutherford’s experiments with Hans Geiger and Ernest Marsden
in which alpha particles were observed scattering at large angles off of gold nuclei.
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whereme = 9.109390×10−31 kg = 0.510999 MeV/c2 is the electron’s mass, with c = 2.99792458×
108 m/sec, the speed of light in vacuum. The Larmor formula for the radiated power of an

accelerating charge,

P = −dE
dt

=
Q2
ea

2

6πǫ0c3
=

2e2a2

3c3
, (1.1.4)

therefore tells us that the classical electron must lose energy at a rate proportional to 1/r4,

which in turn will decrease its orbit size at an ever-increasing rate.

Just for fun, let us estimate the tragic fate of the electronic orbit in this classical model,

making some simplifying assumptions. If the orbit stays nearly circular, and nonrelativistic, as

it decays, then the energy will be

E =
1

2
mev

2 − e2

r
= − e

2

2r
. (1.1.5)

Combining eqs. (1.1.4) and (1.1.5) gives

3r2
dr

dt
= −K, (1.1.6)

where K ≡ 4e4/m2
ec

3 is a constant. If r = r0 at t = 0, this integrates to r3 − r30 = −Kt, so

r = r0
(
1−Kt/r30

)1/3
. (1.1.7)

This shows that the decay of the classical electron’s orbit is even worse than asymptotic; it

collapses all the way to r = 0 in a finite time r30/K, which turns out to be very short (see

Exercise 1.1 to find out just how short). Larger atoms, and crystal structures of electrons and

nuclei, would have similar instabilities if classical physics governed them.

Quantum mechanics addresses this catastrophe, and allows matter composed of charged

particle constituents to be stable, by changing the rules. In the quantum theory, there is no

counterpart to the decaying classical orbit with unbounded negative energy. In particular, there

are no physical quantum states of the hydrogen atom with arbitrarily low energy, corresponding

to a classical electron localized arbitrarily near r = 0. Instead, as we will see, there is a

single state with the lowest possible energy (about 13.6 eV below a state of ionization), which

therefore is stable since there is no lower energy state into which it could decay by emitting

electromagnetic radiation. In this way, quantum mechanics saves the universe. More generally,

in quantum mechanics the energies of bound states turn out to be quantized (discrete). There

are also unbound (ionized) states with a continuum of allowed energies, but those energies are

bounded from below.
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1.2 Black-body radiation and Planck’s constant

In the late 19th century, it became apparent that classical physics theory makes a similarly

catastrophic prediction for electromagnetic radiation. Consider a cavity whose walls are as close

as possible to idealized black (a perfect absorber and emitter of electromagnetic radiation),

heated as an oven so that it is kept in thermal equilibrium at temperature T with the electro-

magnetic radiation inside it. The spectrum of the electromagnetic radiation is characterized by

the energy density ρE , per unit volume V and per unit frequency ν, in terms of which the total

energy inside the cavity is

Total energy = V

∫ ∞

0

dν ρE(ν, T ). (1.2.1)

The function ρE(ν, T ) can be determined experimentally by making a small hole in the walls

of the cavity and measuring the radiation that escapes, analyzed for different frequencies using

diffraction gratings, for example.

To obtain a theoretical prediction for ρE(ν, T ), we first need to quantify the density of

electromagnetic modes per unit frequency. For simplicity, assume that the cavity is a cubic box

of side L, and that the electromagnetic radiation modes satisfy periodic boundary conditions,

with fields proportional to cos(k ·r) and sin(k ·r), with allowed wavevectors k = (2π/L)n, where

n = x̂nx + ŷny + ẑnz for integers nx, ny, nz. The corresponding wavelengths and frequencies are

λ = L/n, ν = cn/L, (1.2.2)

where n = |n| =
√
n2
x + n2

y + n2
z. Because the allowed nx, ny, and nz are integers, the number

of modes with frequency between ν and ν + dν can be enumerated by integrating the volume in

n space, using radial coordinate n, with

d3n → 4πn2dn =
4πL3

c3
ν2dν. (1.2.3)

So, if E is the average energy of a mode with frequency ν when in thermal equilibrium with the

walls at temperature T , then the total energy for frequencies between ν and ν + dν is

2E
4πL3

c3
ν2dν, (1.2.4)

where the first factor of 2 accounts for the fact that each electromagnetic mode can have two

transverse polarizations. Setting eq. (1.2.4) equal to L3ρE dν in accord with eq. (1.2.1), we find

ρE(ν, T ) =
8π

c3
ν2E. (1.2.5)
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We next need to evaluate E as a function of temperature.

A fundamental prediction of statistical mechanics is that for an ensemble of identical systems

in thermal equilibrium, the probability for one of the systems to have energy E is proportional

to the Boltzmann factor, named after Ludwig Boltzmann,

P (E) ∝ e−E/kBT , (1.2.6)

where T is the temperature in Kelvin, and Boltzmann’s constant

kB = 1.380649× 10−23J/K = 1.380649× 10−16erg/K = 8.617333× 10−5eV/K (1.2.7)

is the conversion factor between units of temperature and energy. If the allowed energies of

electromagnetic modes are continuous and unrestricted, we therefore have the simple classical

prediction for the average energy,

E =

(∫ ∞

0

dE e−E/kBT E

)/∫ ∞

0

dE e−E/kBT = kBT, (1.2.8)

independent of ν. Plugging this into eq. (1.2.5) gives the result

ρE(ν, T ) = 8πkBTν
2/c3. (1.2.9)

This is the Rayleigh–Jeans prediction, developed by John W. Strutt, 3rd Baron Rayleigh, and

James Jeans. Even without consulting experimental data, this formula is clearly problematic,

since it claims that the energy density grows quadratically with frequency. After integrating
∫∞
0
dν ρE(ν, T ), we would find an infinite total energy density per unit volume in black-body

radiation. This impossible prediction of classical physics is called the ultraviolet catastrophe.

In order to explain the existing data and avoid the ultraviolet catastrophe, Max Planck

proposed in 1900 that the black-body walls can only emit modes with frequency ν if the energy

is equal to an integer multiple of hν, where, using modern data,

h = 4.13567× 10−15 eV·s = 6.62607× 10−34 J·s = 6.62607× 10−27 erg·s (1.2.10)

is known as Planck’s constant. In that case, the integrals in eq. (1.2.8) are replaced by sums

over only the discrete allowed energies,

E =
( ∞∑

n=0

nhν e−nhν/kBT
)/ ∞∑

n=0

e−nhν/kBT =
hν

ehν/kBT − 1
. (1.2.11)
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Figure 1.2.1: Comparison of the classical
Rayleigh–Jeans (dashed line) and Planck
(solid curve) predictions for the electromag-
netic radiation energy per unit volume and
unit frequency, ρE , in a black-body cavity,
as a function of the frequency ν, for temper-
ature T = 1000K.

For very small hν/kBT , this agrees with eq. (1.2.8). However, unlike that formula, it depends on

the frequency, and is exponentially suppressed in the ultraviolet limit of large hν/kBT . Putting

eq. (1.2.11) into eq. (1.2.5) yields†

ρE(ν, T ) =
8πh

c3
ν3

ehν/kBT − 1
(1.2.12)

Figure 1.2.1 compares Planck’s formula eq. (1.2.12) with the Rayleigh–Jeans prediction eq. (1.2.9),

for black-body radiation with T = 1000K. In the far infrared, the two results agree, but they dif-

fer significantly in the near infrared, and the Planck prediction for ρE decreases with frequency

above ν = 5.9× 1013 Hz. In the visible range of ν between about 4× 1014 and 8× 1014 Hz, the

Planck formula is many orders of magnitude smaller, in accord with observation. Furthermore,

the Planck prediction for the total energy density per unit volume
∫ ∞

0

dν ρE(ν, T ) =
8π5(kBT )

4

15h3c3
, (1.2.13)

is finite, resolving the ultraviolet catastrophe. The agreement of this prediction with observation

established that the electromagnetic radiation modes inside the cavity are quantized in energy

units equal to Planck’s constant multiplied by the frequency.

1.3 Photo-electric effect and particle-like features of light

The photo-electric effect is the ejection of electrons from the surface of a material when light

shines on it. This is observed to occur if the angular frequency ω of the light is sufficiently high.

†Historically, Planck’s original proposal of this formula was simply an inspired guess to fit the data, and his
subsequent derivation of it was not particularly compelling by modern standards, but the result was correct.
The origin of eq. (1.2.11) from deeper principles is derived in section 3.5, see eq. (3.5.47).
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Figure 1.3.1: Sketch of results for the photoelectric effect. Shin-
ing electromagnetic radiation on the surface of a metal produces
a current of ejected electrons, but to a good approximation this
occurs only if the angular frequency of the light exceeds a min-
imum value ωmin. The maximum kinetic energy of the ejected
electrons then rises like ~(ω − ωmin).

For ω less than a certain threshold value characteristic of the materials used in the experiment,

almost no electrons are ejected, even as the intensity of the light is increased. The threshold

angular frequency ωmin typically corresponds to visible or ultraviolet light. For ω > ωmin, the

maximum energy of ejected electrons is observed to rise linearly, as sketched in Figure 1.3.1.

This behavior was unexpected when it was first found, because in classical electrodynamics,

the frequencies and energies of electromagnetic waves are continuous and independent of each

other. One might have supposed that increasing the intensity of the light would result in

electrons being ejected for any ω, no matter how small. To explain the observations, Albert

Einstein proposed in 1905 that light of a given angular frequency always occurs in chunks, or

quanta, which are now called photons. For each photon, the energy is related to the angular

frequency by the same formula proposed by Planck, which can be rewritten, using ω = 2πν, as

E = ~ω, (1.3.1)

where the reduced Planck’s constant (or just “h bar”, when speaking) is defined to be related

to the ordinary Planck’s constant by

~ =
h

2π
= 6.58212× 10−16 eV·s = 1.05457× 10−34 J·s = 1.05457× 10−27 erg·s. (1.3.2)

Einstein’s quantization condition conceptually generalized Planck’s proposal, which was only

intended to apply to electromagnetic modes absorbed and emitted by the black-body cavity.

It follows from special relativity and wave kinematics that the momentum p and the wave-

length λ of each photon are related by

p = E/c = ~ω/c = 2π~/λ. (1.3.3)

In the photo-electric effect, the discrete particle-like nature of light explains the existence of

ωmin, because ~ωmin is the minimum energy jump needed for the electron to escape the metal
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Figure 1.3.2: The wave nature of electro-
magnetic radiation causes interference
and diffraction phenomena when light
from a coherent source passes through
holes or slits in a screen.

and be collected on another plate when it is struck by a single photon.† Experiments reported

by Robert A. Millikan in 1916 later verified, using sodium and lithium as the targets, that the

maximum kinetic energy of the ejected electron indeed behaves like

E = ~(ω − ωmin). (1.3.4)

The value of ωmin depends on the collector plate material as well as the material being illumi-

nated, but the most important result of the experiment is the slope of the line in Figure 1.3.1,

which is ~. Millikan’s measured value for ~ was consistent with Planck’s result from black-body

radiation, but was significantly more accurate and precise.

Although light behaves like a particle in the photo-electric effect, it also has interference

properties governed by the wavelength. These effects appear in interference and diffraction

experiments like the double-slit experiment illustrated in Figure 1.3.2. Light from a coherent

source passing through holes or slits in a screen yields a pattern of intensity maxima and minima,

where the interference of amplitudes is constructive and destructive, respectively. However, the

interpretation of this effect is slightly different in quantum mechanics than in the corresponding

classical theory. Classically, the intensity is proportional to the magnitude of the time-averaged

Poynting vector,

Classical intensity ∝ |E × B|, (1.3.5)

where E and B are the electric and magnetic fields that each obey superposition and interference

due to the linearity of Maxwell’s equations. In the quantum theory, the real quantity E × B is

replaced by the squared magnitude of a complex quantity ψ,

Quantum intensity ∝ |ψ|2. (1.3.6)

†Actually, two photons can team up to eject a single electron, as has been observed in experiments with
high-power lasers, but the rate for this is very small except when the intensity is extremely large.

14



Here ψ(x, y, z, t) is called awavefunction, and it is a probability density amplitude. This means

that |ψ(x, y, z, t)|2 is proportional to the probability to detect a photon at position (x, y, z) at

time t. It is a fundamental feature of quantum mechanics that we must deal with probabilities,

not definite outcomes for individual events, even if the initial conditions of a physical situation

are known as perfectly as possible.

1.4 Electron diffraction and wave-like features of matter

Inspired by the dual wave-particle nature of light exhibited in the photoelectric effect, Louis de

Broglie in his 1924 PhD thesis suggested that matter particles, such as electrons, will also have

wavefunctions ψ(x, y, z, t) that are subject to interference. He proposed that what is now called

the de Broglie wavelength λ (and the corresponding wavenumber k) of the wavefunction

should be related to the momentum of a particle in the same way as for light, eq. (1.3.3). That

is, for a particle with mass m and energy E =
√
p2c2 +m2c4,

λ = 2π/k = 2π~/p. (1.4.1)

De Broglie’s wave hypothesis for matter was verified by the discovery of electron diffraction in

a series of experiments by Clinton Davisson and Lester Germer from 1923-1928.

In the Davisson–Germer experiments, electrons with controlled energies (of order a few

hundred eV) were made to hit a target made of a crystal of nickel,† and a detector was used

to observe the intensity of electrons scattered at various fixed angles, as shown schematically in

the first panel of Figure 1.4.1. The results as a function of varying incident electron momentum

(proportional to the inverse de Broglie wavelength) are shown in the second panel. They feature

maxima and minima of constructive and destructive interference, depending on the differences

in path lengths of the electrons scattering from the regularly spaced crystal sites, with a distance

between nuclei of order 3.5×10−10 meters. This interference effect was similar to the previously

known phenomenon of Bragg peaks in x-ray scattering. The electrons’ wavelength corresponded

to the prediction of the de Broglie relation to momentum in eq. (1.4.1). This provided the

first direct evidence that matter particles are also described by a wavefunction which can be

interpreted as a probability amplitude, with the crucial feature that this amplitude is subject to

superposition and interference. It also provided another example of the central role of Planck’s

constant in the quantum theory, through the connection between momentum, wavelength, and

~ in eq. (1.4.1).

†Their original motivation was to study the surface of nickel, not to check de Broglie’s idea, which came later.
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Figure 1.4.1: Schematic setup for the Davisson–Germer electron diffraction experiments (left),
and some of their data for intensity of electrons scattered at fixed angle, as a function of the
reciprocal of the electron’s de Broglie wavelength (right). Source: C.J. Davisson and L.H. Ger-
mer, “Reflection and refraction of electrons by a crystal of nickel”, Proceedings of the National
Academy of Sciences of the USA, vol. 14, no. 8, p. 619 (1928).

1.5 Spin and the Stern–Gerlach experiment

In classical mechanics, angular momentum takes on continuous values, but in quantum mechan-

ics it always occurs in multiples of a fundamental unit. For angular momentum associated with

the motion of particles, called orbital angular momentum, the fundamental quantum unit is

~, as we will show in section 5.3. However, quantum mechanics also allows for intrinsic angular

momentum, or spin, which has no classical counterpart. The spin of a particle is quantized

in units of ~/2, as we will prove in section 8.1, and has a fixed magnitude that depends only

on the identity of the particle. Electrons, protons, neutrons, muons, tau leptons, neutrinos, and

quarks all carry this type of intrinsic angular momentum. Since their spin angular momentum

is half of the quantized unit for orbital angular momentum, they are called spin-1/2 particles.

Of these, all but the proton and neutron are currently believed to be fundamental (not compos-

ite collections of other particles). But even composite particles like atoms, atomic nuclei, and

mesons and baryons bound together by the strong nuclear force, always have spin that comes

in integer multiples of ~/2.

The first experimental hints of the existence of spin came from the otherwise mysterious

doubling of certain spectral lines from atomic transitions. Wolfgang Pauli suggested in 1924

that this was due to the presence of some extra quantum number that could only take on two

values. The following year, Samuel Goudsmit and George Uhlenbeck proposed the intrinsic

angular momentum interpretation that we now know as spin. This idea took some time to gain
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Figure 1.5.1: The Stern–Gerlach experiment. Silver atoms are heated in a furnace, and passed
through an inhomogeneous magnetic field, which exerts a force on them proportional to the
ẑ component of the atomic magnetic dipole moment. The observed result is that the silver
beam splits into two “spatially quantized” components on the detection screen. In contrast, the
(incorrect) classical prediction is a continuum of deflection magnitudes.

acceptance, and the many doubters famously included Pauli. Part of the problem was that, at

first, the spin was erroneously thought to be due to some kind of internal rotational motion of

the structure of the electron, but nobody could get this idea to work in detail, and it turns out

to be incorrect. Spins of fundamental particles like the electron are now understood to be a

form of angular momentum that is distinct from the mechanical type.

In 1922, Otto Stern and Walter Gerlach reported an experiment which eventually provided

profound insights into spin and the emerging quantum theory. They heated silver atoms in a

furnace to vaporize them. The atoms escaped through a narrow collimating structure to form

a beam, which then moved through a region where they were deflected by an inhomogeneous

magnetic field, and finally were collected on a measurement screen, as shown in Figure 1.5.1.

The total magnetic dipole moment for the silver atom is a vector µ whose magnitude µ is a

constant, very nearly the same as that of a single electron,† which in turn is proportional to the

electron’s spin, although Stern and Gerlach did not know this at the time. The furnace thor-

oughly randomizes the directions of the magnetic moments. As a result of the inhomogeneous

magnetic field B, there is a classical force on the atoms,

F = ∇(µ · B), (1.5.1)

causing them to deflect. For simplicity, suppose the magnetic field in the deflection region has

†The explanation for this is as follows. Silver atoms have 47 electrons, each of them carrying a magnetic
dipole moment along that electron’s spin direction. However, 46 of the electrons pair up in such a way that their
spins are opposite, and cancel. Furthermore, there is no net orbital angular momentum of the electrons, and the
contribution of the heavy nucleus to the atomic magnetic moment is relatively small.
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a cylindrically symmetric form‡

B(x, y, z) = B0

[
x̂
x

2a
+ ŷ

y

2a
+ ẑ

(
1− z

a

)]
(1.5.2)

where the coordinate system has unit vector ẑ (up in Figure 1.5.1) perpendicular to the beam,

and a is a length that is large compared to the size of the region where the magnetic field acts

on the atoms in the beam. The atomic dipole moment experiences a torque, and since µ is

proportional to the angular momentum, it obeys an equation of motion of the form

dµ

dt
∝ µ× B. (1.5.3)

The dominant magnetic field component B0ẑ therefore causes µ to rotate rapidly about the

ẑ direction, keeping the magnitude of µz nearly constant but causing the oscillating µx and

µy components to average to 0 over the time scale in which the atom is moving through the

macroscopic magnetic field region. This implies that µx and µy can be neglected when computing

the deflection of the atom. Since only µz contributes, eq. (1.5.1) becomes

F = µz∇Bz = ẑµz
∂Bz

∂z
= −ẑ(B0/a)µz. (1.5.4)

Because the gradient of the vertical magnetic field −B0/a is known and fixed, measuring the

deflection of the atom is equivalent to measuring the ẑ component of its magnetic dipole moment.

Note that in the limit of a homogeneous field (a → ∞) there would be no deflection at all.

Thus, the role of the large homogeneous part of the magnetic field ẑB0 is to determine which

component of µ will be measured, by washing out the effects of the other components, while the

smaller inhomogeneous part −ẑzB0/a provides the force needed to produce the deflection and

actually make the measurement.

Since the magnetic dipole moments of silver atoms emerging from the furnace are random in

direction, classical physics reasoning suggests that the measured values of µz should have equal

likelihood to be anything between −|µ| and |µ|. This in turn would imply that their deflections

as observed on the screen should form a continuum between two extremes. Instead, they form

two spots with equal numbers of atoms deposited, with a gap in between. The important

and surprising conclusion is that the result of measuring µz for silver atoms can only give two

discrete, quantized values, with equal probabilities.

The amount of deflection can be related to the spin carried by each atom, which in the case

of silver comes mostly from a single unpaired electron. The proportionality between magnetic

‡The x̂ and ŷ components of B play no essential role here, except being necessary for consistency in order
to satisfy the magnetostatic field equations ∇ · B = 0 and ∇ × B = 0. More generally, the field need not be
cylindrically symmetric, but at least one of Bx or By must be non-zero. The B given here has the form that
would result from a dipole magnet fixed at a distance 3a below the beam, to linear order in 1/a.
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moment and spin for an electron is very close to

µ = − e

mec
S. (1.5.5)

The numerical magnitudes of the deflections observed in the Stern–Gerlach experiment imply

that the measurement of Sz for an electron can only give the values

measured Sz = ±~/2. (1.5.6)

There is nothing special about the ẑ direction, so this also applies to n̂ ·S for any unit vector n̂.

The Stern–Gerlach experiment has been performed for other types of atoms and nuclei,§ in

which the angular momentum (and its relationship to the magnetic moment) can be different,

resulting in more than two spots on the screen. This can be used to reveal the possible angular

momentum properties (“quantum numbers”) of the atom in question. A Stern–Gerlach appa-

ratus can even be used to isolate samples with particular desired angular momentum quantum

numbers. The results of such experiments are always consistent with quantization of the compo-

nents of any angular momentum vector in integer multiples of ~/2. The quantum theory must

account for this property, and we will see how in Chapter 8.

One can have more general Stern–Gerlach analyzers (called SGn̂ in the following) with the

inhomogeneous magnetic field element oriented in any chosen unit vector n̂ direction. The result

of analyzing silver atoms fresh from the furnace with SGn̂ is that half of them will be found to

have n̂ ·S = +~/2 and the other half will have −~/2, for any n̂. Stern–Gerlach analyzers play a

dual role in further efforts to understand quantum mechanics. First, they are measuring devices,

if the output beams are sent directly to a detection screen. Second, because the outgoing beams

are separated (sometimes called “spatial quantization”), SGn̂ provides a way of preparing a

sample of atoms in which the spin component along n̂ is known to be either +~/2 or −~/2.
Instead of impacting a detection screen, one or both of the output beams can be sent off to some

other component of the experiment, which could be another analyzer. Idealized versions of the

Stern–Gerlach deflection analyzers are commonly used as modular components in experiments,

real or imagined, to probe the implications of quantum theory.

For example, consider the sequence of two ideal Stern–Gerlach analyzers shown in Figure

1.5.2. The atoms in the experiment start in a furnace, which is assumed to produce completely

randomized spins. After passing through a first analyzer SGẑ, the atoms that had the result

Sz = +~/2 are sent into a second analyzer SGẑ, while those that had Sz = −~/2 are thrown

§However, the Stern–Gerlach setup does not work directly for free electrons, because the necessarily non-zero
Bx and/or By cause a Lorentz force −ev × B on the electron. This produces a large deflection due to the
electron’s small mass, washing out the magnetic moment effect. The Stern–Gerlach setup relies on the deflected
particles either being electrically neutral, or heavy, or both as in the case of silver atoms.
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Figure 1.5.2: An experiment with two sequential Stern–Gerlach analyzers. The first analyzer
prepares a sample of atoms with Sz = +~/2, which are then fed into the second analyzer, which
again measures Sz = +~/2, with probability P = 1 in the idealized case.
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Figure 1.5.3: An experiment with three sequential Stern–Gerlach analyzers. The first analyzer
prepares a sample of atoms with Sz = +~/2, which are then fed into the second analyzer, which
measures Sx = +~/2 and −~/2, each with probability 0.5. The atoms with Sx = +~/2 are then
sent to the third analyzer, which measures Sz = +~/2 and −~/2, each with probability 0.5. The
act of measuring Sx restores the possibility of measuring Sz = −~/2 at the end, even though
the first analyzer had been used to select only atoms with Sz = +~/2.

away. In this case, the prediction of quantum mechanics for the output of the second analyzer

is unlikely to surprise anyone. All of the output atoms on the far right again have Sz = +~/2;

the second analyzer simply confirms the measurement made by the first.

A more interesting setup is shown in Figure 1.5.3, which differs only by placing a SGx̂

analyzer between the two SGẑ analyzers. As before, the experiment uses the first analyzer to

select a pure sample of atoms with Sz = +~/2. However, now the second analyzer separates

the sample by measuring Sx. Since the ẑ direction has no way of preferring one of ±x̂ over the

other, it is no surprise that the output of SGx̂ is 50% for each of Sx = +~/2 and −~/2.
The experiment in Figure 1.5.3 then throws away the atoms with Sx = −~/2, and feeds those

with Sx = +~/2 into a third analyzer SGẑ. The final results for Sz can then be determined with

a detection screen (not shown). One might perhaps suppose that we should find that the final

atoms will all have Sz = +~/2, since the first analyzer already selected only atoms with that

property. However, this is wrong. In reality, an equal number are measured to have Sz = +~/2

and −~/2. Inserting the SGx̂ analyzer in the middle of the chain affects the atoms in such a

way as to restore the possibility of obtaining Sz = −~/2.
Another way of thinking about the experiment shows that the restoration of the Sz = −~/2

outcomes is a logical necessity, assuming only that the spin is the only thing that makes a

20



difference. (In particular, this assumes that the velocity direction of the atoms has no impact

on the spin measurement, and furthermore that there are no “hidden variables” associated with

the atom that are involved in the measurements in some mysterious way that we do not know

how to take into account.) To see this, cover up everything in Figure 1.5.3 except the last

analyzer. Feeding directly into it are atoms with spin known to be aligned in the +x̂ direction.

By assumption, the +x̂ direction has no reason to prefer +ẑ over −ẑ, or vice versa. So, no

matter what may have occurred earlier, the only possibility is that the final probabilities for

Sz = +~/2 and −~/2 are equal.

It is important that this result does not have anything to do with the fact that we threw

away the atoms that were measured to have Sx = −~/2 coming out of the second analyzer. We

could feed those atoms into the final analyzer as well, and they would also be measured to have

probability P = 0.5 for each of Sz = +~/2 and −~/2, by the same argument. Evidently, it is

the mere act of measuring Sx that causes the restoration of the Sz = −~/2 outcomes. When

we give the postulates of quantum mechanics in Chapter 3.1, the act of measurement will play

a special role in one of them (Postulate 5), consistent with the preceding discussion. This also

carries with it the implication that quantum mechanics, as defined by these postulates, is an

inherently probabilistic, rather than deterministic, theory.

If you are familiar with the behavior of polarizing filters for light, you may recognize that

the preceding example is closely analogous to a similar experiment that is common and easy to

do in optics. Two linear polarization filters arranged with axes of polarization at right angles

will not allow any light to pass through, but a third polarizer inserted between the two, with

axis at a 45◦ angle with respect to the axes of each of the others, will restore the transmission

of a fraction of the light. This analogy carries over into the quantum regime. In fact, the

most sensitive experiments testing quantum mechanics are often done with the polarization of

photons replacing the role of the spin in Stern–Gerlach type experiments. One famous example

will be discussed in detail in section 14.4.

1.6 Exercises

Exercise 1.1. Estimate the time in seconds needed for a classical hydrogen atom to reach zero

size and infinite binding energy, under the assumptions used to obtain eq. (1.1.7), and taking

r0 = 5× 10−11 meters as the initial condition.

Exercise 1.2. The cosmic background radiation is nearly blackbody radiation with a present

temperature of 2.73 Kelvin. Compute the numerical energy per cubic meter in this radiation:

(a) within the visible frequency range, defined here as 4× 1014 Hz < ν < 8× 1014Hz, assuming

eq. (1.2.9), the classical Rayleigh-Jeans formula. (For comparison, the energy density in starlight
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is roughly 10−15 J/m3.)

(b) integrated over all frequencies, as given by eq. (1.2.12), the quantum Planck formula. (Most

of this is in the microwave spectrum; convince yourself that the visible range contribution is

tiny.)

Exercise 1.3. (a) What velocity should an electron have so that its de Broglie wavelength will

be 1 meter? What if its de Broglie wavelength is 4.5× 10−7 meters (the same as for blue light)?

(b) Electrons are accelerated from rest by a potential difference of 1 volt, and then pass through

a screen with two very narrow long parallel slits. What is the de Broglie wavelength of the

electrons? How far apart must the slits be in order for the first minimum of the interference

pattern at a distant detector to be at an angle θ = 0.2◦ away from the central maximum?

electron
source

θ (not to scale)

Exercise 1.4. A coin is a thin disk of 30 grams of pure silver, with radius 2 centimeters. Each

silver atom has one unpaired electron spin with magnitude ~/2 and a nucleus that also has spin

magnitude ~/2. In the (extraordinarily unlikely) case that all of these spins were lined up in

the same direction, what would be the total intrinsic angular momentum of the (nonrotating)

coin? How does this compare to the ordinary angular momentum that the coin would have if it

rotated once per second about the symmetry axis perpendicular to the disk?
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2 Math tools: states, operators, and representations

From the results of many experiments, physicists have arrived at a set of postulates that govern

quantum theory. These will be given in the next chapter, but first we must introduce the

mathematical language necessary to frame these ideas. This chapter therefore contains many

definitions of key concepts, and some useful theorems. In doing so, we employ Paul A.M. Dirac’s

bra-ket notation, which is the modern standard in quantum mechanics.

2.1 Complex linear vector spaces

Quantum mechanics is based on the algebra of complex numbers. For any complex number

c = a+ ib, (2.1.1)

where a and b are real and i =
√
−1, the real and imaginary parts are denoted in this book by

Re[c] = a, Im[c] = b, (2.1.2)

and the complex conjugate is denoted using an asterisk,

c∗ = (a+ ib)∗ = a− ib. (2.1.3)

The magnitude (also known as the modulus) is defined by

|c| = |a+ ib| =
√
cc∗ =

√
a2 + b2. (2.1.4)

It follows that 1/c = c∗/|c|2 for every nonzero complex number c. Any complex number can be

written as a product of its magnitude and a phase factor,

a + ib = |c|eiφ, with φ = arctan(b/a), (2.1.5)

where Euler’s formula says that the unit-magnitude phase factor is

eiφ = cosφ+ i sinφ. (2.1.6)

We say that φ is the phase of the complex number c.

A complex linear vector space is a set of vectors, also known as kets, denoted for example

as |v〉 , |w〉 , . . ., such that the following properties hold:

• Additive closure: if |v〉 and |w〉 are kets, then so is their sum, or superposition, |v〉+ |w〉.

• Multiplicative closure: if |v〉 is a ket, then so is the product c|v〉, where c is any complex

number.
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• There exists a null ket, |Null〉, with the properties that |v〉 + |Null〉 = |v〉 for every ket

|v〉, and c |Null〉 = |Null〉 for every complex number c. Multiplying any ket by the complex

number 0 results in the null ket: 0 |v〉 = |Null〉.

• Addition of kets and multiplication by complex numbers satisfy the usual commutative,

associative, and distributive properties. This means that we have |v〉+|w〉 = |w〉+|v〉, and
(|v〉+|w〉)+|x〉 = |v〉+(|w〉+|x〉), and c1(c2 |v〉) = (c1c2) |v〉, and (c1+c2) |v〉 = c1 |v〉+c2 |v〉,
and c(|v〉+ |w〉) = c |v〉+ c |w〉.

In quantum mechanics, the physical state of a system is completely described by a non-null

ket, known as the state ket or state vector, which we will often denote by |ψ〉. However, one
of the rules is that the ket c |ψ〉 represents the same physical state as |ψ〉, provided that c is a

non-zero complex number. This is true even though c|ψ〉 and |ψ〉 are mathematically distinct

members of the vector space; they are identified with each other physically.

The null ket, although it is part of the vector space, cannot describe any physical state.

There is also a convenient and obvious notational shortcut: if we want to write down that some

expression is equal to the null ket, we will just write “= 0” instead of “= |Null〉”. Therefore,

the null ket will not appear explicitly any more, but one should always consider the possibility

that a ket arising in some calculation might actually be the null ket. A warning: it is common

to use the notation |0〉 for some specific ket that does represent a physical state and must not

be confused with the null ket. For example, depending on the system under consideration, |0〉
might represent the lowest energy state of a system, also known as the ground state.

Let us list some examples of complex linear vector spaces, which you can check satisfy the

properties in the definition.

Example 1: The set of complex numbers z.

Example 2: The set of all ordered triples (z1, z2, z3), where z1, z2, and z3 are complex numbers.

Example 3: The set of all complex linear combinations c1 |↑〉 + c2 |↓〉 of two basic kets |↑〉 and
|↓〉. (This turns out to be the state space for a single spin-1/2 quantum system.)

Example 4: The set of all complex linear combinations of an infinite number of basic kets |0〉,
|1〉, . . . , |n〉, . . . , in one-to-one correspondence with the non-negative integers. (This turns out

to be a natural notation for the states of fixed energy for a harmonic oscillator in one dimension.)

Example 5: The set of all complex functions of a real variable, f(x), defined on the domain

−∞ < x <∞. One can choose to add extra conditions on the functions in a variety of ways, for

example requiring that they are continuous, or that they vanish at certain points or on specified

intervals, or that they satisfy certain integrability conditions.

Intuitively, these vector spaces have different sizes. To make this precise, we define the
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notions of linear independence and dependence, dimension, and basis. A set of kets |ψj〉 are
linearly independent if the equation

∑
j cj |ψj〉 = 0 can only be satisfied by taking all cj = 0.

In other words, |ψj〉 are linearly independent if we cannot write any of them as a complex linear

combination of the others. Otherwise, the kets are linearly dependent.

A vector space is said to have dimension d if one can choose a set of d, but not more,

linearly independent vectors. The d linearly independent vectors are then said to form a basis

for the vector space. The choice of basis is certainly not unique for d > 1; it is a common

problem that one wants to change the choice of basis, either to make some calculation easier or

to make some result simpler to interpret.

You can now check that for our five examples, the dimensions are:

Example 1 has dimension d = 1.

Example 2 has dimension d = 3.

Example 3 has dimension d = 2.

Example 4 has dimension d =∞ (countable, discrete basis).

Example 5 has dimension d =∞ (uncountable, continuous basis).

The cardinality (countable vs. uncountable) of the basis for infinite-dimensional vector spaces

involves mathematical issues that we will find it convenient to mostly ignore. In physics, we

are interested in kets that are members of a vector space with the additional structure of a

Hilbert space with an inner product, as discussed in the next section. The requirement that

all physical state vectors must have a finite inner product turns out to imply that the basis is

always countable. Despite this, we will see that it is often a very convenient fiction to include

continuous and uncountable sets of vectors that are not members of the physical state space

but are nevertheless extremely useful, both as idealizations and in practical calculations. The

most common examples are the kets that describe idealized states in which either a particle’s

position or its momentum (but not both!) is perfectly known. These continuous sets of kets

can be chosen to obey the other properties of a basis, so we will often simply call them basis

vectors, as a slight abuse of terminology.

Given a specific basis set {|βj〉}, any vector |v〉 can be expressed as

|v〉 =
d∑

j=1

vj |βj〉 (2.1.7)

where the d complex numbers vj are called the components of |v〉 in that basis. Using the

preceding definitions, one can show that, for a given |v〉 and a given choice of basis {|βj〉}, the
components vj are unique. In writing eq. (2.1.7) as a sum, we have implicitly assumed that the

basis vectors are discrete and countable. If the basis kets are instead continuous,† then the sum

†Notice that we are already engaging in the slight abuse of terminology mentioned in the previous paragraph.
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must be replaced by an integral. For example, if the basis set is {|βq〉} where q is a continuous

real variable with domain a < q < b, then we can write any ket |v〉 as

|v〉 =
∫ b

a

dq v(q) |βq〉 . (2.1.8)

Here v(q) are the components, which in this case form a function of q. The symbol q might

represent a coordinate on ordinary space, but it could also be a momentum, or an energy, or

some other continuous quantity of interest.

A subspace of a vector space is a subset of the elements that also form a vector space by

themselves. Below, we will often work with subspaces that consist of states with some feature

in common, such as a fixed energy or fixed angular momentum magnitude.

2.2 Inner products, Hilbert spaces, and orthonormal bases

In quantum mechanics, the vector space of states has the additional structure of a Hilbert

space, which implies that the complex linear vector space is endowed with an inner product.

Given a ket |v〉 and a second ket |w〉, the inner product (also known as a scalar product)

returns a complex number, denoted 〈w|v〉, which must satisfy the following rules:

• The order matters, in such a way that exchanging the two kets gives the complex conjugate,

〈v|w〉 = (〈w|v〉)∗ . (2.2.1)

It immediately follows that 〈v|v〉 is always real. But also. . .

• If |v〉 is not the null ket, then 〈v|v〉 is positive.

• If either |v〉 or |w〉 is the null ket, then 〈v|w〉 = 〈w|v〉 = 0.

• Linearity is satisfied. The inner product of c1 |v〉+ c2 |w〉 and |x〉, in that order, is

〈x|
(
c1 |v〉+ c2 |w〉

)
= c1 〈x|v〉+ c2 〈x|w〉 . (2.2.2)

It follows from eqs. (2.2.1) and (2.2.2) that the inner product of those same kets, but in the

opposite order, must be

c∗1 〈v|x〉+ c∗2 〈w|x〉 =
(
c∗1 〈v|+ c∗2 〈w|

)
|x〉 . (2.2.3)

The inner product should be thought of as similar to the dot product in the familiar three-

dimensional real vector space. However, because quantum mechanics uses complex linear vector

spaces, the inner product treats the two input vectors asymmetrically, and interchanging them

is the same as taking the complex conjugate.
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The norm of a ket |v〉 is defined by
√
〈v|v〉. It follows from the preceding that the norm of

a non-null ket is real and positive,† and it is 0 if |v〉 is the null ket. It is sometimes written as

‖|v〉‖ ≡
√
〈v|v〉.

Two useful inequalities that govern the inner product follow.

Theorem 2.2.1. (Cauchy–Schwarz inequality) For any two kets |v〉 and |w〉,

| 〈v|w〉 |2 ≤ 〈v|v〉 〈w|w〉 , (2.2.4)

Also, equality holds if and only if |w〉 and |v〉 are proportional to each other or one of them is

the null ket.

Proof: If either |v〉 or |w〉 is the null ket, then eq. (2.2.4) is trivially satisfied with equality.

Therefore, we can assume for the remainder of the proof that neither of them is null. Consider

the ket |z〉 = c1 |v〉 − c2 |w〉, where c1 and c2 are complex numbers. Since |z〉 is a ket by the

additive closure property, 〈z|z〉 must be non-negative, which gives

〈z|z〉 = |c1|2 〈v|v〉+ |c2|2 〈w|w〉 − c1c∗2 〈w|v〉 − c∗1c2 〈v|w〉 ≥ 0. (2.2.5)

Choosing c1 = 〈w|w〉 and c2 = 〈w|v〉, and using 〈v|w〉∗ = 〈w|v〉, eq. (2.2.5) becomes

(〈w|w〉)2 〈v|v〉 − 〈w|w〉 | 〈v|w〉 |2 ≥ 0 (2.2.6)

Now, since |w〉 is not null, we can divide by 〈w|w〉 to get eq. (2.2.4). If the equality condition

holds, then it follows that |z〉 is the null ket, which implies that |v〉 and |w〉 are proportional. ���

Theorem 2.2.2. (Triangle inequality) The norms of the kets |v〉 and |w〉 and their superpo-

sition |v〉+ |w〉 must obey

‖(|v〉+ |w〉)‖ ≤ ‖|v〉‖+ ‖|w〉‖, (2.2.7)

with equality if and only if |w〉 and |v〉 are proportional or one of them is the null ket.

The proof can be obtained from the Cauchy–Schwarz inequality, and is left to Exercise 2.1. The

triangle inequality is similar to the statement in ordinary plane geometry that the sum of the

lengths of two sides of a triangle must exceed that of the third side.

Given a non-null ket |v〉, one can define a new ket by dividing it by its norm. The result

|v〉 /
√
〈v|v〉 (2.2.8)

†In quantum field theories with gauge invariance, it is sometimes useful, as a book-keeping trick, to modify
the rules by allowing some kets to satisfy 〈v|v〉 ≤ 0. However, these kets represent fictitious (unphysical) states,
which must decouple from the true physical states. We will not encounter this issue in the present book.
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then has norm 1, and in quantum mechanics it is physically equivalent to the original ket, in

the sense that it represents the same physical state. We say that the ket has been normalized

to unity. This still leaves the freedom to multiply the ket by a complex phase, because

eiθ |v〉 (2.2.9)

has the same norm as |v〉, for any real number θ. This freedom will appear very often as an

ambiguity in the determination of a ket that has to satisfy some other specified properties. The

resolution of such ambiguities is arbitrary, and equivalent to a choice of convention.

Although the phase of a single ket is not a physically measurable quantity, the relative phases

between different kets can be physically meaningful if one considers their sum, also known as

their superposition. This is because if we multiply two non-null kets by different phases,

|v〉 → eiθv |v〉 , |w〉 → eiθw |w〉 , (2.2.10)

then their sum is replaced by

|v〉+ |w〉 → eiθv
(
|v〉+ ei(θw−θv) |w〉

)
, (2.2.11)

which, by removing the overall phase eiθv , is physically equivalent to

|v〉+ ei(θw−θv) |w〉 . (2.2.12)

In general, this is not proportional to, and therefore not physically equivalent to, |v〉 + |w〉,
unless |v〉 and |w〉 are proportional, or θw and θv differ by an integer multiple of 2π.

Two kets |v〉 and |w〉 are orthogonal (also known as perpendicular) if 〈w|v〉 = 0. An

orthonormal basis, which we will call an orthobasis for short, is a basis of kets {|ϕj〉} with
j = 1, 2, . . . that satisfies the additional property

〈ϕj|ϕk〉 = δjk. (2.2.13)

Here δjk is the Kronecker delta symbol,

δjk =

{
1 (for j = k),

0 (for j 6= k),
(2.2.14)

and is defined only when j and k are labels that take on discrete values.

As noted in the previous section, we will also often want to deal with basis kets labeled by

one or more continuous parameters. In that case, we need a different orthonormality condition,

called Dirac orthonormality, in which the Kronecker delta symbol is replaced by a Dirac
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delta function.‡ The Dirac orthonormality condition for kets |ϕq〉 labeled by a single continuous

real variable q can be taken to be

〈ϕq|ϕq′〉 = δ(q − q′). (2.2.15)

Here q could be, for example, a position coordinate of a particle. The delta function δ(x) has

the properties that

δ(x) =

{ ∞ (for x = 0),

0 (for x 6= 0),
(2.2.16)

and
∫ ∞

−∞
dx δ(x) = 1, (2.2.17)

or, more generally, for sufficiently well-behaved functions f(x),
∫ ∞

−∞
dx δ(x− c)f(x) = f(c). (2.2.18)

For most purposes, eq. (2.2.18) can be taken as the practical definition of the delta function.

An important technical note: as we have already warned in the previous section, kets satisfy-

ing the Dirac orthonormality condition eq. (2.2.15) cannot be physical states, strictly speaking.

This is because they do not have finite norm, due to δ(0) =∞. Such kets with continuous labels

are still very useful in practical calculations, where they often represent idealizations with per-

fectly known position, or momentum, or some other continuous quantity. These are sometimes

known as generalized kets or non-normalizable kets, and they act as a basis for the Hilbert

space of physical states, even though they are not themselves part of the Hilbert space. They

are so useful as idealizations that mere non-normalizability is not a good enough reason for us

to eliminate them from our toolbox.

It is often useful to think of δ(x) as the “limit” (in a sense that we will not bother to try to

make mathematically precise) of a sequence of increasingly narrow and sharply peaked functions

that have unit area, in various different ways. For example, the sequence of functions can be

taken to be rectangular functions with width ∆ and height 1/∆,

δ(x) = lim
∆→0

{
1/∆ for |x| < ∆/2,

0 for |x| > ∆/2.
(2.2.19)

Another useful representation of δ(x) is

δ(x) =
1

2π

∫ ∞

−∞
dk eikx. (2.2.20)

‡Technically, the Dirac delta function is not a function, but a distribution in mathematical language. But,
this is not a math textbook, so we will not belabor the distinction.
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Figure 2.2.1: The Dirac delta function δ(x) can be thought of as the ∆→ 0 “limit” of func-
tions peaked near x = 0 with width of support proportional to ∆ and unit integrated area,
as in the rectangular functions in eq. (2.2.19) [left], the Gaussian functions in eq. (2.2.21)
[center], or the normalized sine functions in eq. (2.2.22) [right].

To make better sense of this technically ill-defined expression, we can “cut off” the integration

over k. One way to do this is to insert a convergence factor e−k
2∆2/2 into the integrand, and

then take ∆→ 0,

δ(x) = lim
∆→0

1

2π

∫ ∞

−∞
dk e−k

2∆2/2eikx = lim
∆→0

exp(−x2/2∆2)√
2π∆

. (2.2.21)

This interprets δ(x) as the ∆ → 0 limit of Gaussian functions with height 1/
√
2π∆ and full

width at half maximum (FWHM) equal to 2
√
2 ln 2∆ ≈ 2.3548∆. Another way to make sense

of eq. (2.2.20) is to limit the k integration to a large but finite range −1/∆ < k < 1/∆,

δ(x) = lim
∆→0

1

2π

∫ 1/∆

−1/∆
dk eikx = lim

∆→0

sin(x/∆)

πx
. (2.2.22)

Each of the expressions in eqs. (2.2.19), (2.2.21), and (2.2.22) has the crucial property of unit

integrated area for all ∆, even before taking the limit ∆ → 0. This justifies the normalization

factor of 1/2π in eq. (2.2.20). They are illustrated in Figure 2.2.1. Each of them, as well as the

formal integral representation of eq. (2.2.20), can be useful, depending on the situation.

The representation of the delta function in eq. (2.2.20) is related to the theory of Fourier

transforms. To see how this works, we can use it to write, for any sufficiently well-behaved

function f(x),

f(x) =

∫ ∞

−∞
dx′ f(x′) δ(x− x′) =

∫ ∞

−∞
dx′ f(x′)

(
1

2π

∫ ∞

−∞
dk eik(x−x

′)

)
. (2.2.23)

By rearranging the order of integrations, this becomes

f(x) =
1

2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ e−ikx

′

f(x′). (2.2.24)
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Now, we define the Fourier transform of f(x) by the second integral,

F (k) ≡ 1√
2π

∫ ∞

−∞
dx′ e−ikx

′

f(x′), (2.2.25)

for −∞ < k <∞. Then eq. (2.2.24) becomes

f(x) =
1√
2π

∫ ∞

−∞
dk eikxF (k), (2.2.26)

which is the inverse Fourier transform relation.

For a finite-dimensional§ Hilbert space, there is a systematic way to find an orthobasis:

Theorem 2.2.3. Given a finite-dimensional Hilbert space with an inner product and a known

basis {|βj〉} that is not necessarily orthonormal, one can always construct an orthobasis {|ϕj〉}
by a systematic procedure known as the Gram–Schmidt process.

Proof: We prove this constructively, by giving the steps of the Gram–Schmidt process:

Step 1. Choose any ket in the original basis; call it |β1〉. The first member of the orthobasis will

be the re-scaled version of this ket with unit norm, |ϕ1〉 = |β1〉 /
√
〈β1|β1〉.

Step 2. Choose a second ket |β2〉 from the original basis set. From it, define a new vector |ϕ̃2〉 =
|β2〉 − |ϕ1〉 〈ϕ1|β2〉, which we can describe in words as subtracting off the projection along the

vector |ϕ1〉. Thus |ϕ̃2〉 is orthogonal to |ϕ1〉 by construction. Now take |ϕ2〉 = |ϕ̃2〉 /
√
〈ϕ̃2|ϕ̃2〉,

which has norm 1. This is the second member of the orthobasis we are constructing.

Step 3. Choose a third ket |β3〉 from the original basis set. From it, define a new vector |ϕ̃3〉 =
|β3〉 − |ϕ1〉 〈ϕ1|β3〉 − |ϕ2〉 〈ϕ2|β3〉. In words, we are subtracting off the projections along both of

the vectors |ϕ1〉 and |ϕ2〉. Since |ϕ̃3〉 is orthogonal to both |ϕ1〉 and |ϕ2〉 by construction, again

we just need to re-scale it to have unit norm. Therefore, define |ϕ3〉 = |ϕ̃3〉 /
√
〈ϕ̃3|ϕ̃3〉 as the

third member of the orthobasis.

. . .

Step n. Take the nth ket |βn〉 from the original basis set, and subtract off the projections along

all of the previously found orthobasis kets, by defining

|ϕ̃n〉 = |βn〉 −
n−1∑

j=1

|ϕj〉 〈ϕj|βn〉 . (2.2.27)

By construction, this is orthogonal to all of the previously found kets |ϕj〉 with j = 1, . . . , n−1.

It is not null, because of the linear independence of the original basis. So, to include it in the

orthobasis, we only need to re-scale it to also have unit norm,

|ϕn〉 = |ϕ̃n〉 /
√
〈ϕ̃n|ϕ̃n〉. (2.2.28)

§In the infinite-dimensional case, the Gram–Schmidt algorithm cannot end in a finite number of steps, but
in cases relevant to quantum mechanics a suitable orthobasis is often easy to identify anyway. For example, the
Hilbert space may naturally split into an infinite number of mutually orthogonal finite-dimensional subspaces.
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Continuing in this way, when we are finished with Step d, where d is the dimension of the Hilbert

space, we will have constructed the full orthobasis {|ϕn〉}. This concludes the proof. ���

Suppose that we have chosen an orthobasis {|ϕj〉}. To obtain the components vj of an

arbitrary ket

|v〉 =
∑

j

vj |ϕj〉 , (2.2.29)

we can take the inner product with |ϕk〉, resulting in

〈ϕk|v〉 =
∑

j

vj 〈ϕk|ϕj〉 = vk, (2.2.30)

where the last equality relies on the orthonormality property eq. (2.2.13). Thus, the components

of the ket are simply given by its inner products with the orthobasis vectors.

2.3 Dual vector spaces

Given a Hilbert space of kets with an inner product, it is useful to construct another complex

linear vector space, called the dual vector space. Dual vectors are defined mathematically

as linear maps from the space of kets to the complex numbers. For each ket |v〉, there is a

corresponding dual vector denoted 〈v|, and we write the association as

vector dual vector

|v〉 → 〈v| . (2.3.1)

Specifically, the dual vector 〈v| is defined to map each ket |w〉 to the complex number given by

the inner product of the ket |w〉 with the corresponding ket |v〉,

〈v|
(
|w〉
)
≡ 〈v|w〉 . (2.3.2)

A dual vector defined in this way is also called a bra, a silly bit of terminology devised long ago

so that the inner product is a “bra-ket”, or bracket. From the properties of the inner product,

specifically by comparing eqs. (2.2.2) and (2.2.3), one finds that the bra associated with a linear

combination of kets is

vector dual vector

c1 |v〉+ c2 |w〉 → c∗1 〈v|+ c∗2 〈w| . (2.3.3)

One must remember to take the complex conjugates of the coefficients.

The bra 〈v| is also known as the Hermitian adjoint of the corresponding ket |v〉, and vice

versa. To understand the relation better, it is useful to consider the following linear algebra
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analogy: kets are like complex d-dimensional column vectors, and bras are like complex d-

dimensional row vectors, with

v =




v1
v2
...
vd


 , w† =

(
w∗1 w∗2 · · · w∗d

)
. (2.3.4)

The fact that a dual vector maps vectors to complex numbers is just expressed as

w†v =
∑

k

w∗kvk. (2.3.5)

As we will discuss more fully in section 2.5, this is not just an analogy; if one has chosen an

orthobasis {|ϕk〉}, then vk = 〈ϕk|v〉 are the components of the ket |v〉, while w∗k = 〈w|ϕk〉 are
the components of the bra 〈w|. However, the bra-ket notation has the great virtue of being

independent of any particular choice of orthobasis.

According to the dual vector definition, for each ket |v〉, there is always a unique corre-

sponding bra 〈v|. If the Hilbert space has a finite dimension, then there is also a unique ket

for every bra, and the correspondence is one-to-one. However, in the infinite-dimensional case

it is possible to construct bras that have no associated ket within the Hilbert space, although

this fact is of little practical consequence. For example, consider the generalized kets like those

that that satisfy the Dirac orthonormality condition eq. (2.2.15); as we have noted, these have

infinite norm and are therefore not part of the physical Hilbert space. The corresponding bras

are nevertheless well-defined maps from the physical Hilbert space to the complex numbers, and

so are perfectly respectable members of the dual vector space.

You may find it useful to think of kets (vectors) as representing possible states of a system,

while bras (dual vectors) represent possible questions that one may ask about the state. For

example, we can interrogate the actual state of a system |ψ〉 about its overlap with another

possible state |χ〉. Then the question that we are asking is associated with the dual vector 〈χ|.
As we will discuss further near the end of section 3.2, the answer that one receives is that the

probability of finding the system in the state |χ〉 is nothing other than |〈χ|ψ〉|2, assuming that

both |ψ〉 and |χ〉 were normalized to 1.

2.4 Operators

An operator A is a map from the space of kets to itself. This means that the result of acting

with A on any ket |v〉 must be another ket in the Hilbert space, which we can call either |Av〉, or
equivalently, A |v〉. As a notational convention, we will usually use capital letters to represent

operators, except when established tradition says otherwise.
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In quantum mechanics, we are almost always interested in linear operators, which obey

A
(
c1 |v〉+ c2 |w〉

)
= c1A |v〉+ c2A |w〉 . (2.4.1)

Because there is a bra associated to each ket, a linear operator also maps the dual space to

itself. Specifically, for each bra 〈w|, the bra 〈w|A resulting from the operation of A is defined

by the relation

(
〈w|A

)
|v〉 = 〈w|

(
A |v〉

)
. (2.4.2)

Adopting this definition, it follows that the operation of A on the dual space also obeys linearity,

(
c1 〈v|+ c2 〈w|

)
A = c1 〈v|A+ c2 〈w|A. (2.4.3)

Because of the equality of the two sides of eq. (2.4.2), we can define the matrix element of

the operator A between 〈w| and |v〉 as their common value 〈w|A|v〉, without parentheses.
Addition and subtraction of linear operators and multiplication by complex numbers are

defined in the obvious ways, such that

(
c1A+ c2B

)
|v〉 = A

(
c1 |v〉

)
+B

(
c2 |v〉

)
. (2.4.4)

The product of two operators A and B is defined by

(AB) |v〉 ≡ A
(
B |v〉

)
= AB |v〉 . (2.4.5)

As before, the parentheses make no difference and can be omitted, as indicated in the last

equality. Operators also obey associativity; for any three operators A, B, and C,

(AB)C = A(BC). (2.4.6)

However, the order of operators matters, so that BA and AB are different, in general. One

therefore defines the commutator of A and B as

[A,B] = AB − BA, (2.4.7)

and the anticommutator by

{A,B} = AB +BA. (2.4.8)

The simplest example of a linear operator is the identity operator I, defined by

I |v〉 = |v〉 , 〈v| I = 〈v| (2.4.9)
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for every |v〉. The inverse of an operator A, if it exists, is denoted A−1, and is defined by the

requirements†

A−1A = I = AA−1. (2.4.10)

However, it is important to recognize that not all operators have an inverse.

There is an enormously useful way of writing the identity operator, given an orthobasis.

Equations (2.2.29) and (2.2.30) can be combined to write

|v〉 =
∑

j

|ϕj〉〈ϕj|v〉 . (2.4.11)

Since this is true for all |v〉, one has simply

I =
∑

j

|ϕj〉〈ϕj| . (2.4.12)

This extraordinarily important identity is known as the completeness relation, or the closure

relation. We will use it very often.

If |v〉 and |w〉 are any two kets, then

A = |v〉〈w| (2.4.13)

is a linear operator, sometimes called the outer product of |v〉 and 〈w|. It is defined by its

action on any other ket |x〉,

A |x〉 =
(
|v〉〈w|

)
|x〉 = |v〉

(
〈w|x〉

)
. (2.4.14)

As a useful special case, we can form the projection operator Pv onto a ket |v〉, defined by

Pv =
|v〉〈v|
〈v|v〉 . (2.4.15)

If |v〉 has norm 1, then one can simply write

Pv = |v〉〈v| . (2.4.16)

Projection operators have the property

P 2
v = Pv. (2.4.17)

†For a finite dimensional vector space, the last equality in eq. (2.4.10) is redundant, because BA = I can
be shown to imply AB = I as well. However, in an infinite dimensional vector space this is not true. For
example, consider the vector space with general element v = (v1, v2, v3, . . .), and define the right-shift and
left-shift operators by Rv = (0, v1, v2, v3, . . .) and Lv = (v2, v3, v4, . . .). Then LR = I, but RL 6= I.
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Intuitively, the projection operator Pv acts on a ket by throwing away the part orthogonal to

|v〉, and keeping the rest intact; doing this twice has the same effect as doing it once. As an

aside, this is a good example of an operator that has no inverse (with the trivial exception of

the case that the state space is one-dimensional). The reason is that when Pv acts on any ket

|w〉 that is orthogonal to |v〉, it yields 0 (the null ket), and then there is no way to resurrect |w〉
by acting with another linear operator, the purported inverse.

The completeness relation eq. (2.4.12) can now be equivalently expressed as the statement

that the identity operator is equal to

I =
∑

j

Pϕj
, (2.4.18)

which is the sum over the projection operators for all of the members of an orthobasis, spanning

the whole Hilbert space. Similarly, one can project onto a subspace of the Hilbert space, by

summing over projection operators for only a subset of the orthobasis vectors.

For any linear operator A, the Hermitian adjoint (or just adjoint) A† can be defined by

the way that it acts on dual vectors,

〈v|A† = 〈Av| , (2.4.19)

where 〈Av| is the bra corresponding to the ket |Av〉 = A |v〉. Consider a generic matrix element

involving A†,

〈w|A†|v〉 = 〈Aw|v〉 = (〈v|Aw〉)∗ , (2.4.20)

where the second equality has made use of eq. (2.2.1). This we can restate as the useful relation

〈w|A†|v〉 =
(
〈v|A|w〉

)∗
. (2.4.21)

It is not hard to use the definition to show the following facts. The adjoint of the operator

A = |w〉〈v| is
(
|w〉〈v|

)†
= |v〉 〈w| . (2.4.22)

The adjoint of the operator cI, where c is a complex number, is (cI)† = c∗I. The adjoint of a

product of operators is

(AB)† = B†A†, (2.4.23)

where the order matters.

It is useful to generalize the concept of taking the adjoint to whole expressions and equalities

involving kets, bras, and operators. Given any expression, define the adjoint of it according to

the following rules:
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• Substitute A→ A† for all operators.

• Substitute c→ c∗ for all complex numbers.

• Substitute |v〉 ↔ 〈v| for all kets and bras.

• Reverse the order of kets, bras, and operators within each term.

(Of course, the complex number factors of any term can be written in any desired order.) Then

one can show that the adjoint of any valid equality will also be a valid equality. Equations (2.2.1),

(2.4.21), (2.4.22) and (2.4.23) are examples of this. As a more random example, if one has

ABC |v〉 〈v|w〉 + B |x〉 = c |z〉 , (2.4.24)

where A, B, and C are operators and c is a complex number, then one must also have

〈w|v〉 〈v|C†B†A† + 〈x|B† = c∗ 〈z| . (2.4.25)

An operator A is called Hermitian (or self-adjoint) if it is the same as its adjoint, A† =

A. Hermitian operators are particularly important in quantum mechanics, where they are

associated with physically measurable quantities. An anti-Hermitian operator is one that

satisfies A† = −A. Note that any operator can be written as the sum of a Hermitian part and

an anti-Hermitian part,

A =

(
A+ A†

2

)
+

(
A−A†

2

)
. (2.4.26)

The product of two Hermitian operators is Hermitian if, and only if, they commute. It is also

not hard to show that for two Hermitian operators A and B, the commutator is anti-Hermitian,

so that i[A,B] is Hermitian.

An operator U is unitary if its adjoint is equal to its inverse, so U † = U−1. The product of

two unitary operators is always unitary. In quantum mechanics, unitary operators are associated

with a change of orthobasis, as we will discuss in the next section. They often appear in the

context of defining or exploiting the symmetries of the physical system. The time evolution of

a system will also be associated with a unitary operator.

It is possible to define operators that are functions of other operators. The most common

example of this that we will encounter in quantum mechanics is the exponentiation of an opera-

tor. If A is an operator, then the operator exp(A) can be defined in two different but equivalent

ways, which are useful in different circumstances. Both treat A just as if it were an ordinary

37



number, exploiting the facts that it obviously commutes with itself, and no other operators are

involved. First, one can define it as the usual limit,

eA = lim
N→∞

(
I +

A

N

)N
. (2.4.27)

Alternatively, one can define it as a power series expansion:

eA =
∞∑

n=0

An

n!
, (2.4.28)

where of course A0 = I. It follows that eA is always invertible, and the inverse is e−A. Taking

A = iB, where B is Hermitian, we then find:

Theorem 2.4.1. If B is a Hermitian operator, then the operator exp(iB) is unitary.

Some other useful results involving exponentials of operators follow.

Theorem 2.4.2. For any two operators A and B,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · . (2.4.29)

Proof: define the operator F (λ) = eλABe−λA, where λ is a variable. Now

dF

dλ
= AF − FA = [A, F (λ)], (2.4.30)

where we have used the fact that d
dλ
eλA = AeλA = eλAA. Repeating this gives

d2F

dλ2
= [A, [A, F (λ)]],

d3F

dλ3
= [A, [A, [A, F (λ)]]], (2.4.31)

etc. Using these to compute the Taylor series expansion for F (λ) about the point λ = 0, and

using F (0) = B, we have

F (λ) = B + λ[A,B] +
λ2

2!
[A, [A,B]] +

λ3

3!
[A, [A, [A,B]]] + · · · , (2.4.32)

and eq. (2.4.29) now follows by taking λ = 1. ���

As a special case application of Theorem 2.4.2, we have:

Theorem 2.4.3. If A and B are operators such that [A,B] = cB where c is a number, then

eABe−A = ecB. (2.4.33)

Another useful special case of Theorem 2.4.2 occurs if instead [A,B] commutes with A:
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Theorem 2.4.4. For any two operators A and B such that [A, [A,B]] = 0,

[
eA, B

]
= [A,B]eA. (2.4.34)

Finally, the following formula is often useful:

Theorem 2.4.5. (Baker–Campbell–Hausdorff, special case) For any two operators A and

B such that [A,B] commutes with both A and B, then

eAeB = eA+Be
1

2
[A,B]. (2.4.35)

The proof is left as Exercise 2.6. The previous two theorems hold in particular if the commutator

of A and B is proportional to the identity operator.

2.5 Matrix representations of operators

Suppose we have selected an orthobasis {|ϕj〉}, and consider two kets |v〉 , |w〉 given as

|v〉 =
∑

j

vj |ϕj〉 , |w〉 =
∑

j

wj |ϕj〉 , (2.5.1)

where vj and wj are their components in the chosen orthobasis. The inner product can be

written as

〈w|v〉 =
∑

j

∑

k

w∗jvk 〈ϕj|ϕk〉 =
∑

j

w∗jvj =
(
w∗1 · · · w∗d

)


v1
...
vd


 , (2.5.2)

where the second equality was obtained using the orthonormality property eq. (2.2.13). In

the case of a Hilbert space with finite dimension d, we can therefore consider the bra 〈w| as
associated with a row vector of complex numbers, and the ket |v〉 with a column vector,

〈w| ↔
(
w∗1 · · · w∗d

)
, |v〉 ↔



v1
...
vd


 . (2.5.3)

The double-arrow notation is used to indicate that the bra and ket are represented by the

corresponding row and column vectors. However, it is important to remember that while this

representation depends on the choice of basis, the bra and ket themselves exist as abstract

objects independent of the choice of basis.

Given an operator A, one can construct a matrix representation for it corresponding to the

orthobasis {|ϕj〉}. We start with

A |v〉 = A
∑

k

vk |ϕk〉 =
∑

k

vkA |ϕk〉 . (2.5.4)
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Now taking the inner product with a basis ket |ϕj〉 gives

〈ϕj|A|v〉 =
∑

k

〈ϕj|A|ϕk〉 vk. (2.5.5)

We therefore define the d× d complex matrix with elements

Ajk = 〈ϕj|A|ϕk〉 , (2.5.6)

so that the components of

|v′〉 = A |v〉 (2.5.7)

are

v′j = 〈ϕj|v′〉 =
∑

k

Ajkvk, (2.5.8)

or, in matrix form,


v′1
...
v′d


 =



A11 · · · A1d
...

. . .
...

Ad1 · · · Add






v1
...
vd


 . (2.5.9)

Thus, we complete the correspondence of eq. (2.5.3) by writing, for any operator A, the matrix

representation

A ↔



A11 · · · A1d
...

. . .
...

Ad1 · · · Add


 , (2.5.10)

with the orthobasis matrix elements given by eq. (2.5.6).

It is often convenient to dispense with formalities by replacing the ↔ symbol in equations

like (2.5.3) and (2.5.10) with an = symbol. However, again we emphasize that the kets |v〉, bras
〈w|, and operators A are objects that are conceptually independent of the choice of orthobasis,

while their components vj , w
∗
j , and Ajk do depend on the choice of orthobasis, and will be

different if a different orthobasis is used.

The matrix representation for a product of operators AB is given by

(AB)jk =
∑

n

AjnBnk. (2.5.11)

The proof of this is an almost trivial consequence of the completeness relation eq. (2.4.12),

because it can also be read as 〈ϕj|AB|ϕk〉 =
∑

n 〈ϕj|A|ϕn〉 〈ϕn|B|ϕk〉. It is also easy to show

that the orthobasis matrix elements of an operator A and its adjoint A† are related by

(A†)jk = (Akj)
∗. (2.5.12)
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Many operator relations and properties are easiest to see by using the matrix representation

associated with an appropriately chosen orthobasis, using the tools of linear algebra. For in-

stance, a Hermitian (or unitary) operator A is represented by a Hermitian (or unitary) matrix

with elements Ajk. The matrix representation of A−1, if it exists, is equal to the inverse of the

matrix representation of A. It is a standard result in linear algebra that A−1 exists if and only

if the determinant of the matrix A is non-zero,

Det(A) 6= 0. (2.5.13)

In that case, the inverse matrix for A is

A−1 =
1

Det(A)
cof[A]T (2.5.14)

where cof[A] is the cofactor matrix of A, and T denotes the transpose. For a general d × d

matrix A, the cofactor matrix is defined by

(cof[A])jk = (−1)j+kMjk (2.5.15)

where the minor Mjk is equal to the determinant of the (d − 1) × (d − 1) submatrix obtained

from A by deleting row j and column k.

A unitary operator U , as defined in the previous section, satisfies

U †U = UU † = I. (2.5.16)

The components of the matrix representation of U in an orthobasis {|ϕk〉},

U =




U11 U12 · · · U1d

U21 U22 · · · U2d
...

...
. . .

...
Ud1 Ud2 · · · Udd


 , (2.5.17)

obey the rule

Ujk = jth component of |ϕ′k〉, (2.5.18)

where

|ϕ′k〉 = U |ϕk〉 . (2.5.19)

Now, using eq. (2.5.16), it is not too difficult to show that the set {|ϕ′k〉} defined in this way

is another orthobasis. From eqs. (2.5.17) and (2.5.18), we see that the components of the new

orthobasis element |ϕ′k〉 are equal to the kth column of the matrix representation of U in the
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original orthobasis. In this sense, a unitary operator U performs a change of orthobasis, which

can be thought of as a complex rotation in the Hilbert space. The operator U † performs the

inverse change of basis,

|ϕk〉 = U † |ϕ′k〉 , (2.5.20)

and it follows that the bras for the two orthobases are related by

〈ϕ′k| = 〈ϕk|U †, 〈ϕk| = 〈ϕ′k|U. (2.5.21)

Conversely, given any two orthonormal bases {|ϕk〉} and {|ϕ′k〉}, the inner products are the

elements of a unitary matrix,

〈ϕj|ϕ′k〉 = 〈ϕj|U |ϕk〉 = Ujk. (2.5.22)

To verify directly that U as defined by eq. (2.5.22) is indeed unitary, one can use the completeness

relation eq. (2.4.12) to show

∑

n

U∗njUnk = δjk, (2.5.23)

or, rewriting,

∑

n

(
U †
)
jn
Unk = δjk. (2.5.24)

This expresses the unitarity of the matrix representation of the operator U , and is equivalent to

the operator equation (2.5.16). Also,

|Det(U)| = 1, (2.5.25)

follows from the general linear algebra facts that Det(AB) = (DetA)(DetB) and Det(A†) =

(DetA)∗, for matrices A,B.

An important feature of such a unitary change of basis is that it preserves inner products.

To see this, consider the transformation†

|v〉 → |v′〉 = U |v〉 , (2.5.26)

|w〉 → |w′〉 = U |w〉 , (2.5.27)

so that we have performed the same complex rotation on both |v〉 and |w〉. Then

〈w|v〉 → 〈w′|v′〉 = 〈w|U †U |v〉 = 〈w|v〉 , (2.5.28)

†Here, the arrow “→” can be read as “transforms to”.
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so that inner products are unaffected by a change of orthobasis.

We can also see how the unitary change of basis is realized on the matrix elements of any

operator A. For any two kets |v〉 and |w〉,

〈w′|A|v′〉 = 〈w|U †AU |v〉 . (2.5.29)

If we now define a transformation of the operator A according to

A → A′ = UAU †, (2.5.30)

to go along with eqs. (2.5.26) and (2.5.27), then

〈w′|A′|v′〉 = (〈w|U †)(UAU †)(U |v〉) = 〈w| (U †U)A(U †U) |v〉 = 〈w|A|v〉 . (2.5.31)

In words, the matrix element for the transformed states of the transformed operator A′ is the

same as the original matrix element of A.

Functions of operators are often easiest to deal with using their matrix representations. If

the operator A has a matrix representation that is diagonal in some appropriate orthobasis,

A ↔ diag(a1, a2, . . . , ad), (2.5.32)

then immediately from the series definition of eq. (2.4.28), with A replaced by iA, one finds

exp(iA) ↔ diag(eia1 , eia2 , . . . , eiad). (2.5.33)

Also, if the powers of A obey some recurrence relation, then the series for exp(iA) can often be

resummed in the matrix representation, even if it is not diagonal. As an example, suppose A

has matrix representation

A ↔ a

(
0 1
1 0

)
. (2.5.34)

Then we recognize that A2 = a2I, and so the unitary operator eiA has matrix representation,

obtained by separating the even powers of A from the odd powers of A,

∞∑

n=0

(ia)2n

(2n)!

(
1 0
0 1

)
+

∞∑

n=0

(ia)2n+1

(2n+ 1)!

(
0 1
1 0

)
, (2.5.35)

or, summing each series,

exp(iA) ↔
(
cos(a) i sin(a)
i sin(a) cos(a)

)
. (2.5.36)
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2.6 Eigenvalues and eigenvectors

In quantum mechanics, we will often need to solve eigenvalue problems. If, for some operator

A, we can find a complex number α and a non-null ket |v〉 such that

A |v〉 = α |v〉 , (2.6.1)

then α is called the eigenvalue and |v〉 is the corresponding eigenvector or eigenket, associ-

ated to the eigenstate of A. When eq. (2.6.1) holds, then it follows immediately that

〈v|A† = α∗ 〈v| , (2.6.2)

or, in words, 〈v| is an eigenbra of A†, with eigenvalue α∗.

The eigenvalue problem is to find all solutions for both α and |v〉 as a pair, given A.

Rewriting eq. (2.6.1) as

(A− αI) |v〉 = 0, (2.6.3)

we see that for a solution with a particular α to exist, the operator (A− αI)−1 must not exist;

otherwise, we could act with it on both sides to discover that |v〉 could only be the null ket, in

contradiction of the assumption.

If the Hilbert space is finite dimensional, we can go to the matrix representation to find that

a solution for α must satisfy

Det(A− αI) = 0. (2.6.4)

This is called the characteristic equation, and the left side is a polynomial of degree d, the

same as the dimension of the Hilbert space. The fundamental theorem of algebra states that

this always has exactly d complex solutions, α1, . . . , αd, allowing for the possibility that some of

them may be repeated. The integer number of times a particular eigenvalue αn is repeated in

the list is called its degeneracy, and we will denote it gαn .

After the eigenvalues αn have been found, for each of them we can then solve

(A− αnI) |vn〉 = 0 (2.6.5)

for the corresponding eigenket |vn〉. If a particular eigenvalue αn has degeneracy gαn , then there

will be a set of gαn linearly independent eigenkets |vn〉 with that eigenvalue. Sometimes the

solution of eq. (2.6.5) can be done by inspection, sometimes it will require linear algebra, and

in still other cases it will involve solving some differential equation(s). It is often not feasible to

solve it exactly, which makes life interesting and necessitates approximation methods. In any
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case, note that if |vn〉 satisfies the equation, then so does c |vn〉 for every complex constant c.

That constant can always be chosen, for each eigenket, to normalize it as desired. Even after

doing so, the complex phase of each eigenket remains an arbitrary choice.

The most trivial example is the case that A = I, the identity operator. Since I |v〉 = |v〉,
every non-null ket |v〉 is an eigenket, and the corresponding eigenvalue is 1.

Another simple case is the projection operator for a ket |w〉, as introduced in eq. (2.4.15):

Pw =
|w〉〈w|
〈w|w〉 . (2.6.6)

Then the equation Pw |v〉 = α |v〉 becomes

〈w|v〉
〈w|w〉 |w〉 = α |v〉 . (2.6.7)

There are two ways that this eigenvalue equation can be satisfied. If 〈w|v〉 6= 0, then |v〉 must

be proportional to |w〉. Indeed, any |v〉 = c |w〉, where c is any non-zero complex number, is a

solution, and the corresponding eigenvalue is α = 1. The second way to satisfy the equation is

if 〈w|v〉 = 0, which then implies α = 0. So, any ket |v〉 orthogonal to |w〉 is an eigenket, with

α = 0 as the eigenvalue. These are the only solutions to the eigenvalue problem for Pw.

As another example, take a Hilbert space that is spanned by an orthobasis of three kets,

which we will call |a〉, |b〉, and |c〉. Consider an operator Rθ, which depends on a continuous

parameter θ, and is defined by

Rθ |a〉 = cos θ |a〉+ sin θ |b〉 , (2.6.8)

Rθ |b〉 = − sin θ |a〉+ cos θ |b〉 , (2.6.9)

Rθ |c〉 = |c〉 . (2.6.10)

Because we have specified how Rθ acts on each member of the orthobasis, it is completely

defined. We can now adopt a representation associated with this orthobasis, so that

|a〉 ↔



1
0
0


 , |b〉 ↔



0
1
0


 , |c〉 ↔



0
0
1


 , (2.6.11)

and

〈a| ↔
(
1 0 0

)
, 〈b| ↔

(
0 1 0

)
, 〈c| ↔

(
0 0 1

)
. (2.6.12)

The matrix representation of Rθ in this orthobasis is,† by applying eqs. (2.5.6) and (2.5.10),

Rθ ↔



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 . (2.6.13)

†Beware of a common mistake: it is tempting to scan the form of eqs. (2.6.8)–(2.6.10) and incorrectly write
down the transpose of the matrix representation eq. (2.6.13). For similar examples, see eqs. (2.6.33) and (2.6.56).
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This is a unitary matrix, and R−1θ = R†θ = R−θ = RT
θ , where the last equality follows because it

is a real matrix. The change of basis produced by Rθ is a rotation in the |a〉 , |b〉 subspace.
To find the eigenvalues and eigenkets, first note that the characteristic equation is

Det(Rθ − αI) = (1− 2α cos θ + α2)(1− α) = 0, (2.6.14)

which has eigenvalue solutions

α = eiθ, e−iθ, 1. (2.6.15)

These are non-degenerate, and it is not hard to solve (Rθ − Iα) |V 〉 = 0 in matrix form for the

corresponding eigenvectors. The results are

1√
2




1
−i
0



 ↔ 1√
2
(|a〉 − i |b〉) for α = eiθ, (2.6.16)

1√
2



1
i
0


 ↔ 1√

2
(|a〉+ i |b〉) for α = e−iθ, (2.6.17)



0
0
1


 ↔ |c〉 for α = 1. (2.6.18)

We have chosen the multiplicative constants in front of these so that each eigenket has norm 1.

There remains a freedom to choose each of the phases of the eigenkets; this can only be resolved

by arbitrary choice.

We will now discuss several theorems regarding eigenvalues and eigenkets that are important

for quantum mechanics.

Theorem 2.6.1. (Superposition principle) If a linear operator A has some eigenkets |vn〉
with a common eigenvalue α, then any complex linear combination of them,

∑
n cn |vn〉, is also

an eigenket of A, with the same eigenvalue α, unless it is the null ket.

The proof is an immediate consequence of the definitions, including the assumed linearity of A.

Theorem 2.6.2. (Common eigenvectors for commuting operators) If operators A and

B commute, and |v〉 is an eigenket of A with eigenvalue α, then (i) B |v〉 is also an eigenket of

A with the same eigenvalue α, and (ii) if α is non-degenerate, then |v〉 is also an eigenket of B.

Proof: To establish (i) takes only one line,

A(B |v〉) = AB |v〉 = BA |v〉 = Bα |v〉 = α(B |v〉). (2.6.19)
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The second equality is where we used that A and B commute. To prove (ii), note that the

assumption that α is non-degenerate simply means that the corresponding eigenket is unique up

to a multiplicative constant. So, from (i), B |v〉 = β |v〉 for some constant β, which is therefore

the eigenvalue of B for |v〉. ���

Theorem 2.6.3. All eigenvalues α of a Hermitian operator A are real.

Proof: Let A |v〉 = α |v〉. Taking the inner product with |v〉, we have 〈v|A|v〉 = α 〈v|v〉 . However,
we also have 〈v|A|v〉 = 〈v|A†|v〉 = (〈v|A|v〉)∗ = α∗ 〈v|v〉 , where the first equality made use of

the assumption that A is Hermitian, and the second employs eq. (2.4.21). Combining these

expressions gives

(α− α∗) 〈v|v〉 = 0, (2.6.20)

which establishes that α = α∗, because |v〉, being an eigenket, is not null. ���

In general, a selection rule is a statement that some matrix element vanishes under certain

specified conditions. The following theorem is an example.

Theorem 2.6.4. (Matrix element selection rule) If A is a Hermitian operator and B is

an operator that commutes with A, and A has eigenkets |v1〉 and |v2〉 with respective eigenvalues

α1 6= α2, then 〈v1|B|v2〉 = 0.

Proof: Since A and B commute, AB and BA are the same operator, so

〈v1|AB|v2〉 − 〈v1|BA|v2〉 = 0. (2.6.21)

Now we can use A |v2〉 = α2 |v2〉 on the second term, and use eq. (2.6.2), which says 〈v1|A =

α∗1 〈v1|, on the first term, to get

(α1 − α2) 〈v1|B|v2〉 = 0, (2.6.22)

where we have also used Theorem 2.6.3 which implies α∗1 = α1, since A is Hermitian. Now, since

α1 6= α2 by assumption, the matrix element 〈v1|B|v2〉 must vanish. ���

Theorem 2.6.5. (Inner product selection rule) If A is a Hermitian operator with eigenkets

|v1〉 and |v2〉 with different eigenvalues α1 6= α2, then the eigenkets are orthogonal, 〈v1|v2〉 = 0.

The proof follows immediately as a special case of Theorem 2.6.4, by taking B = I.

The next result establishes a useful connection between a Hermitian operator and a corre-

sponding orthobasis for the Hilbert space:
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Theorem 2.6.6. (Orthobasis of eigenkets of a Hermitian operator) If A is a Hermitian

operator on a Hilbert space with finite dimension d, then one can find a set of its eigenkets

that form an orthobasis. The resulting orthobasis elements corresponding to non-degenerate

eigenvalues of A are unique (up to multiplication by complex phases).

Proof: The characteristic equation for the eigenvalue problem for A (using its matrix repre-

sentation in any orthobasis) has d solutions, according to the fundamental theorem of algebra.

The eigenkets corresponding to non-degenerate eigenvalues are orthogonal (according to The-

orem 2.6.5) and non-null (from the definition of an eigenket), and so can be normalized to be

orthonormal. For each eigenvalue α with degeneracy gα > 1, one can use the Gram–Schmidt

process to construct (non-uniquely) a set of orthonormal kets which have the same eigenvalue

α due to the linearity of the eigenvalue problem, and which are all orthogonal to the kets cor-

responding to the other eigenvalues (again using Theorem 2.6.5). The union of all of the kets

found in this way are orthonormal with each other, and there are d of them, so they form an

orthobasis for the whole Hilbert space. ���

Let us make some important comments on Theorem 2.6.6. First, it is often convenient to

adopt a notation such that the orthobasis eigenkets of A are named by using the corresponding

eigenvalue as a label. However, if the eigenvalue α is degenerate, then we need to introduce

another label uα, which we refer to as a degeneracy label, to distinguish the orthobasis kets

that have the same α. Thus, the eigenkets can be called |α, uα〉, and the eigenvalue equation is

written as

(A− αI) |α, uα〉 = 0, (2.6.23)

while the orthonormality condition reads

〈α′, u′α′|α, uα〉 = δαα′ δuαu′
α′ . (2.6.24)

In the orthobasis of eigenkets of A, the matrix representation of A will be diagonal, as follows

immediately from eq. (2.6.23), so that

A ↔ Adiag =




α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αd


 (2.6.25)

in that basis.

Another useful comment on Theorem 2.6.6 is that if we form the matrix whose columns are

the components of the orthobasis eigenkets of A, then the result is a unitary matrix U . This

follows from the general discussion surrounding eqs. (2.5.17)–(2.5.24), if in that discussion we
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let {|ϕk〉} be the “original” basis we are working in, and let the set {|ϕ′k〉} = {|α, uα〉} be the

orthobasis of eigenkets of A. Thus, we define the components of the matrix U according to the

rule that, in the original basis,

Ujk = 〈ϕj|U |ϕk〉 = 〈ϕj|ϕ′k〉
= jth component of (kth orthonormal eigenvector of A). (2.6.26)

The eigenvalue equation (2.6.23) can then be written as, by taking the inner product with 〈ϕn|,
∑

j

AnjUjk = αkUnk =
∑

l

Unl(δlkαl), (2.6.27)

or, in index-free matrix notation,

AU = UAdiag. (2.6.28)

Now, multiplying from the left by U †, we obtain

Theorem 2.6.7. (Diagonalization of Hermitian operators) The matrix representation of

a Hermitian operator A in an arbitrary orthobasis {|ϕk〉} is diagonalized by the unitary matrix

U specified in eq. (2.6.26), according to

U †AU = Adiag, (2.6.29)

where Adiag is the matrix representation of the operator A in the new orthobasis {|ϕ′k〉} consisting
of its eigenvectors.

Let us do an extended example to illustrate some of the preceding results. Consider a Hilbert

space of dimension 3 with an operator A defined by its action on an orthobasis {|ϕ1〉, |ϕ2〉, |ϕ3〉},

A |ϕ1〉 = 3 |ϕ1〉 , (2.6.30)

A |ϕ2〉 = 4 |ϕ2〉 − i |ϕ3〉 , (2.6.31)

A |ϕ3〉 = i |ϕ2〉+ 4 |ϕ3〉 . (2.6.32)

The matrix representation of A in this original orthobasis is, using eqs. (2.5.6) and (2.5.10),

A ↔



3 0 0
0 4 i
0 −i 4


 . (2.6.33)

Since the matrix representation is Hermitian, A is a Hermitian operator. The characteristic

equation for its eigenvalues is Det(A− αI) = (3− α)(15− 8α+ α2) = 0, which yields

α = 3, 3, 5. (2.6.34)
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These eigenvalues are real, as guaranteed by Theorem 2.6.3. For the non-degenerate eigen-

value α = 5, the solution of the matrix equation for the corresponding eigenvector gives, after

normalization and choice of an arbitrary phase, and conversion to ket language,

|5〉 = 1√
2
(|ϕ2〉 − i |ϕ3〉) . (2.6.35)

Note that we have named the eigenket after its eigenvalue. For the eigenvalue α = 3, the

degeneracy is 2, so there are two linearly independent eigenkets, which can be chosen to be

|3, 1〉 =
1√
2
(|ϕ2〉+ i |ϕ3〉) , (2.6.36)

|3, 2〉 = |ϕ1〉 . (2.6.37)

The second entry (1 or 2) on each α = 3 ket is a degeneracy label. These kets are automatically

orthogonal to |5〉, as promised by Theorem 2.6.5, but we had to make a choice of linear combina-

tion to make them orthonormal, since arbitrary linear combinations of |3, 1〉 and |3, 2〉 would not

be orthogonal to each other and would not have norm 1. In this example, the linear combination

that makes an orthobasis is not hard to find, but given any other (non-orthonormal) basis for

the degenerate eigenvalue subspace, the Gram–Schmidt procedure of Theorem 2.2.3 can be used

to construct an orthobasis.

Our orthobasis of eigenkets of A is related to the original orthobasis by a unitary transfor-

mation. Let us define an operator U by

U |ϕ1〉 = |5〉 , (2.6.38)

U |ϕ2〉 = |3, 1〉 , (2.6.39)

U |ϕ3〉 = |3, 2〉 . (2.6.40)

Now using eqs. (2.6.35)–(2.6.37), and applying the operator-matrix correspondence rules of

eqs. (2.5.6) and (2.5.10) again, one finds the matrix representation of U in the {|ϕ1〉 , |ϕ2〉 , |ϕ3〉}
basis,

U ↔




0 0 1

1/
√
2 1/

√
2 0

−i/
√
2 i/

√
2 0



 , (2.6.41)

which is indeed a unitary matrix.

Acting on eqs. (2.6.38)–(2.6.40) with U †, and using U †U = I, we get

U † |5〉 = |ϕ1〉 = |3, 2〉 , (2.6.42)

U † |3, 1〉 = |ϕ2〉 = (|5〉+ |3, 1〉) /
√
2, (2.6.43)

U † |3, 2〉 = |ϕ3〉 = i (|5〉 − |3, 1〉) /
√
2. (2.6.44)
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The second equality in each of these equations follows by inverting eqs. (2.6.35)–(2.6.37) to solve

for |ϕ1〉, |ϕ2〉, and |ϕ3〉. Equations (2.6.42)-(2.6.44) provide the matrix representation of U † in

the orthobasis {|5〉 , |3, 1〉 , |3, 2〉},

U † ↔



0 1/

√
2 i/

√
2

0 1/
√
2 −i/

√
2

1 0 0


 . (2.6.45)

As a check, this matrix is indeed equal to the transpose conjugate of eq. (2.6.41). As promised

by Theorem 2.6.7 on diagonalization of Hermitian operators,

U †AU = Adiag =



5 0 0
0 3 0
0 0 3


 , (2.6.46)

where A, U , and U † on the left side are taken to be the matrices given by eqs. (2.6.33), (2.6.41),

and (2.6.45), respectively. Note that Adiag on the right side is the matrix representation of the

operator A in the orthobasis {|5〉 , |3, 1〉 , |3, 2〉}.
The choice of orthobasis made in eqs. (2.6.35)–(2.6.37) is not the unique one composed of

eigenkets of A, due to the superposition principle of Theorem 2.6.1. The most general orthonor-

mal pair of basis kets with A eigenvalue α = 3 is obtained using the freedom to do unitary

transformations within the degenerate eigenvalue subspace, and so is parameterized by two

complex numbers c, s, subject to the constraint |c|2 + |s|2 = 1,

|3, 1′〉 = c |3, 1〉+ s |3, 2〉 , (2.6.47)

|3, 2′〉 = −s∗ |3, 1〉+ c∗ |3, 2〉 . (2.6.48)

These kets have new degeneracy labels (1′, 2′) to distinguish this orthobasis from the unprimed

one with c = 1, s = 0. The change in orthobasis is brought about by another unitary operator

V , defined by

V |5〉 = |5〉 , (2.6.49)

V |3, 1〉 = |3, 1′〉 , (2.6.50)

V |3, 2〉 = |3, 2′〉 , (2.6.51)

or, in a matrix representation in the basis {|5〉 , |3, 1〉 , |3, 2〉},

V ↔



1 0 0
0 c −s∗
0 s c∗


 , (|5〉 , |3, 1〉 , |3, 2〉 basis). (2.6.52)
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By combining the information in eqs. (2.6.35)–(2.6.37) and (2.6.47)–(2.6.51), one also finds

V |ϕ1〉 = c∗ |ϕ1〉 −
s∗√
2
|ϕ2〉 − i

s∗√
2
|ϕ3〉 , (2.6.53)

V |ϕ2〉 =
s√
2
|ϕ1〉+

1

2
(1 + c) |ϕ2〉+

i

2
(c− 1) |ϕ3〉 , (2.6.54)

V |ϕ3〉 = −i s√
2
|ϕ1〉+

i

2
(1− c) |ϕ2〉+

1

2
(1 + c) |ϕ3〉 , (2.6.55)

so that the matrix representation of V in the original orthobasis is

V ↔




c∗ s/
√
2 −is/

√
2

−s∗/
√
2 (1 + c)/2 i(1− c)/2

−is∗/
√
2 i(c− 1)/2 (1 + c)/2


 , (|ϕ1〉 , |ϕ2〉 , |ϕ3〉 basis). (2.6.56)

The comparison of eqs. (2.6.52) and (2.6.56) illustrates the point that even though V is unam-

biguous as a Hilbert space operator, its matrix representation looks very different depending on

the orthobasis used.

The trace of an operator in a finite-dimensional Hilbert space can be defined to be equal

to the trace of its matrix representation. For an operator A and any orthobasis {|ϕk〉},

Tr(A) =
∑

k

〈ϕk|A|ϕk〉 =
∑

k

Akk. (2.6.57)

It is left as Exercise 2.4 to show that the trace of an operator is independent of the choice of

orthobasis, and in particular is equal to the sum of its eigenvalues, and that

Tr(AB) = Tr(BA), (2.6.58)

Tr
(
|v〉 〈w|

)
= 〈w|v〉 , (2.6.59)

which can be proved very quickly using completeness of the orthobasis.

We conclude this section by stating two useful theorems involving unitary operators, omitting

the proofs (which are not too difficult).

Theorem 2.6.8. The eigenvalues of a unitary operator U have magnitude 1.

Note that eq. (2.6.15) illustrates this.

Theorem 2.6.9. If an operator A has eigenvectors |αn〉 with eigenvalues αn, and U is a unitary

operator, then UAU † has eigenvectors U |αn〉 with the same eigenvalues αn.

This implies the important result that the eigenvalues of an operator do not depend on the

choice of basis we use to calculate them.
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2.7 Observables

An operator A is an observable if it is Hermitian and its eigenkets form an orthobasis |α, uα〉,
which satisfies the orthonormality relation eq. (2.6.24) and the completeness relation

∑

α

gα∑

uα=1

|α, uα〉〈α, uα| = I. (2.7.1)

Here, α are the eigenvalues with degeneracies gα, and uα are the degeneracy labels. For a

Hilbert space of finite dimension, the completeness part of this definition is redundant, following

automatically from Theorem 2.6.6. However it is not automatic for a Hermitian operator in an

infinite-dimensional Hilbert space; that is one reason why it must be included in the definition

here. The other reason is that we will later find it convenient to slightly generalize our definition

of an observable to include ordered sets of Hermitian operators, so that its eigenvalues can be

not just numbers, but ordered sets of numbers. (An example is the vector position operator in

three-dimensional space, which is really an ordered triple of three Hermitian operators X , Y ,

and Z.) In such cases, eq. (2.7.1) is again certainly not automatic. From a physical point of

view, the crucial requirement we are ensuring with eq. (2.7.1) is that if A is really supposed

to be an observable, then every state in the Hilbert space can always be expressed as a linear

combination of its eigenstates.

The way that eq. (2.7.1) is written assumes that the eigenvalues of A are countable and dis-

crete. If instead they are uncountable and continuous, then the orthonormality and completeness

conditions are of the Dirac type [compare to eq. (2.2.15)],

〈α′, u′α′|α, uα〉 = δ(α− α′) δuαu′
α′ , (2.7.2)

∫
dα

gα∑

uα=1

|α, uα〉〈α, uα| = I, (2.7.3)

where the integral is over the range or ranges of α that occur as eigenvalues. Similarly, it is

also possible for the degeneracy labels uα to be continuous, in which case the Kronecker δuαu′
α′

is replaced by a Dirac delta function δ(uα − u′α′) and

gα∑

uα=1

is replaced by

∫
duα.

It is even possible for the eigenvalues α or the degeneracy labels uα to have a spectrum that

includes both discrete (countable) and continuous (uncountable) components. In that case, the

orthonormality relations will include both Kronecker and Dirac deltas, and the completeness

relation will include both a sum and an integral. We will see an example of this when we study

the bound and unbound states of the hydrogen atom, in eqs. (11.2.11)-(11.2.13) and (11.2.22).

A particularly useful consequence of completeness follows from acting with A on both sides

of eq. (2.7.1). Then, evaluating A = α when acting on its eigenkets, we obtain the spectral
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decomposition of an observable operator A,

A =
∑

α

gα∑

uα=1

α |α, uα〉〈α, uα| , (2.7.4)

with an obvious counterpart for continuous eigenvalues by replacing summation with integra-

tion. Solving problems in quantum mechanics is often the art of turning expressions involving

operators into numbers. The spectral decomposition idea allows us to do this in a systematic

way. When we see an observable operator A appearing in a matrix element, a standard trick is

to insert a completeness sum directly before or after it, so as to replace A by a sum (or integral)

over its eigenvalues, as in eq. (2.7.4). Of course, a prerequisite for using this trick is to solve the

eigenvalue problem for A.

At the end of section 2.4, we mentioned that it is possible to define functions of operators,

and gave the most common example, that of an exponential of an operator. If we have solved

the eigenvalue problem for an observable A, completeness now gives us yet another way to define

a completely general function of it, F (A). For the case of discrete eigenvalues α, the spectral

decomposition of F (A) is

F (A) =
∑

α

gα∑

uα=1

F (α) |α, uα〉〈α, uα| , (2.7.5)

again with an obvious counterpart for the continuous case involving integration rather than

summation.

We next state a very useful theorem about commuting observables, which we will prove only

in the case of a Hilbert space of finite dimension.

Theorem 2.7.1. (Compatible Observables) If A and B are observables, and [A,B] = 0,

then there exists an orthobasis of kets that are eigenkets of both A and B. In other words, for

commuting observables A and B, there is an orthobasis in which their matrix representations

are both diagonal.

Proof: From the definition of an observable, we already know that we can find an orthobasis

of kets |α, uα〉 that are eigenkets of A. Furthermore, since [A,B] = 0, we know from Theorem

2.6.4 that whenever α 6= α′,

〈α′, u′α′|B|α, uα〉 = 0. (2.7.6)

Therefore, the matrix representation of B has a block-diagonal form,



Bα1
0 0 · · · 0

0 Bα2
0 · · · 0

0 0 Bα3
· · · 0

...
...

...
. . .

...
0 0 0 0 Bαn



, (2.7.7)
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where n ≤ d is the number of distinct eigenvalues αj of A, and the blocks Bαj
along the diagonal

represent the possibly non-zero entries, which are confined to the subspaces of the Hilbert space

that have the same eigenvalues αj. Each Bαj
is a Hermitian gαj

× gαj
matrix, where gαj

is the

degeneracy† of αj, and has entries

〈αj , u′αj
|B|αj, uαj

〉 , (uαj
, u′αj

= 1, . . . , gαj
). (2.7.8)

Therefore, according to Theorem 2.6.7, each of the matrices Bαj
can be diagonalized by a change

of basis corresponding to a unitary operator. Each of these unitary operators acts non-trivially

only within the corresponding Bαj
block, and is the identity operator outside of that block.

After doing these basis transformations, we will be left in an orthobasis in which the operators

A and B are represented by diagonal matrices of the form

A = diag(α1, . . . , α1︸ ︷︷ ︸
gα1

times

, α2, . . . , α2︸ ︷︷ ︸
gα2

times

, · · · , αn, . . . , αn︸ ︷︷ ︸
gαn times

) (2.7.9)

and

B = diag(βα1,1, . . . , βα1,gα1
, βα2,1, . . . , βα2,gα2

, · · · , βαn,1, . . . , βαn,gαn
), (2.7.10)

where the βαj ,k with k = 1, . . . , gαj
are the eigenvalues of the Bαj

sub-matrix. This is the desired

orthobasis that achieves the requirements of the theorem. ���

Even with two observables A and B, there can be unresolved degeneracies, by which we mean

that there can be more than one orthobasis ket with the same eigenvalues α and β. This raises the

question of how to tell apart the corresponding degenerate states. From a physics perspective, if

two states are genuinely distinct, then there must be some observable that distinguishes them.

This leads to the important concept of aComplete Set of Commuting Observables, called a

CSCO from here on. For any Hilbert space of states, a CSCO is a set of observables A,B,C, . . .

that all commute with each other, and whose common eigenkets form an orthobasis with no

degeneracies. Thus, we can write

A |α, β, γ, . . .〉 = α |α, β, γ, . . .〉 , (2.7.11)

B |α, β, γ, . . .〉 = β |α, β, γ, . . .〉 , (2.7.12)

C |α, β, γ, . . .〉 = γ |α, β, γ, . . .〉 , (2.7.13)

etc., where each of the eigenkets |α, β, γ, . . .〉 is uniquely determined by specifying its CSCO

eigenvalues. The eigenvalues of a CSCO are sometimes known as good quantum numbers,

†Note that j = 1, . . . , n, and
n∑

j=1

gαj
= d is the dimension of the Hilbert space.
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especially if one of them is the energy. For each one of the eigenvalue labels α or β or γ etc.,

the others can be viewed as degeneracy labels.

If we have a set of commuting observables, but the degeneracy in the eigenkets is not fully

eliminated, it means that we have not actually found a CSCO yet, and at least one more

observable (commuting with all of the others) can be found to add to the list. Conversely, if the

degeneracy has been fully eliminated by a list of commuting observables, then we have a CSCO;

there is no need to add more observables to the list, even if it is easy to find more observables

that commute with all of the others. As we will see in many examples, the number of observables

needed to form a CSCO is always finite and typically not enormous for quantum systems with

a fixed number of particles, even if the Hilbert space is infinite dimensional.

For a given quantum system, the choice of which operators to include in a CSCO is not

unique. For example, even in the case of a spinless free particle moving in 3 dimensions, there

are an infinite number of different choices we can make for the CSCO, all of which have 3

members. One CSCO choice turns out to be just the three spatial coordinates that specify the

position of the particle. Another CSCO choice consists of the three momentum components

of the particle. In some cases (those with rotational symmetry about some choice of origin),

still another CSCO choice is the Hamiltonian (total energy) of the particle together with two

operators associated with its angular momentum with respect to the origin. In general, the best

choice of CSCO depends on what physics questions we would like to answer. Furthermore, it is

often useful to be able to translate between the orthobases defined by different CSCOs.

Note that the word “complete” in CSCO does not have the same meaning as in the com-

pleteness relation. For a CSCO it is the operators that are complete, while for the completeness

relation it is the orthobasis that is complete. Also, the second C in CSCO can equivalently be

interpreted as standing for the word “compatible”. Observables are called compatible if they

commute with each other, and are called incompatible if they have a non-zero commutator.

2.8 Wavefunctions

In the preceding, we have been mainly concerned with matrix representations in a finite di-

mensional Hilbert space. Let us now consider in more detail the case of an observable with

a continuous spectrum of eigenvalues. A quintessential example is the position coordinate op-

erator X for a particle moving in one dimension. The eigenvalues and eigenkets of X will be

labeled as x and |x〉, respectively, so that the eigenvalue equation is

X |x〉 = x |x〉 . (2.8.1)

The physical interpretation is that if the state is |x〉, then the position of the particle is known

to be x, possibly because it has just been measured to be there. The allowed values of x form an
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uncountable, continuous set, perhaps −∞ < x < ∞, or a < x < b if the particle is confined to

that range. In the following, we will assume the latter, in order to be more general, and reserve

the option to take a→ −∞ and b→∞.

Since a particle measured to be at position x is not at any other position x′ at that precise

moment, the states |x〉 and |x′〉 are orthogonal. Furthermore, a measurement of the particle’s

position must return one of the allowed values. These two statements are made precise as a

special case of eqs. (2.7.2) and (2.7.3),

〈x|x′〉 = δ(x− x′), (2.8.2)
∫ b

a

dx |x〉〈x| = I. (2.8.3)

To check that this is consistent, and that δ(x−x′) in eq. (2.8.2) should really be the Dirac delta

function, consider an arbitrary ket |ψ〉 in the Hilbert space. Then we define

ψ(x) ≡ 〈x|ψ〉 (2.8.4)

to be the position wavefunction. The wavefunction ψ(x) can also be viewed as comprising

the components of the ket |ψ〉 in the position representation. Using completeness, we have

ψ(x) = 〈x|ψ〉 =
∫ b

a

dx′ 〈x|x′〉〈x′|ψ〉 =
∫ b

a

dx′ δ(x− x′)ψ(x′). (2.8.5)

The fact that this should hold for every function ψ(x) is just the definition of the Dirac delta

function δ(x− x′); see eq. (2.2.18).

The kets |x〉 do not have finite norm, since 〈x|x〉 = δ(0) is not finite. This means that they are

really generalized kets in the sense defined earlier [see the paragraph after eq. (2.2.18)], and are

not associated with physical states in the Hilbert space, strictly speaking. However, eqs. (2.8.3)–

(2.8.5) show that they do satisfy the requirements of orthonormality and completeness in the

Dirac sense. Therefore, we will refer to the uncountable continuous set {|x〉} as the position

eigenstate orthobasis, despite the fact that they are only idealized limits of physical states.

The inner product of two kets can be written in terms of an integral of the wavefunctions,

using the completeness relation, as

〈φ|ψ〉 =

∫ b

a

dx 〈φ|x〉〈x|ψ〉 =

∫ b

a

dx φ∗(x)ψ(x). (2.8.6)

In particular, the squared norm of a state can be written in the manifestly non-negative form

〈ψ|ψ〉 =

∫ b

a

dx |ψ(x)|2. (2.8.7)
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For valid physical states, both of eqs. (2.8.6) and (2.8.7) should be finite, and the latter must be

non-zero. In other words, physical states correspond to wavefunctions that are normalizable.

This set of functions forms a Hilbert space. However, for physics purposes, there is a further

constraint that the wavefunctions must also be continuous. The reason for this is as follows.

The norm of a ket is not physically significant, but it is often most convenient to choose the

normalization of it so that it has norm 1. In particular, if the wavefunction for a single particle

is chosen to have unit norm,
∫ b
a
dx |ψ(x)|2 = 1, then |ψ(x)|2 can be interpreted as the probability

density, in the sense that the probability to find the particle between x and x+ dx is

dP(x) = |ψ(x)|2dx. (2.8.8)

This is known as the Born rule for the probabilistic interpretation of the wavefunction, after

Max Born. On physical grounds, the probability density |ψ(x)|2 can in principle be measured,

and therefore must be unambiguous, so it must be the same for any limiting approach to a given

point x, implying continuity.

There is a one-to-one correspondence between kets |ψ〉 and their wavefunctions ψ(x) = 〈x|ψ〉.
Now consider the ket corresponding to the derivative of the wavefunction, dψ/dx. Let us write

|dψ/dx〉 = D |ψ〉 , (2.8.9)

which defines a linear operator D on the space of kets. We then have

〈x|D|ψ〉 = 〈x|dψ/dx〉 = dψ/dx. (2.8.10)

Using completeness gives a condition satisfied by the position-eigenket matrix elements of D,

dψ/dx =

∫ b

a

dx′ 〈x|D|x′〉〈x′|ψ〉 =
∫ b

a

dx′ 〈x|D|x′〉ψ(x′). (2.8.11)

We also have

dψ/dx =
d

dx

(∫ b

a

dx′ ψ(x′)δ(x− x′)
)

=

∫ b

a

dx′ ψ(x′)
d

dx
δ(x− x′). (2.8.12)

Comparison of eqs. (2.8.11) and (2.8.12) implies

〈x|D|x′〉 =
d

dx
δ(x− x′). (2.8.13)

To see this, plug in ψ(x′) = δ(x′ − x′′), do the integrations, and then relabel x′′ → x′.

We now see that D cannot be an observable, because it is certainly not Hermitian, since

〈x′|D†|x〉 =
(
〈x|D|x′〉

)∗
=

d

dx
δ(x− x′) = − d

dx′
δ(x′ − x) = −〈x′|D|x〉 . (2.8.14)
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Although D is not Hermitian, the minus sign at the end of eq. (2.8.14) suggests that it is

anti-Hermitian, and we can simply multiply by a factor of i or −i to make an observable. We

therefore define† the momentum operator,

P = −i~D, (2.8.15)

which could be Hermitian and thus a candidate to be an observable. However, since this is an

infinite-dimensional Hilbert space, and eq. (2.8.14) was derived using the technically ill-defined

derivatives of the Dirac delta function, it is prudent to be suspicious about the Hermiticity of

P . So, let us check.

From eq. (2.8.9),

P |ψ〉 = −i~ |dψ/dx〉 . (2.8.16)

Therefore, given any two kets |f〉 and |g〉, with wavefunctions 〈x|f〉 = f(x) and 〈x|g〉 = g(x),

〈g|P |f〉 =
∫ b

a

dx 〈g|x〉〈x|P |f〉 = −i~
∫ b

a

dx g(x)∗
d

dx
f(x), (2.8.17)

where the first equality used completeness. Interchanging the roles of f and g, we also have

〈f |P |g〉 = −i~
∫ b

a

dx f(x)∗
d

dx
g(x). (2.8.18)

Therefore, the difference between P † and P , in an arbitrary matrix element, is

〈f |P †|g〉 − 〈f |P |g〉 = (〈g|P |f〉)∗ − 〈f |P |g〉 (2.8.19)

= i~

∫ b

a

dx g(x)
d

dx
f(x)∗ + i~

∫ b

a

dx f(x)∗
d

dx
g(x) (2.8.20)

= i~

∫ b

a

dx
d

dx
[f(x)∗g(x)] (2.8.21)

= i~[f(b)∗g(b)− f(a)∗g(a)]. (2.8.22)

So, for P to be a Hermitian operator, we must have

f(b)∗g(b) = f(a)∗g(a). (2.8.23)

This can be considered a condition on allowed wavefunctions (and their corresponding kets) in

the physical Hilbert space of states if P is to be an observable.

For example, for a particle confined to a box with impenetrable walls at x = a and x = b,

eq. (2.8.23) is satisfied because all wavefunctions are required to obey ψ(a) = ψ(b) = 0. It is also

†The sign and the ~ normalization in the definition of P are mysteriously arbitrary at this point, but will
be justified in what follows; see the discussions following eq. (2.8.39) and surrounding eqs. (3.4.17) and (3.4.18).
For now, note that the presence of ~ at least has the correct units to make P a momentum.
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satisfied if all wavefunctions satisfy the weaker condition ψ(b) = eiϕψ(a), where ϕ is any fixed

constant. This can occur if X is interpreted to be some kind of periodic or angular coordinate

θ, defined for example on the interval 0 ≤ θ ≤ 2π; then ϕ = 0 implies that wavefunctions are

single-valued at the point θ = 0, which is identified with θ = 2π.

If the domain of x is infinite, with a = −∞ and b =∞, then things are trickier. In practical

solutions for wavefunctions, one sometimes finds that the condition ψ(x) → 0 at large spatial

distances is naturally satisfied. States with this property are called bound states. If either |f〉
or |g〉 is one of these, then eq. (2.8.23) is satisfied. However, there may also be other solutions

that do not obey this property, called unbound states or scattering states. These are very

useful idealized solutions to simple problems, but strictly speaking they are generalized ket

states rather than physical ones, since they cannot have finite norm. In fact, finiteness of the

norms for true physical states |f〉 and |g〉 ensures that f(x) and g(x) must approach 0 for large

|x|. One resolution is that in a more precise formulation that maintains Hermiticity of P , the

idealized unbound or scattering states should be replaced by more complicated states whose

wavefunctions are required to vanish only at very large distances, say, outside of a box with

sides of length L = several light-years, to be safe. Another possibility is to impose periodic

boundary conditions on the wavefunctions in the large box, so that they need not vanish even

at large distances, but rather obey ψ(x − L/2) = ψ(x + L/2). For |x| ≪ L/2, the unbound

state wavefunctions of interest will be closely approximated by a linear combination of these

periodic wavefunctions, for which eq. (2.8.23) holds. These modifications will have a completely

negligible effect on physical questions about phenomena localized far from the edges of the box,

and in practice one can use the idealized unbound states with impunity in most cases.

Next, consider the eigenvalue problem for the momentum operator. The eigenkets with

definite and constant momentum p, corresponding to a free particle, satisfy

P |p〉 = p |p〉 . (2.8.24)

Similarly to the case of position eigenstates, these are taken to obey Dirac orthonormality and

completeness conditions, again as a special case of eqs. (2.7.2) and (2.7.3),

〈p|p′〉 = δ(p− p′), (2.8.25)∫ ∞

−∞
dp |p〉〈p| = I. (2.8.26)

Here the allowed range of continuous p is taken to be from −∞ to∞. As should now be familiar,

the generalized kets |p〉 are, strictly speaking, not associated with physical states, because they

do not have finite norm, but are still very useful as idealizations, because they satisfy the

properties of an orthobasis in the Dirac sense. For any ket |ψ〉, we define the momentum
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wavefunction

ψ̃(p) ≡ 〈p|ψ〉 , (2.8.27)

which can be viewed as the components of the ket |ψ〉 in the momentum representation.

Using the completeness relation eq. (2.8.26), the inner product of any two states can be written

〈φ|ψ〉 =

∫ ∞

−∞
dp φ̃∗(p) ψ̃(p). (2.8.28)

If one has chosen the ket |ψ〉 to have norm 1, then
∫ ∞

−∞
dp |ψ̃(p)|2 = 1, (2.8.29)

and we can interpret

dP(p) = |ψ̃(p)|2 dp (2.8.30)

as the probability for the particle in the state |ψ〉 to have momentum between p and p + dp.

Consider the position wavefunctions of the free-particle momentum eigenstates, defined by

φp(x) ≡ 〈x|p〉 . (2.8.31)

Now we have

〈x|P |p〉 = p 〈x|p〉 = pφp(x), (2.8.32)

but also, using the completeness relation for position eigenkets,

〈x|P |p〉 =

∫ ∞

−∞
dx′ 〈x|P |x′〉〈x′|p〉 =

∫ ∞

−∞
dx′
(
−i~ d

dx
δ(x− x′)

)
φp(x

′) (2.8.33)

= −i~ d

dx

(∫ ∞

−∞
dx′ δ(x− x′)φp(x′)

)
= −i~ d

dx
φp(x). (2.8.34)

Comparing this to eq. (2.8.32), we see that the momentum eigenvalue equation in the position

representation is a linear first-order differential equation,

d

dx
φp(x) = i

p

~
φp(x), (2.8.35)

with the solution

φp(x) = cpe
ipx/~, (2.8.36)

where cp is a non-zero complex number. To fix the magnitude of cp, we use completeness in x,

〈p′|p〉 =

∫ ∞

−∞
dx 〈p′|x〉〈x|p〉 =

∫ ∞

−∞
dx φp′(x)

∗φp(x) = c∗p′cp

∫ ∞

−∞
dx eix(p−p

′)/~ (2.8.37)

= |cp|2 2π~ δ(p− p′), (2.8.38)
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where the last equality used the delta function expression eq. (2.2.20). So, in order to enforce

the Dirac orthonormality condition of eq. (2.8.25), we choose cp = 1/
√
2π~, and so

〈x|p〉 = φp(x) =
1√
2π~

eipx/~, (2.8.39)

up to an unavoidably arbitrary choice of constant phase. From the physical consideration that

the wavefunctions φp(x) should not blow up at large |x|, p must be real, as appropriate for the

eigenvalue of a Hermitian operator P . The position dependence of the momentum eigenstate is

seen to have the form of a plane wave, with wavenumber p/~, and therefore wavelength 2π~/p.

Comparison with de Broglie’s eq. (1.4.1) confirms that we made the correct choice of magnitude

of normalization of the momentum operator P in eq. (2.8.15).

As a further check of the completeness condition for momentum eigenkets in eq. (2.8.26),

take the matrix element of it between two arbitrary position eigenkets,

〈x′|x〉 =

∫ ∞

−∞
dp 〈x′|p〉〈p|x〉 = 1

2π~

∫ ∞

−∞
dp eip(x

′−x)/~ = δ(x− x′). (2.8.40)

In particular, this confirms that we must integrate over the whole range −∞ < p < ∞ in the

momentum completeness relation eq. (2.8.26).

We can also use completeness to find formulas that convert between the momentum wave-

function and the position wavefunction. Using completeness in x,

ψ̃(p) = 〈p|ψ〉 =
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉 = 1√

2π~

∫ ∞

−∞
dx e−ipx/~ψ(x). (2.8.41)

Conversely, given ψ̃(p), we can reconstruct ψ(x) using completeness in p,

ψ(x) = 〈x|ψ〉 =
∫ ∞

−∞
dp 〈x|p〉〈p|ψ〉 = 1√

2π~

∫ ∞

−∞
dp eipx/~ψ̃(p). (2.8.42)

In words, the position and momentum wavefunctions are Fourier transforms of each other, with

some ~’s included. It is also easy to check that

〈x|X|ψ〉 = xψ(x), 〈x|P |ψ〉 = −i~ d

dx
ψ(x), (2.8.43)

〈p|P |ψ〉 = p ψ̃(p), 〈p|X|ψ〉 = i~
d

dp
ψ̃(p). (2.8.44)

These are analogous to matrix representations of observables in a finite dimensional Hilbert

space. If one works in the position representation, with wavefunctions of x, then the observable

X is represented by x and the observable P is represented by −i~d/dx. Inner products are

accomplished by integration over all x, with complex conjugation for the wavefunction of the

bra vector. If, instead, one works in the momentum representation with wavefunctions ψ̃(p),
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Representation |ψ〉 〈ψ| X P 〈ψ1|ψ2〉

position ψ(x) ψ(x)∗ x −i~ d
dx

∫
dx ψ1(x)

∗ψ2(x)

momentum ψ̃(p) ψ̃(p)∗ i~ d
dp

p
∫
dp ψ̃1(p)

∗ψ̃2(p)

Table 2.8.1: Summary of the position and momentum representations for a particle moving
in one dimension. The position and momentum wavefunctions are related to each other as
in eqs. (2.8.41) and (2.8.42).

then P is represented by p and X is represented by i~d/dp, and inner products are done by

integration over all p. These results are summarized in Table 2.8.1. For example,

〈ψ1|X|ψ2〉 =

∫ ∞

−∞
dx ψ1(x)

∗ xψ2(x) =

∫ ∞

−∞
dp ψ̃1(p)

∗
(
i~
d

dp

)
ψ̃2(p), (2.8.45)

〈ψ1|P |ψ2〉 =

∫ ∞

−∞
dx ψ1(x)

∗
(
−i~ d

dx

)
ψ2(x) =

∫ ∞

−∞
dp ψ̃1(p)

∗ p ψ̃2(p). (2.8.46)

The position representation provides a convenient way to find the commutator of X and P .

First we evaluate

〈x|XP |ψ〉 = x
(
−i~ d

dx

)
ψ(x) = −i~xdψ

dx
, (2.8.47)

〈x|PX|ψ〉 = −i~ d

dx

(
xψ(x)

)
= −i~xdψ

dx
− i~ψ(x). (2.8.48)

Therefore, for every ket |ψ〉,

〈x|[X,P ]|ψ〉 = i~ 〈x|ψ〉 , (2.8.49)

so we can conclude that

[X,P ] = i~, (2.8.50)

where the identity operator on the right side is understood. This position-momentum commuta-

tion relation was derived after defining the operator P by its action on the orthobasis of position

eigenkets, but one could just as easily have worked in the other direction, taking eq. (2.8.50) to

be the fundamental definition, and then deriving the operation of P on the kets.

The preceding can all be generalized in a straightforward way to three position and three

momentum observables. We define position and momentum operators that are vectors in real

space (not the Hilbert vector space, in which they are Hermitian operators), by

R = x̂X + ŷY + ẑZ, (2.8.51)

P = x̂Px + ŷPy + ẑPz. (2.8.52)
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They satisfy commutation relations:

[X,Px] = i~, [Y, Py] = i~, [Z, Pz] = i~, (2.8.53)

with all other relevant commutators vanishing. It is convenient to adopt a notation in which

the components of R and P are given an index a = 1, 2, 3 corresponding to x, y, z respectively,

so that R1 = X , R2 = Y , R3 = Z, and P1 = Px, P2 = Py, P3 = Pz. Then the commutation

relations take the form

[Ra, Pb] = i~δab, [Ra, Rb] = 0, [Pa, Pb] = 0. (2.8.54)

The operators R and P have eigenkets |r〉 and |p〉 with‡ eigenvalues r = x̂x + ŷy + ẑz and

p = x̂px + ŷpy + ẑpz, so that

R |r〉 = r |r〉 , P |p〉 = p |p〉 . (2.8.55)

These eigenkets satisfy completeness relations

I =

∫
d3r |r〉〈r| , (2.8.56)

I =

∫
d3p |p〉〈p| , (2.8.57)

and have inner products realizing Dirac orthonormality,

〈r ′|r〉 = δ(3)(r − r ′), 〈p′|p〉 = δ(3)(p− p′). (2.8.58)

Here the three-dimensional delta function is given in rectangular coordinates by

δ(3)(r − r ′) = δ(x− x′)δ(y − y′)δ(z − z′), (2.8.59)

and in spherical coordinates by

δ(3)(r − r ′) =
1

r2
δ(r − r′) δ(φ− φ′) δ(cos θ − cos θ′), (2.8.60)

with a practical definition that, when integrating over a volume V ,
∫

V

d3r ′ f(r ′) δ(3)(r − r ′) =

{
f(r) if r is inside the volume V ,

0 if r is outside the volume V .
(2.8.61)

The wavefunction for a free particle with momentum eigenvalue p is a plane wave,

〈r|p〉 =
1

(2π~)3/2
ei~p·~r/~. (2.8.62)

‡Here we have stretched the previous notion of eigenvalue slightly, as foreshadowed after eq. (2.7.1), because
our eigenvalues here are actually not just numbers, but vectors in real space, or equivalently ordered triples of
numbers (x, y, z) or (px, py, pz). This was a sneaky thing to do, but it is convenient, and is perfectly valid if the
components are compatible observables, as here. This will be discussed further in section 3.2.
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The position and momentum wavefunctions for a general state |ψ〉 are

ψ(r) = 〈r|ψ〉 , ψ̃(p) = 〈p|ψ〉 , (2.8.63)

and they are related by Fourier transforms,

ψ̃(p) =
1

(2π~)3/2

∫
d3r e−i~p·~r/~ ψ(r), (2.8.64)

ψ(r) =
1

(2π~)3/2

∫
d3p ei~p·~r/~ ψ̃(p), (2.8.65)

which follows from eq. (2.8.62) and the completeness relations (2.8.56) and (2.8.57). The squared

norm of a state can be written in terms of either the position or momentum wavefunction, as

〈ψ|ψ〉 =

∫
d3r |ψ(r)|2 =

∫
d3p |ψ̃(p)|2. (2.8.66)

The interpretation of the integrands is that the probability for the particle described by the

state |ψ〉 to be found in an infinitesimal volume d3r near r is given by the Born rule,

dP(r) = d3r |ψ(r)|2, (2.8.67)

while the probability for it to have momentum in a volume d3p in momentum space near p is

dP(p) = d3p |ψ̃(p)|2. (2.8.68)

The last claims are based on postulates that will be stated more generally in section 3.1.

We also note, for future reference, that in the position representation, P is represented by

−i~∇, where ∇ is the gradient, and the momentum squared operator P 2 = P ·P is represented

by −~2∇2, where ∇2 is the Laplacian. The rules for the position and momentum representations

for a particle in three dimensions are summarized in Table 2.8.2.

Representation |ψ〉 〈ψ| R P P 2 〈ψ1|ψ2〉

Position ψ(r) ψ(r)∗ r −i~∇ −~2∇2
∫
d3r ψ1(r)

∗ψ2(r)

Momentum ψ̃(p) ψ̃(p)∗ i~∇p p p2
∫
d3p ψ̃1(p)

∗ψ̃2(p)

Table 2.8.2: Summary of the position and momentum representations for a particle moving in
three dimensions. The position and momentum wavefunctions are related as in eqs. (2.8.64)
and (2.8.65). In rectangular coordinates, ∇p = x̂∂/∂px + ŷ∂/∂py + ẑ∂/∂pz .
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2.9 Tensor product Hilbert spaces

We will often want to consider state spaces that are combinations of simpler state spaces. For

example, consider a particle moving in three dimensions. In the previous subsection, we worked

with a Hilbert space spanned by an orthobasis of kets that are eigenkets of all three position

coordinates. An equivalent way to proceed is to first define three separate Hilbert spaces that

only describe the x, y, and z degrees of freedom, and then combine them to form the Hilbert

space that describes all three degrees of freedom. As another example, a Hilbert space for a

system of two particles can be constructed from the Hilbert spaces of the two particles separately.

The formal construction of Hilbert spaces from simpler components is called a tensor prod-

uct Hilbert space. Consider two distinct Hilbert spaces H1 and H2, spanned respectively by

orthobases {|ϕj〉} with dimension d1 and {|vk〉} with dimension d2. Then the tensor product

Hilbert space H = H1 ⊗ H2 is defined to be a complex linear vector space with inner product

with the following properties:

• There is an orthobasis for H denoted |ϕj〉⊗ |vk〉 for j = 1, . . . , d1 and k = 1, . . . , d2. Thus,

H has dimension d = d1d2, and any ket in H can be written in a unique way as a linear

combination of the d kets |ϕj〉 ⊗ |vk〉.

• Tensor product kets satisfy linearity and distributive properties. This means that if |Φ〉
and |Ψ〉 are any kets in H1, and |V 〉 and |W 〉 are kets in H2, and a, b, c, d are complex

numbers, then

(a |Φ〉+ b |Ψ〉)⊗ (c |V 〉+ d |W 〉) = ac |Φ〉 ⊗ |V 〉+ ad |Φ〉 ⊗ |W 〉
+bc |Ψ〉 ⊗ |V 〉+ bd |Ψ〉 ⊗ |W 〉 . (2.9.1)

• The dual tensor product Hilbert space has an orthobasis 〈ϕj | ⊗ 〈vk|.

• The inner product of orthobasis kets in H is inherited from the inner products of the H1

and H2 orthobasis kets, according to

(
〈ϕj| ⊗ 〈vk|

)(
|ϕl〉 ⊗ |vm〉

)
= δjl δkm. (2.9.2)

• Given an operator A that acts on H1 and an operator B that acts on H2, the tensor

product operator A⊗B is defined to act on H according to

(A⊗ B)(|Ψ〉 ⊗ |V 〉) = (A |Ψ〉)⊗ (B |V 〉), (2.9.3)

for any kets |Ψ〉 in H1 and |V 〉 in H2. In the very common case that B is the identity

operator, we simply write A instead of A⊗ I. Thus, if it is understood that the operator
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A acts non-trivially only on H1, then we write A(|Ψ〉 ⊗ |V 〉) = (A |Ψ〉)⊗ |V 〉. Similarly, if

A is the identity operator, then we simply write B instead of I ⊗B.

Even though an orthobasis of kets for H can be chosen so that their elements are tensor

products |ϕj〉⊗ |vk〉, not all kets in H are tensor products. Only special kets, called separable,

can be written as a tensor product of kets,

|Φ〉 ⊗ |W 〉 . (2.9.4)

A ket in a tensor product Hilbert space that cannot be written in this form, for any choice of |Φ〉
and |W 〉, is said to be an entangled state, a concept first highlighted by Erwin Schrödinger

in 1935. Because H is defined to be a vector space, all linear combinations of its elements must

also be included in it. Therefore, for example,

|Ψ1〉 ⊗ |V1〉+ |Ψ2〉 ⊗ |V2〉 (2.9.5)

is certainly an element of H. However, it cannot be written as a tensor product of kets |Φ〉⊗|W 〉
unless either |Ψ1〉 = c |Ψ2〉 or |V1〉 = c |V2〉 for some complex constant c. We will have much

more to say about the properties of entangled states in Chapters 14, 24, 25, and 26.

One of the common uses of the tensor product formalism is as a divide-and-conquer strategy

for solving problems. This includes situations where we can make use of an already-solved

problem for one or more components of the tensor product. As a simple example, the Hilbert

space H for a free particle moving in three dimensions can be written as a tensor product

of Hilbert spaces that would describe a particle moving in the three rectangular coordinates

separately,

H = Hx ⊗Hy ⊗Hz. (2.9.6)

An orthobasis for this Hilbert space is

|r 〉 = |x〉 ⊗ |y〉 ⊗ |z〉 , (2.9.7)

where |x〉 describes a state in which a particle is known to have X eigenvalue x. In this example,

as in many other cases, the tensor product notation |x〉 ⊗ |y〉 ⊗ |z〉 has no real advantage over

just writing the typographically cleaner

|r〉 = |x, y, z〉 , (2.9.8)

so that is what we will do from now on. Then, X |x, y, z〉 = x |x, y, z〉 and Y |x, y, z〉 = y |x, y, z〉,
and Z |x, y, z〉 = Z |x, y, z〉. This is similar to the separation-of-variables strategy for solving

partial differential equations problems with several independent variables.
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In the following, we will study the orbital angular momentum eigenvalue problem by isolating

only the relevant angular (θ, φ) component of the three-dimensional particle Hilbert space, and

then apply the results more generally to the whole Hilbert space. Schematically, this relies on

using an orthobasis that is a tensor product of the form

|radial part〉 ⊗ |angular momentum part〉 , (2.9.9)

although it is not necessarily notationally convenient to write it that way explicitly. This will

be made more precise in section 8.6 after we develop the theory of angular momentum.

Another important use of tensor product spaces is to describe systems of more than one

particle. For example, we can construct a Hilbert space that describes two distinct spinless

particles labeled 1 and 2, with an orthobasis of kets

|r1, r2〉 = |r1〉 ⊗ |r2〉 . (2.9.10)

Here, each |rn〉 is the Hilbert space for just one particle n = 1, 2 moving in three dimensions.

This construction can naturally be generalized to a tensor product Hilbert space for N spinless

particles with orthobasis kets

|r1, . . . , rN〉 = |r1〉 ⊗ · · · ⊗ |rN〉 . (2.9.11)

However, when the particles have spin (intrinsic angular momentum) or are identical, things are

more complicated, as we will discuss in Chapter 18.

2.10 Exercises

Exercise 2.1. Use the Cauchy–Schwarz inequality (2.2.4) to prove the triangle inequality

(2.2.7), and show that equality holds if and only if |w〉 = n |v〉 where n is a non-negative

real number. (Hint: start with ‖(|v〉+ |w〉)‖2 = |(〈v|+ 〈w|)(|v〉+ 〈w|)|, and use the property of

complex numbers Re(z) ≤ |z|.)

Exercise 2.2. Use the definition of the adjoint to show that (|w〉 〈v|)† = |v〉 〈w| and that

(AB)† = B†A†.

Exercise 2.3. Suppose that U is a unitary operator.

(a) Show that if A is a Hermitian operator, then U †AU is also Hermitian.

(b) Show that if V is another unitary operator, then V U and U †V U are each also unitary.

Exercise 2.4. Consider the trace of an operator A defined in terms of an orthobasis |ϕk〉 by
eq. (2.6.57).
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(a) Show that Tr(A) does not depend on the choice of orthonormal basis. To do this, consider

any other orthobasis of kets |χq〉, and show that Tr(A) is also equal to
∑

q 〈χq|A|χq〉.
(b) Show that Tr(AB) = Tr(BA).

(c) Show that the trace of the outer product is the inner product, Tr
(
|v〉 〈w|

)
= 〈w|v〉.

Exercise 2.5. Suppose A, B, and C are operators.

(a) Show that [A,BC] = [A,B]C +B[A,C].

(b) Prove the Jacobi identity, [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

(c) If [[A,B], B] = 0, show that [A,Bn] = n[A,B]Bn−1. (Hint: do this by mathematical

induction, by showing that if it is true for some n, then it is also true for n+ 1.)

Exercise 2.6. Prove Theorem 2.4.5. (Hints: define F (λ) = eλ(A+B)e−λBe−λA. Then show that

dF/dλ = cλ[A,B]F (λ) where c is a number that you will find. You may use the fact that
d
dλ
eλX = XeλX = eλXX for any operator X , and the power series expansion for the exponential

function, and the result of Exercise 2.5(c). Then solve the differential equation for F (λ) using

the boundary condition at λ = 0, and plug in the value λ = 1 to get the desired result.)

Exercise 2.7. Consider a a vector space spanned by three orthobasis kets |1〉, |2〉, and |3〉, and
a Hermitian operator A defined by

A |1〉 = 5 |1〉+ i |2〉 , A |2〉 = −i |1〉+ 5 |2〉 , A |3〉 = 4 |3〉 . (2.10.1)

(a) Write down the 3× 3 matrix representation of A in this basis.

(b) Find the eigenvalues of A. Two of them should be equal (degenerate).

(c) For the non-degenerate eigenvalue, show that the most general form of the eigenvector is, in

ket form, c(|1〉+ i |2〉), where c is an arbitrary complex number.

(d) For the degenerate eigenvalue, find the most general form for a single eigenvector; you should

write it in terms of two arbitrary complex numbers. Write your answer both in three-component

column vector and ket forms. Check that this vector is orthogonal to the result in part (c).

Exercise 2.8. Consider a state space spanned by an orthobasis consisting of three kets |1〉, |2〉,
and |3〉. Let two Hermitian operators A and B be defined by

A |1〉 = 2a |1〉+ a |3〉 , A |2〉 = a |2〉 , A |3〉 = a |1〉+ 2a |3〉 , (2.10.2)

B |1〉 = b |1〉+ 2b |3〉 , B |2〉 = 0, B |3〉 = 2b |1〉+ b |3〉 , (2.10.3)

where a and b are constant real numbers. The orthobasis kets can be represented by vectors

|1〉 ↔ v1 =



1
0
0


 , |2〉 ↔ v2 =



0
1
0


 , |3〉 ↔ v3 =



0
0
1


 . (2.10.4)
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(a) What are the 3× 3 matrix representations of the operators A and B in this basis?

(b) Show that [A,B] = 0, which implies that A and B can be simultaneously diagonalized.

(c) Find the eigenvalues of A and the eigenvalues of B. (One of them has non-degenerate

eigenvalues; you would be wise to use this to plan your strategy for the next part.)

(d) Find an orthonormal basis v′1, v
′
2, and v

′
3 of vectors that are eigenvectors of both A and B.

For each of them, give their eigenvalues with respect to each of A and B.

(e) Write the matrix U that transforms the original orthobasis into the one you found in the

previous part. This means that v′1 = Uv1 and v′2 = Uv2 and v′3 = Uv3. Check by direct

computation that U is unitary.

(f) Check that U diagonalizes the matrices A and B, by computing U †AU and U †BU . Note

that this is an illustration of Theorem 2.6.7.

Exercise 2.9. Find expressions for the following matrix elements, where X and P are the

position and momentum operators for a particle moving in 1 dimension, with eigenkets |x〉 and
|p〉 respectively, with the Dirac normalizations 〈x′|x〉 = δ(x− x′) and 〈p′|p〉 = δ(p− p′).
(a) 〈x|X|p〉, (b) 〈p|P |x〉, (c) 〈x|PX|p〉, (d) 〈p|PX|x〉, (e) 〈x|P 2X2|p〉.
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3 The core principles of quantum mechanics

3.1 The basic postulates

We are now ready to present the six basic postulates that define quantum mechanics. Although

they are not postulates in the traditional formal and rigorous mathematical sense, they constitute

the key principles that should govern all quantum systems and can be used to make physical

predictions. Some sources give versions that differ from the ones presented here, by combining

two or all three of Postulates 2, 3, and 4, or by leaving out the controversial Postulate 5, or by

including a requirement that the state space of a composite system is always the tensor product

of its subsystems. Others include a postulate governing identical particles, which we do not

include for reasons discussed in Chapter 18.

Postulate 1: States. The state of a quantum system is specified by a non-null ket |ψ〉, a
vector in a Hilbert space (a complex linear vector space with an inner product). For a physical

state, the norm 〈ψ|ψ〉 is real and positive and finite, but is not otherwise physically significant;

two state kets |ψ〉 and c |ψ〉 are physically equivalent if c is any non-zero complex number.

Postulate 2: Observables. Physically measurable quantities, called observables, correspond

to Hermitian operators whose eigenstates can be chosen to be a complete orthonormal basis

(orthobasis) of the state space. This means that for an observable A there is a basis |α, uα〉
satisfying A |α, uα〉 = α |α, uα〉, where α are the eigenvalues, and uα are the degeneracy labels

for each α, with

〈α′, u′α′|α, uα〉 = δαα′ δuαu′
α′ , (3.1.1)

and the completeness relation

I =
∑

α

∑

uα

|α, uα〉 〈α, uα| . (3.1.2)

The preceding assumes that α and uα have discrete values. If instead α has continuous values,

then Dirac orthonormality and completeness are used: δαα′ is replaced by δ(α − α′) and ∑α is

replaced by a definite integral
∫
dα over the range of allowed α. Similarly, if uα is continuous,

then δuαu′
α′ is replaced by δ(uα−u′α′), and

∑
uα

is replaced by a definite integral
∫
duα. In some

cases α and/or uα can have both some discrete and some continuous values, which are then

summed and integrated over the possible values.

Postulate 3: Allowed results of measurements. The result of the measurement of an

observable A is always one of its eigenvalues, α. This rule is sensible and consistent because the

eigenvalues of a Hermitian operator are always real, and do not depend on the arbitrary choice

of orthobasis used to calculate them, as we observed following Theorem 2.6.9.
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Postulate 4: Probabilities of results of measurements. If a system is in a state given by

a ket |ψ〉 which has been normalized so that 〈ψ|ψ〉 = 1, and an observable A is measured, then

the probability of getting a particular discrete result α is

P(α) =
∑

uα

|〈α, uα|ψ〉|2 = 〈ψ|Pα|ψ〉 , (3.1.3)

where |α, uα〉 are normalized as in eq. (3.1.1), and

Pα =
∑

uα

|α, uα〉〈α, uα| (3.1.4)

is the projection operator to the subspace of states with eigenvalue α for A. If instead α is

continuous, then the probability of getting a result between α and α + dα is

dP(α) = dα
∑

uα

|〈α, uα|ψ〉|2 = dα 〈ψ|Pα|ψ〉 . (3.1.5)

This postulate generalizes the Born rule for the probabilistic interpretation of the position

wavefunction, eq. (2.8.67), and the corresponding rule for momentum, eq. (2.8.68). Note that

eq. (3.1.3) ensures that the probabilities are always positive,

P(α) > 0, (3.1.6)

and the completeness relation (3.1.2) ensures that the sum of the probabilities for all possible

outcomes for a measurement must be unity,

∑

α

P(α) = 1. (3.1.7)

Thus, these important consistency requirements demanded by any sensible theory of probability

are built into the postulates of quantum mechanics.

Postulate 5: Collapse of the state due to measurement. If a system is in a state |ψ〉 and
an observable A is measured and found to have the value α, then the state immediately after

the measurement will be an eigenstate of A with eigenvalue α, specifically,

Pα |ψ〉 , (3.1.8)

where Pα is the projection operator given by eq. (3.1.4). This ket has a norm that is typically

less than 1; in fact, from eq. (3.1.3) and the projection operator rules P †α = Pα and P 2
α = Pα, we

see that the squared norm is simply equal to the probability P(α). Therefore, one can divide

the ket (3.1.8) by its norm, to obtain the normalized state after the measurement,

Pα |ψ〉√
〈ψ|Pα|ψ〉

=
Pα |ψ〉√
P(α)

. (3.1.9)
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There is a nice shortcut in the special case that the eigenvalue α is not degenerate, because then

this post-measurement state is simply the corresponding eigenstate |α〉, up to an unobservable

phase. More generally, it is always a linear combination of the states |α, uα〉.

Postulate 6: Time evolution of the quantum state. Between measurements described by

Postulate 5, the time dependence of a state obeys the Schrödinger differential equation,

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (3.1.10)

where H is a Hermitian observable operator, called the Hamiltonian, whose eigenvalues are

the allowed energies of the system.

3.2 Valid and invalid questions

Scientific advances often reveal not just how to answer certain difficult questions, but that other

seemingly sensible questions do not need to be answered or even considered. From the theory of

special relativity, we learn that it makes no sense to ask questions about collisions of particles

with relative speed larger than the speed of light in vacuum c; these are not valid questions

because the very structure of the theory implies that such collisions do not occur. One also learns

not to ask questions concerning spatially separated events that are supposedly simultaneous in

two different reference frames that are moving with respect to each other, because this also is

not meaningful in special relativity. Even though our experience with nonrelativistic systems

might make such questions seem legitimate, they are in fact invalid.

Similarly, in quantum mechanics, there are questions that have no good answer because they

are not valid to begin with. A prominent example is “what are the position and momentum of

this particle at time t?”. In classical mechanics this question makes perfect sense, and we learn

to calculate the answer given some initial conditions and the equations of motion. However, in

quantum mechanics, even in the most idealized case, we can only ask for the probability that the

measurement of an observable has a specific result from among the allowed list of eigenvalues.

In any particular measurement, that observable could be the position of a particle, or it could

be the momentum, but it cannot be both.

To see why, suppose we attempt to define a clever new multi-component operator

Ω = (R, P ), (3.2.1)

which is the ordered pair whose components are the position and momentum vectors of a par-

ticle. If one could measure Ω, the result would be the answer to the simultaneous position and

momentum of a particle. Since R and P are each Hermitian, Ω may indeed be defined as a

Hermitian operator. However, it is not an observable, because it fails the part of the definition
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that calls for the eigenstates to form an orthobasis that satisfies the completeness relation. In

fact, Ω has no eigenstates at all; this is directly related to the fact that R and P do not commute.

Notice that if they had a vanishing commutator, then Theorem 2.7.1 says that they would have

had a whole orthobasis of simultaneous eigenstates, and so would Ω, which could therefore have

been an acceptable observable. But, as things are, Ω is not an observable, and the postulates

of quantum mechanics do not allow for its measurement.

More generally, we can ask whether a set of observables can be measured simultaneously

(as a multi-component operator), and whether it makes sense to ask what the results of such a

measurement are. This depends on the commutation relations of the observable operators.

First, suppose that the operators A,B,C, . . . all commute with each other (are compatible).

Then the simultaneous measurement can be performed, and can be defined as a sequence

of consecutive measurements, performed immediately after one another so that there is no time

for the system to evolve between the measurements. It is left to Exercise 3.1 to show, using

Postulates 4 and 5, that for compatible observables the final results for the probabilities of the

different outcomes (α, β, γ, . . .) and for the corresponding final state do not depend on which

order one performs the measurements, as long as they are all performed with no intervening

time delay, so that Postulate 6 does not come into play.

Next, suppose that two of the operators are incompatible, with a commutator [A,B] that is an

operator with no vanishing eigenvalues. This includes the case that [A,B] is a non-zero multiple

of the identity operator, notably if A and B are a position operator and the corresponding

momentum. In this case, Postulate 5 tells us that after measuring B the system will be left in

some state |β〉 that is an eigenstate of B, but it is definitely not an eigenstate of A. (Otherwise,

it would be an eigenstate of [A,B] with eigenvalue 0, which we are assuming does not exist.)

Similarly, if A is measured, the system will be left in a state that is definitely not an eigenstate

of B. Therefore, the order of making the measurements certainly makes a difference, and one

cannot define their simultaneous measurement.

A third possibility is that [A,B] is an operator that has some vanishing but also some non-

vanishing eigenvalues. In this case, one might measure A, and find a result that leaves the state

in an eigenstate of B, but this will not always happen. The same is true if B is measured first.

An evaluation using Postulates 4 and 5 will be necessary on a case-by-case basis to decide what

the outcomes are that might leave A and B simultaneously determined in the final state.

Consider a classical observable, for example f(a, b, c, . . .) where a, b, c, . . . are quantities that

have quantum observable counterparts A,B,C, . . .. Then, there is always at least one quantum

operator F (A,B,C, . . .) which is also an observable. However, one must be careful in defining it if

A,B,C, . . . do not all commute, due to quantum ordering ambiguities. For example, if f(x, p) =
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xp where x and p are the position and momentum of a particle moving in one dimension,

we could try quantum operator versions F (X,P ) = XP or F (X,P ) = PX or F (X,P ) =

(XP + PX)/2. The first two of these are not Hermitian. However, the last is Hermitian, and

is an observable. More generally, by completely symmetrizing each term of F (A,B,C, . . .), we

can always systematically construct a Hermitian version of it, as can easily be proved using

eq. (2.4.23).

For the converse, there can be quantum observables that have no classical counterpart; the

quintessential example of this is spin, or intrinsic angular momentum. The magnitude of the

spin of a particle is a fixed multiple of ~/2. In particular, unlike ordinary angular momentum,

there are no states in which it can take on classical values arbitrarily large compared to ~.

A perhaps unexpected example of a valid question in quantum mechanics is: “Given a system

in a state |ψ〉, what is the probability of finding it in another state |χ〉?”. (Such a question has

a valid counterpart in classical physics, but there it is somewhat trivial since all information

about the state of a classical system is, in principle, more directly accessible.) The observable

corresponding to this question is the projection operator

Pχ = |χ〉〈χ| . (3.2.2)

It is Hermitian, and has eigenvalues 1 (with eigenstate |χ〉) and 0 (with eigenstates consisting

of all states orthogonal to |χ〉). The result of the measurement of Pχ will therefore always be

either 1 (“yes, we are in the state |χ〉”) or 0 (“no, we are not in the state |χ〉”), even though

the state |ψ〉 before the measurement need not have had either of these definite attributes. The

probability of obtaining the result 1 is |〈χ|ψ〉|2, assuming both kets are normalized. If we do

measure Pχ and obtain the result 1, then the state after the measurement will be Pχ |ψ〉, which
is simply the same as |χ〉, up to normalization. If we obtain the result 0, then the state after

the measurement will be (I − Pχ) |ψ〉, which is orthogonal to |χ〉. A crucial feature of quantum

mechanics, as embodied in the collapse Postulate 5, is that making the measurement changes

the state; it is not the same after the measurement as it was before, unless the system was

already in an eigenstate of Pχ.

One can also construct an observable that generalizes eq. (3.2.2) in a natural way to a

weighted sum of projection operators for any orthobasis {|ϕn〉} with n = 1, . . . , d, where d is

the dimension of the Hilbert space. Such an observable is associated with the valid question

“Given a state |ψ〉, what are the probabilities of finding it in each of these orthobasis states?”

For example, consider the Hermitian operator

Q =
d∑

n=1

nPn, (3.2.3)
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Figure 3.2.1: A meter for the Q observable of eq. (3.2.3), for
a system with d = 6, showing the result after measurement of
Q has resolved the quantum system with initial state |ψ〉 into
the orthobasis state |ϕ3〉 from among the possibilities |ϕn〉 with
n = 1, 2, 3, 4, 5, 6. The probability of this outcome is | 〈ϕ3|ψ〉 |2.

where Pn = |ϕn〉 〈ϕn| are the orthobasis state projection operators. The eigenstates of Q are the

orthobasis states |ϕn〉, and the corresponding eigenvalues are the coefficients of the orthogonal

projection operators, namely the integers n = 1, . . . , d. Therefore, the possible outcomes of

measuring Q are n = 1, . . . , d, as visualized in Figure 3.2.1. The probabilities for these outcomes

are P(n) = | 〈ϕn|ψ〉 |2, assuming that the ket |ψ〉 has norm 1. After the measurement outcome

n, the system will be left in the state |ϕn〉. Thus, measuring the observable Q changes the state

by resolving it into one of the given orthobasis states, and the outcome n tells you which one.

3.3 Expectation values and uncertainties

In addition to the quantities directly associated to single measurements of an observable, there

are statistical quantities that result from making many measurements. Consider an idealized

situation in which we have access to an arbitrarily large number N of copies of a system in the

same state |ψ〉. This mythical group of identical and independent quantum systems is called

a pure ensemble. The expectation value of an operator A in the state |ψ〉 is defined to

be the average value obtained by measuring A in these independent experiments, as N → ∞.

According to the frequentist interpretation of probabilities, this is the same as the sum of the

possible outcomes for each experiment multiplied by their respective probabilities, which can be

evaluated using Postulate 4 as

∑

α

αP(α) =
∑

α

∑

uα

α 〈ψ|α, uα〉〈α, uα|ψ〉 =
∑

α

∑

uα

〈ψ|A|α, uα〉〈α, uα|ψ〉 = 〈ψ|A|ψ〉 . (3.3.1)

Here, the first equality used eq. (3.1.3) and assumed that |ψ〉 is normalized to unity, the second

equality used the fact that |α, uα〉 are eigenstates of A with eigenvalue α, and the completeness

relation was used to get the last equality. In cases where the state |ψ〉 is understood by context,

it is customary to denote the expectation value by

〈A〉 ≡ 〈ψ|A|ψ〉 , (3.3.2)

still assuming that |ψ〉 is normalized to unity. If that is not convenient for some reason, one has

the more general relation

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉 . (3.3.3)
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The expectation value of an observable is easily shown to be a real number.

Another quantity defined through measurements on a large pure ensemble of identical states

|ψ〉 is the uncertainty of an observable A, which we will denote by ∆A. Here again the notation

assumes that |ψ〉 is understood by context. It is defined by

(∆A)2 = 〈(A− 〈A〉)2〉 = 〈ψ|(A− 〈ψ|A|ψ〉)2|ψ〉 . (3.3.4)

Intuitively, the uncertainty tells us how much the measurement of the observable is expected to

fluctuate about its expectation value, over the course of many independent measurements, each

performed starting in the same state |ψ〉. It is the same as the concept of standard deviation

in statistics. By expanding eq. (3.3.4), one obtains the equivalent form that is most commonly

used in practical calculations,

(∆A)2 = 〈ψ|A2|ψ〉 − (〈ψ|A|ψ〉)2 , (3.3.5)

which again assumes 〈ψ|ψ〉 = 1.

There is a fundamental obstacle to the existence of states with arbitrarily small uncertainties

for incompatible observables, imposed by the following result due to Howard P. Robertson and

Schrödinger:

Theorem 3.3.1. (Uncertainty relation) In any state |ψ〉, the uncertainties of two observables

A and B obey

(∆A)(∆B) ≥ 1

2

∣∣〈[A,B]〉
∣∣. (3.3.6)

Proof: Define observables Ã = A − 〈A〉 and B̃ = B − 〈B〉. These are Hermitian, because 〈A〉
and 〈B〉 are real numbers. It follows from the definition of uncertainty that

(∆A)2 (∆B)2 = 〈ψ|Ã2|ψ〉 〈ψ|B̃2|ψ〉 = 〈Ãψ|Ãψ〉 〈B̃ψ|B̃ψ〉 ≥
∣∣〈Ãψ|B̃ψ〉

∣∣2, (3.3.7)

where the Cauchy–Schwarz inequality eq. (2.2.4) was used at the end. Therefore, we have

(∆A)2 (∆B)2 ≥
∣∣〈ψ|ÃB̃|ψ〉

∣∣2 =
∣∣∣
1

2
〈ψ|[Ã, B̃]|ψ〉+ 1

2
〈ψ|{Ã, B̃}|ψ〉

∣∣∣
2

. (3.3.8)

Using the Hermiticity of Ã and B̃ yet again, 〈ψ|[Ã, B̃]|ψ〉 is a pure imaginary number and

〈ψ|{Ã, B̃}|ψ〉 is a pure real number. Therefore, the squared magnitude of the sum is equal to

the sum of the square magnitudes, so

(∆A)2 (∆B)2 ≥ 1

4

∣∣〈ψ|[Ã, B̃]|ψ〉
∣∣2 + 1

4

∣∣〈ψ|{Ã, B̃}|ψ〉
∣∣2. (3.3.9)
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Now, because the last term is certainly non-negative, we can drop it without affecting the validity

of the inequality. Furthermore, [Ã, B̃] is just equal to [A,B]. So, eq. (3.3.6) follows from taking

the square root of both sides of eq. (3.3.9). ���

A famous special case is obtained by taking A = X and B = P for a particle moving in

one dimension. Because [X,P ] = i~, the uncertainties must satisfy the Heisenberg position-

momentum uncertainty relation, named after Werner Heisenberg (who originally proposed

a weaker version of it) and derived rigorously first by Earle H. Kennard and shortly after by

Hermann Weyl,

(∆X) (∆P ) ≥ ~/2, (3.3.10)

in any state. It might seem that an even stronger version might be possible, since we simply

discarded the non-negative last term in eq. (3.3.9). However, for the case of position and

momentum, we will show later, in section 6.1, that there do exist states (those with Gaussian

wavefunctions), in which eq. (3.3.10) is saturated, in other words equality holds. The same

wavefunctions will reappear in section 7.4. So, eq. (3.3.10) is the strongest possible general

version of the position-momentum uncertainty relation.

For a particle moving in three dimensions, one finds in the same way that each of (∆X)(∆Px)

and (∆Y )(∆Py) and (∆Z)(∆Pz) cannot be less than ~/2. However, since X and Py commute,

there is no uncertainty relation for the product (∆X)(∆Py). This means that, in principle, one

could simultaneously specify the exact values of a particle’s coordinate along some direction and

the momentum component in an orthogonal direction.

3.4 How states change

According to Postulate 6, the time evolution of a quantum state obeys a linear first-order

differential equation, the Schrödinger equation. Let the initial condition for the state at time

t = t0 be |ψ(t0)〉. We then define the time-evolution operator U(t, t0) such that the state ket

at time t is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (3.4.1)

It follows from this definition, and Schrödinger’s eq. (3.1.10), that the operator U(t, t0) satisfies

i~
d

dt
U(t, t0) = HU(t, t0). (3.4.2)

Our goal is to solve this differential equation for U(t, t0) as a function of t, subject to the

boundary condition U(t0, t0) = I. As we will see, it is a unitary operator if H(t) is Hermitian.
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First, consider the case that the Hamiltonian does not have any dependence on t. In that

case, the solution is simply

U(t− t0) ≡ U(t, t0) = e−i(t−t0)H/~, (3.4.3)

which only depends on the time difference t− t0, not the individual times. To check this claim,

note that it clearly satisfies the initial condition at t = t0, and that

i~
d

dt
|ψ(t)〉 = i~

d

dt

[
e−i(t−t0)H/~ |ψ(t0)〉

]
= i~

[
(−iH/~)e−i(t−t0)H/~

]
|ψ(t0)〉

= H |ψ(t)〉 (3.4.4)

recovers the Schrödinger equation, as required. It is crucial in the preceding derivation that

the operator H does not depend on time, so that it can be treated just like a number in the

exponential, as it obviously commutes with itself.

The unitarity of U(t− t0) in eq. (3.4.3) is simple to prove, given that H is Hermitian. From

the rules for taking adjoints,

U(t− t0)† =
[
e−i(t−t0)H/~

]†
= ei(t−t0)H

†/~ = ei(t−t0)H/~ = U(t− t0)−1 = U(t0 − t). (3.4.5)

The last equality is a bonus, which shows that evolving a state backward in time is the inverse

operation of evolving it forward in time by the same amount, as one might expect. Since U(t−t0)
is a unitary operator, time evolution can be regarded as equivalent to a change of orthobasis.

While eq. (3.4.3) is a neat formal solution of the Schrödinger equation, in practice it leaves

more to do, because the exponential of an operator as an infinite series can be non-trivial to

evaluate in matrix elements. To make further progress, we can apply the spectral decomposi-

tion trick of eq. (2.7.5) to the operator U(t − t0) as given by eq. (3.4.3). To accomplish this,

first consider the eigenvalue problem for the Hamiltonian, which we are still assuming is Hermi-

tian and does not depend on time. This eigenvalue equation is called the time-independent

Schrödinger equation, and is written as

H |ψE〉 = E |ψE〉 , (3.4.6)

where |ψE〉 does not depend on t. Suppose that this equation has been solved completely for all

energy eigenvalues E and all corresponding orthobasis eigenstates |ψE〉 = |E, uE〉, where uE is

a degeneracy label. Then, using completeness of the energy orthobasis,

U(t− t0) =
∑

E

∑

uE

e−i(t−t0)E/~ |E, uE〉〈E, uE| , (3.4.7)
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where we have turned the operator H into the number E when acting on each of its eigenstates.

Applying this to eq. (3.4.1) gives

|ψ(t)〉 =
∑

E

∑

uE

e−i(t−t0)E/~ |E, uE〉〈E, uE|ψ(t0)〉 , (3.4.8)

the spectral decomposition of the state with respect to energy.

Finding solutions of the time-independent Schrödinger equation is one of the main problems

of quantum mechanics. This often amounts to solving a matrix eigenvalue equation and/or

a differential equation for the wavefunction. As an example of the latter, suppose that the

Hamiltonian is that of a particle moving in a potential V in one dimension, with

H =
1

2m
P 2 + V (X), (3.4.9)

where P and X are the momentum and position operators. Taking the inner product of

eq. (3.4.6) with the position eigenstate |x〉, and using the toolbox of Table 2.8.1 so that X → x

and P → −i~d/dx and |ψE〉 → ψE(x), we obtain
(
− ~

2

2m

d2

dx2
+ V (x)− E

)
ψE(x) = 0 (3.4.10)

in the position representation. Similarly, for a spinless particle moving in a potential V (r) in

three dimensions, the time-independent Schrödinger differential equation is
(
− ~

2

2m
∇2 + V (r)−E

)
ψE(r) = 0, (3.4.11)

to be solved simultaneously for E and ψE(r). The cases of multiple particles, and particles

coupled to an electromagnetic field, will be discussed in sections 4.2 and 4.3.

Note that the unitary time-evolution operator in eq. (3.4.7) is nontrivial only because the

phases are different for the eigenstates with different energies. As a special case, acting on

an initial state ket |ψE(t0)〉 that happens to be an eigenstate of energy, time evolution just

multiplies by a global phase (that is, a single phase that multiplies the whole state ket),

namely e−i(t−t0)E/~. Because such a global phase is not physically significant, the state has not

really changed. For this reason, a Hamiltonian eigenstate is also known as a stationary state.

To illustrate this, consider the time evolution of a stationary state, starting from t = 0,

|ψE(t)〉 = e−itE/~ |ψE(0)〉 , (3.4.12)

and suppose that at time t we measure some observable A, which is assumed to have no explicit

time dependence built into it.† Recall from Postulate 4 that the probability of getting a particular

†By “explicit time dependence”, we just mean an explicit appearance of t in the definition of the operator.
For example, the position operator X has no explicit time dependence, but the operator A = X sin(ωt) does
depend explicitly on time, which we express as ∂A/∂t = ωX cos(ωt).
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measurement result α is

P(α, t) =
∑

uα

| 〈α, uα|ψE(t)〉 |2 =
∑

uα

|e−itE/~ 〈α, uα|ψE(0)〉 |2 =
∑

uα

| 〈α, uα|ψE(0)〉 |2

= P(α, 0). (3.4.13)

In a stationary state, the probability of measuring each particular possible result α stays the

same for all time, as long as the time evolution is not interrupted by a measurement.

Returning to the case of a general state |ψ(t)〉 and a general observable A, the time depen-

dence of the expectation value obeys

d

dt
〈ψ|A|ψ〉 = 〈ψ|A

(
d

dt
|ψ〉
)
+

(
d

dt
〈ψ|
)
A |ψ〉+ 〈ψ|∂A

∂t
|ψ〉 , (3.4.14)

where ∂A/∂t is the derivative of the explicit time dependence of A. Applying Schrödinger’s

equation and its Hermitian conjugate to the first two terms on the right, respectively, gives

d

dt
〈ψ|A|ψ〉 = − i

~
〈ψ|[A,H ]|ψ〉+ 〈ψ|∂A

∂t
|ψ〉 , (3.4.15)

or, in the more compact notation of expectation values, just

d

dt
〈A〉 = − i

~
〈[A,H ]〉+

〈∂A
∂t

〉
. (3.4.16)

This general result is known as Ehrenfest’s Theorem, after Paul Ehrenfest.

In the special case that |ψ〉 is a stationary state, H |ψ〉 = E |ψ〉 and 〈ψ|H = E 〈ψ|, so 〈[A,H ]〉
evaluates to (E − E) 〈A〉 = 0. In that case, d

dt
〈A〉 = 〈∂A

∂t
〉. The change in an expectation value

in a stationary state is due only to the explicit time dependence of the observable operator.

Suppose that the Hamiltonian is that of a particle moving in a constant potential in one

dimension, eq. (3.4.9), and consider A = P , the momentum operator. The operator P has no

explicit time dependence, so ∂P/∂t = 0. Also, [P,H ] = [P, V (X)] = −i~dV/dX . Therefore, the

expectation values in a general state obey

d

dt
〈P 〉 = −

〈 dV
dX

〉
, (3.4.17)

which is the quantum mechanical version of Newton’s second law. Similarly, for A = X , using

∂X/∂t = 0 and [X,H ] = [X,P 2]/2m = i~P/m, we get

d

dt
〈X〉 = 〈P 〉/m. (3.4.18)

This generalizes in a straightforward way to a particle moving in three dimensions. Ehrenfest’s

Theorem says that the momentum and position expectation values in quantum mechanics obey
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the same equations of motion as the corresponding quantities in classical mechanics. Equa-

tions (3.4.17) and (3.4.18) therefore confirm the choices of sign and magnitude in our definition

of the momentum operator P in eq. (2.8.15).

As another application of Ehrenfest’s Theorem, apply eq. (3.4.16) to the time-independent

observable A = 1
2
(XP + PX). Evaluating the commutator with the same Hamiltonian, one

finds that for expectation values in a general time-dependent state, the Virial Theorem holds:

d

dt
〈A〉 =

1

m
〈P 2〉 − 〈XV ′(X)〉 . (3.4.19)

For the special case of a stationary state, since we proved that all expectation values are inde-

pendent of time, the left side vanishes and the Virial Theorem becomes

1

m
〈P 2〉 = 〈XV ′(X)〉 (in a stationary state). (3.4.20)

Specializing further to the case of a power-law potential V (X) = kXn, this becomes

2 〈T 〉 = n 〈V 〉 , (in a stationary state, if V ∝ Xn), (3.4.21)

where T = P 2/2m is the kinetic energy operator. The generalization of the Virial Theorem to

a particle moving in three dimensions is straightforward, and left to Exercise 3.6.

We now turn to the more difficult case that the Hamiltonian operator depends on time.

First, consider time evolution over an infinitesimal interval from time t0 to time t0 +∆t. Then,

from the Schrödinger equation,

|ψ(t0 +∆t)〉 =

[
1− i

~
∆tH(t0)

]
|ψ(t0)〉 . (3.4.22)

Note that because ∆t is infinitesimal, it does not matter here whether we use H(t0), or H(t), or

H evaluated at some intermediate time, because the difference will be higher order in ∆t. Up

to terms of order (∆t)2, we can rewrite this as an exponential,

|ψ(t0 +∆t)〉 = exp
[
− i
~
∆tH(t0)

]
|ψ(t0)〉 . (3.4.23)

An advantage of writing it this way is that the exponential is a unitary operator if H(t0) is

Hermitian, so that |ψ(t0 +∆t)〉 has the same norm as |ψ(t0)〉. Now, if we evolve the state

further from time t0 +∆ to t0 + 2∆t in the same way, we have

|ψ(t0 + 2∆t)〉 = exp
[
− i
~
∆tH(t0 +∆t)

]
exp
[
− i
~
∆tH(t0)

]
|ψ(t0)〉 . (3.4.24)

Here, the exponentials cannot easily be combined into a single exponential, because H(t0 +∆t)

and H(t0) are different operators, and need not commute. Continuing in this way,

|ψ(t0 +N∆t)〉 =

(
N−1∏

n=0

exp

[
− i
~
∆tH(t0 + n∆t)

])
|ψ(t0)〉 , (3.4.25)
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where it is important that the terms in the product, are understood to be arranged from higher

to lower n, reading from left to right. Since each of the terms in the product is a unitary

operator, the whole product is a unitary operator as well. Now we can take

N = (t− t0)/∆t → ∞, (3.4.26)

to obtain

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (3.4.27)

where the unitary time-evolution operator is

U(t, t0) = lim
N→∞

N−1∏

n=0

exp
[
− i
~
∆tH(t0 + n∆t)

]
. (3.4.28)

From its construction, it satisfies

[U(t2, t1)]
† = [U(t2, t1)]

−1 = U(t1, t2), (3.4.29)

U(t3, t2)U(t2, t1) = U(t3, t1). (3.4.30)

This time-evolution operator can depend on both arguments separately; in general U(t, t0) 6=
U(t− t0) if the Hamiltonian depends on time.

Formally, one can also write for eq. (3.4.28)

U(t, t0) = T exp
[
− i
~

∫ t

t0

dt′H(t′)
]
, (3.4.31)

where the T is a time-ordering symbol, an instruction to rearrange the Hamiltonians in the

expansion of the exponential so that each H(tj) appears to the right of H(tk) whenever tj < tk.

More explicitly, it takes the form of a Dyson series, named after Freeman J. Dyson,

U(t, t0) = I +
∞∑

N=1

(
− i
~

)N ∫ t

t0

dtN

∫ tN

t0

dtN−1 · · ·
∫ t2

t0

dt1H(tN)H(tN−1) · · ·H(t1), (3.4.32)

where each tk integration has lower limit t0 and upper limit tk+1, for k = 1, . . . , N , with tN+1

interpreted as t. Note that the nested upper limits of integration have neatly removed the need

for the 1/N ! usually present in the series expansion of the exponential function. You can also

check directly that eq. (3.4.32) satisfies the differential equation (3.4.2), by plugging it in.

In eq. (3.4.32) the ordering of the Hamiltonians is important because in general they do not

commute at different times. In the special case that they do all commute, one can write

U(t, t0) = exp

[
− i
~

∫ t

t0

dt′H(t′)

]
, (3.4.33)
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which agrees with the result eq. (3.4.3) when H does not depend on time at all. Another Dyson

series, based on the interaction picture of quantum mechanics and useful for time-dependent

perturbation theory, will be discussed in section 20.2.

We have seen that there are two very different ways that a state can change in quantum

mechanics: Schrödinger time evolution governed by the Hamiltonian, and collapse of the state

ket due to measurement. It is natural to ask whether the latter might be a special case of

the former. At least within the standard formulation of quantum mechanics, as given by the

postulates listed in section 3.1, the answer is “No!”. Hamiltonian time evolution is accomplished

by multiplying the state by a unitary operator, while collapse of the state due to measurement

is associated with multiplying by a projection operator, which is instead Hermitian. Thus, there

is a fundamental difference between Hamiltonian time evolution and measurement collapse.

The time evolution due to the Hamiltonian is perfectly causal and deterministic; the state

at a given time is uniquely determined by the state at earlier times, just as in classical physics,

provided that a measurement of the type described in Postulates 4 and 5 has not taken place

in the interim. In contrast, the collapse of the wavefunction associated with measurement is

inherently probabilistic, rather than deterministic. This means that, unlike in classical physics,

it is not possible, even in principle, to predict the future. But the situation is actually worse

than that: we cannot even predict the past. Given complete knowledge of the present state of

a quantum system, the state before the most recent measurement cannot be known, because

Postulate 5 says that the act of measurement changes the state in a way that destroys informa-

tion, in an irreversible way. If you measured an observable A and got a result α, leaving the

system in a state |α〉, then this tells you that the state of the system |ψ〉 before the measurement

must have had a non-zero matrix element 〈α|ψ〉, but that is all. This is clearly very incomplete

information.

The insistence on a fundamental distinction between the measuring agent and the quantum

system being measured, as required by Postulate 5, was developed and promoted by Niels Bohr

and collaborators, and is often referred to as the Copenhagen interpretation of quantum

mechanics. According to the Copenhagen interpretation, the measuring agent apparently can

be thought of in classical terms, or at least we do not ask questions about its quantum behavior.

This seems troubling, as one can always imagine treating any particular measuring apparatus as

itself a quantum system undergoing unitary time evolution. For this reason, many people have

advocated modifying the postulates of quantum mechanics to modify or completely eliminate

Postulate 5 dealing with the collapse of the state due to measurement.

In particular, Hugh Everett, in his 1957 PhD thesis, proposed that the state ket always

undergoes unitary time evolution, so that collapse of the state due to measurement is an illusion
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of limited human powers of discernment. In this Everett interpretation of quantum me-

chanics, all possible alternatives for every measurement outcome are actually realized, through

superposition, in some parts of the great state ket of the universe. This can be imagined as

a continuous branching of possibilities that has inspired the alternative name many-worlds

interpretation, and many science fiction story ideas. It is an observed fact that parts of

the Everett superposition corresponding to non-classical-like outcomes for macroscopic systems

seem to have negligible amplitudes. This can be explained by a phenomenon called decoherence,

discussed in Chapter 25, which involves entanglement correlations between subsystems.

It is difficult not to be sympathetic to the no-collapse view. Indeed, we could draw a big

sphere of radius several hundred light years around the Earth, and think of the contents (includ-

ing us, all other observers who might be able to communicate with us, and all of our measuring

devices) as one big quantum system evolving strictly according to unitary time evolution. In

any case, there seems to be no reasonable scientific principle that could tell us exactly where we

should put the boundary separating the quantum system from the measuring apparatus that

supposedly undergoes collapse.

However, from a practical point of view, Postulate 5 is indispensable, because it provides a

straightforward, consistent, and reliable way of making predictions for the actual experiments

that we do in the real world. No matter how philosophically compelling it might be to discard the

measurement collapse of the wavefunction, it is not scientifically necessary, with the exception

of some interesting and ambitious proposals to treat the quantum dynamics of the universe as

a whole. So far, the postulates of quantum mechanics as given in section 3.1 have stood the

test of time, successfully providing accurate predictions of every experimental phenomenon with

which they have been confronted.

3.5 Mixed ensembles and the density matrix operator

The expectation value and uncertainty for an operator were defined for a single quantum state in

section 3.3, using the concept of a pure ensemble. However, it is often more realistic to suppose

that in a large ensemble of quantum systems of the same type, some fraction of them p1 will

be in a state |ψ1〉, a fraction p2 will be in a different state |ψ2〉, etc. Such a large collection of

systems of the same type, but in different states, is called a mixed ensemble. If we choose one

of the systems at random from a mixed ensemble, there is a probability pI that it will be in the

state |ψI〉, with pI ≥ 0 for each I, and

∑

I

pI = 1. (3.5.1)
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The kets |ψI〉 are assumed to have unit norm in the following, but there is no reason why they

must be linearly independent or orthogonal to each other. There is not even any constraint on

the number of distinct states |ψI〉 that are found in the ensemble, and it could be larger than the

dimension of the state space. The mixed ensemble generalizes the concept of a pure ensemble,

for which one of the pI is equal to 1 and all others are 0.

Suppose we choose one system of the mixed ensemble at random, and measure an observable

A with eigenvalues α and orthonormal eigenstates |α, uα〉. Then, the probability of getting a

particular result α is equal to the sum over |ψI〉 of the product of the probability of choosing a

system in that state and the probability that a measurement in that state will give α. Applying

Postulate 4 to evaluate the latter probability,

P(α)mixed =
∑

I

pI
∑

uα

| 〈α, uα|ψI〉 |2. (3.5.2)

We can similarly compute the average result obtained by measuring the observable A many

times on systems chosen at random from the mixed ensemble,

A =
∑

I

pI 〈ψI |A|ψI〉 . (3.5.3)

We use an overline notation to denote this mixed ensemble average, to distinguish it from

the expectation value associated with measuring A in a single state in a pure ensemble.

There are two very different types of probabilities at work in eqs. (3.5.2) and (3.5.3). First,

there are the ensemble probabilities pI , which simply reflect the fact that the mixed ensemble

is populated by different states. These ensemble probabilities would exist even if our systems

were classical. Second, we have the probabilities associated with the inherently non-deterministic

nature of measurement in quantum systems, which are manifested in
∑

uα
| 〈α, uα|ψI〉 |2 and in

the expectation value 〈ψI |A|ψI〉. The results for P(α)mixed and A incorporate both types of

probabilities.

One should not confuse the concepts of a pure ensemble based on a superposition of quantum

states and a mixed ensemble containing a population of the same quantum states. A simple

example will illustrate the distinction. Consider a state space with two orthobasis kets |1〉 and
|2〉. Suppose that initially we have a pure ensemble, with all systems in the superposition state

|ψ〉 = c1|1〉+ c2|2〉 , (3.5.4)

where c1 and c2 are complex numbers subject to the normalization condition |c1|2 + |c2|2 = 1.

Now we can conduct a measurement to ask if a system is in the state |1〉. The probability of

finding the result 1 (yes) is |c1|2, and the probability of finding the result 0 (no) is |c2|2. If we

do this measurement on each and every system in the pure ensemble, we will afterwards have a
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mixed ensemble, with p1 = |c1|2 for the state |1〉, and p2 = |c2|2 for the state |2〉. This illustrates
that one way to prepare a mixed ensemble is to conduct measurements on the members of a

pure ensemble.

Continuing with this example, if we now make the same measurement again on the mixed

ensemble, we will get the same results as for the pure ensemble; the probability is still |c1|2 to

find the state |1〉. But now consider instead the probability that measurement of some other

observable A will yield the result α, with corresponding eigenket |α〉. For the pure ensemble

with state |ψ〉, this is

P(α)pure = |〈α|ψ〉|2 =
∣∣c1 〈α|1〉+ c2 〈α|2〉

∣∣2, (3.5.5)

but for the mixed ensemble, we find instead, from eq. (3.5.2),

P(α)mixed = |c1|2|〈α|1〉|2 + |c2|2|〈α|2〉|2. (3.5.6)

The key difference is that in the pure ensemble result there are interference terms that do not

appear in the mixed ensemble result. There is relative phase information present in the pure

ensemble that is absent in the mixed ensemble.

A standard realization of this same example is found in the double-slit diffraction experiment.

Suppose that we have a source of particles that can impact on a plane detection screen, after

having passed through one of two very narrow slits in a diffraction screen, as shown in Figure

1.3.2. The source of particles is said to be coherent if we can describe the state of a given

particle as a superposition like eq. (3.5.4), where |1〉 represents the state in which the particle

travels through slit 1, and |2〉 represents the state in which it travels through slit 2. If we

let the operator A in the above discussion be the position operator X on the detection screen

perpendicular to the slit directions, then the probability to find the particle between positions

x and x+ dx is given by the continuous version of eq. (3.5.5),

dP(x) =
∣∣c1ψ1(x) + c2ψ2(x)

∣∣2 dx. (3.5.7)

The individual wavefunctions for the different slit contributions interfere destructively or con-

structively, depending on x, to produce an interference pattern as shown in Figure 1.3.2. But,

now suppose that there are detectors that measure whether the particle goes through slit 1 or

slit 2. This measurement results in a mixed ensemble of particles at the detection screen, and

we will have instead the continuous version of eq. (3.5.6),

dP(x) =
(
|c1|2|ψ1(x)|2 + |c2|2|ψ2(x)|2

)
dx, (3.5.8)

in which the interference terms (also known as coherences) are absent. The act of measuring

which slit each particle goes through destroys the interference pattern. This “which-slit” mea-

surement might effectively be done by the environment in which the experiment takes place,
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rather than an official detector monitored by a certified experimentalist. This reduction of a

pure ensemble of coherent superpositions to a mixed ensemble of populations is an example of

decoherence, which will be discussed further in Chapter 25.

All of the physical information about a mixed ensemble is encoded in an elegant way in the

density matrix operator, or just the density operator, due to John von Neumann. It is

defined in terms of the ensemble states and probabilities by

ρ =
∑

I

pI |ψI〉 〈ψI | . (3.5.9)

In the special case of a pure ensemble, ρ is simply the projection operator for the state |ψ〉.
More generally, it is a sum of projection operators weighted by the frequencies of occurrence of

states within the ensemble. In terms of the density operator, the result of eq. (3.5.2) for the

probability of getting the result α for a single measurement of A can be written as

P(α)ensemble =
∑

uα

〈α, uα| ρ |α, uα〉 . (3.5.10)

We can rewrite this by choosing an arbitrary orthobasis of kets {|φk〉}, and then using com-

pleteness followed by a rearrangement,

P(α)ensemble =
∑

uα

〈α, uα|
( d∑

k=1

|φk〉 〈φk|
)
ρ |α, uα〉 =

d∑

k=1

〈φk|ρPα|φk〉 = Tr[ρPα], (3.5.11)

where Pα is the projection operator for the result α, defined in eq. (3.1.4), and at the end we used

the definition of the trace of an operator in eq. (2.6.57). Recall that the trace is independent of

the choice of orthobasis.

The average of the results of many measurements of A in a mixed ensemble, as computed in

eq. (3.5.3), can also be re-expressed in terms of the density operator. Again using completeness

followed by a rearrangement,

A =
∑

I

pI 〈ψI |A
( d∑

k=1

|φk〉 〈φk|
)
|ψI〉 =

d∑

k=1

〈φk|ρA|φk〉 = Tr[ρA]. (3.5.12)

As a special case,

Tr[ρ] = 1, (3.5.13)

which simply re-expresses the conservation of probability from eq. (3.5.1). It is also straightfor-

ward to show Tr[ρ2] ≤ 1, with equality only in the special case that the ensemble is a pure one,

in which case one also has ρ2 = ρ.
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From its definition in eq. (3.5.9), ρ is clearly a Hermitian operator. So, according to Theorem

2.6.6, one can find a special orthobasis consisting of its eigenkets, call them |ϕk〉, with eigenvalues

pk that are real because of Theorem 2.6.3. Therefore, no matter what states |ψI〉 were involved

in the original preparation of the mixed ensemble, or how many such states there were, we can

always rewrite the density operator as

ρ =

d∑

k=1

pk |ϕk〉〈ϕk| , (3.5.14)

which is very similar in appearance to eq. (3.5.9), but with the important difference that the

index k now takes on a limited number of values up to the dimension d of the state space. The

pk can be interpreted as the ensemble probabilities for the orthobasis. This illustrates the more

general fact that the density operator is not tied to any specific set of states |ψI〉, even if we used

one when preparing the mixed ensemble. The density operator can also be used to summarize

our (incomplete) information about a single system chosen at random from the mixed ensemble,

called a mixed state.

A pure ensemble is one extreme special case of a mixed ensemble, in which all systems are

in the same state. The opposite extreme is the completely random ensemble, which we can

define by choosing any orthobasis |ϕk〉, and writing

ρ =
1

d

d∑

k=1

|ϕk〉〈ϕk| . (3.5.15)

Here 1/d is the ensemble probability for each of the orthobasis states. This density operator is

proportional to the identity operator, so it is actually independent of the choice of orthobasis,

and is the unique one associated with maximum randomness of states in the ensemble.

The extent to which an ensemble of quantum systems is randomized can more generally be

quantified by the von Neumann entropy,†

σ = −Tr[ρ ln ρ] = −
d∑

k=1

pk ln pk, (3.5.16)

where the final result is in terms of the orthobasis ensemble probabilities in eq. (3.5.14), which

are defined to be the eigenvalues of ρ. When pk = 0, one should interpret pk ln pk as 0. The von

Neumann entropy is the quantum mechanical analog of the Shannon entropy introduced (two

decades later!) by Claude E. Shannon in the study of classical information and communication

theory, but the Shannon entropy has different properties when combining classical subsystems.

†Many sources replace the natural logarithm in eq. (3.5.16) by the logarithm base 2, which is especially
convenient for quantum information applications where the systems of interest have 2-state orthobases. This
simply changes the normalization of the entropy by a multiplicative factor 1/ ln(2), since log2(x) = ln(x)/ ln(2).
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It also has the same form, up to a multiplicative factor, as the Gibbs entropy defined by Josiah

Willard Gibbs in classical statistical mechanics and thermodynamics,

S = −kB
d∑

k=1

pk ln pk, (3.5.17)

where kB is Boltzmann’s constant, and in this case the pk are interpreted as the probabilities

for microstates |ϕk〉 to occur in the fluctuations of a system.

In our two extreme cases,

σ = 0 (pure ensemble), (3.5.18)

σ = −n
[
1

n
ln(1/n)

]
= ln(n) (completely random ensemble), (3.5.19)

where n is the number of orthobasis states available to the systems in the ensemble, usually

the same as the dimension d of the state space. In the case of a mixed state, the entropy is

a measure of our ignorance, and it is always between 0 and ln(n). The result S = kB ln(n)

obtained for the special case of the completely random ensemble is the Boltzmann entropy.

In general, the density operator for a mixed state or a mixed ensemble depends on time.

From the general form in eq. (3.5.9), we have

dρ

dt
=

∑

I

pI

[( d
dt
|ψI〉

)
〈ψI |+ |ψI〉

( d
dt
〈ψI |

)]
, (3.5.20)

and evaluating the time derivatives using the Schrödinger equation, we obtain

dρ

dt
= − i

~
[H, ρ]. (3.5.21)

Note that this vanishes in the special case of a completely random ensemble; random ensembles

stay random. It also vanishes in the case of a pure ensemble if the state is an energy eigenstate,

but not if it is a superposition of states with different energies. The historical reason for the

name “density operator” is that this equation is analogous to Liouville’s Theorem in classical

mechanics, which says that for an ensemble of classical systems, the phase-space density ρclassical

(the number of classical ensemble members per unit position and momentum) obeys

dρclassical
dt

= {H, ρclassical}PB, (3.5.22)

which has the classical Poisson bracket (and removal of the factor of −i/~) on the right-hand

side replacing the commutator. This is an example of the classical–quantum correspondence

principle to be discussed further in section 4.1.
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Equation (3.5.21) gives the instantaneous change in the density operator as the ensemble

of systems undergoes time evolution. More generally, in terms of the unitary time evolution

operator that we defined in eq. (3.4.1),

ρ(t) = U(t, t0) ρ(t0)U(t, t0)
†, (3.5.23)

with a short proof left as an exercise. Since ρ(t) and ρ(t0) are related by a unitary transformation,

they have the same eigenvalues, according to Theorem 2.6.9. It follows that under time evolution,

a pure state stays pure, and a mixed state remains mixed. Furthermore, from the expression

for the entropy in eq. (3.5.16) in terms of the eigenvalues pk,

σ(t) = σ(t0) (unitary time evolution), (3.5.24)

in the absence of external measurements or other influences. So, we have found that the entropy

of a closed system does not change with time.

Let us now work out what the density operator will be after a measurement on a mixed state.

Suppose we have a density operator ρ as given in eq. (3.5.14) in terms of orthobasis states |ϕk〉
with ensemble probabilities pk, and we make a measurement on a randomly chosen ensemble

state of an observable A and obtain the result α. For each of the ensemble states |ϕk〉, Postulate
5 tells us that the state after the measurement will be

Pα |ϕk〉√
〈ϕk|Pα|ϕk〉

, (3.5.25)

where Pα is the projection operator for the result α. Therefore, we can write the post-measurement

density operator as

ρα =

d∑

k=1

P(k|α)
(

Pα |ϕk〉√
〈ϕk|Pα|ϕk〉

)(
〈ϕk|Pα√
〈ϕk|Pα|ϕk〉

)
, (3.5.26)

where P(k|α) is the conditional probability that the state selected from the ensemble was |ϕk〉,
given that the result α was obtained for A. To evaluate this, we use Bayes’ Theorem, the

fundamental result in the theory of conditional probabilities, which says

P(k|α) =
P(α|k) pk
P(α) . (3.5.27)

Here, as given by Postulate 4,

P(α|k) = 〈ϕk|Pα|ϕk〉 (3.5.28)

is the conditional probability that the result of a measurement of A is α, assuming that the state

was |ϕk〉, while P(α) = Tr[ρPα] is the probability, obtained in eq. (3.5.11), that a measurement
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of A in the ensemble resulted in α. Putting these results together, eq. (3.5.26) for the density

operator after the measurement becomes

ρα =
PαρPα
P(α) =

PαρPα
Tr[ρPα]

. (3.5.29)

This is the density operator version of Postulate 5. Note that it obeys ρ†α = ρα and Tr[ρα] = 1,

so that the post-measurement density operator is still Hermitian and has trace 1.

We have now succeeded in finding the rules for measurement probabilities and averages,

post-measurement collapse, and time evolution for a mixed state in terms of the density matrix

operator ρ, in eqs. (3.5.11), (3.5.12), (3.5.21), (3.5.23), and (3.5.29). Since each of these results

only depends on ρ, and not on the individual ensemble states or probabilities, we have justi-

fied the assertion that all of the physical properties of the mixed ensemble or mixed state are

contained in the density operator.

A common situation is that a measurement of A has been made, but we do not know the

result. Perhaps we were not looking, or we lost the data, or the measurement was made by

something or someone else who is unwilling or unable to communicate with us. In that case,

the density operator describing the mixed state after the measurement will be

ρ′ =
∑

α

P(α) ρα =
∑

α

PαρPα. (3.5.30)

We will now show that the entropy always increases when this occurs, except in the trivial

special case ρ′ = ρ, which happens only if all states in the ensemble were eigenstates of A with

the same eigenvalue. To do so, we will use the following fact from linear algebra about traces

of functions of matrices, due to Oskar Klein, the proof of which is omitted.

Theorem 3.5.1. (Klein’s inequality, general) Suppose that the function f(x) is differentiable

and strictly convex (f ′′(x) > 0) for all 0 < x < ∞, and that A and B are Hermitian matrices

with non-negative eigenvalues. Then

Tr[f(A)− f(B) + (B −A)f ′(B)] ≥ 0, (3.5.31)

with equality if and only if A = B.

We now apply this to the case f(x) = x ln x, and let A = ρ and B = ρ′ be any two density

operators; we are not yet assuming the special form of eq. (3.5.30). Then, using Tr[ρ] = Tr[ρ′] =

1, we obtain:

Theorem 3.5.2. (Klein’s inequality for density operators) Suppose that ρ and ρ′ are any

two density operators on a common state space. Then

Tr[ρ(ln ρ− ln ρ′)] ≥ 0, (3.5.32)

with equality if and only if ρ = ρ′.
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Now consider the case of ρ′ given by eq. (3.5.30), which arose from having made a mea-

surement of A on a mixed state described by ρ, with unknown result. The entropy after the

measurement is

σ′ = −Tr[ρ′ ln ρ′] = −
∑

α

Tr[Pα ρPα ln ρ
′] = −

∑

α

Tr[ρPα ln ρ
′Pα], (3.5.33)

where the cyclic property of the trace was used at the end. Since P 2
α = 1, eq. (3.5.30) shows that

Pα commutes with ρ′, which implies that Pα also commutes with ln ρ′. Therefore, Pα ln ρ
′Pα =

P 2
α ln ρ

′ = Pα ln ρ
′. Then, using completeness in the form

∑
α Pα = I, we obtain

σ′ = −Tr[ρ ln ρ′]. (3.5.34)

Using σ = −Tr[ρ ln ρ] and Klein’s inequality (3.5.32), we finally obtain the claimed result,

σ′ ≥ σ. (3.5.35)

The entropy increases whenever a non-trivial measurement is made but the result is unknown.

Note that this increase of the von Neumann entropy does not apply to a situation in which

we made a measurement on a single mixed state and the result is known. In fact, if the known

result of the measurement α is a non-degenerate eigenvalue, then the resulting density operator

describing the system will be that of a pure state, with vanishing entropy.

As an important example, consider an ensemble consisting of a bottle of, say, ∼ 1024 gas

molecules, each of which can be in states characterized by energy eigenvalues E and degeneracy

labels uE. The molecules interact with each other and with the bottle walls, but weakly enough

that they can be considered an ensemble of independent quantum states of the same type.

Intuitively, each interaction can be thought of as a sort of external measurement on the gas

molecule, but the results of these measurements remain unknown, so that eq. (3.5.35) applies so

as to make the entropy as large as it can be, subject to the constraint of energy conservation.

Thus, when the molecules reach thermal equilibrium, the ensemble probability to find one of

them in a particular orthobasis state |E, uE〉 can be determined by the statistical principle that

the entropy should be maximized, subject to the constraint, due to energy conservation, that

the ensemble average energy has a fixed value E.

To see the implications of this, we write the density operator in the form

ρ =
∑

E

∑

uE

pE |E, uE〉〈E, uE| . (3.5.36)

Here, we have already implemented the idea that maximizing the entropy will require the density

operator to correspond to complete randomization within each subspace of fixed energy eigen-

value E, but the relative probabilities pE for each energy level remain to be found. Equation
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(3.5.36) gives

σ = −
∑

E

gE pE ln pE , (3.5.37)

where gE is the degeneracy of the energy eigenvalue E. Now, to maximize σ subject to the

constraints 1 = Tr[ρ] =
∑

E gE pE and fixed E =
∑

E gE pEE, it is simplest to use the method

of Lagrange multipliers. The function to be extremized is

f(pE, α, β) = −
∑

E

gE pE ln pE + α
(
1−

∑

E

gE pE

)
+ β

(
E −

∑

E

gE pEE
)
, (3.5.38)

where α and β are the Lagrange multipliers for the trace constraint and the energy constraint,

respectively, and E is fixed. We then obtain, for each E,

0 =
∂f

∂pE
= −gE(ln pE + 1)− αgE − βgEE, (3.5.39)

which has the solution

pE = e−(βE+α+1). (3.5.40)

The e−(α+1) factor is independent of E, and so can be absorbed into a common normalization

factor; the important point is that we have derived that the canonical ensemble probabilities

that maximize the entropy must be proportional to the Boltzmann factor,

pE ∝ e−βE . (3.5.41)

The Lagrange multiplier β is related to temperature by the definition

β =
1

kBT
. (3.5.42)

Since β has units of 1/energy, this definition shows that Boltzmann’s constant is really just a

conversion factor between energy and temperature. If we agreed to measure temperature in

units of energy, then Boltzmann’s constant would be 1.

The result of eq. (3.5.36) with pE ∝ e−βE is called the canonical ensemble, with density

operator

ρ =
1

Z

∑

E

∑

uE

e−βE |E, uE〉〈E, uE| , (3.5.43)

where the normalization factor Z is called the partition function. Thus, the canonical en-

semble is completely randomized at each fixed energy level E, but with relative probabilities
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between energy levels determined by the Boltzmann factor. The partition function can be

computed using the requirement Tr[ρ] = 1, which gives

Z =
∑

E

∑

uE

e−βE =
∑

E

gE e
−βE . (3.5.44)

Equation (3.5.43) can be recognized as the spectral decomposition form [see eq. (2.7.5)] of

ρ =
1

Z
e−βH . (3.5.45)

This obviously commutes with H , so according to eq. (3.5.21), ρ is constant in time. For any

observable A defined for each molecule, the canonical ensemble average is, from eq. (3.5.12),

A =
1

Z
Tr
[
e−βHA

]
=

1

Z

∑

E

∑

uE

e−βE 〈E, uE|A|E, uE〉 . (3.5.46)

In particular, the average energy for states in the canonical ensemble is

E =
1

Z

∑

E

gE E e
−βE = − ∂

∂β
lnZ. (3.5.47)

It is left as an exercise to check that, with the entropy definition S = kBσ,

E − TS = −β lnZ = F, (3.5.48)

where F is called the Helmholtz free energy after Hermann von Helmholtz. Let us stop

our discussion of the canonical ensemble here, before this book accidentally turns into one on

statistical mechanics.

In all of the preceding, we have assumed for notational simplicity that the states |ψI〉 appear-
ing in the ensemble are discrete and countable. As usual, one can also consider a continuum of

states, which entails turning summations into integrals. If the ensemble states |ψu〉 are labeled

by some continuous parameter u (instead of the discrete label I), then the density operator is

ρ =

∫
du p(u) |ψu〉〈ψu| , (3.5.49)

where the probability density p(u) must satisfy the constraint
∫
du p(u) = 1.

3.6 Exercises

Exercise 3.1. Consider compatible observables A and B, whose (possibly degenerate) eigenval-

ues include α and β, respectively. Suppose that they are both measured, with a negligible time

delay so that Schrödinger time evolution does not come into play. Show that the probability of

obtaining (α, β) for (A,B) does not depend on the order in which they are measured.
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Exercise 3.2. Show that if the position-space wave function ψ(r) = 〈r|ψ〉 is real, then the

expectation value of the momentum operator P must vanish: 〈P 〉 = 0. This helps to explain

why the states for quantum mechanics must form a complex vector space.

Exercise 3.3. Consider a state |ψ〉 with position wave function 〈r|ψ〉 = ψ(r) and momentum

expectation value 〈ψ|P |ψ〉 = p. Show that the state with position-space wave function ei
~k·~rψ(r)

must have momentum expectation value p + ~k.

Exercise 3.4. Consider observables A and B with the following matrix representations on a

state space with dimension 3,

A =



1 0 0
0 0 0
0 0 −1


 , B =

1√
2



0 −i 0
i 0 −i
0 i 0


 . (3.6.1)

These matrices are representations of the operators in an orthonormal basis |1〉, |0〉, |−1〉, which
are labeled by the non-degenerate eigenvalues of A, which we can therefore call “the A basis”.

(a) Find the eigenvalues and the corresponding normalized eigenkets of B (in the A basis).

(b) In the state |−1〉, calculate the expectation value 〈B〉 and the uncertainty ∆B.

(c) If the particle is in the state with A = 1, and B is measured, what are the possible outcomes

and their probabilities?

(d) If the particle is in the state with B = 0, and A is measured, what are the possible outcomes

and their probabilities?

(e) Consider the state |ψ〉 = 1√
6
|1〉+ 1√

6
|0〉+ 2√

6
|−1〉. If the operator A2 is measured and a result

+1 is obtained, what is the normalized state ket immediately after the measurement? What

was the probability of this result? If A is then immediately measured, what are the possible

outcomes and their respective probabilities?

Exercise 3.5. Consider a particle free to move throughout all space in 3-d. Suppose that its

wavefunction in spherical coordinates is ψ(r) = Ce−r/a, where C and a are constants.

(a) If the wavefunction is normalized to unity, what is the magnitude of the constant C?

(b) What is the probability that the particle will be found to be farther from the origin than a?

(c) What are the expectation value and uncertainty of the radial coordinate operator R?

(d) What are the expectation value and uncertainty of the momentum squared operator P 2?

Exercise 3.6. Consider a particle moving in three dimensions, governed by the Hamiltonian

H =
1

2m
P 2 + V (R), (3.6.2)

where P 2 = P · P = P 2
x + P 2

y + P 2
z . Apply Ehrenfest’s Theorem eq. (3.4.16) to the observable

A = 1
2
(R ·P +P ·R) to obtain the 3-d version of the Virial Theorem. You should find that
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for a general state,

d

dt
〈A〉 =

1

m
〈P 2〉 − 〈R · ∇V 〉 , (3.6.3)

so that for a stationary state,

1

m
〈P 2〉 = 〈R · ∇V 〉 , (in a stationary state), (3.6.4)

and for the special case of a spherically symmetric power-law potential

2 〈T 〉 = n 〈V 〉 , (in a stationary state, if V ∝ Rn), (3.6.5)

where T = P 2/2m is the kinetic energy operator.

Exercise 3.7. Consider a particle of mass m moving in a 1-d potential, with Hamiltonian

H = P 2/2m+ V (X). Suppose that the eigenstates and energy eigenvalues of H are denoted by

|ψn〉 and En, where n is a discrete label, so that H|ψn〉 = En|ψn〉.
(a) Show that 〈ψn|P |ψk〉 = α〈ψn|X|ψk〉, where α is a quantity that you will determine, which

depends on the difference between En and Ek. (Hint: consider the commutator [X,H ].)

(b) From the result of the previous part, show that

〈ψn|P 2|ψn〉 = β
∑

k

(En −Ek)2|〈ψn|X|ψk〉|2, (3.6.6)

where β is a constant quantity that you will find. (Hint: completeness is your friend.)

(c) How does this rule generalize to cases with some continuous energy eigenvalues?

(d) Derive the corresponding results for a particle moving in three dimensions.

Exercise 3.8. Prove eq.(3.5.23) for the unitary time evolution of the density operator.

Exercise 3.9. Consider a quantum system with a state space of dimension d.

(a) Show that to specify a general pure state of the system requires 2d− 2 real parameters.

(b) Show that to specify the density matrix for a general mixed state of the system requires

d2 − 1 real parameters.

Exercise 3.10. A spin-1/2 system with Hamiltonian H = ωSz has energy eigenstates |↑〉 and
|↓〉 with Sz eigenvalues ~/2 and −~/2 respectively. For the canonical ensemble of a large number

of such spins at temperature T , what are the density operator ρ and the partition function Z?

What is the Gibbs entropy? What is the average result for a measurement of Sz?
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4 Canonical variables and the Hamiltonian

4.1 Quantum observables from classical dynamics

The postulates of quantum mechanics refer to observable operators with time evolution governed

by a Hamiltonian, but do not specifically identify these objects. This is intentional, in order to

be general. In many physical situations, one can determine the appropriate Hamiltonian and

observables by considering a classical version, but this is not always true. Indeed, one should

think of classical physics as an approximate limit obtained from quantum mechanics, and not

the reverse. Still, in favorable circumstances the classical-limit properties of a system can be

used to infer the basic observable operators, including the Hamiltonian, and their algebraic

commutator properties in the quantum theory.

In the Lagrangian formulation of classical mechanics, one starts with some dynamical vari-

ables qn, often called generalized coordinates, which we will label by an index n. The Lagrangian

is a function of the qn and their first time derivatives q̇n = dqn/dt,

L(qn, q̇n, t). (4.1.1)

The classical equations of motion for the system are then

∂L

∂qn
=

d

dt

∂L

∂q̇n
, (4.1.2)

for each n. A short calculation, found in any good classical physics textbook, shows that this

follows from a variational principle involving the action obtained by integrating the Lagrangian

with respect to time. However, we will postpone our own discussion of that until section 28.6.

The reason for doing so is that rather than accept the variational principle as a postulate of

classical mechanics, we will be able to derive it as a consequence of the path integral formulation

of quantum mechanics.

The Hamiltonian formulation of classical mechanics recasts the Lagrangian formulation by

defining a canonical momentum conjugate to each generalized coordinate,

pn =
∂L

∂q̇n
. (4.1.3)

Now one defines the Hamiltonian as

H(qn, pn, t) =
∑

n

pnq̇n − L(qn, q̇n, t), (4.1.4)

where it is important that the q̇n are to be completely eliminated in favor of the pn using

eq. (4.1.3). Thus H is a function only of the generalized coordinates and their canonical conju-

gate momenta, and not their time derivatives. The qn and pn are collectively called the phase-

space coordinates. As shown in the same good classical mechanics textbook, the Lagrangian
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equations of motion eq. (4.1.2) are equivalent to the Hamiltonian equations of motion,

q̇n =
∂H

∂pn
, ṗn = −∂H

∂qn
. (4.1.5)

The generalized coordinates qn need not be the rectangular coordinates of a particle, but rather

could be any quantities that fully specify the classical state of the system at a given time.

Likewise, the canonical momenta need not coincide with mechanical momenta (equal to the

product of mass and velocity for particles).

Consider any quantity a(qn, pn, t), built out of the generalized coordinates and their conjugate

momenta. According to the same good classical physics textbook, the time evolution of a is

da

dt
=

{
a,H

}
PB

+
∂a

∂t
, (4.1.6)

where the Poisson bracket for any two functions on phase space a and b is defined as

{
a, b
}
PB
≡

∑

n

(
∂a

∂qn

∂b

∂pn
− ∂b

∂qn

∂a

∂pn

)
. (4.1.7)

Dirac noted that the Poisson brackets
{
a, b
}
PB

of classical mechanics are closely analogous

to the commutators [A,B] for the corresponding observables in the quantum theory. Both are

antisymmetric under interchange of the observables, and at least for the position and momentum

observables, one has the exact correspondence

classical quantum
{
qn, pk

}
PB

= δnk ←→
[
Qn, Pk

]
= i~δnk. (4.1.8)

Commutators obtained in this way are called canonical commutation relations. Further-

more, eq. (4.1.6) has a striking resemblance to Ehrenfest’s Theorem in quantum mechanics,

which we found in eq. (3.4.16). Indeed, one finds from the latter equation that

d

dt
〈Qn〉 =

〈 ∂H
∂Pn

〉
,

d

dt
〈Pn〉 = −

〈 ∂H
∂Qn

〉
, (4.1.9)

directly analogous to the Hamiltonian equations of motion (4.1.5).

For a single particle of mass m moving in three dimensions in a potential V , it is natural to

choose the Qn to be the usual rectangular coordinate operators X = Rx, Y = Ry, and Z = Rz.

Their conjugate canonical momenta Px, Py, and Pz, satisfy the commutation relations already

given in eq. (2.8.54),

[Ra, Pb] = i~δab, [Ra, Rb] = 0, [Pa, Pb] = 0, (4.1.10)

for a, b = x, y, z. Writing P 2 ≡ P · P , the Hamiltonian operator is then

H =
P 2

2m
+ V (R). (4.1.11)
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The connection between classical and quantum physics just described is often called the

correspondence principle, but it has some weaknesses. First, there are some quantum ob-

servables that do not have a classical counterpart at all, for example spin, also known as intrinsic

angular momentum. Second, there is no guarantee that every generalized coordinate and its

momentum will obey a canonical commutation relation. Although it is true for the rectangular

coordinates of a particle, or a collection of particles, in other cases one might encounter correc-

tions higher order in ~, or ambiguities in connecting the classical observables to the quantum

ones. This is why we preferred to derive the position-momentum commutation relations by the

method given in section 2.8. More generally, the most logical (but perhaps not the simplest)

way to make the connection is to derive the classical theory as an approximation to the quantum

theory, as we will do using the Feynman sum-over-paths approach in section 28.6.

4.2 The two-body problem

An important special case is that of two particles that are free except for a potential energy of

interaction that depends only on their separation. This occurs, for example, in the hydrogen

atom to be treated in Chapter 11, where the two particles are the electron and the (much

heavier) proton. Another example is neutron-proton scattering, to be studied in section 23.8,

where the masses are almost the same.

In general, the two-body Hamiltonian has the form

H =
P 2
1

2m1
+

P 2
2

2m2
+ V (R1 − R2), (4.2.1)

where we allow for the possibility that the potential energy depends on the vector displacement

(not just its magnitude), and the two particles have masses m1 and m2 and canonical position

and momentum operators (R1, P1) and (R2, P2). The components of these observables satisfy

commutation relations [R1a, P1b] = i~δab and [R2a, P2b] = i~δab, for a, b = x, y, z, with other

combinations vanishing. In particular, each of the observables for particle 1 commutes with

those of particle 2. As an orthobasis, one can choose the tensor product of the eigenkets of R1

and R2,

|r1, r2〉 = |r1〉 ⊗ |r2〉 , (4.2.2)

defined to satisfy the eigenvalue equations

R1 |r1, r2〉 = r1 |r1, r2〉 , R2 |r1, r2〉 = r2 |r1, r2〉 . (4.2.3)

However, the solution of the Hamiltonian eigenvalue problem is complicated by the fact that

the potential couples the two particle degrees of freedom together.
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Fortunately, as in classical mechanics, such cases can be reduced to a simpler problem that is

effectively the same as for two decoupled particles, by making a change of variables to separate

the relative motion from that of the center of mass. The relative motion is described by

R = R1 − R2, P =
m2P1 −m1P2

m1 +m2
, (4.2.4)

and the motion of the center of mass by

Rcm =
m1R1 +m2R2

m1 +m2
, Ptot = P1 + P2. (4.2.5)

It is a short exercise to show that the pairs (R,P ) and (Rcm, Ptot) each satisfy canonical com-

mutation relations, and do not interfere with each other. Furthermore, if one defines the total

mass M and the reduced mass µ according to

M = m1 +m2, µ =
m1m2

m1 +m2

, (4.2.6)

then the Hamiltonian eq. (4.2.1) can be rewritten in the decoupled form

H = Hcm +Hrel, Hcm =
P 2
tot

2M
, Hrel =

P 2

2µ
+ V (R). (4.2.7)

The center-of-mass degrees of freedom have the same Hamiltonian as that of a completely free

particle with mass M , whose eigenvalue problem is easy to solve (plane waves). The dynamics

of Hrel are the same as for a single particle with mass equal to µ, moving in the potential V (R).

One can now choose a new orthobasis as the tensor product of eigenkets of R and Rcm,

|r, rcm〉 = |r〉 ⊗ |rcm〉 , (4.2.8)

and look for stationary-state wavefunction solutions of the form

Ψ(r, rcm) = 〈r, rcm|Ψ〉 =
1

(2π~)3/2
ei
~ktot·~rcm ψ(r), (4.2.9)

where ptot = ~ktot is the eigenvalue of Ptot, and the relative coordinate wavefunction satisfies

(
−~

2∇2

2µ
+ V (r)− E

)
ψ(r) = 0, (4.2.10)

and the total energy eigenvalue is E + ~
2k2tot/2M . We can then solve the eigenvalue problem in

eq. (4.2.10) for E and ψ(r) as if it were a single particle. If one of the particles is much heavier

than the other, as in the case of electrons compared to atomic nuclei, then µ is equal to the

mass of the lighter particle, to a good approximation.
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If the number of particles N is three or more, and fixed, then one can construct appropriate

Jacobi coordinates, and their canonical momenta, by iteration. First, choose two of the

particles and define their relative and center-of-mass coordinates and momenta, just as in the

preceding. The two-particle center-of-mass coordinates and momenta are then combined in the

same way with those of a third particle, to give another relative coordinate/momentum pair

and a three-particle center-of-mass coordinate and momentum. The three-particle center-of-

mass coordinate and momentum are combined with those of a fourth particle, etc. In the end

one will have a single center-of-mass coordinate and momentum for the whole system with total

mass M =
∑N

i=1mi,

Rcm =
1

M

N∑

i=1

miRi, Ptot =
N∑

i=1

Pi, (4.2.11)

and N − 1 translation-invariant coordinate/momentum pairs, each satisfying canonical commu-

tation relations. The kinetic energy terms for these momenta are all decoupled from each other,

but with the complication that they have different effective masses even if the particle masses

mi are all the same. If there are no external forces, so that the potential energy is invariant

under translations, then Rcm will not appear in the Hamiltonian at all. The energy eigenstates

will therefore have the form of a tensor product, of plane-wave free particle eigenstates of Ptot

and P 2
tot/2M , and eigenstates of the remaining, more complicated, part of the Hamiltonian.

In the case of multi-electron atoms, where one of the particles is a nucleus that is much more

massive than the electrons, it is much more common to make the simple and good approximation

that the nucleus is infinitely massive and fixed at the origin in the center-of-mass frame, and

the remaining coordinates and momenta are (very close to) those of the individual electrons.

4.3 Charged particle in external electromagnetic fields

We now turn our attention to the dynamics of charged particles in external electromagnetic

fields. We will follow the example of most quantum mechanics books by using Gaussian cgs

unit normalizations for electrodynamics quantities, rather than the SI units that you may be

more familiar with. This means that Maxwell’s equations for the electric and magnetic fields

are (with the SI versions indicated parenthetically, for comparison)

∇ · E = 4πρ (SI: ρ/ǫ0), (4.3.1)

∇ · B = 0 (SI: 0), (4.3.2)

∇×E = −1
c

∂B

∂t
(SI: −∂B

∂t
), (4.3.3)

∇× B =
1

c

∂E

∂t
+

4π

c
j (SI:

1

c2
∂E

∂t
+ µ0j ). (4.3.4)
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It follows that the charge density ρ and the current density j obey local charge conservation,

∇ · j +
∂ρ

∂t
= 0. (4.3.5)

The electromagnetic energy density and Poynting vector (power per unit area) are

uEM =
1

8π
(E2 +B2) (SI:

ǫ0
2
E2 +

1

2µ0
B2), (4.3.6)

S =
c

4π
E ×B (SI:

1

µ0
E × B). (4.3.7)

The electromagnetic fields are obtained as derivatives of the scalar and vector potentials,

E = −∇Φ− 1

c

∂A

∂t
, (4.3.8)

B = ∇× A. (4.3.9)

The fields E and B remain unchanged if one makes a simultaneous change in Φ and A, called

a gauge transformation,

Φ → Φ− 1

c

∂Λ

∂t
, A → A+∇Λ, (4.3.10)

where Λ(r, t) is an arbitrary function of position and time.

In classical electrodynamics, the Lagrangian for a nonrelativistic particle with mass m and

charge† q and position r(t), moving in the potentials Φ and A, is

L =
1

2
m

(
dr

dt

)2

+
q

c

dr

dt
· A(r, t)− qΦ(r, t). (4.3.11)

The equation of motion resulting from applying eq. (4.1.2) is the Lorentz force law,

m
d2r

dt2
= q

(
E +

1

c

dr

dt
×B

)
. (4.3.12)

The motion of a classical‡ charged particle is thus determined only by the local values of E

and B. Although the Lagrangian is written in terms of the potentials Φ and A, they are not

†The convention in this book is that the electric charge for a particle is given by q = Qe, where Q is a
dimensionless number, while e is the proton’s charge, numerically given by eq. (1.1.2), and positive. (Some other
sources define e to be negative, referring to the electron.) Thus, for the electron, Q = −1 and q = −e, and for the
proton, Q = 1 and q = e. All known particles have Q equal to integer multiples of 1/3, and the ones unconfined
by the strong nuclear force have integer Q. For example, Q = 2/3 for up, charm, and top quarks, and Q = −1/3
for down, strange, and bottom quarks, and Q = −1 for the electron, muon, and tau lepton. Within the assumed
structure of the Standard Model of particle physics, this remarkable charge quantization can be understood as a
requirement of anomaly cancellation, a consistency constraint on quantum field theories with gauge interactions.
Grand Unified Theories (based on non-Abelian gauge groups like SU(5), SO(10), or E6) go further, elegantly
explaining why all particles, known or unknown, must have integer values of 3Q, but it is not presently known
if these theories are correct.

‡In quantum mechanics, the potentials Φ and A affect charged particles in ways that are not encoded locally
in the fields E and B. This is demonstrated by the Aharonov–Bohm effect, discussed in section 28.4.
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physical observables, because the physics is equally well described if they are modified by any

gauge transformation of the form eq. (4.3.10).

Applying the procedure in section 4.1 to eq. (4.3.11), the classical canonical momentum

conjugate to r is

p = m
dr

dt
+
q

c
A, (4.3.13)

and the classical Hamiltonian is

H =
1

2m

(
p− q

c
A(r, t)

)2
+ qΦ(r, t). (4.3.14)

Like the Lagrangian, the Hamiltonian and canonical momentum are not written directly in

terms of the fields E and B, but rather in terms of the potentials Φ and A, even though the

latter are gauge-dependent. One must be careful to distinguish the canonical momentum p of

the particle from the kinetic momentum (also known as mechanical momentum), defined

as the product of mass and velocity,

π ≡ m
dr

dt
= p− q

c
A. (4.3.15)

The kinetic momentum π is a gauge-invariant observable, since dr/dt can be calculated from the

observed trajectory of the particle, and so cannot depend on the choice of gauge. In contrast,

the canonical momentum p is not a gauge-invariant observable, due to the appearance of A in

eq. (4.3.13).

In quantum mechanics, we promote the classical position r and canonical momentum p to

operators, and thus the electromagnetic potentials become operators Φ(R, t) and A(R, t) that

are functions of R. So, naively, the quantum Hamiltonian should be

H =
1

2m

(
P − q

c
A(R, t)

)2
+ qΦ(R, t), (4.3.16)

where R and P satisfy the usual canonical commutation relations of eq. (2.8.54). This implies

that in the position representation, these canonical operators are represented by

R ↔ r, P ↔ −i~∇, (4.3.17)

as in Table 2.8.2. One must be careful with the ordering of P and A, so that [P − q
c
A(R, t)]2 is

interpreted as the symmetrized form P 2− q
c
(P ·A+A ·P )+ q2

c2
A2, in order that H is Hermitian.

However, eq. (4.3.16) is still not complete, because it does not include the (purely quantum)

effect of intrinsic angular momentum, or spin.

We will discuss spin more thoroughly in 8.2, but for the present discussion we only need to

know that the spin for a particle is an observable vector operator S. The intrinsic magnetic
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moment of a particle is always proportional to its spin (because, in the rest frame of the particle,

there is no other special direction in which it could point):

µ = γS. (4.3.18)

The constant of proportionality γ is a property of the particle type, called the gyromagnetic

ratio. For the electron, the gyromagnetic ratio is often written as

γe = − gee

2mec
, (4.3.19)

where the dimensionless quantity ge is called the g-factor of the electron. The Dirac equation

of relativistic quantum mechanics predicts ge = 2, as shown in section 27.4, but there are small

corrections to this coming from the quantum field theory of relativistic quantum electrodynamics

(QED). It has been predicted very precisely by calculations in perturbation theory in QED, and

measured experimentally with comparable accuracy, with the results

ge = 2.00231930436321(46) (QED prediction, 5th-order perturbation theory), (4.3.20)

ge = 2.00231930436182(52) (experiment), (4.3.21)

a famous agreement of better than 12 significant digits between theory and experiment. The

quantity (ge− 2)/2 is called the anomalous magnetic moment of the electron. In this book,

we will usually simply use the approximation ge = 2.

For the proton and the neutron, the gyromagnetic ratios are often written as

γp =
gpe

2mpc
, (4.3.22)

γn =
gne

2mpc
, (4.3.23)

which again define dimensionless g-factors. Note that the neutron has a magnetic moment,

even though it has no net charge, because it is a composite particle with charged constituents

(quarks). The conventional definition of gn for the neutron in eq. (4.3.23) uses the proton’s

charge and mass. The nucleon g-factors are also very accurately known experimentally,

gp = 5.5856946893(16), (4.3.24)

gn = −3.82608545(90), (4.3.25)

but the theoretical predictions of these quantities are not nearly as accurate. The reason is

that, unlike the electron, the proton and neutron are complicated composite particles made up

of quarks and gluons (and virtual quark/antiquark pairs) held together by the strong nuclear
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force, (quantum chromodynamics, or QCD) for which perturbation theory does not converge,

and non-perturbative methods are highly advanced but limited by finite computing power.

For electrons, protons, and neutrons, the magnitude of S is always the same, ~/2. The

magnitude of the electron’s intrinsic magnetic moment is within about 0.1% of the Bohr mag-

neton,

µB =
e~

2mec
= 5.78838× 10−5

eV

Tesla
= 9.27401× 10−21

ergs

gauss
, (4.3.26)

and the proton and neutron have magnetic moment magnitudes equal to about 2.79 and 1.91

times the nuclear magneton,

µN =
e~

2mpc
= 3.15245× 10−8

eV

Tesla
= 5.05078× 10−24

ergs

gauss
. (4.3.27)

Because µB/µN = mp/me ≈ 1836 is a large number, the magnetic moments of atoms with

unpaired electrons are typically 3 orders of magnitude larger than nuclear magnetic moments.

The classical energy of interaction of a magnetic moment µ with an external magnetic field

is −µ · B. So, we add this to the quantum Hamiltonian for a nonrelativistic particle, to get

H =
1

2m

(
P − q

c
A(R, t)

)2
+ qΦ(R, t)− γS · B, (4.3.28)

where q is the electric charge and γ is the appropriate gyromagnetic ratio for the particle. Even

this Hamiltonian is not complete, for it does not include relativistic effects suppressed by further

powers of 1/c. These will be discussed when needed for the fine and hyperfine contributions to

the hydrogen atom, in sections 17.1 and 17.2, and derived in a more fundamental way from the

Dirac equation in sections 27.4 and 27.5.

If the Hamiltonian eq. (4.3.28) is written in terms of the kinetic momentum operator

Π = P − q

c
A, (4.3.29)

it will appear simpler, since it then does not depend on the vector potential A,

H =
1

2m
Π2 + qΦ(R, t)− γS · B. (4.3.30)

However, it is important that the kinetic momentum does not obey canonical commutation

relations. In the position representation, P ↔ −i~∇, so that Π↔ −i~∇− q
c
A(r), and

[Ra,Πb] = i~δab, (a, b = x, y, z), (4.3.31)

just as for the canonical momentum, but

[Πa,Πb] = i
q~

c
(∇aAb −∇bAa). (4.3.32)

106



Rewriting this directly in terms of the magnetic field,

[Πx,Πy] = i
q~

c
Bz, [Πy,Πz] = i

q~

c
Bx, [Πz,Πx] = i

q~

c
By. (4.3.33)

This should be contrasted with the canonical commutator [Pa, Pb] = 0. If one chooses to write the

Hamiltonian in terms of the kinetic momentum, the simplicity comes with a cost; the information

about the vector potential and the magnetic field is hidden in the commutation relations for the

components of Π with each other. Since Π is the product of mass and velocity for the particle,

we see that in the presence of a magnetic field one cannot simultaneously specify the three

components of the velocity of a charged particle, because they are not compatible observables.

The freedom to make gauge transformations as in eq. (4.3.10) always allows us to select

Coulomb gauge (also known as transverse gauge), defined by

∇ · A = 0. (4.3.34)

Since P is given in the position representation by −i~∇ acting on everything to its right, the

Coulomb gauge condition implies P · A = A · P , with the consequent advantage that (unlike

other gauge choices) there is no operator ordering issue with the cross-terms in the Hamiltonian,

of the type mentioned after eq. (4.3.17). Thus, in Coulomb gauge, one is free to write

H =
P 2

2m
− q

mc
A · P +

q2

2mc2
A2 + qΦ− γS · B. (4.3.35)

This form will be useful to us when we discuss absorption and emission of light, in Chapter 22.

4.4 Exercises

Exercise 4.1. The purpose of this problem is to illustrate the possible ambiguities in connect-

ing classical observables to their quantum counterparts due to operator ordering. Consider a

particle moving in one dimension with position x and momentum p.

(a) Consider the classical quantity x2p2. The quantum operator X2P 2 is not Hermitian, but

two versions of it that are symmetrized in different ways to obtain Hermitian operators are

A = 1
2
(X2P 2 + P 2X2) and B = 1

4
(XP + PX)2. Show that A and B differ by a certain rational

multiple of ~2I that you will find.

(b) Similarly, consider the classical quantity x3p3 and two candidate quantum Hermitian oper-

ator versions of it, C = 1
2
(X3P 3 + P 3X3) and D = 1

8
(XP + PX)3. Show that these differ by

an observable that you will discover. Simplify it and show that it is not proportional to the

identity.

Exercise 4.2. Show that the pairs (R,P ) and (Rcm, Ptot) defined in eqs. (4.2.4) and (4.2.5)

satisfy canonical commutation relations. Then check that the Hamiltonian of eq. (4.2.1) decom-

poses into Hcm and Hrel as claimed in eq. (4.2.7).
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5 Transformations, symmetries, and conservation laws

5.1 Continuous unitary transformations, symmetries, and Noether’s
principle

As we saw in section 2.5, a unitary operator can be viewed as implementing a change of orthobasis

for the space of states. Certain unitary operators also have the interpretation of physical changes,

or transformations, on a system. Notable examples include translations, rotations, inversion

of the coordinate system, and displacements in time.

If a transformation leaves the Hamiltonian unchanged, then we say, as a definition, that

the transformation is a symmetry of the quantum system. In this section we will show, in

a general way, that there is always a conserved quantity corresponding to each continuous

symmetry. As special cases, we will see that the conserved quantities associated with time

translation, spatial translation, and rotation symmetries are, respectively, energy, momentum,

and angular momentum.

Consider the unitary transformation operator

U(α) = exp (−iαaGa) , (5.1.1)

where the Ga are a set of N Hermitian operators, typically observables without explicit time

dependence, called the generators of the transformations, and the αa are N real numbers that

parameterize the transformations. Here, and in the following, repeated indices a = 1, . . . , N are

implicitly summed over. Theorem 2.4.1 confirms that since αaGa is Hermitian, U(α) is a unitary

operator. Following the discussion surrounding eqs. (2.5.26)-(2.5.31), the transformations for

the state ket and all observables A are defined by

|ψ〉 → |ψ′〉 = U |ψ〉 , (5.1.2)

A → A′ = UAU †, (5.1.3)

so that matrix elements are invariant under the transformation, because U †U = I. The inverse

of the transformation parameterized by αa is parameterized by −αa,

U(α)† = U(α)−1 = U(−α). (5.1.4)

The closure property says that the combination of two transformations αa and βa should always

be another transformation, parameterized by some set of real numbers γa,

U(β)U(α) = U(γ). (5.1.5)

A continuous set of transformations obeying these properties has the structure of a Lie group,

named after the mathematician Marius Sophus Lie.
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Consider the following sequence of unitary transformations that are infinitesimally close to

the identity,

U(ǫ)U(δ)U(ǫ)†U(δ)† = (I − iǫaGa + · · · )(I − iδbGb + · · · )(I + iǫcGc + · · · )(I + iδdGd + · · · )
= I − ǫaδb[Ga, Gb] + · · · , (5.1.6)

where terms of higher order in either ǫa or δb have been dropped. The closure property implies

that this must also be a unitary transformation infinitesimally close to the identity, so [Ga, Gb]

must be a linear combination of generators. Therefore, we can write

[Ga, Gb] = ifabcGc (5.1.7)

for some set of numbers fabc, called the structure constants of the Lie group of transformations.

Equation (5.1.7) is called the Lie algebra of the group. Since the commutator of any two

Hermitian operators [Ga, Gb] is anti-Hermitian, and the Gc are Hermitian, the quantities fabc

must all be real. This is the reason for the conventional factor of i in eq. (5.1.7). If the numbers

fabc are all 0, so that the generators all commute, then the group is said to be Abelian, otherwise

it is non-Abelian. The mathematical study and classification of Lie groups is a rich and beautiful

subject that we will not delve into further here.

For the remainder of this section, let us consider unitary transformations that are symmetries

of a quantum system. According to our definition, this means that H does not change, so

eq. (5.1.3) gives

U(α)HU(α)† = H. (5.1.8)

Taking the special case that the parameters αa = ǫa are infinitesimal, we have

(I − iǫaGa + · · · )H (I + iǫbGb + · · · ) = H, (5.1.9)

which implies ǫa[H,Ga] = 0. Since this is supposed to hold for any ǫa, we learn that

[H,Ga] = 0. (5.1.10)

It follows from Theorem 2.7.1 that an orthobasis of energy eigenstates can also be chosen to be

eigenstates of any subset of the symmetry generators Ga that are mutually commuting. (If this

subset is maximal, it is called a Cartan subalgebra, after mathematician Élie Cartan).

Consider an eigenstate |ga〉 of one of the symmetry generators Ga, labeled by its eigenvalue

ga. Since the symmetry generators Ga commute with the Hamiltonian, |ga〉 will remain an

eigenstate of Ga at later times, because

Ga

(
e−itH/~ |ga〉

)
= e−itH/~Ga |ga〉 = ga

(
e−itH/~ |ga〉

)
. (5.1.11)
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This holds even if the Hamiltonian depends on time, provided that [H(t), Ga] = 0 for all t, as one

can see by replacing the factors e−itH/~ by the time-evolution operator U(t, t0) from eq. (3.4.32).

Furthermore, the symmetry generators Ga are conserved quantities, also known as con-

stants of the motion. The precise meaning of this is given by the following result.

Theorem 5.1.1. (Noether’s principle) Suppose that an observable Ga has no explicit time

dependence, and that it commutes with the Hamiltonian, which may be time-dependent. Then,

for an arbitrary state, the probability of each possible outcome ga for a measurement of Ga is

independent of time.

Proof: The key point is that [H(t), Ga] = 0 implies that, for any particular time t = t0, one can

find an orthobasis of common eigenkets |ga, E, u〉, defined such that Ga |ga, E, u〉 = ga |ga, E, u〉
and H(t0) |ga, E, u〉 = E |ga, E, u〉. Here u = uga,E are possible degeneracy labels for ga and

E, with the subscripts dropped for typographical simplicity. These orthobasis kets are fixed,

determined by the Hamiltonian at the time t0. Now, Postulate 4 tells us that if the system is in

a state |ψ(t)〉, then the probability of measuring Ga at time t and getting the result ga is

P(ga, t) =
∑

E,u

〈ga, E, u|ψ(t)〉 〈ψ(t)|ga, E, u〉 . (5.1.12)

Here E and u are summed over, as the degeneracy labels for ga. Taking the time derivative,

and then using the time-dependent Schrödinger equation d
dt
|ψ〉 = − i

~
H(t) |ψ〉 and its adjoint

d
dt
〈ψ| = i

~
〈ψ|H(t), we get

d

dt
P(ga, t) = − i

~

∑

E,u

(
〈ga, E, u|H(t)|ψ(t)〉 〈ψ(t)|ga, E, u〉

− 〈ga, E, u|ψ(t)〉 〈ψ(t)|H(t)|ga, E, u〉
)
. (5.1.13)

Since H(t0) |ga, E, u〉 = E |ga, E, u〉 and 〈ga, E, u|H(t0) = E 〈ga, E, u|, the two terms on the

right side of eq. (5.1.13) simply cancel if we evaluate them at t = t0. Thus, we obtain

d

dt
P(ga, t)

∣∣∣
t=t0

= 0. (5.1.14)

This shows that, for an arbitrary state, P(ga, t) has a vanishing time derivative at any given

t = t0, so it must be constant in time, as claimed. ���

The expectation value of an operator in a state is the sum of its measurement outcomes

weighted by the probabilities; see eq. (3.3.1). Therefore, Theorem 5.1.1 immediately implies

a weaker but still interesting and important result, that the expectation value of a symmetry

generator Ga in an arbitrary state does not depend on time:

d

dt
〈Ga〉 = 0. (5.1.15)
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This also follows directly from Ehrenfest’s Theorem eq. (3.4.16) with Ga playing the role of A.

Theorem 5.1.1 and eq. (5.1.15) are quantum mechanical versions of Emmy Noether’s celebrated

1918 theorem in classical mechanics, that every continuous symmetry implies a conservation law.

The observables Ga that generate the symmetries of the Hamiltonian are conserved quantities.

The most straightforward special case is that of time translation symmetry, for which the

generator is the Hamiltonian itself, as expressed by the Schrödinger equation (3.1.10) in Postulate

6. If the Hamiltonian does not depend explicitly on time, then the energy is a conserved quantity,

since [H,H ] = 0 is trivially satisfied. In that case, for any state the probability of measuring

the energy to be any particular value is independent of time, and the expectation value of the

energy does not change in time.

5.2 Translations

For a particle moving in one dimension with position operator X and momentum operator P ,

consider the operator

T (a) = e−iaP/~, (5.2.1)

where a is a constant length. Because P is Hermitian, Theorem 2.4.1 tells us that T (a) is a

unitary operator,

T (a)† = T (a)−1 = T (−a). (5.2.2)

Using [X,P ] = i~, one can apply Theorem 2.4.4 to obtain the commutator

[X, T (a)] = aT (a). (5.2.3)

From this we get, acting on a position eigenstate |x〉,

X (T (a) |x〉) = T (a)(X + a) |x〉 = (x+ a) (T (a) |x〉) , (5.2.4)

This shows that T (a) |x〉 is an eigenstate of X with eigenvalue x+ a, which means that it must

be equal to |x+ a〉 up to a multiplicative constant. If |x〉 is normalized according to the Dirac

condition, then so will be T (a) |x〉, since T (a) is unitary. Therefore, the constant is just a phase,

and T (a) |x〉 = eiθ |x+ a〉 for some θ. The only way to resolve the ambiguity represented by θ

is to arbitrarily choose a value for it, and θ = 0 is as good as any, so we define

|x+ a〉 = T (a) |x〉 . (5.2.5)

In words, T (a) operates by changing a state in which the particle is known to be at x into a

state where it is known to be at x+ a. We therefore call T (a) a translation operator.
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Together, eqs. (5.2.5) and (5.2.2) imply

〈x|T (a) = 〈x− a| , (5.2.6)

so that for any state |ψ〉, the wavefunction obeys

ψ(x− a) = 〈x|T (a)|ψ〉 . (5.2.7)

This can be interpreted as shifting the particle’s position to the right by a (the “active view”),

or equivalently as leaving the particle’s position unchanged but shifting the coordinate system

to the left by a (the “passive view”).

If we do a translation on any normalized state |ψ〉,

|ψ〉 → T (a) |ψ〉 , (5.2.8)

then the expectation value of the position is changed according to

〈ψ|X|ψ〉 → 〈ψ|T (a)†XT (a)|ψ〉 = 〈ψ|(X + a)|ψ〉 = 〈ψ|X|ψ〉+ a. (5.2.9)

The effect of T (a) on momentum eigenstates is just to multiply by a phase,

T (a) |p〉 = e−iap/~ |p〉 , (5.2.10)

and the expectation value of momentum is unaffected by the transformation,

〈ψ|P |ψ〉 → 〈ψ|T (a)†PT (a)|ψ〉 = 〈ψ|P |ψ〉 . (5.2.11)

Following the general example of a unitary transformation of an operator in eq. (5.1.3), we

can also define for an arbitrary observable A the translated version A′ = T (a)AT (a)†. Now if

we do a simultaneous transformation of both states and operators,

|ψ〉 → |ψ′〉 = T (a) |ψ〉 , (5.2.12)

A → A′ = T (a)AT (a)†, (5.2.13)

then matrix elements will be unchanged. Using [X, T (a)] = aT (a), the translated position

operator is

X ′ = T (a)XT (a)† = X − a, (5.2.14)

while [P, T (a)] = 0 implies that the momentum operator does not change,

P ′ = T (a)PT (a)† = P. (5.2.15)
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From the rule T (a) |x〉 = |x+ a〉 found in eq. (5.2.5), it follows that translations simply add,

T (a)T (b) = T (a+ b). (5.2.16)

One consequence of this is that any finite translation can be viewed as the combination of many

infinitesimal translations. For an infinitesimal translation, the exponential can be truncated to

linear order,

T (ǫ) = 1− i ǫ
~
P. (5.2.17)

This is described in words by saying that the momentum operator is the generator of translations.

Since the momentum operator commutes with itself, in the general language of section 5.1 where

T (a) plays the role of U(α) and P plays the role of Ga, the Lie algebra for translations is simply

[P, P ] = 0. (5.2.18)

This is an Abelian algebra; the antisymmetric structure constants defined in general by eq. (5.1.7)

trivially vanish in this case, because there is only one generator, P .

Now suppose that a quantum mechanical system has translations as a symmetry, by which

we mean that the Hamiltonian is invariant. In particular, for infinitesimal translations, we

require T (ǫ)HT (ǫ)† = H , from which it follows that

(
1− i ǫ

~
P
)
H
(
1 + i

ǫ

~
P
)
−H = i

ǫ

~
[H,P ] +O(ǫ2) (5.2.19)

must vanish, so

[H,P ] = 0. (5.2.20)

In general, this requires the potential V to have no dependence on X . The Hamiltonian could

be that of a free particle with H = P 2/2m, but it could also have some extra terms that may

involve other functions of P or other degrees of freedom (for example, spin), but not X . In any

case, eq. (5.2.20) implies that there must be an orthobasis of common eigenstates of P and H .

An eigenstate of P with momentum p remains so at later times, since

P
(
e−itH/~|p〉

)
= p

(
e−itH/~|p〉

)
. (5.2.21)

Also, Ehrenfest’s Theorem eq. (3.4.16) says

d

dt
〈P 〉 = 0, (5.2.22)

and Theorem 5.1.1 says even more, that the probability to measure the momentum within

any given range will be constant in time. Note that these statements are true for any state,
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including an arbitrary superposition of free particle eigenstates with different momenta, provided

that [H,P ] = 0. A non-trivial illustration will be provided at the end of section 6.2.

For a particle moving in three dimensions, the preceding discussion can be adapted in a

straightforward way. The translation operator for a vector distance a is

T (a) = e−i~a·
~P/~, (5.2.23)

and it satisfies

T (a)T (~b) = T (a+~b), (5.2.24)

T (a)−1 = T (a)† = T (−a). (5.2.25)

The operation on position and momentum eigenkets is

T (a) |r〉 = |r + a〉 , 〈r| T (a) = 〈r − a| , (5.2.26)

T (a) |p〉 = e−i~a·~p/~ |p〉 , 〈p|T (a) = ei~a·~p/~ 〈p| , (5.2.27)

and the remaining discussion for the one-dimensional case likewise follows through for the three-

dimensional case with P replaced by P . Although there are now three generators Px, Py, and

Pz, they all commute with each other, so the structure constants are all 0, and the Lie group

is Abelian. Note that in the case of a charged particle moving in an electromagnetic field as

discussed in section 4.3, it is the canonical momentum P that generates translations, not the

kinetic momentum Π.

Consider a quantum system describing two distinguishable particles labeled 1 and 2. Then

one can have translation invariance even with a non-zero potential, provided that the Hamilto-

nian has the form considered in our discussion of the two-body problem in section 4.2,

H =
P 2
1

2m1
+

P 2
2

2m2
+ V (R1 − R2). (5.2.28)

The individual translation operators for particles 1 and 2 are

T1(a) = e−i~a ·
~P1/~, T2(a) = e−i~a ·

~P2/~. (5.2.29)

These are not symmetries of the Hamiltonian unless the potential V (R1 − R2) is neglected.

However, defining the total momentum operator Ptot = P1 + P2 as in section 4.2, one can check

that each component of Ptot commutes with each component of R1 − R2, so

[
H, Ptot

]
= 0. (5.2.30)

Therefore, the total translation operator

T (a) = T1(a)T2(a) = exp
[
−ia · Ptot/~

]
(5.2.31)
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leaves the full Hamiltonian eq. (5.2.28) invariant,

T (a)HT (a)† = H, (5.2.32)

and is therefore a symmetry of the system. [Note that this would not be true if one added

individual potentials V1(R1) or V2(R2) to the Hamiltonian.] Equation (5.2.32) simply reflects

the feature that the total translation moves both particles 1 and 2 by the same amount, and so

does not change the separation between them, nor either of their momenta. It follows that one

can find an orthonormal basis of simultaneous eigenstates of H and Ptot = P1 + P2, and that

an eigenstate of Ptot remains so at later times, and that in an arbitrary state the probability of

measuring a given result for Ptot does not change in time, and its expectation value is conserved.

5.3 Rotations

In this section, we will explore the connection between rotations and the angular momentum

operators that generate them. Classically, the angular momentum of a particle about the point

chosen as the coordinate system origin is defined by

~l = r × p. (5.3.1)

In quantum mechanics, we promote this to a vector operator, and define the orbital angular

momentum operator for a particle as

L = x̂Lx + ŷLy + ẑLz = R× P, (5.3.2)

where the components

Lx = Y Pz − ZPy, Ly = ZPx −XPz, Lz = XPy − Y Px. (5.3.3)

are each observables. There is no problem with operator ordering to worry about here, because

[Y, Pz] = [Z, Py] = [Z, Px] = [X,Pz] = [X,Py] = [Y, Px] = 0.

The commutator algebra for the angular momentum components Lx, Ly, and Lz can be

computed using the commutators of the position and momentum operators that they are built

out of. For example,

[Lx, Ly] = [Y Pz, ZPx] + [ZPy, XPz] = −i~Y Px + i~XPy = i~Lz. (5.3.4)

Similarly,

[Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly. (5.3.5)
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The last three equations can be summarized as†

[La, Lb] = i~ǫabcLc, (a, b, c = x, y, z). (5.3.6)

Here, ǫabc is the totally antisymmetric Levi-Civita symbol, with

ǫxyz = ǫyzx = ǫzxy = 1, ǫxzy = ǫyxz = ǫzyx = −1, (5.3.7)

and all other components ǫabc = 0. It obeys the identities

ǫabcǫdec = δadδbe − δaeδbd, (5.3.8)

ǫabcǫdbc = 2δad, (5.3.9)

ǫabcǫabc = 6. (5.3.10)

In the general language of section 5.1, the role of the generators Ga is taken by La/~ for rotations,

as we are about to show. Comparing eq. (5.3.6) to eq. (5.1.7), we see that the Lie algebra of

angular momentum operators is non-Abelian, with structure constants fabc = ǫabc. Note that

there is always an arbitrary normalization in the definition of the generators; it was convenient

to include the factor of 1/~ here so that the structure constants are dimensionless.

Rotations are defined by the property that, as changes in coordinates, they leave invariant

the distances of points from the origin. The composition of two rotations is another rotation;

in mathematical language, rotations correspond to the Lie group called SO(3). In quantum

mechanics, we can think of rotations as a unitary change of basis corresponding to the change in

coordinates; a rotation by an angle α about the axis defined by a unit vector n is implemented

by a unitary operator U(α), where α = n̂α. The fact that rotations form a group means that

for any α and β,

U(β)U(α) = U(γ), (5.3.11)

for some γ. In particular, arbitrary finite rotations can be constructed from the limit of a large

number of infinitesimal rotations.

Let us now show that (for the case of a single spinless particle) Lz is the generator of rotations

about the z-axis (analogously to how Pz is the generator of translations along the z direction).

For such a rotation by an angle α, the coordinates transform as


x
y
z


→



cosα − sinα 0
sinα cosα 0
0 0 1





x
y
z


 . (5.3.12)

†Here, and from now on, we use the repeated index summation convention, which says that repeated
indices are implicitly summed over, except when they appear on both sides of an equation. Thus, in eq. (5.3.6),
c is summed over, but a and b are not.
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If α = ǫ is infinitesimal, then this becomes x→ x− ǫy and y → y+ ǫx, and of course z → z. We

therefore define an infinitesimal unitary rotation operator by its action on the position eigenkets,

U(ǫẑ) |x, y, z〉 = |x− ǫy, y + ǫx, z〉 , (5.3.13)

which implies

〈x, y, z|U(ǫẑ)† = 〈x− ǫy, y + ǫx, z| , (5.3.14)

with U(ǫẑ)† = U(ǫẑ)−1 = U(−ǫẑ). It follows that, for any state |ψ〉,

〈x, y, z|U(ǫẑ)|ψ〉 = 〈x+ ǫy, y − ǫx, z|ψ〉 = ψ(x+ ǫy, y − ǫx, z)

= ψ(x, y, z) + ǫy
∂

∂x
ψ(x, y, z)− ǫx ∂

∂y
ψ(x, y, z), (5.3.15)

where the last equality is the result of the Taylor series expansion to linear order in ǫ. Now,

since ∂/∂x↔ iPx/~ and ∂/∂y ↔ iPy/~ in the position representation, we have

〈x, y, z|U(ǫẑ)|ψ〉 = 〈x, y, z|
[
I − i

~
ǫ(XPy − Y Px)

]
|ψ〉 , (5.3.16)

for every state |ψ〉, so comparing with the definition of Lz in eq. (5.3.3), we find

U(ǫẑ) = I − i

~
ǫLz. (5.3.17)

This establishes that Lz generates rotations about the z axis, and that

Lz ↔ −i~
(
x
∂

∂y
− y ∂

∂x

)
(5.3.18)

in the position wavefunction representation.

There is nothing special about the z-axis in the preceding discussion, so repeating the pre-

ceding process for infinitesimal rotations about the x and y axes, one obtains

U(ǫx̂) = I − i

~
ǫLx, U(ǫŷ) = I − i

~
ǫLy, (5.3.19)

with Lx and Ly given by eqs. (5.3.3), and position representations

Lx ↔ −i~
(
y
∂

∂z
− z ∂

∂y

)
, Ly ↔ −i~

(
z
∂

∂x
− x ∂

∂z

)
. (5.3.20)

Thus Lx, Ly, and Lz are generators for rotations about the x, y, and z axes, respectively

(assuming that there is no intrinsic angular momentum).

The unitary rotation operator for a non-infinitesimal angle α can be built from the limit of

a large number N of infinitesimal operators with ǫ = α/N , acting sequentially, so

U(αẑ) = lim
N→∞

(
I − i

~

α

N
Lz

)N
= exp

(
− i
~
αLz

)
, (5.3.21)

117



where we have used the definition of the exponential of an operator in eq. (2.4.27). For a rotation

by an angle α about an arbitrary axis n̂, this generalizes to

U(αn̂) = exp

(
− i
~
α · L

)
, (5.3.22)

where α = n̂α.

For the position representation, we could also use cylindrical or spherical coordinates instead

of rectangular coordinates, so that the position eigenkets are |r, φ, z〉 or |r, θ, φ〉, respectively.
For spherical coordinates in particular, this has the advantage that one of the coordinates, r,

is not involved in the differential operators that represent the angular momenta. In spherical

coordinates, eq. (5.3.15) becomes

〈r, θ, φ|U(ǫẑ)|ψ〉 = ψ(r, θ, φ) + ǫ
∂

∂φ
ψ(r, θ, φ), (5.3.23)

so that as an equivalent to eq. (5.3.18),

Lz ↔ −i~ ∂

∂φ
. (5.3.24)

For the special case of rotations about the z axis, this also holds in cylindrical coordinates.

Let us now solve the eigenvalue problem for the operator Lz , using the position representa-

tion. Because eq. (5.3.24) only involves the coordinate φ, the following derivation works equally

well in spherical or cylindrical coordinates. We start with

Lz|lz〉 = lz|lz〉, (5.3.25)

where lz is the eigenvalue, also used as a label for the eigenstate, and we have suppressed any

degeneracy labels. In the position representation, this becomes

−i~ ∂

∂φ
ψ(φ) = lzψ(φ), (5.3.26)

also suppressing the dependence on other coordinates. The solutions are

ψ(φ) = ceilzφ/~, (5.3.27)

where c is a non-zero normalization constant. The range of φ is the continuous interval 0 ≤ φ ≤
2π. Therefore, for Lz to be a Hermitian operator, by following exactly the same derivation that

led to eq. (2.8.23) with P replaced by Lz, we find that for any wavefunctions ψ1 and ψ2

[ψ1(2π)]
∗ψ2(2π) = [ψ1(0)]

∗ψ2(0) (5.3.28)

must hold. A sufficient condition for this to be satisfied is that all wavefunctions obey ψ(2π) =

ψ(0), and more generally ψ(φ + 2π) = ψ(φ). It is necessary to impose this periodic boundary
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condition anyway, in order for the wavefunction to have a unique expansion in terms of position

eigenstate kets. It follows that eilz2π/~ = 1, which requires that

lz = ~m, (5.3.29)

where m is an integer. The use of the letter m is traditional in this role, and it is sometimes

called the magnetic quantum number. We therefore use it as a label for the corresponding

eigenstates of Lz , and write, from now on,

Lz|m〉 = ~m|m〉. (5.3.30)

All of the preceding was derived with the assumption that the angular momentum was

associated with the motion of a single particle. More generally, a Hilbert space can describe

more than one particle. Furthermore, each of the particles may also have an intrinsic angular

momentum, or spin, which has no classical counterpart, and is not associated at all with the

quantum mechanical position wavefunction of the particle. These distinct types of angular

momenta can also be combined to form new angular momenta.

In general, we define an angular momentum operator

J = x̂Jx + ŷJy + ẑJz (5.3.31)

to be one that satisfies a commutator algebra that has the same form as for orbital angular

momentum. Specifically,

[Jx, Jy] = i~Jz [Jy, Jz] = i~Jx [Jz, Jx] = i~Jy, (5.3.32)

or equivalently

[Ja, Jb] = i~ǫabcJc. (5.3.33)

Because the components of an angular momentum operator J do not commute with each other,

they are not compatible, and one cannot find a complete orthobasis of J eigenstates. The only

solution to the eigenvalue equation J |j 〉 = j |j 〉 has j = 0. Thus, an angular momentum vector

J is not an observable, although each of its components is. If we choose eigenstates of Jz, they

cannot also be eigenstates of Jx or Jy, except in the very special case that all of the eigenvalues

are 0. However, you can check that the angular momentum squared operator

J2 = J2
x + J2

y + J2
z (5.3.34)

does commute with Jz. This means that J2 and Jz have common eigenkets and can be part of

a CSCO. The simultaneous eigenvalue problem for J2 and Jz will be worked out in Chapter 8.
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For each particle, the intrinsic angular momentum, or spin S, is a special case of J defined

by the property that it has fixed magnitude, in the sense that all particles of a given type have

the same eigenvalue of S2, which can never change. For any single particle, the total angular

momentum operator is simply the sum of the orbital and spin parts, J = L + S. (Note that

we use the same symbol J as for a generic angular momentum operator defined in the previous

paragraph.)

For the two-body problem of section 4.2, you can check that the total orbital angular mo-

mentum operator (not including the spins) can be written in two equivalent ways as

Ltot = L1 + L2 = L+ Lcm, (5.3.35)

where L1 = R1 × P1 and L2 = R2 × P2 for the individual particles, and

L = R× P, Lcm = Rcm × Ptot, (5.3.36)

define the relative and center-of-mass contributions to the angular momenta. It is often sensible

to restrict to the subspace of states with vanishing total momentum in the center-of-mass frame,

consisting of eigenstates of Ptot with eigenvalue 0. If we do so, then Lcm vanishes identically,

and the relative angular momentum L is equal to the total angular momentum Ltot.

More generally, for a given choice of origin, every three-dimensional physical system has a

total angular momentum operator J , which adds both orbital and spin angular momentum

contributions for all of the particles that are present. By definition, J is the operator that acts

on the full Hilbert space of states to generate rotations about any axis n̂ by any angle α, with

U(α) = exp
(
−iαn̂ · J/~

)
, (5.3.37)

where α = n̂α. To rotate a state |ψ〉, the unitary transformation is

|ψ〉 → |ψ′〉 = U(α) |ψ〉 . (5.3.38)

We also define rotated operators

A → A′ = U(α)AU(α)†, (5.3.39)

so that, due to the unitarity of U(α), matrix elements of the rotated operators between rotated

states are the same as the original matrix elements, 〈χ′|A′|ψ′〉 = 〈χ|A|ψ〉.
Suppose that the Hamiltonian for a system has the symmetry of invariance under rotations

generated by an angular momentum component n̂ · J , so that rotations about the unit vector

axis n̂ are a symmetry of the system, and

[H, n̂ · J ] = 0. (5.3.40)
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(It is traditional to choose the coordinate system so that n̂ = ẑ, unless there is a good reason not

to, but let us be more general.) One can then choose an orthobasis of simultaneous eigenstates

of H and n̂ · J , and as shown on general grounds in section 5.1, n̂ · J is a conserved quantity.

This means that eigenstates of n̂ · J will remain so under time evolution, and for an arbitrary

state the probability to obtain a given outcome for a measurement of n̂ · J is constant, and

d

dt
〈n̂ · J 〉 = 0. (5.3.41)

If the Hamiltonian is invariant under all rotations, it is convenient to choose a CSCO to include

H, J2, Jz, since these observables commute with each other.

5.4 Parity

Another kind of coordinate transformation is parity (also known as space inversion), defined

as the replacement of each rectangular position coordinate by minus itself. Unlike translations

and rotations, parity is a discrete group known as Z2; acting twice with parity gives back the

identity operation, and there are no infinitesimal parity transformations.

Let us start by defining the parity operator Π for a particle moving in one dimension by

giving its action on the position-eigenstate orthobasis kets,

Π |x〉 = |−x〉 . (5.4.1)

(Note that |−x〉 is the ket that describes a particle known to be at the point −x, and is not at

all the same thing as −|x〉, which still describes a particle known to be at the point x.) Since

Π (Π |x〉) = |x〉, we have ΠΠ = I, so that parity is its own inverse,

Π−1 = Π. (5.4.2)

Also, taking the Hermitian adjoint of eq. (5.4.1) gives 〈x|Π† = 〈−x|, so

〈x′|Π†|x〉 = 〈−x′|x〉 = δ(x+ x′) = 〈x′| −x〉 = 〈x′|Π|x〉 . (5.4.3)

Since this is true for every |x〉 and |x′〉 in the position orthobasis, it must be that

Π† = Π. (5.4.4)

Comparing eqs. (5.4.2) and (5.4.4), we see that the parity operator is both unitary (an invertible

map from an orthobasis to another orthobasis) and Hermitian (an observable). Since all Hermi-

tian operators have real eigenvalues, and all unitary operators have eigenvalues with magnitude

1, the only possible eigenvalues of Π are 1 and −1.
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Given a wavefunction 〈x|ψ〉 = ψ(x) for an arbitrary state |ψ〉, we have

〈x|Π|ψ〉 = 〈−x|ψ〉 = ψ(−x). (5.4.5)

Applying this to the case of a momentum eigenstate,

〈x|Π|p〉 = 〈−x|p〉 = 1√
2π~

e−ipx/~ = 〈x|−p〉 , (5.4.6)

from which we learn that

Π|p〉 = |−p〉. (5.4.7)

Similarly, it is easy to show that

ΠXΠ = −X, ΠP Π = −P, (5.4.8)

so that the position and momentum operators are both said to be odd under parity. More

generally, one defines the parity of an operator A as

πA = ±1, if ΠAΠ = ±A. (5.4.9)

However, not all operators have definite parity in this sense.

If A is even under parity, πA = +1, it follows that

ΠA−AΠ = 0, (5.4.10)

so that Π and A are compatible operators, and can have common eigenstates. For example, the

Hamiltonian H = P 2/2m+ V (X) is parity-even if, and only if, V (X) is an even function of X .

In the special case of a free particle with V = 0, the simultaneous eigenstates of H and Π are

|E, +1〉 = 1√
2
(|p〉 + |−p〉) , |E, −1〉 = 1√

2
(|p〉 − |−p〉) , (5.4.11)

where p =
√
2mE/~. However, since P does not commute with Π, one cannot find simultaneous

eigenstates of them, and indeed the parity eigenstates |E,±1〉 are not eigenstates of momentum.

Just as for translations, parity generalizes straightforwardly to three dimensions. Define

Π|r〉 = |−r 〉 , (5.4.12)

from which it follows that

Π|p〉 = |−p 〉 , (5.4.13)
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and position and momentum operators carry odd parity,

ΠRΠ = −R, ΠP Π = −P. (5.4.14)

Angular momentum operators, as defined in the previous section, always have even parity,

ΠJ Π = J. (5.4.15)

In the case of orbital angular momentum, ΠLΠ = L follows directly from the definition of the

components of L in eq. (5.3.3). For more general angular momentum operators (including spin),

the even parity can be inferred from the general commutator algebra structure in eq. (5.3.33).

If the potential energy depends only on the radial coordinate, so that the Hamiltonian has the

form H = P 2/2m+V (R), then this H commutes not only with L2 and Lz, but also with Π. Such

a system therefore admits simultaneous eigenstates of all four operators. In that case, parity is

a symmetry of the system, and eigenstates of parity will remain so under time evolution.

A powerful application of parity is to the identification of selection rules for matrix elements.

Suppose that an operator A has definite parity πA as defined by eq. (5.4.9), and that the states

|ψ〉 and |φ〉 are parity eigenstates with eigenvalues πψ and πφ, respectively. Now we note that

〈φ|A|ψ〉 = πA 〈φ|ΠAΠ|ψ〉 = πAπφπψ 〈φ|A|ψ〉 . (5.4.16)

The product πAπφπψ is either +1 or −1. In the former case, eq. (5.4.16) tells us nothing, but in

the latter case, we obtain:

Theorem 5.4.1. (Parity selection rule) If states |ψ〉 and |φ〉 and an operator A all have

definite parities, and πAπφπψ = −1, then the matrix element 〈φ|A|ψ〉 must vanish.

This result has many practical applications, including neatly explaining the absence of certain

atomic transitions. Before investing your valuable time in calculating a quantity, it is always a

good idea to consider first whether it must vanish due to a matrix element selection rule.

5.5 Gauge transformations

Physical systems that involve electromagnetic interactions with charged particles can be formu-

lated in terms of potentials, subject to gauge transformations

Φ → Φ− 1

c

∂Λ

∂t
, A → A +∇Λ, (5.5.1)

where Λ(r, t) is an arbitrary function. As discussed in section 4.3, the physical situation described

by a pair of potentials (Φ, A) is equally well described by any pair (Φ′, A′) related to them by a

gauge transformation.
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Before proceeding, we pause to emphasize that gauge transformations have a completely

different character than the other transformations discussed in the preceding sections. If we

do a translation or rotation on a system, we have transformed the system into a physically

distinct one. A particle that has been translated by 1 centimeter is in a different place, clearly

distinguishable by experiment. To say that a system has translation symmetry means that we

can physically move the whole system in an experimentally measurable way without changing

the Hamiltonian that describes its time evolution. In contrast, the whole point of gauge trans-

formations is that although they do change the Hamiltonian, they do so without changing the

actual physical situation at all. There is no way an experiment can tell whether or not we have

chosen to write the Hamiltonian in Coulomb gauge! Although it is common to refer to “gauge

symmetries”, gauge transformations really are not symmetries in the same way that translations

or rotations can be. Instead, they are a manifestation of the fact that the potentials have an

arbitrariness, in the form of redundancies in our description that can be eliminated by fixing

the gauge.

Consider a classical charged particle in an electromagnetic field. Clearly, if we do a gauge

transformation the position and the velocity of the charged particle are unaffected, since they

can be measured experimentally. However, the classical canonical momentum p defined in

eq. (4.3.13) does change with a gauge transformation, because it involves not just the velocity

but also the gauge-dependent potential A.

In the quantum description, the state ket used to describe the system is similarly gauge-

dependent. Naively, this might seem like a problem, but it is not, because the state ket by

itself is not a physically measurable observable. For example, we already have pointed out that

multiplying a ket by a constant complex phase does not change probabilities. In the following,

we will show that the gauge transformation of the ket describing a single particle of charge q is

realized as a unitary transformation

UΛ = exp
[
i
q

~c
Λ(R, t)

]
, (5.5.2)

which imparts a position-dependent complex phase to the state ket,

|ψ〉 → |ψ′〉 = UΛ |ψ〉 , (5.5.3)

and which must be accompanied by changes in the electromagnetic potentials,

Φ(R, t) → Φ(R, t)′ = Φ(R, t)− 1

c

∂

∂t
Λ(R, t), (5.5.4)

A(R, t) → A(R, t)′ = A(R, t) +∇Λ(R, t). (5.5.5)

Thus, a gauge transformation in quantum mechanics is defined as the simultaneous changes in

eqs. (5.5.3)–(5.5.5) with the same Λ. Primes are used to indicate the state ket and operators
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after the gauge transformation. For any operator Ω, the definition of the gauge transformation

Ω → Ω′ (5.5.6)

is obtained by applying eq. (5.5.4) and (5.5.5) to the potentials appearing explicitly in the

definition of Ω. We now show that physical predictions are unaffected by such a transformation.

We start by noting that a prerequisite for an operator Ω to be a gauge-invariant observ-

able is that its expectation values should be the same before and after the gauge transformation,

〈ψ|Ω|ψ〉 = 〈ψ′|Ω′|ψ′〉 . (5.5.7)

Requiring this to be true for all state kets |ψ〉, and using eq. (5.5.3), we obtain the defining

property of a gauge-invariant observable,

Ω′ = UΛΩU
†
Λ. (5.5.8)

Not all Hermitian operators that would otherwise satisfy the requirements of being an observable

will have this property.

For example, consider the canonical operators R and P . Since they do not depend explicitly

on the potentials, we have

R′ = R, P ′ = P. (5.5.9)

Meanwhile, using the definition of UΛ in eq. (5.5.2), we find

UΛRU
†
Λ = R, (5.5.10)

UΛP U
†
Λ = P − q

c
∇Λ. (5.5.11)

The first equation is an immediate consequence of the fact that UΛ involves only R and not P ,

and the second follows from applying Theorem 2.4.4. Comparison of eqs. (5.5.9)–(5.5.11) with

eq. (5.5.8) shows that R is a gauge-invariant observable, but the canonical momentum operator

P is not. In contrast, it follows from eq. (5.5.5) that the gauge transformation of the kinetic

momentum

Π = P − q

c
A (5.5.12)

is Π′ = P − q
c
(A+∇Λ) = Π− q

c
∇Λ. Using eq. (5.5.11), this can be rewritten as

Π′ = UΛΠU
†
Λ. (5.5.13)

This establishes that the kinetic momentum Π is a gauge-invariant observable, according to our

defining requirement of eq. (5.5.8).
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Since this was perhaps a bit tricky and unexpected, we reiterate. Even though the canonical

momentum operator P does not change when we do a gauge transformation, its expectation

values do change, so it is not a gauge-invariant observable. And, although the kinetic momentum

operator Π changes when we do a gauge transformation, its expectation values do not, so it is a

gauge-invariant observable. These are the quantum versions of the statements made about the

gauge dependences of the classical quantities p and π following eq. (4.3.15).

The Hamiltonian operator in eq. (4.3.28) certainly changes when we do a gauge transforma-

tion, since it depends explicitly on the potentials Φ and A. Using eqs. (5.5.4) and (5.5.5) gives

the gauge transformation of H ,

H → H ′ =
1

2m

(
P − q

c
A− q

c
∇Λ
)2

+ qΦ− q

c

∂Λ

∂t
− γS · B. (5.5.14)

Equations (5.5.10) and (5.5.11) allow us to rewrite this in the convenient form

H ′ = UΛHU
†
Λ + i~

(
∂UΛ

∂t

)
U †Λ. (5.5.15)

Now, given the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉, (5.5.16)

it is straightforward to use |ψ(t)′〉 = UΛ|ψ(t)〉 and eq. (5.5.15) to obtain

i~
d

dt
|ψ(t)′〉 = H ′ |ψ(t)′〉. (5.5.17)

This shows the key result that the Schrödinger equation for time evolution is also satisfied if H

and |ψ(t)〉 are replaced by their gauge-transformed counterparts.

Another consequence of eq. (5.5.15) is that the Hamiltonian in eq. (4.3.28) is not, in general,

a gauge-invariant observable, due to the presence of the last term. However, the requirement

H ′ = UΛHU
†
Λ is satisfied for the subset of gauge transformations such that ∂Λ/∂t = 0. Thus,

if we limit the gauge transformations to those that do not depend explicitly on time, then H

is a gauge-invariant observable in that restricted sense. Also, if the potentials Φ and A do

not depend on time, then according to the results at the end of section 5.1, H is a conserved

quantity, the total energy of the particle.

If the gauge non-invariance of H for time-dependent Λ bothers you, note that a Λ that

is linear in time and independent of position just adds a constant term to Φ and thus to H .

This corresponds to the classical freedom to add a constant to the energy without affecting the

equations of motion at all.

The defining requirement for gauge-invariant observables, eq. (5.5.8), was obtained by requir-

ing that expectation values do not depend on the choice of gauge. Now we will use eq. (5.5.8) to
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prove the stronger result that all probabilities for measurements of such observables are gauge

independent. Consider a gauge-invariant observable Ω, and choose an orthobasis of its eigenkets

with degeneracy labels uω, so that

Ω|ω, uω〉 = ω|ω, uω〉. (5.5.18)

According to Postulates 3 and 4, the probabilities for allowed results of the measurement of Ω

in a state |ψ〉 are

P(ω) =
∑

uω

|〈ω, uω|ψ〉|2. (5.5.19)

Now, we observe that

Ω′ UΛ|ω, uω〉 = UΛΩU
†
Λ UΛ|ω, uω〉 = UΛΩ|ω, uω〉 = ωUΛ|ω, uω〉, (5.5.20)

which shows that the states UΛ|ω, uω〉 are eigenkets of Ω′, with the same eigenvalues ω and the

same degeneracies. Therefore, we can compute the probability to obtain the result ω from a

measurement of Ω′ in the gauge-transformed description as

P(ω)′ =
∑

uω

|〈ω, uω|U †Λ|ψ′〉|2 =
∑

uω

|〈ω, uω|U †ΛUΛ|ψ〉|2 =
∑

uω

|〈ω, uω|ψ〉|2 = P(ω). (5.5.21)

Thus, we have succeeded in our goal of showing that the predictions for measurements of gauge-

invariant observables are not changed by the gauge transformation. This is in accord with

the general principle that gauge transformations affect our equations in intermediate steps of

calculations, but do not change the final results that reflect physical reality.

For simplicity, in the preceding we have treated the case of a single particle with charge q.

In the case of more than one particle, with charges qn and masses mn, the same discussion goes

through, with Hamiltonian

H =
∑

n

(
1

2mn

[
Pn −

qn
c
A(Rn, t)

]2
+ qnΦ(Rn, t)− γnSn · B(Rn, t)

)
, (5.5.22)

subject to gauge transformations as given by eqs. (5.5.3)–(5.5.5), but with

UΛ = exp

[
i

~c

∑

n

qnΛ(Rn, t)

]
. (5.5.23)

The gauge transformation of the wavefunction in the position representation, ψ(r1, . . . , rn) =

〈r1, . . . , rn|ψ〉, is therefore given by

ψ(r1, . . . , rn) → exp

[
i

~c

∑

n

qnΛ(rn, t)

]
ψ(r1, . . . , rn). (5.5.24)
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This consists of multiplication by a phase that may depend on time and the particle positions.

Thus, gauge invariance can be viewed as the statement that multiplying the wavefunction for a

system of charged particles by a phase of this special form can be compensated by a redefinition

of the electromagnetic potentials. In practice, one may avoid this redundancy in the description

of the physical system by fixing the gauge. This just means that one chooses a specific form of

the potentials, or at least imposes some condition on them that will not be satisfied if one does

an arbitrary gauge transformation.

It is also possible to turn things around, and view the gauge transformations as the starting

point that determines the interactions. In quantum mechanics, the physics is always indepen-

dent of a change in the conventional choice of global phase of the wavefunction. If we generalize

this to a local change in phase, as in eq. (5.5.24), then we are led to introduce the electromag-

netic potentials to compensate, and thus to the necessity of interactions of charged particles

with electromagnetic fields. Although it is beyond our scope here, this approach allows the

interactions of the strong and weak nuclear forces to be determined by their non-Abelian gauge

transformation groups, SU(3) and SU(2)× U(1), respectively.

5.6 Currents and local conservation of probability

From Postulate 4, and the completeness of position eigenstates, we know that the probability

to find a particle within an infinitesimal volume d3r is given by the Born rule,

dP = ρ(r, t) d3r, (5.6.1)

where the probability density per unit volume is

ρ(r, t) = |〈r |ψ(t)〉|2 = |ψ(r, t)|2. (5.6.2)

Assuming the total probability of finding the particle somewhere is fixed and equal to 1, there

must be a law of conservation of probability. The local form of this law is a differential equation

∂ρ

∂t
= −∇ · J, (5.6.3)

where J is a probability current density. The left side of this equation is the rate at which

probability density is accumulating at a point, which the right side tells us is the negative of a

source for the vector field J .

To prove eq. (5.6.3), and identify the current density, start with the Schrödinger equation in

the position representation with wavefunction ψ, and multiply by −iψ∗/~,

ψ∗
∂

∂t
ψ =

i~

2m
ψ∗∇2ψ − i

~
V ψ∗ψ. (5.6.4)
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Adding this to its complex conjugate, we get

∂ρ

∂t
=

i~

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
, (5.6.5)

in which the contribution proportional to V (r) has canceled due to the fact that the potential

is real. Now if we define the probability current density by

J ≡ i~

2m

(
ψ∇ψ∗ − ψ∗∇ψ

)
, (5.6.6)

then we have

∇ · J =
i~

2m

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
, (5.6.7)

where two terms proportional to ∇ψ∗ ·∇ψ have canceled. Comparison of eqs. (5.6.5) and (5.6.7)

establishes the local conservation of probability, eq. (5.6.3).

In the case of a charged particle, an important modification is needed if the vector potential

A is non-zero. Starting with the Hamiltonian in eq. (4.3.28), one can show by steps similar to

those followed in eqs. (5.6.4)–(5.6.7) that the current density satisfying ∇ · J = −∂ρ/∂t is

J =
1

m
Re
[
ψ∗
(
−i~∇− q

c
A
)
ψ
]
, (5.6.8)

generalizing eq. (5.6.6). Here, −i~∇− q
c
A is the position representation of the kinetic momentum

operator, Π, which was introduced in eq. (4.3.29) of section 4.3. This expression for J is invariant

under gauge transformations, and is related to the electric current density j by j = qJ , where

q is the electric charge of the particle.

As an example, consider a free particle in a plane-wave simultaneous eigenstate of momentum

and energy with eigenvalues p = ~k and E = ~
2k2/2m,

ψ(r, t) = Cei
~k·~r−iEt/~. (5.6.9)

In terms of the complex normalization constant C, the probability and current densities are just

constants in both time and position,

ρ = |C|2, J =
i~

2m
(−ik − ik)|C|2 =

p

m
ρ. (5.6.10)

If the domain of the particle is all space, then the wavefunction is not normalizable to unity

for any finite C, but at least the ratio of the current density to the probability density is well-

defined and equal to the velocity eigenvalue of the particle. Although the probability density is

constant, it is constantly flowing in the direction of v = p/m. So, in the case of a free particle,

∂ρ

∂t
= 0, −∇ · J = 0, (5.6.11)
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satisfying the local conservation of probability in the most trivial possible way.

In the case of one-dimensional problems, the probability density and current are

ρ = |ψ(x, t)|2, J =
i~

2m

(
ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)
, (5.6.12)

and the statement of local conservation of probability is

∂ρ

∂t
= −∂J

∂x
. (5.6.13)

The current density vector is just a number in the one-dimensional case, and is positive for

probability density flowing to the right, and negative for flow to the left.

A key ingredient in establishing conservation of probability was the reality of the potential

V in the position representation, or more generally the hermiticity of the Hamiltonian operator.

This is also directly related to the unitarity of the time evolution operator U(t, t0) that we

studied in section 3.4. However, in some situations, one can think of probability as not being

conserved. For example, suppose that we are using quantum mechanics to model the behavior

of an unstable particle. If our Hilbert space only describes the unstable particle, and not the

other particles that it decays into, then we should expect that the total integrated probability

to find it somewhere should decrease with time. To describe situations like this, we can break

the law for a good cause, by taking the Hamiltonian to be non-Hermitian.

To see how this works, suppose that we defy the authority of Postulate 6 by taking H to

have complex eigenvalues, with corresponding normalized eigenkets |φn〉, so that

H |φn〉 = (En − iΓn/2) |φn〉 , (5.6.14)

where En and Γn are real numbers. Of course, this is only possible if H is not Hermitian, due

to Theorem 2.6.3. If the state of the system at time t = 0 is one of them, |ψ(0)〉 = |φn〉, with
unit norm, then the time evolution predicted by the Schrödinger equation will be non-unitary,

|ψ(t)〉 = e−i(En−iΓn/2)t/~ |φn〉 . (5.6.15)

The norm of this ket as a function of time is therefore

〈ψ(t)|ψ(t)〉 = e−Γnt/~. (5.6.16)

We can then interpret the squared norm of the ket as the probability that the particle exists at

time t > 0, given that it existed at time t = 0. [Compare to eq. (3.1.3) with Pα = I.] The mean

lifetime of our unstable state |φn〉 is thus τ = ~/Γn, where Γn/2 is the negative of the imaginary

part of the Hamiltonian eigenvalue.
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The unstable states could correspond to particles that undergo spontaneous decay, such as

the neutron, the muon, or many atomic nuclei. The non-Hermitian-Hamiltonian formalism could

also be applied to a set of atomic states, if our quantum treatment does not include the complete

set of states to which they could decay, including photons released in the process. It could even

apply in a description of a single absolutely stable particle like the electron, if it can be removed

from the system under discussion by a process like electron-capture inverse beta decay, which

in some nuclei occurs as e−p→ νen. This would correspond to an effective potential V (r) with

negative imaginary parts localized at the nuclei. By repeating the steps of eqs. (5.6.4)-(5.6.7),

one can see that, in the case of a non-Hermitian potential, the equation that governs the local

probability density and current is

∂ρ

∂t
= −∇ · J +

2

~
Im[V (r)]ρ. (5.6.17)

In all such cases of particles decaying to other particles, or interacting in such a way as to

change their numbers, the use of a non-Hermitian Hamiltonian is really a sign of an incomplete

description. There is always a more fundamental description in which the complete Hamiltonian

will be Hermitian. Quantum field theories provide the natural way to incorporate processes that

change the numbers of particles, in such a way that the postulates of quantum mechanics hold,

including unitary time evolution as predicted by Postulate 6.

5.7 Exercises

Exercise 5.1. Show that the components of the position, momentum, and angular momentum

operators for a particle satisfy

[La, Rb] = i~ǫabcRc, [La, Pb] = i~ǫabcPc, (5.7.1)

for all a, b, c = 1, 2, 3, where R1 = X , R2 = Y , and R3 = Z, and P1 = Px, P2 = Py, and P3 = Pz.

Use these results, and eq. (5.1.3), to obtain the transformed position and momentum operators

R′ and P ′ resulting from a rotation U = e−iαLz/~, to first order in α.

Exercise 5.2. For a system of two particles labeled 1 and 2 as discussed in section 4.2, show

that the total angular momentum can be written in the way claimed in eq. (5.3.35) in terms of

L and Lcm defined in eq. (5.3.36). Show that L and Lcm each obey the defining requirement of

an angular momentum operator in eq. (5.3.33).

Exercise 5.3. Derive eq. (5.6.8), the probability current density J in the presence of electro-

magnetic potentials Φ and A. Show that it is invariant under gauge transformations.
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6 Particle moving in one dimension

6.1 Gaussian wavefunctions

Consider a particle moving in one dimension in the domain −∞ < x < ∞. Suppose that at

some moment in time, the position wavefunction has a Gaussian form,

〈x|ψ〉 = ψ(x) = N exp
[
−(x− a)2/4σ2

]
. (6.1.1)

Here a and σ are constants with units of [length], corresponding respectively to the center and

the width of the probability density |ψ(x)|2. More precisely, the full width at half maximum

(FWHM) of the Gaussian peak of the probability density is 2
√
2 ln 2σ ≈ 2.35σ. The factor N is

a normalization. If we require the ket |ψ〉 to have unit norm, we need

1 = |N |2
∫ ∞

−∞
dx exp

[
−(x− a)2/2σ2

]
= |N |2

√
2πσ, (6.1.2)

so we can choose N = eiθ/(2πσ2)1/4, where θ is any phase. If θ is a constant, then it is a global

phase and has no physical significance at all, so let us choose the next simplest possibility, that

θ depends linearly on x. The Gaussian wavefunction that we choose to study is thus

ψ(x) =
1

(2πσ2)1/4
eikx exp

[
−(x− a)2/4σ2

]
(6.1.3)

for some constant k, whose interpretation will become clear soon. We will not need to assume

anything in particular about the Hamiltonian of the system in this section.

According to Postulate 4, the probability of finding the particle between x and x+ dx is

dP(x) = |〈x|ψ〉|2 dx =
1√
2πσ

exp
[
−(x− a)2/2σ2

]
dx. (6.1.4)

Therefore, the probability of finding the particle in a range b < x < c is

P(b < x < c) =
1√
2πσ

∫ c

b

dx exp
[
−(x− a)2/2σ2

]
. (6.1.5)

We can also find the expectation value of X in the state |ψ〉,

〈X〉 = 〈ψ|X|ψ〉 =
∫ ∞

−∞
dx 〈ψ|X|x〉〈x|ψ〉 =

∫ ∞

−∞
dx x|ψ(x)|2

=
1√
2πσ

∫ ∞

−∞
dx x exp

[
−(x− a)2/2σ2

]
=

1√
2πσ

∫ ∞

−∞
du (u+ a) exp

[
−u2/2σ2

]

= a. (6.1.6)

The second equality uses the completeness relation, the third uses X|x〉 = x|x〉, and the fourth

uses the common trick of “completing the square”, which means that we define a new integration
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variable u so that the exponential in the integrand depends only on u2 (with no linear term in

u). Here, the change of variable was x = u+ a. Similarly, we have

〈X2〉 =
1√
2πσ

∫ ∞

−∞
du (u+ a)2 exp

[
−u2/2σ2

]
= a2 + σ2. (6.1.7)

Therefore, the uncertainty of X for this state is

∆X =

√
〈X2〉 − 〈X〉2 = σ. (6.1.8)

So far, the constant k has not made any difference at all.

The momentum wavefunction for the same state is

ψ̃(p) = 〈p|ψ〉 =
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉 = 1√

2π~(2πσ2)1/4

∫ ∞

−∞
dx e−ipx/~eikxe−(x−a)

2/4σ2 , (6.1.9)

where we have used the complex conjugate of eq. (2.8.39). We now use the completing-the-

square trick again; this time the appropriate change of variables is x = u+ b, where we choose

b = a+ i2σ2(k − p/~), so
∫ ∞

−∞
dx e−ipx/~eikxe−(x−a)

2/4σ2 = e(b
2−a2)/4σ2

∫ ∞

−∞
du e−u

2/4σ2 = 2
√
πσ e(b

2−a2)/4σ2 . (6.1.10)

It follows that

ψ̃(p) =

(
2σ2

π~2

)1/4

eia(k−p/~)e−σ
2(p/~−k)2 . (6.1.11)

The last factor shows that a state with a Gaussian position wavefunction also has a Gaussian

momentum wavefunction, centered at p = ~k. The momentum wavefunction also contains a

phase that depends on p; this factor encodes the information about the center of the position

wavefunction Gaussian peak, a.

It is now clear that our state depends on three physically significant parameters: the average

momentum ~k, the position center a, and the position width σ, which is also the uncertainty in

X . There is a duality between the position and momentum wavefunctions, for if one of them

has a Gaussian magnitude with a linear phase, then so does the other, with parameters that

are related by comparing eqs. (6.1.3) and (6.1.11). In particular, the widths of the position and

momentum Gaussian wavefunctions are inversely proportional.

Using eq. (6.1.11), one can now obtain

〈P 〉 = 〈ψ|P |ψ〉 =
∫ ∞

−∞
dp 〈ψ|P |p〉〈p|ψ〉 =

∫ ∞

−∞
dp p|ψ̃(p)|2 = ~k. (6.1.12)

Similarly,

〈P 2〉 =

∫ ∞

−∞
dp p2|ψ̃(p)|2 = ~

2(k2 + 1/4σ2). (6.1.13)
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It follows that the momentum uncertainty in the state with a Gaussian position wavefunction is

∆P =

√
〈P 2〉 − 〈P 〉2 = ~/2σ, (6.1.14)

and so the product of the position and momentum uncertainties is

(∆X)(∆P ) = ~/2. (6.1.15)

This result does not depend on the center of the Gaussian a, or its width σ, or its average

momentum ~k. Thus, Gaussian wavefunctions always realize the minimum possible product of

uncertainties consistent with the general position-momentum uncertainty relation, eq. (3.3.10).

6.2 Time evolution of free-particle state in one dimension

For a free particle with mass m moving in one dimension, the Schrödinger equation is

i~
d

dt
|ψ〉 = H |ψ〉 = P 2

2m
|ψ〉 , (6.2.1)

where P is the momentum operator. Since [H,P ] = 0, we know that there is an orthobasis

of stationary states that are also eigenstates of P with eigenvalue p. Acting on such states,

E = P 2/2m = p2/2m. Therefore, for a given E there are exactly two solutions, p = ±
√
2mE,

and the plane-wave stationary states can be labeled

|E,R〉 = |p=
√
2mE〉, |E,L〉 = |p=−

√
2mE〉, (6.2.2)

where R,L is a degeneracy label that tells us whether the particle is moving right or left.

The time-dependent wavefunction for a stationary state with momentum p is, combining

eq. (2.8.39) with the time-evolution phase factor e−iEt gives

ψp(x, t) =
1√
2π~

ei(kx−ωt), (6.2.3)

where k = p/~ and ω = E/~. The position of constant phase is x = ωt/k = Et/p = pt/2m, so

the phase velocity of one of these waves is

vphase = ω/k = p/2m, (6.2.4)

which is half of the classical velocity p/m.

To understand the classical speed of propagation, one must consider the group velocity for

wavepacket superpositions of states with a continuous distribution of k. It is a general feature

of wave kinematics that, in the presence of dispersion (that is, ω depending nonlinearly on k),

the velocity for a wavepacket is not ω/k, but instead

vgroup = ∂ω/∂k. (6.2.5)
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Let us pause from our discussion of the free particle to see how this arises in a general context.

Consider a packet of waves described by the wavefunction

ψ(x, t) =

∫
dk a(k) ei(ωt−kx), (6.2.6)

where, in general, the angular frequency ω(k) and the amplitude function a(k) both depend on

the wavenumber in some arbitrary way. Now suppose that a(k) is such that only a narrow range

of k near k0 contribute appreciably, so that we can write k = k0 +∆k and

ω(k) = ω0 +∆k
∂ω

∂k

∣∣∣
k=k0

+O(∆k)2, (6.2.7)

where ω0 = ω(k0). Then eq. (6.2.6) can be rewritten in the form

ψ(x, t) = ei(ω0t−k0x)A(x, t), (6.2.8)

which is the product of a global phase and a factor describing the shape of the magnitude of

the wavepacket,

A(x, t) =

∫
d(∆k) a(k0 +∆k) exp

[
i

(
∂ω

∂k
t− x

)
∆k + · · ·

]
. (6.2.9)

Here the partial derivative is understood to be evaluated at k = k0. In this approximation, the

magnitude |ψ(x, t)| = |A(x, t)| depends on position and time only through the combination

∂ω

∂k
t− x, (6.2.10)

which immediately implies that the velocity of the wavepacket is indeed vgroup = ∂ω/∂k.

Applying this to the special case of a free particle, with ω = E/~, we have

vgroup =
∂

∂k

(
~k2

2m

)
= ~k/m = p/m, (6.2.11)

which is the classical value. For wavepackets in quantum mechanics with momentum sharply

peaked near p, this group velocity corresponds to the motion of the expectation value of the

position, as can be seen in general from eq. (3.4.18). Before the end of this section, we will verify

this for the particular case of a Gaussian superposition of plane waves.

Using eq. (3.4.7), the unitary time evolution operator is

U(t) =

∫ ∞

−∞
dp |p〉〈p| e−itp2/2m~. (6.2.12)

The matrix element of this operator between different position eigenstates is therefore

〈x|U(t)|x′〉 =

∫ ∞

−∞
dp 〈x|p〉〈p|x′〉 e−itp2/2m~ =

1

2π~

∫ ∞

−∞
dp eip(x−x

′)/~e−itp
2/2m~.(6.2.13)
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This integral is again done by the completing-the-square trick, this time by changing the inte-

gration variable to p′ = p−m(x− x′)/t, with the result

〈x|U(t)|x′〉 =
( m

2π~it

)1/2
eim(x−x′)2/2~t. (6.2.14)

By now applying the completeness relation, the time dependence of the wavefunction for a free

particle reduces to an integral involving the wavefunction at time t = 0,

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|U(t)|ψ(0)〉 =
∫ ∞

−∞
dx′ 〈x|U(t)|x′〉〈x′|ψ(0)〉

=
( m

2π~it

)1/2 ∫ ∞

−∞
dx′ eim(x−x′)2/2~tψ(x′, 0). (6.2.15)

In principle, the time evolution of an arbitrary free-particle state has therefore been solved.

As a good example for which the integral can be done analytically, consider the motion and

spreading with time of the wavefunction of a Gaussian wavepacket state. We start at time t = 0

with a state |ψ(0)〉 that has

ψ(x′, 0) =
1

(2πσ2)1/4
eip0x

′/~e−x
′2/4σ2 , (6.2.16)

which as we saw in the previous section can be interpreted as having center at x′ = 0, width σ,

and average momentum p0. At time t, eq. (6.2.15) gives

ψ(x, t) =
( m

2π~it

)1/2 1

(2πσ2)1/4

∫ ∞

−∞
dx′ exp

[
− x

′2

4σ2
+ i

m(x− x′)2
2~t

+ i
p0x

′

~

]
. (6.2.17)

By the usual completing-the-square integration variable change trick, this becomes, after some

algebraic manipulation,

ψ(x, t) =
1√√

2π(σ + i~t/2mσ)
exp

[
− (x− p0t/m)2

4σ2 + 2i~t/m

]
exp

[
i
p0
~

(
x− p0t

2m

)]
, (6.2.18)

or, after further rearrangement,

ψ(x, t) =
eiθ(x,t)√√

2π(σ + i~t/2mσ)
exp

[
− (x− p0t/m)2

4σ2 + ~2t2/m2σ2

]
, (6.2.19)

where

θ(x, t) =
p0
~

(
x− p0t

2m

)
+

~t(x− p0t/m)2

2m(4σ2 + ~2t2/m2)
. (6.2.20)

The probability density at time t is therefore

|ψ(x, t)|2 =
1√

2π(σ2 + ~2t2/4m2σ2)
exp

[
− (x− p0t/m)2

2(σ2 + ~2t2/4m2σ2)

]
. (6.2.21)
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This is a Gaussian function of x whose peak moves to the right at exactly the constant speed

p0/m of naive classical expectation, but whose width grows with time t. Using the results of

the previous section, we obtain

〈X〉 = p0t/m, (6.2.22)

∆X =
√
σ2 + ~2t2/4m2σ2. (6.2.23)

The speed at which the expectation value 〈X〉 moves is also the group velocity vgroup = ∂ω/∂k.

At large t, ∆X ≈ ~t/2mσ grows linearly with time, and ironically is larger for smaller σ; the

more we try to confine the wavefunction initially, the more spread out the particle’s probability

density support will be at late times. The explanation is that, due to the uncertainty relation

eq. (3.3.10), a highly constrained particle position has larger amplitudes for momenta that

deviate from the central value.

One can also compute the momentum wavefunction as a function of time, by applying

eq. (2.8.41) to eq. (6.2.18). After another integration and more algebraic juggling, one finds

ψ̃(p, t) =

(
2σ2

π~2

)1/4

exp
[
−σ2(p− p0)2/~2

]
eip

2t/2~m. (6.2.24)

This is remarkably simple; the time dependence is entirely in the complex phase, so

∣∣ψ̃(p, t)
∣∣2 =

√
2

π

σ

~
exp

[
−2σ2(p− p0)2/~2

]
. (6.2.25)

This does not depend on time at all, despite the fact that the width of the support of the position

wavefunction grows with time. This is an illustration of Theorem 5.1.1; because the momentum

is a conserved quantity for a free particle Hamiltonian, the probability density to measure the

momentum between p and p+ dp is a constant in time.

6.3 Properties of stationary states in one-dimensional potentials

Consider a particle moving in one dimension in a potential that is given classically by V (x), so

that the Hamiltonian operator is

H =
P 2

2m
+ V (X). (6.3.1)

In general, we want to find stationary states,

H |ψE〉 = E |ψE〉 . (6.3.2)

To accomplish this, we use the position representation, in which X → x and P → −i~d/dx,
by multiplying on the left by 〈x|. Then the wavefunction ψE(x) = 〈x|ψE〉 obeys the eigenvalue
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differential equation

d2

dx2
ψE(x) =

2m

~2
[V (x)− E]ψE(x). (6.3.3)

This is the time-independent Schrödinger equation for a spinless particle in one dimension.

Before exploring some special cases, it is helpful to make some general statements about this

problem. First, consider a range of positions x over which the potential V (x) is less than the

energy eigenvalue E. This is called a classically allowed range, because in classical mechanics

the kinetic energy contribution is always positive, so that E > V (x). In a classically allowed

range, the wavefunction is oscillatory provided that V (x) varies sufficiently smoothly with x.

To illustrate this, consider the case of a nearly constant V , and define the wavenumber k =√
2m(E − V )/~. Then, within that range, the Schrödinger equation becomes (dropping the

subscript E on the wavefunction from here on) ψ′′ ≈ −k2ψ, which has the general solution

ψ ≈ aeikx + be−ikx, (for nearly constant k2 = 2m(E − V )/~2 > 0), (6.3.4)

where a and b are constants.

Conversely, classically forbidden ranges of x are those in which E < V (x). If V is nearly

constant, we can define a real quantity κ =
√

2m(V −E)/~, and the Schrödinger equation

becomes ψ′′ ≈ κ2ψ. The corresponding general solution is a sum of real exponentials,

ψ ≈ ae−κx + beκx, (for nearly constant κ2 = 2m(V −E)/~2 > 0). (6.3.5)

If the classically forbidden range includes x = ∞, then one must have b = 0 in order to have a

sensible wavefunction without exponential growth at large distances. If the classically forbidden

range instead includes x = −∞, then one must have a = 0 for the same reason.

It is often the case that the potential approaches a constant at large distances. Unbound

states are those that have E > V (x), and therefore oscillatory behavior, at either x = ∞,

or x = −∞, or both. Bound state are those that have E < V (x) at both = ±∞, implying

exponentially falling wavefunctions at large distances.

A stationary state with energy E may have both classically allowed and classically forbidden

ranges of x, depending on the potential. The points x with V (x) = E that separate them are

called classical turning points, because the corresponding classical trajectory for a particle must

turn back at those points.

It is also possible that V (x) has some special points where it may not be smooth, or may

even diverge. We would like to know what can be said about the behavior of the wavefunction

ψ(x) at such special points. Consider a particular special point x0. Integrating eq. (6.3.3) with

respect to x over a small neighborhood of that point gives
∫ x0+ǫ

x0−ǫ
dx

d

dx

(
dψ

dx

)
= ψ′(x0 + ǫ)− ψ′(x0 − ǫ) =

2m

~2

∫ x0+ǫ

x0−ǫ
dx [V (x)− E]ψ(x), (6.3.6)
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where the first equality follows from the fundamental theorem of calculus.

Suppose that V (x) is bounded near x = x0. Then the right side of eq. (6.3.6) tends to 0 as

ǫ→ 0, so we can conclude that the first derivative of ψ(x) must be continuous at x0. Note that

this holds even if V (x) is discontinuous, as long as it stays finite in the neighborhood of x = x0.

It follows that ψ(x) itself is also continuous at x = x0.

Another possibility is that V (x) = Cδ(x− x0) + · · · , where C is a constant, and the ellipses

represent a contribution that is possibly discontinuous but bounded near x = x0. In that case,

eq. (6.3.6) reveals that

lim
ǫ→0

[ψ′(x0 + ǫ)− ψ′(x0 − ǫ)] =
2m

~2
Cψ(x0), (6.3.7)

so that the derivative of the wavefunction at x0 is discontinuous by an amount that we now

know. Equation (6.3.7) is consistent with ψ′(x) being bounded in a neighborhood of x = x0,

even if it is not continuous. Then, integrating
∫ x0+ǫ
x0−ǫ dxψ

′(x), we obtain the continuity of the

wavefunction,

lim
ǫ→0

[ψ(x0 + ǫ)− ψ(x0 − ǫ)] = 0. (6.3.8)

More generally, continuity of the wavefunction is a requirement that we always impose on

physically sensible states. The idea is that because |ψ(x)|2 represents the probability density, its

value at x = x0 has a unique physical meaning and so must not depend on whether x approaches

x0 from above or below.

Yet another possibility is that V (x) =∞ for a whole range x < x0 but it is finite for x > x0.

In that case, the particle is forbidden to enter the region of infinite potential, and so ψ(x) = 0

for x ≤ x0. Now, continuity of the probability density tells us that ψ(x0) = 0, which acts as a

boundary condition for ψ(x) in the range x ≥ x0. Of course, the same holds if the inequalities

are reversed: if V (x) =∞ for x > x0 but it is finite for x < x0, then ψ(x) = 0 for x ≥ x0.

Bound states in one-dimensional potentials in quantum mechanics never have degenerate

energy eigenvalues. To prove it, suppose there are two states |ψ1〉 and |ψ2〉 with the same

energy eigenvalue E. In the position representation, the wavefunctions satisfy

− ~
2

2m
ψ′′1 + V ψ1 = Eψ1, − ~

2

2m
ψ′′2 + V ψ2 = Eψ2. (6.3.9)

Multiplying the first equation by ψ2 and the second by ψ1 and taking the difference gives

ψ2ψ
′′
1 − ψ1ψ

′′
2 = 0, or

d

dx
(ψ2ψ

′
1 − ψ1ψ

′
2) = 0, (6.3.10)

so that integrating with respect to x gives

ψ2ψ
′
1 − ψ1ψ

′
2 = c (6.3.11)
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where c is a constant of integration. Now, by definition the bound states have ψ1 = ψ2 = 0

when x = ±∞. So, evaluating eq. (6.3.11) at x = ∞ in particular, we learn that c must be 0.

Therefore ψ′1/ψ1 = ψ′2/ψ2, or

d

dx
(lnψ1) =

d

dx
(lnψ2), (6.3.12)

which integrates to

ln(ψ1) = ln(ψ2) + C (6.3.13)

where C is another constant of integration. So, ψ1 = eCψ2, and since eC is a non-zero constant,

ψ1 and ψ2 are proportional and therefore represent the same state. Note that in this proof it is

crucial that we are working in one dimension. In two or three dimensions, bound states certainly

can have degenerate energies, as we will see by finding examples in Chapter 10.

6.4 Particle in a one-dimensional box

Consider a particle of mass m confined to a box of length L, so that its potential energy as a

function of x is

V (x) =

{
0 for |x| < L/2,

∞ for |x| > L/2.
(6.4.1)

Since this is an even function of x, we know from the discussion in section 5.4 that there must

be simultaneous eigenstates of energy and parity. Let us find them.

In the region |x| < L/2, eq. (6.3.3) becomes

ψ′′ = −2mE
~2

ψ. (6.4.2)

The general solution to this differential equation is

ψ(x) = Aeikx +Be−ikx, (6.4.3)

where A and B are constants and

k =
√
2mE/~. (6.4.4)

Because the particle is completely confined to the box region, one must have ψ(x) = 0 for

|x| ≥ L/2, and so by continuity of the wavefunction, ψ(L/2) = 0 and ψ(−L/2) = 0, or

AeikL/2 +Be−ikL/2 = 0, (6.4.5)

Ae−ikL/2 +BeikL/2 = 0. (6.4.6)
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This system of equations will have a non-trivial solution for A and B if and only if the matrix

M =

(
eikL/2 e−ikL/2

e−ikL/2 eikL/2

)
(6.4.7)

is not invertible, which means Det(M) = eikL − e−ikL = 2i sin(kL) = 0. The solutions to the

particle-in-a-box eigenvalue problem therefore must have k = nπ/L, where n is an integer. It

follows that B = −eikLA = (−1)n+1A.

For odd n, we have B = A, and so for −L/2 ≤ x ≤ L/2,

ψn(x) = 2A cos(nπx/L). (6.4.8)

To normalize the states to unity, we require

1 =

∫ ∞

−∞
dx |ψn(x)|2 = 4|A|2

∫ L/2

−L/2
dx cos2(nπx/L) = 2|A|2L, (6.4.9)

and so we can choose A = 1/
√
2L, yielding the even-parity solutions

ψn(x) =

√
2

L
cos(nπx/L) (n = 1, 3, 5, . . .). (6.4.10)

Note that we do not need to include negative n, because those just have the same wavefunction

up to a physically irrelevant sign, and are therefore the same states. Similarly, for even n, one

finds the odd-parity solutions

ψn(x) =

√
2

L
sin(nπx/L) (n = 2, 4, 6, . . .). (6.4.11)

Here, not only do we not need negative n, but also the case n = 0 is excluded, because it would

result in ψ0(x) = 0, which would correspond to the null ket, which is not a physical state. For

both odd and even n, eq. (6.4.4) gives the allowed energy levels:

En =
~
2π2n2

2mL2
(n = 1, 2, 3, . . .). (6.4.12)

These are non-degenerate and discrete, as is true for any bound-state solutions in one dimension.

The ground state energy for the particle in a box, E1 = ~
2π2/2mL2, becomes very large

as the confining box is taken smaller (L → 0). This can be seen to be in accord with the

uncertainty relation eq. (3.3.10), as follows. First, note that 〈P 〉 = 0 for each of the stationary

states; this can be obtained either by direct computation in terms of the wavefunction, or seen

as a consequence of the parity selection rule discussed at the end of section 5.4. It follows that

〈H〉 = 1

2m
〈P 2〉 = 1

2m
(∆P )2. (6.4.13)
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Now the uncertainty relation eq. (3.3.10) says that (∆P )2 ≥ (~/2∆X)2, and it is also clear that

〈X〉 = 0, again either by direct computation or as a consequence of the parity selection rule.

Therefore, (∆X)2 = 〈X2〉, and we have a bound

〈H〉 ≥ ~
2

8m2 〈X2〉 . (6.4.14)

Since the particle is confined to a box of length L, a crude, conservative estimate valid for any

state is that 〈X2〉 ≤ (L/2)2. Using this to compare our estimate of the lower bound on 〈H〉
from the uncertainty relation to eq. (6.4.12) with n = 1, we see that the latter is a factor of π2

larger. For the ground state, a much better estimate of 〈X2〉 comes from actually computing it,

with the result

〈X2〉 = L2

(
1

12
− 1

2π2

)
, (6.4.15)

so

〈H〉 ≥ ~
2π2

2mL2

(
3

π2 − 6

)
. (6.4.16)

Comparing again with eq. (6.4.12) with n = 1, we see that the ground state energy is a factor of

π2/3− 2, or about 1.29, larger than the estimate eq. (6.4.16) of its lower bound following from

the uncertainty relation.

6.5 Bound states for the one-dimensional square well

As a generalization of the previous section, consider a particle of mass m in a finite square-well

potential with linear width L and energy depth V0:

V (x) =





V0 for x ≤ −L/2 (region I),

0 for −L/2 < x < L/2 (region II),

V0 for x ≥ L/2 (region III).

(6.5.1)

Before proceeding, we note that the special case V0 →∞ should give the results of the previous

section. Again, we expect to find energy eigenstate solutions with definite parity, because the

potential is invariant under x→ −x.
The strategy for finding the stationary states is to first solve the differential equation (6.3.3)

separately in each of the three regions I, II, and III, and then stitch these solutions together

using eqs. (6.3.7) and (6.3.8) as boundary conditions at the points x = ±L/2.
In region II, the differential equation is exactly the same as for the particle in a box,

ψ′′ = −2mE
~2

ψ, (6.5.2)
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and so the general solution is an arbitrary linear combination of eikx and e−ikx, where k =√
2mE/~, as before. So, we can write

ψII(x) = A cos(kx) +B sin(kx). (6.5.3)

In regions I and III, the differential equation is

ψ′′ =
2m(V0 − E)

~2
ψ. (6.5.4)

Assume that E < V0, so that we will have a bound state. Then, defining

κ =
√

2m(V0 − E)/~, (6.5.5)

the general solutions in regions I and III are

ψI(x) = Ceκx +De−κx, (6.5.6)

ψIII(x) = Feκx +Ge−κx. (6.5.7)

The coefficient D must be 0, because otherwise ψI(x) would blow up for x → −∞, giving a

non-normalizable unphysical solution. Similarly, from requiring ψIII(x) to be well-behaved at

x →∞, we get F = 0. It remains to solve for A, B, C, and G, using the boundary conditions

at the points x = −L/2 and L/2.

Let us first look for wavefunction solutions that are even under the parity transformation

x→ −x. It follows that B = 0 and G = C, and they must have the form

ψ(x) =






Ceκx for x ≤ −L/2,
A cos(kx) for −L/2 ≤ x ≤ L/2,

Ce−κx for x ≥ L/2.

(6.5.8)

Now we can apply the requirements that the wavefunction and its first derivatives are both

continuous at x = L/2, as proved on general grounds in eqs. (6.3.7) and (6.3.8). In the present

case, these conditions amount to

A cos(kL/2) = Ce−κL/2, (6.5.9)

−Ak sin(kL/2) = −Cκe−κL/2. (6.5.10)

By taking the ratio of these equations, one obtains k tan(kL/2) = κ. It is convenient to define

dimensionless quantities X = kL/2 and Y = κL/2, so that

X tanX = Y, (even parity), (6.5.11)

X2 + Y 2 = mV0L
2/2~2, (6.5.12)
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Figure 6.5.1: Graphical solutions for the
bound energy eigenstates of a particle of
mass m in a 1-d square well potential with
depth V0 and width L. The dashed cir-
cles are X2 + Y 2 = R2 = mV0L

2/2~2, for
sample values R = 1.4, 4, and 8. Even-
parity solutions are the intersections with
Y = X tanX (darker, green curves) and odd-
parity solutions are the intersections with
Y = −X cotX (lighter, red, curves). The
energy eigenvalues for each solution are E =
2~2X2/mL2. The cases R = 1.4, 4, and 8 are
seen to have 1, 3, and 6 bound state solutions,
respectively.

where eq. (6.5.12) follows from eq. (6.5.5) and E = ~
2k2/2m.

It is not possible to solve the simultaneous transcendental equations (6.5.11) and (6.5.12)

analytically, but one can use graphical methods to understand the solutions and then obtain

numerical results. In Figure 6.5.1 we graph in the X, Y plane the curves Y = X tanX (darker

solid curves) and the circle eq. (6.5.12) (dashed), for some sample values (1.4, 4, and 8) of the

dimensionless radius R =
√
mV0L2/2~2. For a given value of R, the intersections provide the

numerical eigenvalue solutions for X and Y , and thus for k and κ. We only need to consider

positive X and Y , because κ is positive, and k can be taken positive without loss of generality.

The graphical approach makes clear that there is always at least one bound-state solution,

no matter how small V0 (and thus R) is. The ground state, which we will call |ψ1〉 with energy

eigenvalue E1, is the solution with smallest X , which always has even parity and occurs for

0 < X < π/2, or 0 < k < π/L, and so

0 < E1 < ~
2π2/2mL2. (6.5.13)

The lower bound corresponds to small R, which means the limit of small V0 ≪ ~
2/mL2. Con-

versely, the upper bound is relevant for large R and thus V0 ≫ ~
2/mL2, the limit of the particle

completely confined to a box as treated in the previous section. As V0 is increased (for fixed

m,L), the radius of the dashed circle grows, so the number of solutions increases, but for any

finite V0 the number of bound state solutions is always finite.

Consider the lone bound state solution in the limit of small V0, which means X and Y are

also very small. By expanding X tanX to quadratic order in X2, and solving eqs. (6.5.11) and
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(6.5.12) in that limit, we obtain

E1 =
~
2k2

2m
≈ V0

(
1− mV0L

2

2~2
+ · · ·

)
. (6.5.14)

Because this energy is only slightly lower than V0, the state is very weakly bound, but it always

exists, no matter how small V0 is.

Now consider the stationary states that are odd under parity (x→ −x), with wavefunctions

that are therefore of the form

ψ(x) =






−Ceκx for x ≤ −L/2,
B sin(kx) for −L/2 ≤ x ≤ L/2,

Ce−κx for x ≥ L/2.

(6.5.15)

The continuity of the wavefunction and its derivative give

B sin(kL/2) = Ce−κL/2, (6.5.16)

Bk cos(kL/2) = −Cκe−κL/2. (6.5.17)

Defining X and Y in exactly the same way as before, we now have

−X cotX = Y, (odd parity) (6.5.18)

in place of eq. (6.5.18), with the same equation forX2+Y 2 = R2. The graph of Y = −X cotX is

shown in Figure 6.5.1 as the lighter solid lines. This time, we see that if V0 is small enough, there

will not be any odd-parity bound-state solution. In order for there to exist at least one bound-

state solution with an odd wavefunction, the dashed circle must have a large enough radius to

intersect with the curve Y = −X cotX for positive X and Y , specifically,
√

mV0L2

2~2
> π/2,

so that V0 > π2
~
2/2mL2. In this case, the first excited state will have π/2 < X < π, so

~
2π2/2mL2 < E2 < 2~2π2/2mL2.

Combining the information for even and odd parity states (which have odd and even n,

respectively) from Figure 6.5.1 we can see that the energy levels alternate between even and

odd parity, and the bound state |ψn〉 exists if and only if the potential well is deep enough,

which requires that R2 is sufficiently large,

mV0L
2

2~2
>
π2

4
(n− 1)2. (6.5.19)

If |ψn〉 does exist as a bound state, then π(n− 1)/2 < Xn < πn/2, which implies

~
2π2(n− 1)2

2mL2
< En <

~
2π2n2

2mL2
(n = 1, 2, 3, . . .). (6.5.20)

Here En will approach its upper bound in the limit of large V0, in agreement with the result

found in section 6.4.
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The square well potential also has a continuum of unbound states with energies E ≥ V0,

with wavefunctions whose magnitudes approach a constant for large distances |x|. These are also
known as scattering states. We will discuss the problem of scattering from the one-dimensional

square well in section 6.6.

6.6 Scattering problems in one dimension

Scattering theory deals with unbound quantum states with continuous energy eigenvalues.

The particles described by these states can be thought of as originating far away, in a measured

or controlled configuration, typically a superposition of free plane waves moving in a common

direction. In a localized region of space, the particles then interact with a potential, or with

another group of particles, after which they escape to large distances again where they can be

measured. In practice, one can learn about the potential, or interactions between particles, by

studying the asymptotic forms of the unbound states. In this section we will consider poten-

tial scattering problems in the simplified realm of one dimension, and turn to the problem of

scattering in three dimensions in Chapter 23.

Consider two asymptotic regions I and II with constant potentials, and an intermediate

region III where the potential can be arbitrary, so

V (x) =





0 region I (x < a),

U(x) region III (a < x < b),

V0 region II (x > b),

(6.6.1)

as illustrated in Figure 6.6.1. The constant potential in region I, which will contain the incident

particles, is taken to be 0, by subtraction from V (x) if necessary. This entails no loss of generality,

because as usual the effect of a constant contribution to the energy can be absorbed into a global

phase that is the same for all states. The potential V0 in region II can be either positive or

negative. We will be interested only in unbound states with energy E > 0, although there may

also be bound states if the potential U(x) in region III goes negative for some x.

The stationary states for this potential have wavefunctions that might be complicated in

region III, but they are definitely simple in regions I and II. Assuming that E > V0, one class

V (x)

xa b

V0

region I region IIregion III

Figure 6.6.1: A generic one-
dimensional scattering potential
of the type in eq. (6.6.1). The
potential V0 in region II on the
far right can be either positive or
negative.
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of such stationary states is

ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iEt/~, (region I), (6.6.2)

ψ(x, t) = Ceik
′xe−iEt/~, (region II). (6.6.3)

Here the component A corresponds to an initial beam of particles moving to the right in region

I from x = −∞, and B corresponds to a reflected component going back to x = −∞. In region

II, there is only a transmitted component moving to the right; as a boundary condition we are

imposing that there is no left-moving component that would correspond to incident particles

arriving from x = +∞. Note that in 1-d scattering problems, we are not interested in eigenstates

of parity; the symmetry is broken because the incident particles are coming from the left.

Now, for a given energy E and normalization A treated as known inputs characteristic of

the incident beam of particles, we can solve for k, k′ and then, in principle, for B and C. The

easy part is that from the Schrödinger equation,

~
2k2

2m
= E,

~
2k′2

2m
= E − V0. (6.6.4)

To solve for B and C requires the scattering potential U(x) to be specified. Once B and C are

known, eq. (5.6.12) can be used to find the probability and current densities in each region. In

region I, the probability density is

ρ = |A|2 + |B|2 + 2Re[A∗B] cos(2kx) + 2Im[A∗B] sin(2kx). (6.6.5)

The last two terms will each give 0 after averaging over a range of x that is large compared to

1/k. The current density in region I is

J =
~k

m
(|A|2 − |B|2), (6.6.6)

where the cross-terms between A and B canceled completely, even without doing any averaging.

Meanwhile, in region II, the probability density and current are

ρ = |C|2, (6.6.7)

J =
~k′

m
|C|2. (6.6.8)

The interpretation of the probability densities of eqs. (6.6.5) and (6.6.7) is

density of particles in




incident
reflected

transmitted


beam =



|A|2
|B|2
|C|2


 , (6.6.9)
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while the interpretation of the current densities of eqs. (6.6.6) and (6.6.8) is

flux = particles/time in




incident
reflected

transmitted


 beam =




~k|A|2/m
−~k|B|2/m
~k′|C|2/m


 =



JA
JB
JC


 . (6.6.10)

The effect of the scattering potential on the incident mono-energetic beam can therefore be

given in terms of reflection and transmission ratios, reminiscent of quantities in classical optics,

R =
|JB|
|JA|

=
|B|2
|A|2 , T =

|JC |
|JA|

=
k′|C|2
k|A|2 . (6.6.11)

In specific problems, we can always set A = 1 at the beginning, since only the ratios B/A and

C/A are needed, and B and C will always be proportional to A due to the linearity of the

wavefunction in the Schrödinger equation.

To find R or T we must specify the scattering potential V (x). However, in general, probability

conservation implies that they are related by

R + T = 1. (6.6.12)

To prove this, we note that for a stationary state,

∂J

∂x
= −∂ρ

∂t
= − ∂

∂t
|ψ(x, t)|2 = − ∂

∂t
|ψ(x, t0)e−i(t−t0)E/~|2 = 0, (6.6.13)

so, by the fundamental theorem of calculus,

0 =

∫ ∞

−∞
dx

∂J

∂x
= J(∞)− J(−∞). (6.6.14)

This can be rewritten as

JC = |JA| − |JB|, (6.6.15)

from which eq. (6.6.12) follows immediately. Since R and T are manifestly positive, they must

also be between 0 and 1, inclusive, with the extremes reached only in very special cases. This

probabilistic situation is in contrast to classical mechanics, where T is always exactly either 1

or 0, depending on whether or not the particle has enough energy to overcome the potential

barrier set by the maximum value of the potential.

To find R and T in specific examples, it is necessary to solve the Schrödinger equation in

region III and to apply boundary conditions in the form of continuity of the wavefunction,

and its derivative if the potential is finite, at the boundaries between adjacent regions. If the

potential at a boundary has a delta function, then eq. (6.3.7) can be used to obtain the boundary

condition for the first derivative of the wavefunction.
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As a first example, consider a step-function potential

V (x) =

{
0 region I (x < 0),

V region II (x > 0),
(6.6.16)

for which region III does not exist, and regions I and II meet at x = 0. Continuity of the

wavefunction eq. (6.6.2)-(6.6.3) and its first derivative at x = 0 give

1 +B = C, (6.6.17)

ik + (−ik)B = ik′C. (6.6.18)

Here we have taken the opportunity to set A = 1, since we will be interested in the ratios R

and T . The solutions for B and C are

B =
k − k′
k + k′

, C =
2k

k + k′
. (6.6.19)

The reflection and transmission coefficients are therefore

R =

∣∣∣∣
1− k′/k
1 + k′/k

∣∣∣∣
2

, T =
4k′/k

(1 + k′/k)2
, (6.6.20)

where

k′/k =
√

1− V/E. (6.6.21)

Note that we need E > V in order for k′ and T to be real. Otherwise, the wavefunction for

x > 0 is instead an exponential of the form ψII(x) = Ce−κx with ~
2κ2/2m = V − E, and one

finds R = 1. Since the flux decreases exponentially in region II rather than maintaining constant

magnitude, T = 0 in that case; the particles are all reflected, although they still have a non-zero

probability to be found at any point x > 0, proportional to e−2κx. Region II in this case is said

to be a classically forbidden region.

As a second example, consider the symmetric rectangular barrier potential

V (x) =






0 region I (x < −a/2),
V region III (|x| < a/2),

0 region II (x > a/2),

(6.6.22)

as illustrated in Figure 6.6.2.

Let us first consider the case that E > V > 0, so that transmission past the barrier is

classically allowed. Then we can write the wavefunctions in the three regions as

ψI(x) = eikx +Be−ikx, (6.6.23)

ψIII(x) = Deik
′x + Fe−ik

′x, (6.6.24)

ψII(x) = Ceikx, (6.6.25)
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−a/2 a/2

V

region I region IIregion III

Figure 6.6.2: A one-dimensional
scattering potential of the type in
eq. (6.6.22). The potential can
be either a barrier (if V > 0, as
shown) or a well (if V < 0).

where k′ =
√

2m(E − V )/~ and k =
√
2mE/~ are real numbers, and again we choose A = 1.

There are four remaining unknowns, B,C,D, F , and only two of these enter into the measurable

quantities R = |B|2 and T = |C|2. Continuity of the wavefunction and its first derivative at

x = −a/2, using ψI and ψIII, give us

e−ika/2 +Beika/2 = De−ik
′a/2 + Feik

′a/2, (6.6.26)

ike−ika/2 − ikBeika/2 = ik′De−ik
′a/2 − ik′Feik′a/2, (6.6.27)

Also, at x = a/2 we find from ψII and ψIII,

Ceika/2 = Deik
′a/2 + Fe−ik

′a/2, (6.6.28)

ikCeika/2 = ik′Deik
′a/2 − ik′Fe−ik′a/2. (6.6.29)

It is convenient to first solve eqs. (6.6.28) and (6.6.29) for D and F in terms of C, and plug

the results into eqs. (6.6.26) and (6.6.27) which then involve only B and C as unknowns. The

resulting eq. (6.6.26) and eq. (6.6.27) then combine to give

B = i
k′2 − k2
2kk′

sin(k′a)C. (6.6.30)

Now, since we also know R + T = |B|2 + |C|2 = 1, we can solve to get

T = |C|2 =

[
1 +

(
k′2 − k2
2kk′

)2

sin2(k′a)

]−1
(6.6.31)

for the transmission coefficient. Then, R is just 1− T .
To express the result directly in terms of the incident energy and the height of the potential

barrier, we can now plug in k′ = k
√
1− V/E, to get

T =

[
1 +

V 2

4E(E − V )
sin2

(a
~

√
2m(E − V )

)]−1
, (E ≥ V ). (6.6.32)

As a check, if V = 0, then there is no barrier, and T = 1 and R = 0. In the high-energy limit,

E ≫ V gives T ≈ 1, and the barrier is almost transparent, as the potential is too weak to have
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much effect on the incident particles. It is perhaps more surprising that even if V and E are

comparable, we also get T = 1 whenever sin(k′a) = 0, which occurs if k′ = nπ/a for any integer

n. This shows that the barrier is transparent to the incident mono-energetic particle beam if its

width a is equal to an integer times half of the de Broglie wavelength 2π/k′ inside the barrier.

The discrete energies at which this occurs, called scattering resonances, are

E = En + V, En =
~
2π2n2

2ma2
, (n = 1, 2, 3, . . .). (6.6.33)

These En coincide with the energy eigenvalues for a particle in a box of width a, but with walls

of infinite potential height, as found in section 6.4. Finally, note that if E ≈ V , then we have

sin2
(
a
√

2m(E − V )/~
)
≈ 2a2m(E − V )/~2, so

T ≈
(
1 +

mV a2

2~2

)−1
, (E ≈ V ). (6.6.34)

This is the transmission coefficient for the case that classical transmission past the barrier is

just barely possible; for ~→∞ it approaches 1.

Now we turn to the case that E < V , so that classically the particle would not be expected

to make it past the barrier. Then, within the barrier region III, we have instead of eq. (6.6.24),

ψIII(x) = De−κx + Feκx, (6.6.35)

where

κ =
√
2m(V − E)/~. (6.6.36)

All of the subsequent algebra is the same, but with k′ → iκ, so that the sine function is replaced

by a hyperbolic sine, and

T =

[
1 +

V 2

4E(V −E) sinh
2
(a
~

√
2m(V −E)

)]−1
, (E ≤ V ). (6.6.37)

In this case, T < 1 always, but it is never 0. This is an example of quantum tunneling.

Classically, there would be no transmission at all, but the Schrödinger equation gives a non-zero

probability for the particle to enter the classically forbidden region and emerge on the right side

of the barrier. For E ≪ V , one finds that T → 0; the transmission due to tunneling becomes

exponentially small in the limit of an incident energy much smaller than the barrier potential

height. The results for the transmission coefficient T are shown as a function of the incident

particle energy E in Figure 6.6.3, for two different values of the barrier height V .

So far we have assumed that the potential barrier height in Figure 6.6.2 is positive, with

V > 0. Now let us consider the case of scattering from a potential well, so that V < 0 in
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Figure 6.6.3: Transmission ratio T for scattering from a one-dimensional rectangular barrier
of width a and height V = 5~2/ma2 (left) or V = 50~2/ma2 (right), as a function of the
energy E of the incident particles of mass m. For E/V < 1, the transmission is classically
forbidden, and the non-zero T is an example of quantum tunneling. For E/V > 1, the
barrier is perfectly transparent if its width is an integer multiple of half of the particle’s de
Broglie wavelength inside the barrier. Transparency also occurs in the limit E ≫ V .

eq. (6.6.22). In that case, all of the same algebra goes through as before, with V = −|V |. So,

we have

T =

[
1 +

V 2

4E(E + |V |) sin
2
(a
~

√
2m(E + |V |)

)]−1
, (E > 0 > V ). (6.6.38)

Classically, there would never be reflection, as the particle incident from the left would have

enough momentum and energy to follow a trajectory that takes it ineluctably to x = +∞. The

prediction of quantum mechanics in the low-energy limit is very different, as eq. (6.6.38) gives

T → 0 for E → 0. In the high-energy limit, one finds T → 1 for E →∞, in agreement with the

classical expectation. Just as we found for V > 0, there are scattering resonances that occur

when E = En−|V | where En = ~
2π2n2/2ma2 are the binding energies of bound states in a box

(with walls at infinite potential) of width a. The results for the transmission coefficient T are

shown as a function of the incident particle energy E in Figure 6.6.4, for two different values of

the well depth |V |. For larger negative V , the resonance energies are more sharply defined.

More generally, including in three-dimensional problems, an attractive potential can become

almost transparent to scattering for certain resonance energies, which are determined by the

geometry of the potential and the de Broglie wavelengths of the incident particles. This phe-

nomenon is known as the Ramsauer–Townsend effect, as it was first observed independently

by Carl Ramsauer and John S. Townsend in 1921, before its subsequent explanation by quantum

mechanics, in the scattering of electrons from noble gas atoms Ar, Kr, and Xe. The qualitative
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Figure 6.6.4: Transmission ratio T for scattering from a one-dimensional well of width a and
V = −50~2/ma2 (left) or V = −5 × 104 ~2/ma2 (right). In the very low energy limit, the
particles are entirely reflected. Transparency occurs in the limit of large E, and also when E
is equal to a resonance energy, given by the eigenvalues En = ~2π2n2

2ma2
of a particle confined to a

box of width a.

explanation for this is that close to the positively charged nucleus, the scattering electrons see a

spherically symmetric attractive potential well that is cut off at larger distances by the screening

of the nuclear charge due to the atomic electrons. This geometry leads to a strong suppression

of the scattering cross-section, corresponding to near transparency for incident electron energies

E ≈ 0.7 eV. The preceding results for the first peak in T in the one-dimensional well scattering

problem with large negative V are a rough qualitative model for this phenomenon.

6.7 Particle acted on by a constant force

Consider the problem of a particle acted on by a constant force. (For example, this could be a

charged particle in a uniform electric field.) Let us take the force to have magnitude f , and to

point in the negative x direction, so that the classical potential energy is V = fx. We will treat

this as a one-dimensional problem; restoring the effects of the y and z degrees of freedom just

adds a constant to the energy. Our Hamiltonian operator is therefore

H =
P 2

2m
+ fX. (6.7.1)

Our goal is to find the stationary states of this one-dimensional problem.

This problem is much easier to solve by starting in the momentum representation rather

than the position representation. To do it, act with 〈p| on the time-independent Schrödinger

equation H |ψE〉 = E |ψE〉. According to the momentum-representation rules |ψE〉 → ψ̃E(p) and
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P → p and X → i~d/dp, as in Table 2.8.1, one obtains the first-order differential equation
(
p2

2m
+ i~f

d

dp
− E

)
ψ̃E(p) = 0, (6.7.2)

which can be rearranged into

d

dp
ln
(
ψ̃E(p)

)
=

i

~f

(
p2

2m
− E

)
. (6.7.3)

Integrating both sides, and then exponentiating, gives the solution, for any real energy E,

ψ̃E(p) = ψ̃E(0) exp

[
i

~f

(
p3

6m
− Ep

)]
, (6.7.4)

where the arbitrary normalization factor ψ̃E(0) arises as the constant of integration.

Let us choose to fix the normalization factor so as to satisfy the Dirac orthonormality con-

dition with respect to energy. To that end, consider

〈ψE′|ψE〉 =
∫ ∞

−∞
dx ψ∗E′(x)ψE(x) =

∫ ∞

−∞
dp ψ̃∗E′(p) ψ̃E(p). (6.7.5)

Using eq. (6.7.4), the last expression can be rewritten as

ψ̃∗E′(0)ψ̃E(0)

∫ ∞

−∞
dp exp

[
ip

~f
(E ′ −E)

]
, (6.7.6)

where the p3 terms in the exponential have conveniently canceled. The integral can be evaluated

in terms of a Dirac delta function using eq. (2.2.20), giving

〈ψE′|ψE〉 = ψ̃∗E′(0)ψ̃E(0) 2π~f δ(E
′ − E). (6.7.7)

We now see that to achieve Dirac orthonormality of the energy eigenstates, 〈ψE′|ψE〉 = δ(E ′−E),
we should choose the normalization ψ̃E(0) = 1/

√
2π~f .

Having successfully found the momentum wavefunction, we can get the position wavefunction

by taking the inverse Fourier transform. Applying eq. (2.8.42),

ψE(x) =
1√
2π~

∫ ∞

−∞
dp eipx/~ ψ̃E(p) =

1

π~
√
f

∫ ∞

0

dp cos

(
1

~f

[
p3

6m
− Ep+ fxp

])
. (6.7.8)

The integral is not trivial, but can be put into a standard form by defining a dimensionless inte-

gration variable s = p/(2~mf)1/3 and a shifted and rescaled dimensionless position coordinate

y =

(
2mf

~2

)1/3 (
x−E/f

)
. (6.7.9)

The resulting integral over s is proportional to the Airy function, defined by

Ai(y) =
1

π

∫ ∞

0

ds cos(sy + s3/3). (6.7.10)
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Figure 6.7.1: The Airy function Ai(y),
proportional to the position wavefunction
for a particle in a linear potential with
classical allowed region y < 0, forbidden
region y > 0, and turning point y = 0.

This improper integral can be shown to converge, in the sense that it can be defined more

formally either as Ai(y) = lim
N→∞

1
π

∫ N
0
ds cos(sy + s3/3), or by means of a convergence factor as

Ai(y) = lim
ǫ→0

1
π

∫∞
0
ds e−ǫs cos(sy + s3/3). The Airy function is the solution bounded at y =∞ of

the Airy differential equation

(
d2

dy2
− y
)
Ai(y) = 0. (6.7.11)

It is named for George B. Airy, who first used it to describe optical caustics (like rainbows).

The final result for the position wavefunction of the stationary state with energy E is

ψE(x) =

(
2m

~2
√
f

)1/3

Ai(y). (6.7.12)

The point y = 0 (also known as x = E/f) is the classical turning point. This means that a

classical particle of energy E coming from the left will follow a trajectory confined to y < 0,

because it turns around at y = 0 where the momentum vanishes. The quantum wavefunction

we have found can be thought of as a special kind of scattering problem in which an incident

particle is always reflected, with T = 0 and R = 1.

The Airy function is depicted in Figure 6.7.1. It decreases rapidly in the classically forbidden

region y > 0, with an approximation for large positive y,

Ai(y) ≈ 1

2
√
πy1/4

exp

(
−2
3
y3/2

)
, (y ≫ 0). (6.7.13)

In the classically allowed region, it instead oscillates, but with a wavelength and amplitude that

both decrease for larger −y. The asymptotic form for large negative y is

Ai(y) ≈ 1√
π(−y)1/4 sin

(
2

3
(−y)3/2 + π

4

)
, (y ≪ 0). (6.7.14)
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The approximate values of the first four zeros of Ai(y) and its first derivative are

y ≈ −2.33811, −4.08795, −5.52056, −6.78671, . . . [zeros of Ai(y)], (6.7.15)

y ≈ −1.01879, −3.24820, −4.82010, −6.16331, . . . [zeros of Ai′(y)]. (6.7.16)

The solution that we have found is useful for understanding the tunneling penetration of a

particle into a classically forbidden region in which the potential grows linearly, for example a

charged particle confined by a constant electric field. The form of the exponential fall of the

wavefunction is as given in eq. (6.7.13). Of course, this solution is only an idealization, because

in reality the potential energy is always bounded from above. However, if the cutoff of the

potential is far in the forbidden region, then this makes little difference.

A common practical application is to stitch the solutions of the Airy differential equation,

including the orthogonal solution Bi(y) that is not bounded as y → ∞, onto other solutions

associated with other potentials in other regions, by matching the wavefunction (and its first

derivative, if the potential is finite). For example, this is used in one approach to the WKB

approximation method, named for Gregor Wentzel, Hendrik Kramers, and Léon Brillouin, which

is discussed in other books.

6.8 Exercises

Exercise 6.1. A particle of mass m moves in 1 dimension in the presence of an attractive

delta-function potential V (x) = −aδ(x), where a is a positive constant.

(a) Show that there is always exactly one bound state solution, with energy E = −ma2/2~2,

and obtain its normalized position and momentum wavefunctions ψ(x) and ψ̃(p).

(b) For the bound state, sketch ψ(x), and compute 〈X〉, 〈X2〉, and ∆X .

(c) For the bound state, sketch ψ̃(p), and compute 〈P 〉, 〈P 2〉, and ∆P .

(d) What is (∆X)(∆P ) ? How does it compare to the result for a Gaussian wavefunction?

Exercise 6.2. For the particle in a 1-d box of length L discussed in section 6.4, consider the

wavefunction ψn(x) for each energy level n.

(a) Find the probability that the particle will be found within a distance L/4 of the center of

the box. (Your answer should contain no trigonometric functions, and may have a different form

for even and odd n.) For which n is this probability largest, and for which is it smallest?

(b) Find the uncertainties ∆X and ∆P for each energy level n. Show that their product is

always consistent with the uncertainty principle.

Exercise 6.3. Consider a particle of massmmoving in a potential that has a power-law behavior

V (x) = (x/a)nV0 at large positive x, where V0, a, and n are positive constants. Show that the
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wavefunction for a stationary state falls off at large x like ψ ∼ N exp (−c(x/a)ν), where c and
ν are constants that you will find in terms of the quantities ~, m, V0, a, and n.

Exercise 6.4. Consider scattering of particles with mass m and energy E from a potential

V (x) = V0δ(x/a), where a is a length scale and V0 is a constant potential energy.

(a) Find the transmission and reflection coefficients T and R by matching stationary-state

wavefunctions at x = 0.

(b) Check your result for T by comparing to the behavior of eq. (6.6.37) for small a.

Exercise 6.5. Consider a particle of mass m moving in one dimension in a potential

V (x) = −aV0[δ(x− a) + δ(x+ a)], (6.8.1)

where a > 0 and V0 > 0. (Note that V0 has units of energy.)

(a) What is the form of the wave function for a bound stationary state with even parity?

Normalize your answer so that ψ(x) = e−κx for large positive x.

(b) Find an equation that determines the energies for even-parity bound states, and determine

graphically how many such states there are. [Hint: the equation can be written in the form

κa = (polynomial in e−κa). Sketch the shape of the right-hand side as a function of κa.]

(c) Repeat parts (a) and (b) for odd-parity bound states. For what values of V0 are there no

such states? [Hint: this time your equation should have the form κa = (polynomial in e−κa).

Sketch the right-hand side, and consider its slope at κa = 0.]

(d) Solve for the even-parity bound state energy analytically in the limit of V0 ≪ ~
2/ma2.

(e) Find the even- and odd-parity bound-state energies in the limit V0 ≫ ~
2/ma2. (They are

equal to each other in that limit.)

Exercise 6.6. For the potential in Exercise 6.5, let us look for stationary scattering states with

E = ~
2k2/2m > 0 and wavefunctions of the form

ψ(x) =






eikx +Be−ikx (x ≤ −a)
Deikx + Fe−ikx (−a ≤ x ≤ a)

Ceikx (x ≥ a).

(6.8.2)

(a) Derive four equations that relate the coefficients B, C, D, and F . Simplify the notation for

your work below by writing them in terms of the dimensionless quantity n = maV0/~
2k.

(b) Solve for C, and use it to find the transmission coefficient T . Some partial results: C =

[1 − iN1n + n2(eiN2ka − N3)]
−1, where N1, N2, and N3 are certain positive integers that you

will discover, and T = [P1 + P2 cos(N2ka) + P3 sin(N2ka)]
−1 where P1, P2, and P3 are certain

polynomials in n with integer coefficients.

(c) Check that your transmission coefficient has the expected behavior when the energy E

becomes very large. How does it behave when E is very small?
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Exercise 6.7. Consider a quantum mechanical “bouncing ball”, consisting of a particle of mass

m moving only vertically in the potential

V (x) =
{ ∞ (for x < 0),
mgx (for x > 0),

(6.8.3)

where x is the height above an impenetrable surface at x = 0, and g is the acceleration due to

gravity.

(a) Find the stationary-state wavefunctions ψn(x) and energies En, in terms of the Airy function

Ai(y) and its zeros yn for n = 1, 2, 3, . . ..

(b) For the ground state, estimate the numerical energy and characteristic height, defined as the

point where ψ1(x) is maximum, when m = 1 gram and when m = 1.7× 10−24 grams (the mass

of a neutron or proton or a hydrogen atom). Use eqs. (6.7.15) and (6.7.16) and g = 9.8 m/s2.
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7 The harmonic oscillator

7.1 The unreasonable effectiveness of the harmonic oscillator

A harmonic oscillator is any system in which the restoring force is proportional to the displace-

ment from equilibrium. Consider the case of a particle of mass m moving in one dimension. In

terms of energy, the classical harmonic oscillator is defined by

kinetic energy =
p2

2m
, potential energy = V (x) =

1

2
mω2x2, (7.1.1)

where the angular frequency ω has units of 1/time and parameterizes the strength of the restoring

force, according to

force = −∂V
∂x

= −mω2x. (7.1.2)

The classical Hamiltonian is the sum of the kinetic and potential energies,

H =
p2

2m
+

1

2
mω2x2, (7.1.3)

which leads to the phase-space equations of motion

ẋ =
∂H

∂p
= p/m, ṗ = −∂H

∂x
= −mω2x, (7.1.4)

with the general solution

x(t) = x0 cos(ωt+ φ0), p(t) = −mωx0 sin(ωt+ φ0), (7.1.5)

where x0 and φ0 are constants determined by the initial conditions.

A wise theorist, Sidney Coleman, was fond of remarking that the job of a physicist consists

of “treating the harmonic oscillator in ever-increasing levels of abstraction”. This may be a

slight exaggeration, but there are at least three reasons why the quantum harmonic oscillator is

particularly worthy of study.

First, the harmonic oscillator is a problem that can actually be solved exactly in closed form

in quantum mechanics. Most problems in quantum mechanics do not have this property.

Second, it arises quite often as a good approximation to more complicated problems. To

understand this, consider a more general potential V (x), which we assume to have a local

minimum at some point x = x0, and to be smooth in a neighborhood of that point. Then we

can expand it in a Taylor series for small x− x0,

V (x) = V (x0) + (x− x0)
dV

dx

∣∣∣∣
x=x0

+
1

2
(x− x0)2

d2V

dx2

∣∣∣∣
x=x0

+
1

6
(x− x0)3

d3V

dx3

∣∣∣∣
x=x0

+ · · · . (7.1.6)
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The first term is a constant, and so can be absorbed into a redefinition of the zero point of energy;

as a constant part of the Hamiltonian, it gives the same overall phase to all states, and therefore

can be ignored. The second term is zero, since by definition dV/dx vanishes at a minimum of

the potential. Thus, if the terms in the expansion are getting smaller, the leading behavior is

captured by the quadratic term. After redefining coordinates according to x→ x+ x0, we can

hope to approximate

V (x) ≈ x2

2

(
d2V

dx2

∣∣∣∣
x=0

)
(7.1.7)

where the constant quantity in parentheses is defined to be mω2.

The same argument generalizes to a particle moving in a three dimensional potential. Let

us suppose that the x, y, z coordinates have already been redefined so that the minimum of the

potential is at the origin (x, y, z) = (0, 0, 0). Then we have

V (x, y, z) = V (0, 0, 0) +
1

2
xaxbVab + · · · , (7.1.8)

where by convention repeated indices a, b, . . . are implicitly summed over 1, 2, 3, with x1 = x,

x2 = y, x3 = z, and

Vab =
∂2V

∂xa∂xb

∣∣∣∣
xc=0

(7.1.9)

is a real symmetric matrix. A linear term involving ∂V
∂xa

∣∣
xb=0

vanishes because we are at the

minimum of the potential. A theorem in linear algebra says that a real symmetric matrix can

always be diagonalized by some orthogonal matrix O, according to

V = OT Ṽ O, (7.1.10)

where Ṽ = diag(Ṽ1, Ṽ2, Ṽ3), so that

Vab = OcaṼcOcb, (7.1.11)

and the orthogonality condition on O is written as

OacObc = OcaOcb = δab. (7.1.12)

Dropping the constant V (0, 0, 0), and assuming the higher-order terms in the expansion can be

neglected, the quantum mechanical Hamiltonian can be approximated as

H =
1

2m
(P 2

x + P 2
y + P 2

z ) +
1

2
OcaṼcOcbXaXb. (7.1.13)
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Now we can do a change of variables, by defining

X̃c = OcbXb, P̃c = OcbPb. (7.1.14)

A key feature of this change of variables is that X̃a and P̃a have canonical commutators, since

[X̃c, P̃d] = OcbOda[Xb, Pa] = i~OcaOda = i~δcd, (7.1.15)

where the second equality used the canonical commutation relation for the original variables,

[Xb, Pa] = i~δab, and eq. (7.1.12) was used to get the last equality. Also,

P̃aP̃a = OcaPaOcbPb = δabPaPb = PaPa = P 2
x + P 2

y + P 2
z . (7.1.16)

Therefore, the Hamiltonian in terms of the new canonical variables is

H =

3∑

a=1

(
P̃ 2
a

2m
+

1

2
mω2

aX̃
2
a

)
, (7.1.17)

where mω2
a = Ṽa. This shows that H is the sum of three independent harmonic oscillator Hamil-

tonians, with possibly different natural frequencies. The general case is called the anisotropic

three-dimensional harmonic oscillator. The special case ωx = ωy = ωz is called the isotropic

three-dimensional harmonic oscillator; we will study it in more detail later in section 10.5, using

its spherical coordinate wavefunction.

The preceding illustrates why many systems can be treated as if they were, effectively,

systems of harmonic oscillators, with various higher-order effects that one may hope to either

neglect or treat as perturbations. Of course, there are some important problems that are not

approximated well by the harmonic oscillator. The free particle has no restoring force at all.

The potential of a particle in a box or a square well is not close to its Taylor series expansion.

The hydrogen atom has a potential with minimum −∞ at r = 0, and again the Taylor series

expansion fails. Fortunately, these three cases are also exactly solvable, and one can say that

together with the harmonic oscillator they are the four important examples of potential problems

in nonrelativistic quantum mechanics that should be familiar to a well-educated physicist.

A third reason for the importance of the harmonic oscillator is that, as we will see, it has the

unique property of equally spaced energy levels. This means that its operator algebra is suited

for describing multiple energy excitations that can be added independently of each other. This

turns out to have special relevance in quantum field theories, where free-particle modes with

different momenta can be described using an infinite collection of harmonic oscillators, with

couplings between them that describe particle interactions.

The energy eigenvalue problem of a harmonic oscillator in three dimensions can be solved as

the tensor product of three one-dimensional harmonic oscillators. In the following two sections,
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we will use two very different methods to derive the solutions of the one-dimensional harmonic

oscillator with Hamiltonian

H =
P 2

2m
+

1

2
mω2X2. (7.1.18)

But first, we make a general observation: the eigenstates of this H must all have positive

energy. This should be intuitively plausible, since both contributions to the classical energy are

manifestly positive. To prove it formally in the quantum theory, note that in a stationary state

|ψ〉 with energy E,

E = 〈ψ|H|ψ〉 =
1

2m
〈ψ|P 2|ψ〉+ 1

2
mω2 〈ψ|X2|ψ〉 (7.1.19)

=
1

2m
〈Pψ|Pψ〉+ 1

2
mω2 〈Xψ|Xψ〉 > 0. (7.1.20)

Here we have applied the fact that P and X are Hermitian, so that for example 〈ψ|P = 〈P †ψ| =
〈Pψ|, and then used the positivity of the inner product for non-null kets.

7.2 Position and momentum representations: the differential equa-

tions approach

In this section, we will solve for the energy eigenstates of the harmonic oscillator in the position

representation. This involves solving a differential equation for the wavefunction. It must be

admitted that this procedure is less elegant than the algebraic (energy representation) approach

given in the following section. So why do we bother with it? Besides the goal of building

character in the student, the differential equation method is important to learn because of its

greater applicability; it can be used to solve the eigenvalue problem for many other Hamiltonians

for which algebraic approaches are not available.

The position-representation version of the time-independent Schrödinger equation for the

harmonic oscillator H |ψ〉 = E |ψ〉 is

〈x|
(
P 2

2m
+

1

2
mω2X2

)
|ψ〉 = E 〈x|ψ〉 , (7.2.1)

or, in terms of the wavefunction ψ(x) = 〈x|ψ〉, after using X → x and P → −i~d/dx,

d2ψ

dx2
+

2m

~2

(
E − 1

2
mω2x2

)
ψ = 0. (7.2.2)

It is convenient to introduce dimensionless variables corresponding to the position and energy,

y = x/b, E = E/~ω, (7.2.3)
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where we have defined a constant length scale

b =
√
~/mω. (7.2.4)

In terms of y and E , eq. (7.2.2) becomes

d2ψ

dy2
+ (2E − y2)ψ = 0, (7.2.5)

which we will now solve as an eigenvalue problem for E and ψ(y). Since H commutes with the

parity operator Π, our solutions will be simultaneous eigenstates of energy and parity.

To help us further understand the character of the solutions, first consider the behavior at

large |y|, where we can neglect the constant E compared to y2, so that d2ψ/dy2 ≈ y2ψ. Let us

try a solution of the form

ψ = Ayne−αy
2

, (7.2.6)

where n and α are constants. Then

dψ

dy
= A

(
nyn−1 − 2αyn+1

)
e−αy

2 ≈ −2αyψ, (7.2.7)

where at large |y| the first term in parentheses is neglected compared to the second. Repeating

this yields

d2ψ

dy2
≈ (2αy)2ψ. (7.2.8)

Therefore the guess eq. (7.2.6) indeed works for large y, with α = ±1/2, regardless of the value

of the constant n. We can reject α = −1/2 on physical grounds, since the wavefunction would

blow up at large |y| and would not be normalizable. A purported wavefunction that grows

exponentially with |y| must be unphysical because it would imply that no matter how far from

the origin you look, the probability that the particle would be found farther way would be

infinitely larger.

This motivates trying a solution of the form

ψ = u(y) e−y
2/2, with u =

∞∑

j=0

cjy
j, (7.2.9)

where the cj are constants to be determined. No negative powers are included in this guess,

because we expect that ψ will be well-behaved as y → 0, where the potential smoothly vanishes.

Plugging eq. (7.2.9) into eq. (7.2.5) gives

∞∑

j=0

cj
[
j(j − 1)yj−2 + (2E − 1− 2j)yj

]
= 0. (7.2.10)
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Now we use a trick on the first term. Since it vanishes for j = 0 and j = 1, we rewrite it as
∑∞

j=2 cjj(j − 1)yj−2, and then let j = k + 2 so that it becomes
∑∞

k=0 ck+2(k + 2)(k + 1)yk, and

finally rename k → j, so that it becomes
∑∞

j=0 cj(j+2)(j+1)yj. Now it can be nicely reunited

with the second term, combining like powers of y to give

∞∑

j=0

yj
[
cj+2(j + 1)(j + 2) + cj(2E − 1− 2j)

]
= 0. (7.2.11)

Because each power yj in the sum is independent, their coefficients must vanish separately for

each j, so we have a recurrence relation,

cj+2 =
2j + 1− 2E
(j + 1)(j + 2)

cj . (7.2.12)

This shows that we only need to know two constants c0 and c1, because if c0 is known, then so

are c2, c4, c6, . . . , and if c1 is known, then so are c3, c5, c7, etc. So, the solution is

u(y) = c0

[
1 +

(
1− 2E

2

)
y2 +

(
1− 2E

2

)(
5− 2E
12

)
y4 + · · ·

]

+c1

[
y +

(
3− 2E

6

)
y3 +

(
3− 2E

6

)(
7− 2E
20

)
y5 + · · ·

]
, (7.2.13)

which, naively, appears to be an infinite series.

However, there is something horribly wrong with the solution if it is really an infinite series.

For sufficiently large |y|, the series will be dominated by terms with large powers j, where

eq. (7.2.12) appears to give

cj+2

cj
≈ 2

j + E + 5/2
, (7.2.14)

up to contributions to the denominator that vanish as j →∞. If arbitrarily large powers j are

present, the function u(y) will necessarily grow too fast as |y| → ∞. To see this, consider for

comparison the function f(y) = ypey
2

, with series expansion

f(y) =

∞∑

k=0

y2k+p/k!. (7.2.15)

Now, writing j = 2k+ p, this series has terms Cjy
j where Cj+2/Cj = 1/(k+1) = 2/(j − p+2).

Comparing to eq. (7.2.14), we see that if u(y) is really a non-terminating series in powers of y,

then u(y) ∼ ypey
2

for p = −E − 1/2, and the wavefunction behaves for large |y| like

ψ(y) ∼ (ypey
2

)e−y
2/2 = ypey

2/2. (7.2.16)

These are recognized as the unphysical solutions with α = −1/2 that we had already rejected.
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For a sensible physical solution, there is only one way out: the series for u(y) must terminate.

To find a basis of such solutions, first consider c0 6= 0 with c1 = 0, so that only even-index

coefficients are present. If one of them vanishes, c2k = 0 for some k, then all higher coefficients

cj with j > 2k will also vanish, according to the recurrence relation. Likewise, we can take

c1 6= 0 with c0 = 0, so that only odd-index coefficients are present. If one of them vanishes,

c2k+1 = 0 for some k, then all cj with j > 2k + 1 will also vanish.

In either case, the condition for the series in u(y) to terminate, yielding a physical solution,

is that the numerator in the recurrence relation eq. (7.2.12) must vanish for some non-negative

integer j = n. Therefore, the allowed energy eigenvalues are E = n + 1/2, or

En = (n + 1/2)~ω, (n = 0, 1, 2, . . .). (7.2.17)

It follows that u(y) is a polynomial of degree n in y, and contains only even (odd) powers of

y if n is even (odd). For any given n, they can be constructed from the recurrence relation,

eq. (7.2.12), up to an overall multiplicative constant given by either c0 or c1. The resulting

u(y) = Hn(y) for a given n are called Hermite polynomials. From eqs. (7.2.5) and (7.2.9)

with E = n+ 1/2, they satisfy the differential equation
(
d2

dy2
− 2y

d

dy
+ 2n

)
Hn = 0. (7.2.18)

A general expression for the Hermite polynomials is

Hn(y) = ey
2/2

(
y − d

dy

)n
e−y

2/2. (7.2.19)

This can be verified by plugging it into the differential equation (7.2.18). Here we are relying

on the fact that stationary bound states in 1-dimensional problems are non-degenerate, as we

found at the end of section 6.3, and therefore unique (up to a normalization constant) for a

given n. An even nicer derivation of eq. (7.2.19) will be found near the end of the section 7.3.

The first few Hermite polynomials are

H0(y) = 1, H1(y) = 2y, (7.2.20)

H2(y) = −2 + 4y2, H3(y) = −12y + 8y3, (7.2.21)

H4(y) = 12− 48y2 + 16y4, H5(y) = 120y − 160y3 + 32y5. (7.2.22)

Using eq. (7.2.19), one can establish the identities

Hn(−y) = (−1)nHn(y), (7.2.23)

d

dy
Hn(y) = 2nHn−1(y), (7.2.24)

Hn+1(y) = 2yHn(y)− 2nHn−1(y). (7.2.25)
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It is useful to define the function F (y, t) =
∑∞

n=0
tn

n!
Hn(y), which can be evaluated as follows.

First, using eq. (7.2.24), one finds the differential equation ∂F/∂y = 2tF , which has the solution

F (t, y) = F (t, 0)e2ty. Then using eq. (7.2.25), one finds ∂F/∂t = 2(y − t)F , which yields

∂F (t, 0)/∂t = −2tF (t, 0), which has the solution F (t, 0) = F (0, 0)e−t
2

. Since F (0, 0) = H0(0) =

1, we arrive at the generating function for Hermite polynomials,

F (y, t) =

∞∑

n=0

tn

n!
Hn(y) = exp(2yt− t2). (7.2.26)

One use of the generating function is to find the orthonormality properties of the Hermite

polynomials. Consider the product of two generating functions with e−y
2

,

e−y
2

∞∑

n=0

tn

n!
Hn(y)

∞∑

m=0

sm

m!
Hm(y) = e−y

2+2y(t+s)−s2−t2 . (7.2.27)

Now integrating both sides with respect to y, we get

∞∑

n=0

∞∑

m=0

tn

n!

sm

m!

(∫ ∞

−∞
dy e−y

2

Hn(y)Hm(y)

)
=
√
πe2ts (7.2.28)

The right side can be expanded as

√
πe2ts =

√
π

∞∑

n=0

2ntnsn

n!
=
√
π

∞∑

n=0

∞∑

m=0

δnm
2ntnsm

n!
(7.2.29)

Comparing the coefficients of tnsm, we arrive at the orthonormality condition
∫ ∞

−∞
dy e−y

2

Hn(y)Hm(y) = δnm
√
π 2n n!. (7.2.30)

The orthonormal energy basis wavefunctions for the harmonic oscillator can now be written

ψn(x) =
(mω
π~

)1/4√ 1

2nn!
Hn(y)e

−y2/2, (7.2.31)

where y = x/b = x
√
mω/~, and the multiplicative constant has been chosen so that

∫ ∞

−∞
dx
(
ψn(x)

)∗
ψm(x) = δnm. (7.2.32)

(Actually, the wavefunctions are all real, so the complex conjugation does nothing in this case.)

In particular, the normalized ground state wavefunction is a pure Gaussian,

ψ0(x) =
(mω
π~

)1/4
exp(−mωx2/2~). (7.2.33)

The wavefunctions ψn and the corresponding probability densities |ψn|2 are shown for n =

0, 1, 2, 3, 4, and 16 in Figure 7.2.1.
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Figure 7.2.1: Harmonic oscillator stationary-state wavefunctions ψn in units of (mω/~)1/4 (left
column) and probability densities |ψn|2 in units of

√
mω/~ (right column) for n = 0, 1, 2, 3, 4,

and 16, as functions of y = x
√
mω/~.
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The wavefunctions are related to the energy eigenstate kets |n〉 of the harmonic oscillator by

〈x|n〉 = ψn(x), (7.2.34)

with

H|n〉 = ~ω(n+ 1/2)|n〉. (7.2.35)

This shows that the energy levels of the one-dimensional harmonic oscillator are equally spaced

and non-degenerate, with a quantum of energy given by ∆E = ~ω. There is also a zero-point

energy of the ground state, E0 = ~ω/2, in agreement with our earlier proof that the energies

had to be positive. From eq. (7.2.23), the states with even n have even parity, and those with

odd n have odd parity.

Another interesting relation satisfied by the harmonic oscillator wavefunctions, and thus the

Hermite polynomials, is

∞∑

n=0

ψn(x
′)ψn(x) = δ(x− x′). (7.2.36)

This can be derived immediately from 〈x|x′〉 = δ(x− x′) by applying the completeness relation
∑∞

n=0 |n〉 〈n| = 1.

Having found the position wavefunctions for the harmonic oscillator, we now turn to the

momentum representation. One way to evaluate the momentum wavefunctions of the energy

eigenstates |n〉 is to use the completeness relation:

ψ̃n(p) = 〈p|n〉 =
∫ ∞

−∞
dx 〈p|x〉 〈x|n〉 =

∫ ∞

−∞
dx

1√
2π~

e−ipx/~ ψn(x), (7.2.37)

but it may not be immediately obvious how to evaluate the integral for general n. Fortunately,

we can gain some insight by noting that the Hamiltonian in eq. (7.1.18) has the very special

property of being invariant under the simultaneous substitutions

X ↔ P, mω ↔ 1

mω
. (7.2.38)

Since the energy eigenstates are non-degenerate, their momentum wavefunctions must be given,

up to a phase eiϕn to be determined, by making these same substitutions in eq. (7.2.31). There-

fore, defining a dimensionless variable proportional to momentum,

v = p/
√
~ωm, (7.2.39)

it must be that

ψ̃n(p) = eiϕn
1

(π~ωm)1/4

√
1

2nn!
Hn(v)e

−v2/2. (7.2.40)
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The phase factor eiϕn must be chosen consistently with the phase convention of the ket |n〉 that
has already been fixed by eqs. (7.2.31) and (7.2.34). For the lowest few n = 0, 1, 2, 3, . . ., you

can do the integral in eq. (7.2.37) to check that eq. (7.2.40) is indeed true with

eiϕn = (−i)n, (7.2.41)

and we will prove it for general n at the end of the next section.

7.3 Energy representation: the algebraic approach

In this section, we will use a different, and more elegant, method to solve for the stationary

states of the harmonic oscillator. In this approach, due to Dirac, we use algebraic methods

rather than differential equations, working directly in the energy basis.

We begin by defining dimensionless creation and annihilation operators (also known as raising

and lowering or destruction operators, or together as ladder operators) by

a =

√
mω

2~
X + i

1√
2~ωm

P, (7.3.1)

a† =

√
mω

2~
X − i 1√

2~ωm
P. (7.3.2)

As the notation indicates, these are not Hermitian operators and so are not observables, but

rather are Hermitian adjoints of each other. Equivalently, one can write the relationship as

X =

√
~

2mω
(a† + a), (7.3.3)

P = i

√
~ωm

2
(a† − a). (7.3.4)

Using the canonical commutation relations [X,P ] = i~, we find that

[a, a†] = 1. (7.3.5)

We also can compute

a†a =
mω

2~
X2 +

1

2~ωm
P 2 +

i

2~
[X,P ] = H/~ω − 1/2,

so that the Hamiltonian is simply‡

H = ~ω(a†a+ 1/2). (7.3.6)

‡One could also write the equivalent form H = ~ω(a†a + aa†)/2. In choosing to write eq. (7.3.6), we have
followed the systematic protocol known as normal ordering. To “normal order” an operator means to rewrite
it by moving all a operators to the right and all a† operators to the left, using aa† = a†a+1 (which is equivalent
to the commutation relation) as many times as necessary.
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Using eq. (7.3.5), one then obtains

[H, a] = −~ω a, [H, a†] = ~ω a†. (7.3.7)

Now suppose that we have an energy eigenstate |E〉, with energy eigenvalue E. Consider

the Hamiltonian acting on the state a†|E〉:

H
(
a†|E〉

)
= a†H|E〉+ [H, a†]|E〉 = (E + ~ω)a†|E〉. (7.3.8)

This shows that a†|E〉 is an eigenstate of H with energy E + ~ω. Repeating this n times, the

state (a†)n|E〉 must be an energy eigenstate with energy E + n~ω. Similarly,

H (a|E〉) = (E − ~ω) a|E〉, (7.3.9)

so the state an|E〉 is apparently an energy eigenstate with energy E − n~ω.
Thus, naively it might appear that, given |E〉, we can construct an infinite chain of energy

eigenstates with both arbitrarily low and arbitrarily high energies,

· · · , |E−2~ω〉 , |E−~ω〉 , |E〉 , |E+~ω〉 , |E+2~ω〉 , · · · . (7.3.10)

But this cannot be true, since we proved at the end of section 7.1 that all of the energy eigenvalues

of the harmonic oscillator are positive. The only way out is that all of the kets in the chain

with negative energy are actually the null ket. Let us rename the state with lowest non-negative

energy as |0〉, where the label 0 is not the energy, but signifies that this is the ground state. It

must satisfy

a|0〉 = 0, (7.3.11)

so that all of the kets an|0〉 = 0 for n ≥ 1 are null and do not actually exist as physical states.

Since a†a|0〉 = 0, we have

(H/~ω − 1/2) |0〉 = 0, (7.3.12)

so the ground state must have E0 = ~ω/2, a result that we had also found in the previous

section using the differential equation approach.

In section 6.3, we proved that bound states in one-dimensional quantum mechanics never have

degenerate energies. This implies that there is a unique state |0〉 with E0 = ~ω/2, and unique

states with En = ~ω(n+1/2) for n = 0, 1, 2, . . ., just as we had found by the differential equations

method in eq. (7.2.17). Up to normalization, the energy eigenstates |n〉 are proportional to

(a†)n|0〉. Since they are non-degenerate eigenkets of a Hermitian operator (H), they can be

normalized to form an orthobasis,

〈k|n〉 = δnk. (7.3.13)
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Let |0〉 have norm 1. Then we can define the other orthobasis kets by recurrence, using

|n〉 = cna
†|n−1〉, (7.3.14)

where cn are normalization constants to be determined. We have

〈n|n〉 = |cn|2 〈n−1|aa†|n−1〉 = n|cn|2 〈n−1|n−1〉 , (7.3.15)

where the second equality makes use of

aa† = a†a+ 1 = H/~ω + 1/2 (7.3.16)

and then H |n−1〉 = ~ω(n−1/2) |n− 1〉. Equation (7.3.15) shows that 〈n|n〉 = 〈n−1|n−1〉 = 1

requires cn = 1/
√
n, where we have made an arbitrary choice of phase. From this, we use

eqs. (7.3.14) and (7.3.16) to deduce that

a†|n〉 =
√
n + 1 |n+1〉, (7.3.17)

a|n〉 =
√
n |n−1〉, (7.3.18)

so that a† raises the energy of the state (or creates an energy quantum), and a lowers the energy

(or destroys an energy quantum). Taking the Hermitian conjugate gives

〈n| a =
√
n+ 1 〈n+1| , (7.3.19)

〈n| a† =
√
n 〈n−1| . (7.3.20)

It follows that the matrix elements of a† and a in the energy eigenstate orthobasis are

〈k|a†|n〉 =
√
n + 1 δk,n+1, 〈k|a|n〉 =

√
n δk,n−1. (7.3.21)

Another consequence is that the nth excited state can be written in terms of n creation operators

acting on the ground state,

|n〉 = (a†)n√
n!
|0〉. (7.3.22)

The Hamiltonian is sometimes written as H = ~ω(N+1/2), where N = a†a is called the number

operator. It is clearly Hermitian, and satisfies

N |n〉 = n|n〉, (7.3.23)

so it is the observable that just measures the number of energy quanta in the state.
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The matrix elements of the position and momentum operators in the energy eigenstate basis

follow immediately from eqs. (7.3.3) and (7.3.4) using (7.3.21), with the results

〈k|X|n〉 =

√
~

2mω

(√
n+ 1 δk,n+1 +

√
n δk,n−1

)
, (7.3.24)

〈k|P |n〉 = i

√
~ωm

2

(√
n+ 1 δk,n+1 −

√
n δk,n−1

)
. (7.3.25)

In particular, their expectation values in any energy eigenstate |n〉 vanish,

〈n|X|n〉 = 0, 〈n|P |n〉 = 0. (7.3.26)

This is an example of the parity selection rule, Theorem 5.4.1, since X and P each have odd

parity. One can also compute, using eqs. (7.3.17) and (7.3.18),

X2 |n〉 =
~

2mω
(a† + a)(a† + a) |n〉

=
~

2mω

(√
(n+ 1)(n+ 2) |n+ 2〉+ (2n+ 1) |n〉+

√
n(n− 1) |n− 2〉

)
, (7.3.27)

with the consequence that

〈n|X2|n〉 = ~

mω
(n+ 1/2). (7.3.28)

In a very similar way,

〈n|P 2|n〉 = ~ωm(n+ 1/2). (7.3.29)

As a check,

〈n|H|n〉 = 1

2m
〈n|P 2|n〉+ mω2

2
〈n|X2|n〉 = ~ω(n+ 1/2), (7.3.30)

in agreement with the result for En that we found in eq. (7.2.17). Furthermore, the uncertain-

ties in position and momentum, ∆X =
√
〈n|X2|n〉 and ∆P =

√
〈n|P 2|n〉 each grow with n,

proportionally to
√
En or

√
n + 1/2.

To further illustrate the power and convenience of the algebraic method, suppose that for

some reason we needed to evaluate the matrix element 〈3|X3|2〉. We have, using eq. (7.3.3),

〈3|X3|2〉 =

(
~

2mω

)3/2

〈3|(a† + a)3|2〉 (7.3.31)

=

(
~

2mω

)3/2

〈3|
(
✚✚a
†3 + a†2a + a†aa† + aa†2 +✟✟✟a†a2 +✟✟✟aa†a +✟✟✟a2a† +��a

3
)
|2〉 . (7.3.32)

Here, we have crossed out terms that can be immediately seen to give no contribution by simply

counting quanta created and destroyed. For the first term, we start in the ket on the far right
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with 2 quanta, and create 3 more, so it is proportional to |5〉, which by orthonormality has

vanishing inner product with the bra 〈3| on the left. Likewise, the fifth, sixth, and seventh

terms cannot contribute because we start with 2 quanta and then (in various orders) create 1

more but destroy 2, resulting in a state with 1, which again has vanishing inner product with

the 3-quanta bra. And, the last term immediately vanishes because a3|2〉 = 0. The remaining

three terms do not vanish, but can be easily evaluated with nothing but simple arithmetic,

by applying eqs. (7.3.17) and (7.3.18) repeatedly. In contrast, evaluation of the same matrix

element in the position representation approach of section 7.2 would read

〈3|X3|2〉 =

∫ ∞

−∞
dx

(
mω

π~26(3!)2

)1/4

H3

(
x
√
mω/~

)
e−mωx

2/2~ x3

(
mω

π~24(2!)2

)1/4

H2

(
x
√
mω/~

)
e−mωx

2/2~. (7.3.33)

This is certainly doable, but less pleasant.

Let us now see how to connect the energy and position representations, by writing a and a†

as differential operators in the latter. In the position representation, X → x and P → −i~d/dx,
so from eqs. (7.3.1) and (7.3.2) we get

a =
1√
2

(
y +

d

dy

)
, a† =

1√
2

(
y − d

dy

)
, (7.3.34)

where y = x/b = x
√
mω/~ as before. Therefore, the condition a|0〉 = 0 gives

(
y +

d

dy

)
ψ0(y) = 0. (7.3.35)

This implies dψ0/ψ0 = −ydy, or d(lnψ0) = −d(y2/2), so that upon integration, lnψ0 = −y2/2+
lnA0, where lnA0 is a constant of integration. Thus,

ψ0(y) = A0e
−y2/2 = A0e

−mωx2/2~, (7.3.36)

in agreement with eq. (7.2.33) after fixing the normalization constant A0 = (mω/π~)1/4. Now,

combining eqs. (7.3.22) and (7.3.34), we have

ψn(x) = 〈x|n〉 = 1√
n!

[
1√
2

(
y − d

dy

)]n (mω
π~

)1/4
e−y

2/2. (7.3.37)

Comparing this with eq. (7.2.31) yields the general form for the Hermite polynomials given in

eq. (7.2.19), as promised.

The energy and momentum representations can be connected in a similar way. The momen-

tum representations are P → p and X → i~d/dp, from which one finds

a =
i√
2

(
v +

d

dv

)
, a† = − i√

2

(
v − d

dv

)
, (7.3.38)
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where v = p/
√
~ωm is the dimensionless rescaled momentum, as in eqs. (7.2.39) and(7.2.40).

Evaluating eq. (7.2.37) for the special case n = 0, we then find

ψ̃0(p) =
1

(π~ωm)1/4
e−v

2/2 (7.3.39)

for the ground state. Using eq. (7.3.38) in eq. (7.3.22), we obtain

ψ̃n(p) = 〈p|n〉 = 1√
n!

[
− i√

2

(
v − d

dv

)]n
1

(π~ωm)1/4
e−v

2/2. (7.3.40)

Now comparing to eq. (7.2.19), we obtain eq. (7.2.40) with eiϕn = (−i)n, as promised.

7.4 Coherent states of the harmonic oscillator

Consider a macroscopic harmonic oscillator of the type one might encounter in a lab experiment

in an introductory physics course, with mass m = 0.2 kg, ω = 10 radians/second, and amplitude

x0 = 0.1 meters. Classically, the energy can be obtained as the potential energy at the extremum

of the displacement, when p = 0 and x = x0, so that E = mω2x20/2 = 0.1 J. The energy quantum

associated with the oscillator is ~ω = 1.055×10−34 J. Therefore, we expect macroscopic oscillator

states to have enormous numbers of energy quanta, roughly n = E/~ω ≈ 1032 in this example.

Is the energy eigenstate |n = 1032〉 classical-like? The answer is clearly no, since in any

energy eigenstate, 〈X〉(t) = 0 and 〈P 〉(t) = 0 for all times t by the parity selection rule, while

the classical trajectory, eq. (7.1.5), involves macroscopic oscillations. We would like to find

quantum states that are approximately classical, by which we mean that 〈X〉(t) ≈ xcl(t) and

〈P 〉(t) ≈ pcl(t) should be as close as possible to the solutions in eq. (7.1.5). The states that

accomplish this are called coherent (or quasi-classical) states, and the argument just given

ensures that they cannot be energy eigenstates, or parity eigenstates.

Instead, with the wisdom of foresight, let us try kets |α〉 that are eigenstates of the lowering
operator a with eigenvalue α,

a |α〉 = α |α〉 . (7.4.1)

Since a is not Hermitian, we have no reason to expect that the allowed eigenvalues α will be

real, and indeed it will turn out to be very important that they are complex in general. For the

same reason, we also cannot expect that the set of all coherent states |α〉 for different α will

form an orthobasis or even be orthogonal, and again they are not.

To construct the coherent states that satisfy eq. (7.4.1), let us try an arbitrary linear com-

bination of energy eigenstates,

|α〉 =
∞∑

n=0

cn |n〉 , (7.4.2)
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with coefficients cn to be determined. Then,

a |α〉 =
∞∑

n=0

cna |n〉 =
∞∑

n=1

cn
√
n |n−1〉 , (7.4.3)

where in the second equality we have used eq. (7.3.18), and started the sum from n = 1 by

exploiting the fact that the n = 0 term vanishes. If we now relabel n→ n+ 1, and require that

the result

a |α〉 =
∞∑

n=0

cn+1

√
n+ 1 |n〉 (7.4.4)

is equal to α
∑∞

n=0 cn|n〉, we obtain a recurrence relation

cn+1 =
α√
n+ 1

cn. (7.4.5)

Starting with c0, we get c1 = αc0, c2 = α2c0/
√
2, etc., or in general cn = αnc0/

√
n!. Therefore,

up to normalization,

|α〉 = c0

∞∑

n=0

αn√
n!
|n〉 . (7.4.6)

To fix c0, we require 〈α|α〉 = 1, or

1 =
∞∑

m=0

∞∑

n=0

c∗0
α∗m√
m!
c0
αn√
n!
〈m|n〉 = |c0|2

∞∑

n=0

|α|2n
n!

= |c0|2e|α|
2

, (7.4.7)

where the second equality uses the orthonormality 〈m|n〉 = δnm to collapse the sum over m.

Therefore, c0 = e−|α|
2/2 (up to the usual arbitrary global phase), and the normalized coherent

state with complex eigenvalue α is

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 . (7.4.8)

Using eq. (7.3.22), this can be rewritten as

|α〉 = e−|α|
2/2

∞∑

n=0

(αa†)n

n!
|0〉 = e−|α|

2/2eαa
† |0〉 . (7.4.9)

If a harmonic oscillator is in a coherent state |α〉, and the energy is measured, all results

En = ~ω(n+ 1/2) can occur, with probabilities

Pn = |〈n|α〉|2 =
|α|2n
n!

e−|α|
2

. (7.4.10)
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These do not depend on the phase of α, and form a Poisson distribution with mean |α|2. Since

Pn =
|α|2
n
Pn−1, (7.4.11)

we see that the probability increases with n as long as n < |α|2, but decreases thereafter.

Therefore, the most probable result of an energy measurement is of order ~ω|α|2. This shows that
for a macroscopic oscillator like the one posed at the beginning of this section, |α| ∼ √n ∼ 1016

in a coherent state. The expectation value of the energy is

〈α|H|α〉 = ~ω
[
(〈α| a†)(a |α〉) + 1/2

]
= ~ω

[
(〈α|α∗)(α |α〉) + 1/2

]
=
(
|α|2 + 1

2

)
~ω, (7.4.12)

giving a similar measure of the average energy.

Next let us compute the uncertainty in the energy. First, we need

〈α|H2|α〉 = (~ω)2
[
〈α|a†aa†a|α〉+ 〈α|a†a|α〉+ 1

4
〈α|α〉

]
(7.4.13)

= (~ω)2
(
|α|4 + 2|α|2 + 1/4

)
. (7.4.14)

Therefore

∆H =

√
〈H2〉 − 〈H〉2 = ~ω|α|. (7.4.15)

This is a very small energy uncertainty compared to the energy expectation value,

∆H/〈H〉 = 1/|α| ≪ 1, (7.4.16)

since we found 1/|α| of order 10−16 in our numerical example. Thus, the energy distribution is

peaked extremely sharply about the classical value.

We can likewise compute the expectation value and uncertainty of the position. First,

〈α|X|α〉 =
√

~

2mω
〈α|(a† + a)|α〉 =

√
~

2mω
(α∗ + α) =

√
2~

mω
Re[α]. (7.4.17)

Also, one has

〈α|X2|α〉 =
~

2mω
〈α|(a† + a)2|α〉 = ~

2mω
〈α|(a†2 + 2a†a + a2 + 1)|α〉 (7.4.18)

=
~

2mω

[
(α∗ + α)2 + 1

]
. (7.4.19)

It follows that

∆X =

√
〈α|X2|α〉 − 〈α|X|α〉2 =

√
~

2mω
. (7.4.20)

Remarkably, this does not depend on α at all, and in fact is exactly the same as for the ground

state, making it ridiculously tiny by macroscopic standards. The interpretation of ∆X/ 〈X〉 ≪ 1
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is that the position wavefunction is extremely sharply peaked about its expectation value. In a

similar way, one can compute the expectation value and the uncertainty of the momentum:

〈α|P |α〉 =
√
2m~ω Im[α], (7.4.21)

∆P =

√
m~ω

2
. (7.4.22)

The latter is again independent of α and is the same as in the ground state. Putting these

results together, the product of uncertainties in position and momentum is

(∆X)(∆P ) = ~/2, (7.4.23)

which is exactly as small as it could possibly be, consistent with the uncertainty relation.

The preceding results suggest that there is some close relation between the ground state and

the coherent states, since they have exactly the same uncertainties in position and momentum.

To see this, let us work out the wavefunction of the coherent state |α〉. We start with

ψα(x) = 〈x|α〉 = e−|α|
2/2 〈x|eαa† |0〉 (7.4.24)

from eq. (7.4.9). Next, we write

αa† = A +B (7.4.25)

where, from the definition of a† in eq. (7.3.2),

A = α

√
mω

2~
X, B = −i α√

2~ωm
P. (7.4.26)

Since [A,B] = α2/2 is a constant, we can use the Baker–Campbell–Hausdorff formula eq. (2.4.35),

repeated here for convenience as eA+B = eAeBe−[A,B]/2, to obtain

ψα(x) = e−|α|
2/2e−α

2/4 exp

(√
mω

2~
αx

)
〈x| exp

(
−i α√

2~ωm
P

)
|0〉 . (7.4.27)

The next step is to notice that the exponential operator inside the matrix element has the same

form as the translation operator T (a) defined in eq. (5.2.1), with a replaced by the (complex, in

general) number α
√
~/2ωm. Therefore, we can invoke eq. (5.2.7) to find

〈x| exp
(
−i α√

2~ωm
P

)
|0〉 = ψ0

(
x− α

√
~

2ωm

)
, (7.4.28)

where ψ0(x) is the ground state wavefunction, found in eq. (7.2.33). Using this in eq. (7.4.27),

and rearranging the exponentials, gives

ψα(x) = e−(|α|
2+α2)/2

(mω
π~

)1/4
exp

[
−mω

2~

(
x− α

√
2~

ωm

)2]
. (7.4.29)
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Now, writing α in terms of its real and imaginary parts, and then expressing them in terms of the

position and momentum expectation values using eqs. (7.4.17) and (7.4.21), the wavefunction

takes the simple form

ψα(x) = eiθei〈P 〉x/~ψ0(x− 〈X〉), (7.4.30)

where θ = −Re[α]Im[α]. Up to the physically irrelevant global phase provided by θ, the coherent

state wavefunction is the same as the ground state, but displaced by the position expectation

value and multiplied by the position-dependent phase factor that encodes the momentum ex-

pectation value.

So far, we have considered a coherent state |α〉 at a fixed time t. Now let us investigate the

time evolution of the state and its properties. Since the Hamiltonian is independent of time,

the solution of the Schrödinger equation tells us that at time t the state is

e−iHt/~|α〉 = e−iHt/~e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 = e−|α|

2/2
∞∑

n=0

αn√
n!
e−iω(n+1/2)t|n〉 (7.4.31)

= e−iωt/2e−|α|
2/2

∞∑

n=0

(αe−iωt)n√
n!

|n〉 (7.4.32)

= e−iωt/2|αe−iωt〉. (7.4.33)

This shows that the coherent state just evolves to another coherent state in which α has changed†

to αe−iωt. Thus, in the time-dependent coherent state, the magnitude of α does not change,

and the phase of α rotates linearly with time, at the natural angular frequency of the harmonic

oscillator.

Suppose that at time t = 0, we start with α = |α|e−iφ0, so that at a general time t,

α = |α|e−i(ωt+φ0) (7.4.34)

Then, using the results from eqs. (7.4.17) and (7.4.21), we get

〈X〉(t) =

√
2~

mω
Re
[
|α|e−i(ωt+φ0)

]
= x0 cos(ωt+ φ0), (7.4.35)

〈P 〉(t) =
√
2m~ω Im

[
|α|e−i(ωt+φ0)

]
= −mωx0 sin(ωt+ φ0), (7.4.36)

where we have defined

x0 =

√
2~

mω
|α|. (7.4.37)

†The state ket has also acquired an irrelevant global phase e−iωt/2. In contrast, the complex phase e−iωt

multiplying α (inside the ket symbol) is certainly physically relevant, as is clear from eqs. (7.4.17) and (7.4.21).
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This establishes the connection between the classical trajectory of the harmonic oscillator and

the parameter α of the coherent state that most closely resembles it. Not only is the coherent

state for a harmonic oscillator as close as possible to the classical limit, but we see, by comparing

to eq. (7.1.5), that the expectation values of the position and momentum evolve in exactly the

same way as their classical counterparts. The uncertainties do not change with time. To

summarize the properties of a coherent state,

〈H〉 = ~ω(|α|2 + 1/2) ∆H = ~ω|α|, (7.4.38)

〈X〉(t) = xcl(t), ∆X =
√
~/2mω, (7.4.39)

〈P 〉(t) = pcl(t), ∆P =
√
m~ω/2. (7.4.40)

The harmonic oscillator potential evidently has a remarkable “focusing” property, such that the

coherent state wavefunctions do not spread out at all as they evolve in time, unlike the case for

the free particle Gaussian states as seen in section 6.2.

There is a simple (and even practical) way to prepare a coherent state for the harmonic

oscillator. Suppose we temporarily apply a constant force f , acting in the positive x direction,

so that the new Hamiltonian is

Hf =
P 2

2m
+

1

2
mω2X2 − fX. (7.4.41)

By defining a shifted position operator

X ′ = X − f

mω2
, (7.4.42)

the Hamiltonian can be rewritten as

Hf =
P 2

2m
+

1

2
mω2X ′2 − f 2

2mω2
. (7.4.43)

The constant shift in the position operator does not affect the commutation relation,

[X ′, P ] = i~, (7.4.44)

so the solution of the eigenvalue problem for Hf proceeds exactly as for the Hamiltonian with

f = 0. The energy eigenvalues will be the same, but lowered by the constant amount −f 2/2mω2.

More importantly for our present purposes, the ground state |0〉f ofHf is defined by the property

that it is annihilated by the operator

a′ =

√
mω

2~
X ′ + i

1√
2~ωm

P = a− f√
2~ω3m

, (7.4.45)
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where a is the annihilation operator for H with f = 0. This implies that the state |0〉f is exactly
a coherent state of the original Hamiltonian H :

a |0〉f = α |0〉f , (7.4.46)

where the eigenvalue

α =
f√

2~ω3m
(7.4.47)

is a real number.

To summarize, a coherent state of the harmonic oscillator can be prepared as follows. First,

apply a constant force f , shifting the equilibrium position of the mass to the point x0 = f/mω2.

Next, allow the oscillator to settle into the ground state of the new Hamiltonian Hf , with the

same uncertainties in position and momentum as the ground state of H . Finally, we release the

mass by removing the force f . At the instant that the mass is released, it will find itself in a

coherent state of H , with α initially real and given by eq. (7.4.47). It will therefore evolve in time

as we have already seen, remaining in a coherent state as α acquires a non-trivial phase e−iωt.

The subsequent behavior is as close as possible to what would happen in classical mechanics if

we displaced the oscillator and then released it from rest.

7.5 Three-dimensional harmonic oscillator

We now return to the case of a three-dimensional harmonic oscillator, with Hamiltonian given

by eq. (7.1.17). Rewriting it without the tildes (which just denoted a particular choice of

rectangular coordinates), this can be rewritten as

H = Hx +Hy +Hz, (7.5.1)

where

Hx =
P 2
x

2m
+

1

2
mω2

xX
2 = ~ωx(a

†
xax + 1/2), (7.5.2)

with exactly analogous expressions for Hy and Hz. Here, we have made use of the experience of

section 7.3 to write

ax =

√
mωx
2~

X + i
1√

2~ωxm
Px, (7.5.3)

ay =

√
mωy
2~

Y + i
1√

2~ωym
Py, (7.5.4)

etc. Now Hx and Hy and Hz all commute with each other, and are Hermitian. One can therefore

find an orthobasis consisting of their common eigenstates, denoted |nx, ny, nz〉, where operators
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with the x subscript just ignore the ny and nz labels, and similarly for operators with the y and

z subscripts. Thus,

Hx |nx, ny, nz〉 = Ex |nx, ny, nz〉 , Hy |nx, ny, nz〉 = Ey |nx, ny, nz〉 , (7.5.5)

Hz |nx, ny, nz〉 = Ez |nx, ny, nz〉 . (7.5.6)

(This can also be viewed as the tensor product of three one-dimensional harmonic oscillators.)

From section 7.3, we have already solved the eigenvalue problem for each Hj , and so we know

that the allowed energies for each of j = x, y, z are

Ej = ~ωj(nj + 1/2), nj = 0, 1, 2, . . . , (7.5.7)

and that the corresponding eigenkets satisfy, for example:

ax |nx, ny, nz〉 =
√
nx |nx−1, ny, nz〉 , (7.5.8)

a†x |nx, ny, nz〉 =
√
nx + 1 |nx+1, ny, nz〉 , (7.5.9)

ay |nx, ny, nz〉 =
√
ny |nx, ny−1, nz〉 , (7.5.10)

etc. Since the labels nx, ny, and nz uniquely specify the states of an orthobasis, Hx, Hy, and

Hz form a CSCO for this problem.

The state |nx, ny, nz〉 has total energy eigenvalue

E = Ex + Ey + Ez = ~ωx(nx + 1/2) + ~ωy(ny + 1/2) + ~ωz(nz + 1/2), (7.5.11)

and its wavefunction is just a product of the wavefunctions for the one-dimensional harmonic

oscillator,

ψnx,ny,nz(r) = 〈r |nx, ny, nz〉 = ψnx,ωx(x)ψny,ωy(y)ψnz,ωz(z), (7.5.12)

where each of the ψnj ,ωj
functions can be obtained from eq. (7.2.31) in the obvious way.

In the special case of the isotropic 3-dimensional harmonic oscillator, ωx = ωy = ωz = ω, the

system is invariant under arbitrary rotations about the origin. This symmetry is reflected in a

degeneracy of the energy spectrum, which is now

En = ~ω(n+ 3/2), (7.5.13)

for states |n, un〉, where n = nx+ny+nz and un = 1, . . . , gn is a degeneracy label for the energy

eigenvalue En. To find the degeneracy gn of each energy level, we need to know how many ways

there are to choose three non-negative integers that add up to n. The ground state with n = 0

is unique, as it can only be achieved with the lone combination nx = ny = nz = 0, so g0 = 1.
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The first excited energy level can be achieved in three different ways, by taking one of nx, ny, nz

to be 1, and the others 0, so g1 = 3. Similar straightforward counting reveals that g2 = 6, and

g3 = 10. More generally, this combinatorics problem can be solved using the dots and lines

trick: one arranges n dots in a row, and splits them into three groups by placing two vertical

lines as shown below.

• • · · · •︸ ︷︷ ︸
nx

|• • · · · •︸ ︷︷ ︸
ny

|• • · · · •︸ ︷︷ ︸
nz

(7.5.14)

The degeneracy of the energy eigenvalue En is therefore the number of ways of arranging a row

of n+ 2 objects, of which n are identical and 2 are identical,

gn =
(n+ 2)!

n! 2!
=

1

2
(n+ 1)(n+ 2). (7.5.15)

There is another natural choice of CSCO that one can use for the isotropic three-dimensional

harmonic oscillator, consisting of the total Hamiltonian H and two observables associated with

the angular momentum. We will discuss this approach in section 10.5.

7.6 Exercises

Exercise 7.1. For a particle of mass m in a 1-d harmonic oscillator potential with angular

frequency ω, with minimum at the origin, use ladder operators to calculate the following matrix

elements for energy eigenstates |n〉 and |k〉 where n and k are non-negative integers. (Your

answers should make use of the Kronecker delta symbol.)

〈k|a|n〉 , 〈k|a†|n〉 , 〈k|X|n〉 , 〈k|P |n〉 , 〈k|X2|n〉 , 〈k|P 2|n〉 , 〈k|H|n〉 .

Make note of how the parity selection rules apply to each of your results.

Exercise 7.2. Consider a particle of mass m in a 1-d harmonic oscillator potential with angular

frequency ω, with minimum at the origin.

(a) Use ladder operators to calculate 〈n|Xk|n〉 and 〈n|P k|n〉, for k = 0, 1, 2, 3, 4, 5, with n

arbitrary. Make note of how the parity selection rule applies to your results.

(b) Find the expectation values of the kinetic and potential energies for the state |n〉, and show

that they are equal. [This illustrates the Virial Theorem; see eq. (3.4.21).]

(c) What is (∆X)(∆P ) for the state |n〉?

Exercise 7.3. Use the raising and lowering identities (7.3.17) and (7.3.18) and the representa-

tion of a and a† in eq. (7.3.34) to derive the Hermite polynomial identities (7.2.24) and (7.2.25).
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Exercise 7.4. Consider a particle of mass m in a 1-d harmonic oscillator potential with angular

frequency ω, with minimum at the origin. For the observable A = PX +XP , find:

(a) The expression in simplest form for A in terms of the usual ladder operators.

(b) The expectation value for A for the nth excited energy eigenstate |n〉.
(c) The uncertainty for A in the state |n〉.

Exercise 7.5. At time t = 0, a harmonic oscillator is in the state |ψ(0)〉 = 1√
2
|0〉+ 1√

2
|1〉 in the

usual energy basis.

(a) Find the state at later times, |ψ(t)〉, in the energy basis.

(b) By direct calculation using the results of part (a) (without appealing to Ehrenfest’s Theo-

rem), find the expectation values 〈X〉 and 〈P 〉 as functions of time t.

(c) Check that your results from part (b) obey Ehrenfest’s Theorem.

(d) At time t, compute the probability that a measurement of the position yields x > 0. Evaluate

the minimum and the maximum probabilities numerically.

Exercise 7.6. At time t = 0, a harmonic oscillator has wavefunction ψ(x, 0) = cx2 exp(−mωx2/2~),
where c is a positive real constant.

(a) By requiring the wavefunction to be normalized, find the constant c.

(b) If the energy is measured, what are the possible outcomes and their probabilities?

(c) Find the state ket |ψ(t)〉 in the energy basis, as a function of time.

(d) Compute the expectation values 〈X〉, 〈P 〉, 〈X2〉, and 〈P 2〉, and the uncertainties ∆X and

∆P , each as a function of time.

(e) At time t, what is the probability that a measurement of the position yields x > 0?

Exercise 7.7. Consider a particle of mass m moving in 1 dimension in the potential

V (x) =

{
1
2
mω2x2 (for x > 0),

∞ (for x < 0).
(7.6.1)

Find all of the energy eigenvalues and the corresponding unit-normalized wavefunctions. [Hint:

try to make use of calculations already done, rather than new ones.]

Exercise 7.8. Consider the coherent states of the harmonic oscillator in section 7.4.

(a) For two different coherent states |α〉 and |β〉, compute 〈β|α〉 and |〈β|α〉|2 in simplest form.

(Your answers should be exponentials. Therefore, they cannot vanish, which shows that the

coherent states do not satisfy orthogonality.)

(b) Suppose that the oscillator is in the state |α〉 at time t = 0. Find, in simplest form, the

probability P (t) to find it again in the state |α〉 at a later time t. At what times is P (t) = 1?

(c) Suppose that |α| ≫ 1, as for a macroscopic oscillator. For what small length of time after
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t = 0 does the probability P (t) remain greater than 0.5? [Hint: expand cos(ωt) to order t2.]

(d) What is the minimum value of P (t), and at what time or times is it achieved?

(e) Estimate your answers to parts (c) and (d) numerically for a macroscopic oscillator with

m = 0.2 kg, ω = 10 sec−1, and x0 = 0.1 meters.

Exercise 7.9. We found in section 7.4 that the eigenstates of the lowering operator a are of

great interest, so it is natural to wonder about the possible eigenstates of the raising operator.

Show that a† has no normalizable eigenstates.

Exercise 7.10. Consider a spin-less particle of mass m, moving in three dimensions, with

H =
1

2m
(P 2

x + P 2
y + P 2

z ) +
1

2
mω2

(
5

2
X2 +

5

2
Y 2 + 3XY + Z2

)
. (7.6.2)

(a) Use the change of coordinates: x = cx′ + sy′, y = −sx′ + cy′, z = z′, where c and s are

the cosine and sine of an arbitrary rotation angle, to rewrite the Hamiltonian in terms of the

operators X ′, Y ′, Z ′, Px′, Py′, and Pz′ . (You may use the fact that this is an orthogonal rotation

on the coordinate system, so P 2
x + P 2

y + P 2
z = P 2

x′ + P 2
y′ + P 2

z′.)

(b) Choose c and s (remembering that c2+s2 = 1), so thatH will not contain a term proportional

to X ′Y ′. Rewrite the Hamiltonian with this choice. (There is more than one valid choice here.)

(c) What are the three smallest energy eigenvalues of H , and what are their degeneracies?

Exercise 7.11. Two particles labeled 1 and 2 (they are distinguishable, but happen to have

the same mass) are governed by a coupled harmonic oscillator Hamiltonian in one dimension,

H =
1

2m
(P 2

1 + P 2
2 ) +

1

2
mω2X2

1 +
1

2
mω2X2

2 +
1

2
mΩ2(X1 −X2)

2, (7.6.3)

where the constant ω parametrizes the restoring force for the particles to the origin, and Ω

describes the attractive force between the particles. The operators X1, P1 and X2, P2 satisfy the

canonical commutation relations [X1, P1] = i~ and [X2, P2] = i~ and [X1, P2] = [X2, P1] = 0 and

[Xj , Xk] = 0 and [Pj , Pk] = 0 for all j, k = 1, 2. Consider the new operators

U =
1√
2
(X1 +X2), V =

1√
2
(X1 −X2), (7.6.4)

Pu =
1√
2
(P1 + P2), Pv =

1√
2
(P1 − P2). (7.6.5)

(a) Derive all of the commutation relations of all pairs of operators from the set U, V, Pu, Pv.

(b) Write the Hamiltonian in terms of the operators U, V, Pu, Pv.

(c) Define appropriate creation and destruction operators for the U, V, Pu, Pv system, so that

the Hamiltonian has a simple form in terms of them. From this, infer the eigenvalues of the
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Hamiltonian, and write down a suitable notation for the energy eigenbasis kets.

(d) Obtain the wavefunction of the ground state in the u, v representation ψ(u, v), and use it to

obtain the normalized ground state wavefunction ψ(x1, x2) = 〈x1, x2|ψ〉.

Exercise 7.12. Consider the isotropic harmonic oscillator for a single particle in 2-d,

H =
1

2m
(P 2

x + P 2
y ) +

1

2
mω2(X2 + Y 2). (7.6.6)

This can be viewed as the sum of independent oscillators for the x and y directions.

(a) Express H and the angular momentum operator Lz = XPy−Y Px in simplest form in terms

of the raising and lowering operators a†x, ax, a
†
y, ay for the independent x and y oscillations.

Compute the commutator of Lz and H . Are they compatible?

(b) Consider the basis kets

|nx, ny〉 =
(a†x)

nx

√
nx!

(a†y)
ny

√
ny!
|0, 0〉 , (7.6.7)

where |0, 0〉 is the ground state. Show that the |nx, ny〉 are eigenstates of energy and parity, and

give the corresponding eigenvalues. What is the degeneracy of the nth excited energy level?

(c) Show that the basis kets |nx, ny〉 are not eigenstates of Lz.

(d) Define new raising and lowering operators

a†+ = (a†x + ia†y)/
√
2, a+ = (ax − iay)/

√
2, (7.6.8)

a†− = (a†x − ia†y)/
√
2, a− = (ax + iay)/

√
2. (7.6.9)

Compute all of the non-zero commutators involving these four operators. Express H and Lz in

terms of them, in normal-ordered form.

(e) Consider the basis kets

|n+, n−〉′ =
(a†+)

n+

√
n+!

(a†−)
n−

√
n−!
|0, 0〉 . (7.6.10)

Show that these are eigenstates of H and Lz, and give the corresponding eigenvalues. For the

lowest three energy levels, write the eigenvalues of H and Lz , and express the corresponding

eigenstates as linear combinations of the kets |nx, ny〉. Do H and Lz form a CSCO?
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8 Angular momentum and its representations

8.1 The eigenvalue problem for angular momentum

At the end of section 5.3, we introduced the commutation relation algebra for the components

of a generic angular momentum operator J = x̂Jx + ŷJy + ẑJz, defined to satisfy

[Ja, Jb] = i~ǫabcJc, (a, b, c = x, y, z), (8.1.1)

with c implicitly summed over. Let us now find the simultaneous eigenvectors and the corre-

sponding eigenvalues of the compatible observables J2 = J2
x + J2

y + J2
z and Jz.

We start by observing that the eigenvalues of J2 must be non-negative. To prove it, note

that for any non-null ket |ψ〉,

〈ψ|J2|ψ〉 = ‖Jx |ψ〉‖2 + ‖Jy |ψ〉‖2 + ‖Jz |ψ〉‖2 ≥ 0, (8.1.2)

where ‖|v〉‖ denotes the norm of |v〉, and so the possibility of equality exists only because each

of the kets Jx |ψ〉, Jy |ψ〉, and Jz |ψ〉 could be null. Now, if

J2 |ψ〉 = λ |ψ〉 , (8.1.3)

then it follows that 〈ψ|J2|ψ〉 = λ 〈ψ|ψ〉 ≥ 0, so λ ≥ 0. For reasons to become clear shortly, it

turns out to be convenient to give λ the name ~
2j(j + 1), by defining j =

√
λ/~2 + 1/4− 1/2.

Since λ ≥ 0, it follows that j ≥ 0 also.

Because J2 and Jz are compatible observables, Theorem 2.7.1 says that there must be an

orthobasis consisting of common eigenstates, |j,m, uj,m〉, which satisfy orthonormality and com-

pleteness relations

〈j′, m′, u′j′m′ |j,m, ujm〉 = δjj′ δmm′ δu ′
j′m′ ,ujm

, (8.1.4)
∑

j

∑

m

∑

ujm

|j,m, ujm〉〈j,m, ujm| = I. (8.1.5)

Here ujm is a possible degeneracy label† that will be important in particular cases, but plays no

role in the following discussion and so will be suppressed for simplicity. We therefore seek to

solve the eigenvalue problem

J2 |j,m〉 = ~
2j(j + 1) |j,m〉 , (8.1.6)

Jz |j,m〉 = ~m |j,m〉 . (8.1.7)

†Soon [just before eq. (8.1.28)], we will learn that the orthobasis can actually always be chosen in such a way
that the ujm do not depend on m. But we do not know that yet.
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for the allowed eigenvalues j and m, recognizing that there may be more than one sector of

such states, distinguished by the suppressed degeneracy label. In the special case of orbital

angular momentum, we already found in section 5.3, by requiring the position wavefunction to

be single-valued, that the allowed eigenvalues of Lz are ~m, where m is an integer. However, spin

(intrinsic) angular momentum is not associated with a position wavefunction, so that argument

does not apply, and m need not be an integer, as we will see.

It is very useful (and not just for the present purpose of solving the eigenvalue problem) to

define the angular momentum raising and lowering operators, also sometimes known as

ladder operators for angular momentum,

J+ = Jx + iJy, J− = Jx − iJy, (8.1.8)

which will play a role similar to a† and a for the harmonic oscillator. They are not Hermitian,

but instead are Hermitian conjugates of each other,

(J+)
† = J−. (8.1.9)

The inverse relations of eq. (8.1.8) are

Jx =
1

2
(J− + J+), Jy =

i

2
(J− − J+). (8.1.10)

Some other useful identities are

[Jz, J±] = ±~J±, (8.1.11)

[J+, J−] = 2~Jz, (8.1.12)

J+J− = J2 − J2
z + ~Jz, (8.1.13)

J−J+ = J2 − J2
z − ~Jz. (8.1.14)

From the last two equations, we get

J2 =
1

2
J+J− +

1

2
J−J+ + J2

z . (8.1.15)

Each of J+, J−, and Jz commute with the total angular momentum squared,

[J2, J+] = [J2, J−] = [J2, Jz] = 0. (8.1.16)

We now derive some useful facts by studying the ket J+|j,m〉. Since J2 commutes with J+,

J2 (J+|j,m〉) = ~
2j(j + 1) (J+|j,m〉) . (8.1.17)
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Also,

Jz (J+|j,m〉) = [Jz, J+]|j,m〉+ J+Jz|j,m〉 = ~J+|j,m〉+ ~mJ+|j,m〉 (8.1.18)

= ~(m+ 1) (J+|j,m〉) . (8.1.19)

Thus, J+|j,m〉 is an eigenstate of both J2 and Jz, with eigenvalues ~
2j(j + 1) and ~(m + 1),

respectively. Due to the fact that the |j,m, uj,m〉 were chosen as an orthobasis, we can conclude

that either J+|j,m〉 is proportional to |j,m+ 1〉 within each sector labeled by uj,m, or else it is

the null ket. This is why J+ is called a raising operator; it raises the Jz eigenvalue. To find out

whether J+|j,m〉 is the null ket, we compute its squared norm,

‖J+ |j,m〉‖2 = 〈j,m|J−J+|j,m〉 = 〈j,m|
(
J2 − J2

z − ~Jz
)
|j,m〉

= 〈j,m|
[
~
2j(j + 1)− (~m)2 − ~(~m)

]
|j,m〉

= ~
2[j(j + 1)−m(m+ 1)]. (8.1.20)

From this we learn two useful things. First, the general properties of the inner product require

that the squared norm is non-negative, so allowed j,m must satisfy j(j + 1) − m(m + 1) =

(j −m)(j +m + 1) ≥ 0, and since we learned at the beginning of this section that j ≥ 0, we

can conclude that for every non-null ket |j,m〉,

m ≤ j. (8.1.21)

The second useful result from eq. (8.1.20) is the constant of proportionality between J+|j,m〉
and the unit-normalized ket |j,m+1〉,

J+|j,m〉 = ~

√
j(j + 1)−m(m+ 1) |j,m+1〉. (8.1.22)

Here we had to make an arbitrary and unavoidable choice of phase; eq. (8.1.22) can be taken

as the definition of the relative phase between |j,m〉 and |j,m+1〉. It follows from eq. (8.1.22)

that J+|j, j〉 is actually the null ket.

Everything in the previous paragraph can be repeated for J−|j,m〉. We learn that, for every

non-null ket |j,m〉,

m ≥ −j (8.1.23)

due to the requirement of positive squared norm, and that J−|j,−j〉 is the null ket, and that

J−|j,m〉 = ~

√
j(j + 1)−m(m− 1) |j,m−1〉. (8.1.24)

This justifies calling J− the lowering operator for (the z component of) angular momentum.
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In eq. (8.1.24), we have made another choice of phase, and we should be careful to make

sure that it is consistent with the phase choice made in eq. (8.1.22). This can be checked by

using eqs. (8.1.22) and (8.1.24) to compute J+J−|j,m〉 and J−J+|j,m〉, and noting that they

are equivalent to the results obtained using eqs. (8.1.13) and (8.1.14), respectively. A nice

feature of eqs. (8.1.22) and (8.1.24) is that the coefficients on the right-hand sides are real and

non-negative.

Combining eqs. (8.1.21) and (8.1.23) tells us that, for any given j, the only possible values

of m for physical states |j,m〉 are in the range

−j ≤ m ≤ j. (8.1.25)

Intuitively, this is the quantum version of the classical statement that the magnitude of the

z-component is less than the magnitude of the angular momentum vector.

We are now ready to prove that j = n/2 for some integer n. If we compute (J+)
p|j,m〉,

it must be proportional to |j,m + p〉, according to eq. (8.1.22). For some finite p, this must

be the ket |j, j〉, because otherwise we could keep acting with J+ to find non-null kets with

arbitrarily large Jz eigenvalue, which would contradict of eq. (8.1.25). (Here, we are relying on

the fact that eq. (8.1.22) tells us that |j, j〉 is the unique non-null ket that is annihilated by J+.)

Therefore, j = m + p for some non-negative integer p. Similarly, if we compute (J−)
q|j,m〉, it

must be proportional to |j,m− q〉, according to eq. (8.1.24). For some finite q, this must be the

ket |j,−j〉; otherwise, we would again contradict eq. (8.1.25). Therefore, −j = m− q for some

non-negative integer q. Putting the results together gives 2j = p + q, a non-negative integer.

The allowed values are

j = 0, 1/2, 1, 3/2, 2, . . . . (8.1.26)

The fact that j = m+ p for some integer p, together with eq. (8.1.25), also tells us which values

of m can give non-null kets |j〉. For each j, they are the 2j + 1 values

m = −j, −j+1, . . . , j−1, j. (8.1.27)

For the special case that J = L, we already found in section 5.3 that m must be an integer, so

in the case of orbital angular momentum the allowed values of j = l are also restricted to the

non-negative integers 0, 1, 2, . . .. The case of half-integer‡ j must correspond to something other

than orbital angular momenta.

For a given state |j,m, ujm〉, the operations of J2, Jz, J+, and J−, given by eqs. (8.1.6),

(8.1.7), (8.1.22), and (8.1.24) are independent of ujm, and can change m, but not j. This has

two important implications.

‡The standard term “half-integer” means an odd integer divided by 2. It might be more logical to call this
“half-odd-integer” or “integer-plus-half”, but it is difficult to fight tradition.
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First, if we have a single representative state with a certain j and ujm, then all other states

with the same j and ujm but other values of m are obtained by acting repeatedly with J+ or

J−. Therefore, the degeneracy label ujm does not actually depend on m, as foreshadowed in

the footnote following eq. (8.1.5). Thus, for any quantum system, the orthobasis of common

eigenstates of J2 and Jz can be labeled as |j,m, uj〉, with a slight simplification of eqs. (8.1.4)

and (8.1.5),

〈j′, m′, u′j′|j,m, uj〉 = δjj′ δmm′ δu ′
j′
uj
, (8.1.28)

∑

j

∑

m

∑

uj

|j,m, uj〉〈j,m, uj| = I. (8.1.29)

Typically, uj represents the eigenvalue(s) of some observable(s) that, together with J2 and Jz,

form a CSCO for the quantum system. If the Hamiltonian is invariant under rotations, then H

can be taken to be one of those observables. The group of 2j+1 orthobasis states with common

j and uj and varying m = −j, . . . , j is called an angular momentum multiplet.

The second observation is that, because the operations of the angular momentum operators

J2, Jz, J+, and J− (and Jx, Jy) in the orthobasis |j,m, uj〉 do not depend on uj at all, we can

work out their matrix representations and operations on kets for each relevant value of j just

once, and the results will be applicable to any quantum system with that j.

For a j = 0 subspace, we have J2 = 0 and Jz = J+ = J− = Jx = Jy = 0, so the state

space has only one non-null ket |j = 0, m = 0〉. All angular momentum operators acting on

|j = 0, m = 0〉 give the null ket, so that they are all represented by the 1× 1 matrix 0.

8.2 The j = 1/2 representation: Pauli matrices and spin

For a j = 1/2 subspace, the orthobasis consists of two states withm = ±1/2, with corresponding

two-component vector representations

|j=1/2, m=1/2〉 ↔
(
1
0

)
, |j=1/2, m=−1/2〉 ↔

(
0
1

)
. (8.2.1)

The matrix representations of the angular momentum operators can now be constructed from

eqs. (8.1.6), (8.1.7), (8.1.10), (8.1.22), and (8.1.24), with the results

J2 ↔ 3~2

4

(
1 0
0 1

)
, Jz ↔

~

2

(
1 0
0 −1

)
, (8.2.2)

Jx ↔
~

2

(
0 1
1 0

)
, Jy ↔

~

2

(
0 −i
i 0

)
. (8.2.3)

J+ ↔ ~

(
0 1
0 0

)
, J− ↔ ~

(
0 0
1 0

)
, (8.2.4)
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Some special operator identities that hold only in the j = 1/2 case are

J2
x = J2

y = J2
z = ~

2/4, J2
+ = J2

− = 0, (j = 1/2). (8.2.5)

As noted after eq. (8.1.27), the fact that m = ±1/2 is not an integer implies that J cannot be

a pure orbital angular momentum.

The case of purely intrinsic angular momentum for a single particle is called spin, and we

write J = S and j = s in that case. For s = 1/2, we say that the particle is (or has) spin-1/2,

and we often rewrite eq. (8.2.1) using a simplified notation for the Sz eigenstates,

|↑〉 ↔
(
1
0

)
, |↓〉 ↔

(
0
1

)
, (8.2.6)

referred to as spin-up and spin-down, with eigenvalues ms = 1/2 and −1/2, respectively.
From eqs. (8.2.2) and (8.2.3), one can deduce that the components of the spin operator

written in ket-bra form are

Sx =
~

2

(
|↓〉 〈↑|+ |↑〉 〈↓|

)
, (8.2.7)

Sy =
i~

2

(
|↓〉 〈↑| − |↑〉 〈↓|

)
, (8.2.8)

Sz =
~

2

(
|↑〉 〈↑| − |↓〉 〈↓|

)
. (8.2.9)

The standard notation for their matrix representation is

S ↔ ~

2
σ, (8.2.10)

where the components of the vector σ are known as the Pauli matrices, defined by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8.2.11)

The Pauli matrices obey the commutation and anticommutation relations

[σa, σb] = 2iǫabcσc, (8.2.12)

{σa, σb} = 2δab (8.2.13)

for a, b = x, y, z, and

Tr[σa] = 0, (8.2.14)

Det[σa] = −1. (8.2.15)

For any spatial vector v = x̂vx + ŷvy + ẑvz, we have

v · σ =

(
vz vx − ivy

vx + ivy −vz

)
, (8.2.16)
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and a formula useful for simplifications,

(v · σ)(w · σ) = v · w + i(v × w) · σ, (8.2.17)

with the 2× 2 identity matrix understood in the first term on the right side. In particular,

(v · σ)(v · σ) = v · v = v2x + v2y + v2z = v2 (8.2.18)

is proportional to the identity matrix.

For a spin-1/2 particle like an electron, the complete state can be written as a linear combi-

nation of kets with Sz eigenvalues ms = ~/2 and −~/2, as

|ψ〉 = |ψ↑, ↑〉 + |ψ↓, ↓〉 , (8.2.19)

where ψ↑ and ψ↓ represent the non-spin degrees of freedom corresponding to the classical motion

of the particle in three dimensions. This state can also be represented as a two-component

column vector of kets, called a spinor,

|ψ〉 =
(
|ψ↑〉
|ψ↓〉

)
. (8.2.20)

Acting on these two-component spinor kets, the spin operator is again represented by S ↔ ~

2
σ.

The bra corresponding to eq. (8.2.20) is a two-component row spinor,

〈ψ| =
(
〈ψ↑| 〈ψ↓|

)
. (8.2.21)

The inner product of two states |ψ〉 and |χ〉 is

〈χ|ψ〉 =
(
〈χ↑| 〈χ↓|

)
(
|ψ↑〉
|ψ↓〉

)
= 〈χ↑|ψ↑〉+ 〈χ↓|ψ↓〉 , (8.2.22)

and unit normalization means

1 = 〈ψ|ψ〉 = 〈ψ↑|ψ↑〉+ 〈ψ↓|ψ↓〉 . (8.2.23)

For example, the two-component spinor position wavefunction for an electron is

〈r|ψ〉 =
(
〈r|ψ↑〉
〈r|ψ↓〉

)
=

(
ψ↑(r)

ψ↓(r)

)
. (8.2.24)

These correspond to orthobasis eigenstates of the CSCO consisting of the observables (R, Sz).

If we impose the usual unit normalization condition for the state, the two spin-component

wavefunctions are required to satisfy

1 =

∫
d3r |ψ↑(r)|2 + |ψ↓(r)|2, (8.2.25)

but they are otherwise independent, in general.
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8.3 Matrix representation for j = 1

For a j = 1 subspace, the orthobasis of Jz eigenstates consists of three states |j,m〉 with j = 1

and m = 1, 0,−1, with corresponding vector representations

|1, 1〉 ↔



1
0
0


 , |1, 0〉 ↔



0
1
0


 , |1,−1〉 ↔



0
0
1


 . (8.3.1)

The matrix representations of the angular momentum operators can now be constructed from

eqs. (8.1.6), (8.1.7), (8.1.10), (8.1.22), and (8.1.24), with the results

J2 ↔ 2~2




1 0 0
0 1 0
0 0 1



 , Jz ↔ ~




1 0 0
0 0 0
0 0 −1



 , (8.3.2)

J+ ↔
√
2~



0 1 0
0 0 1
0 0 0


 , J− ↔

√
2~



0 0 0
1 0 0
0 1 0


 , (8.3.3)

Jx ↔
~√
2



0 1 0
1 0 1
0 1 0


 , Jy ↔

~√
2



0 −i 0
i 0 −i
0 i 0


 . (8.3.4)

As an example of the use of these matrices, suppose that a system is in an eigenstate of Jz,

and we want to know the possible results and their probabilities if Jx is measured. To answer

this question, we first find the eigenvalues and eigenstates of Jx, expressed in the orthobasis of

Jz eigenvectors of eq. (8.3.1). Since there is nothing special about the x direction as opposed

to the z direction, we know even without computing the characteristic equation for Jx that its

eigenvalues must be the same as Jz, namely ~, 0, and −~. Then, solving for the eigenvectors of

the matrix representation for Jx, one finds the normalized kets

|Jx = ~〉 =
1

2
|1, 1〉+ 1√

2
|1, 0〉+ 1

2
|1,−1〉 , (8.3.5)

|Jx = 0〉 =
1√
2
|1, 1〉 − 1√

2
|1,−1〉 , (8.3.6)

|Jx = −~〉 =
1

2
|1, 1〉 − 1√

2
|1, 0〉+ 1

2
|1,−1〉 . (8.3.7)

As a check, these kets are mutually orthogonal, as required (Theorem 2.6.5) by the fact that

they are eigenkets of a Hermitian operator with different eigenvalues. Then, for example, the

probabilities that a measurement in the state |1, 1〉 will yield the results Jx = ~, Jx = 0, and

Jx = −~ are, by applying Postulate 4,

PJx=~ = | 〈Jx = ~|1, 1〉 |2 = 1/4, (8.3.8)

PJx=0 = | 〈Jx = 0|1, 1〉 |2 = 1/2, (8.3.9)

PJx=−~ = | 〈Jx = −~|1, 1〉 |2 = 1/4. (8.3.10)
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8.4 Matrix representation for arbitrary j

For a subspace with arbitrary j, the orthobasis of Jz eigenstates consists of 2j + 1 states |j,m〉
with m = j, j−1, . . . , −j+1, −j. The corresponding column vector representations of these

states, in that order, are

|j, j〉 ↔




1
0
...
0


 , |j, j−1〉 ↔




0
1
...
0


 , · · · , |j, −j〉 ↔




0
0
...
1


 . (8.4.1)

Again, eqs. (8.1.6), (8.1.7), (8.1.22), and (8.1.24) provide the matrix elements of the angular

momentum operators. The (2j + 1)× (2j + 1) matrix representations have the forms

J2 ↔ ~
2j(j + 1)




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , Jz ↔ ~




j 0 . . . 0
0 j−1 . . . 0
...

...
. . .

...
0 0 . . . −j


 , (8.4.2)

J+ ↔ ~




0 • 0 . . . 0 0
0 0 • . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 •
0 0 0 . . . 0 0




, J− ↔ ~




0 0 0 . . . 0 0
• 0 0 . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . • 0




, (8.4.3)

where the • are the only non-zero elements, which lie just above and below the main diagonal

for J+ and J−, respectively. Using eq. (8.1.10), Jx and Jy have matrix elements

(Jx)m′,m =
~

2

[√
j(j + 1)−m(m− 1) δm′,m−1 +

√
j(j + 1)−m(m+ 1) δm′,m+1

]
, (8.4.4)

(Jy)m′,m = i
~

2

[√
j(j + 1)−m(m− 1) δm′,m−1 −

√
j(j + 1)−m(m+ 1) δm′,m+1

]
, (8.4.5)

and so have the forms

Jx ↔ ~




0 • 0 . . . 0 0
• 0 • . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 •
0 0 0 . . . • 0




, Jy ↔ i~




0 −• 0 . . . 0 0
• 0 −• . . . 0 0
0 • 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 −•
0 0 0 . . . • 0




, (8.4.6)

where each pair of •’s on opposite sides of the main diagonal are equal, consistent with the

Hermiticity of these operators. Note that the •’s are also all real and positive in the phase

convention we have chosen.
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8.5 Matrix representations for unitary rotation operators

In section 5.3, we discussed the unitary operators that act on the Hilbert space to generate

rotations parameterized by α = n̂α, where the unit vector n̂ is the axis of rotation, and α is the

magnitude of the rotation angle,

U(α) = exp
(
−iα · J/~

)
. (8.5.1)

The matrix representations for these unitary operators are called Wigner functions, after

Eugene P. Wigner, and traditionally denoted as D(j)(α). They are defined by

〈j′, m′|U(α)|j,m〉 = δjj′D
(j)
m′m(α) (m,m′ = −j, . . . , j). (8.5.2)

By completeness of the angular momentum eigenstates,

U(α) |j,m〉 =
j∑

m′=−j
|j,m′〉D(j)

m′m(α). (8.5.3)

Note that each D(j) is a (2j+1)× (2j+1) dimensional matrix, which can mix different m values

but keeps j fixed.

The set of matrices D
(j)
m′m for fixed j form an irreducible representation of the rotation

group, with the following consequence. If you do one rotation α followed by another β, the

result is always some other rotation ~γ,

U(γ) = U(β)U(α). (8.5.4)

Then, applying completeness gives

D
(j)
m′m(γ) =

j∑

m′′=−j
D

(j)
m′m′′(β)D

(j)
m′′m(α). (8.5.5)

The unitarity of the operator U(α) and the fact that U(α)−1 = U(−α) implies

D
(j)
m′m(−α) =

[
D

(j)
mm′(α)

]∗
. (8.5.6)

For small j, the exponentiation in eq. (8.5.1) can be done explicitly in the matrix represen-

tation. For the trivial j = 0 case, we have D(0)(α) = e0 = 1, the unit 1× 1 matrix, independent

of α. This corresponds to the fact that states with 0 angular momentum are invariant under

rotations.

For j = 1/2,

D(1/2)(α) = exp(−iα · σ/2) =

∞∑

k=0

1

k!

(
−iα · σ/2

)k
. (8.5.7)
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Using eq. (8.2.18), we have (α ·σ)2 = α2, so that the terms in eq. (8.5.7) have a recurring matrix

structure, which allows us to resum the even and odd terms of the infinite sum separately,

D(1/2)(α) = cos(α/2)I − in̂ · σ sin(α/2), (8.5.8)

where I is the 2× 2 unit matrix.

As an example, suppose we have a spin-1/2 that has been measured to be along the ẑ

direction, so that the state ket is |ψ〉 = |↑〉, or in the matrix representation,

|ψ〉 ↔
(
1
0

)
. (8.5.9)

Now let us rotate this state by an angle θ about the ŷ axis. The matrix representation of the

rotation is

D(1/2)(ŷθ) = cos(θ/2)I − iσy sin(θ/2) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (8.5.10)

and so the rotated state has

|ψ′〉 ↔
(
cos(θ/2)

sin(θ/2)

)
, (8.5.11)

or |ψ′〉 = cos(θ/2) |↑〉 + sin(θ/2) |↓〉. You can check that this is indeed an eigenstate of the

rotated operator

S ′z = cos θSz + sin θSx ↔
~

2

(
cos θ sin θ
sin θ − cos θ

)
, (8.5.12)

with eigenvalue +~/2. If we prepare the system in a spin eigenstate, then the probability to

find the spin oriented in a direction at an angle θ with respect to the original direction is

P = |〈ψ′|ψ〉|2 = cos2(θ/2). (8.5.13)

As a check, this is 1 for θ = 0 or 2π, and 0 for θ = π. The probability to find the spin oriented

in some particular direction at a right angle to the original spin direction is cos2(π/4) = 1/2.

Abstracting this to a slightly more general case, let |n̂〉 be the eigenstate of an arbitrary spin

component n̂ · S with eigenvalue ~/2. Then the probabilities for outcomes of the measurement

of a different spin component n̂′ · S are

P(n̂′ · S = +~/2) = | 〈n̂′|n̂〉 |2 = cos2(θ/2), (8.5.14)

P(n̂′ · S = −~/2) = | 〈−n̂′|n̂〉 |2 = sin2(θ/2), (8.5.15)

where θ is the angle between n̂ and n̂′.
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A surprising feature of eq. (8.5.8) is that a rotation about any axis by an angle α = 2π gives,

instead of the identity matrix:

D(1/2)(n̂2π) = −I (8.5.16)

for a spin-1/2 system. Thus, the j = 1/2 state always acquires a minus sign when continuously

rotated by an angle α = 2π, even though such a 2π rotation corresponds to no change at all for

rotations of classical objects. If the state was in an eigenstate of a particular component m̂ · J ,
then it will still be after the 2π rotation, but with a minus sign phase change.

For general j, the unitary matrix for a rotation about the z axis is easy to obtain, because

Jz has a diagonal matrix representation, making the exponentiation easy,

D(j)(ẑα) = exp


−iα




j 0 · · · 0
0 j−1 · · · 0
...

...
. . .

...
0 0 · · · −j





 =




e−iαj 0 · · · 0
0 e−iα(j−1) · · · 0
...

...
. . .

...
0 0 · · · eiαj


 . (8.5.17)

For example, in the j = 1 case,

D(1)(ẑα) = diag(e−iα, 1, eiα). (8.5.18)

The special case of a rotation through an angle 2π gives

D(j)(ẑ2π) = (−1)2jI, (8.5.19)

which is equal to the identity matrix for integer j, but is equal to −I for half-integer j, gener-

alizing what was found for j = 1/2. For this reason, it is impossible to define a single-valued

continuous position wavefunction (like the spherical harmonics introduced in the next section)

for non-integer j.

For rotations about other axes n̂ 6= ẑ, the algebraic form of matrices D(j)(α) for general j

can be considerably more complicated. The resummation of the infinite sum in the exponential

may depend on matrix recurrence relations of higher order. For an example of a harder case

that can still be done straightforwardly in closed form, one can evaluate D(1)(x̂α) by using



0 1 0
1 0 1
0 1 0




3

= 2



0 1 0
1 0 1
0 1 0


 (8.5.20)

to resum the exponential series, with the result:

D(1)(x̂α) =




cos2(α/2) − i√
2
sin(α) − sin2(α/2)

− i√
2
sin(α) cos(α) − i√

2
sin(α)

− sin2(α/2) − i√
2
sin(α) cos2(α/2)


 . (8.5.21)
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Similar expressions for rotations about the ŷ and ẑ axis for j = 1 are left as an exercise.

For general j, the numerical value of any D(j)(α) can always be obtained by exponentiation

of the (2j+1)×(2j+1) matrix corresponding to eq. (8.5.1). There is also a remarkable formula,

due to Wigner, for rotations about the y-axis,

D
(j)
m′m(ŷβ) =

∑

k

(−1)k−m+m′

[cos(β/2)]2j−2k+m−m
′

[sin(β/2)]2k−m+m′

[(j +m)! (j −m)! (j +m′)! (j −m′)!]1/2
k! (k −m+m′)! (j +m− k)! (j −m′ − k)! , (8.5.22)

where the sum is over integers k for which all of the factorials in the denominator have non-

negative arguments, in other words k is summed from max(0, m −m′) to min(j +m, j −m′).
The proof is omitted here.

The Wigner formula for the matrix D(j)(ŷβ) is especially useful because it can be used to

construct a general rotation matrix. The reason is that a general rotation can always be built

up as a product of three sequential rotations about two fixed orthogonal axes. Suppose that we

first rotate by an angle α about the ẑ axis, then about the ŷ axis by an angle β, and finally by

an angle γ about the ẑ axis again.† The change in coordinates induced by this rotation is



x′

y′

z′


 =



cγ −sγ 0
sγ cγ 0
0 0 1






cβ 0 sβ
0 1 0
−sβ 0 cβ





cα −sα 0
sα cα 0
0 0 1





x
y
z


 , (8.5.23)

where cα = cosα, sα = sinα, etc. The components of vector operators including R, P , and J

rotate in the same way as eq. (8.5.23). The corresponding unitary rotation operator is

U(α, β, γ) = U(ẑγ)U(ŷβ)U(ẑα), (8.5.24)

so that the Wigner rotation matrix for a multiplet with angular momentum j is

D(j)(α, β, γ) = D(j)(ẑγ)D(j)(ŷβ)D(j)(ẑα). (8.5.25)

The matrices for the first and last rotations about the fixed z axis are simple, being just given

by eq. (8.5.17).

†There are different conventional ways of defining the three Euler angles needed for a general rotation. In
classical mechanics, it is traditional to choose the middle rotation to be about the x̂ axis. In quantum mechanics
it is preferable to use the ŷ axis, because D(j)(ŷβ) has purely real entries, as exhibited in eq. (8.5.22). There are
also differing conventions for whether the axes of rotations are absolutely fixed, or whether the second and third
rotation axes are the “body” axes, obtained by the previous rotations of the original (fixed) y and z axes. Here,
our rotation axes are the absolutely fixed ones.
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8.6 Spherical harmonic representation of orbital angular momentum

The orbital angular momentum operators Lx, Ly, and Lz were introduced in section 5.3. We

now consider the representation of these operators in terms of the position wavefunctions in

spherical coordinates. Recall that in the position orthobasis,

ψ(r, θ, φ) = 〈r, θ, φ|ψ〉 . (8.6.1)

Using the definitions of Lx, Ly, and Lz in eqs. (5.3.3), we get the rectangular coordinate repre-

sentations of these as differential operators:

Lx ↔ −i~
(
y
∂

∂z
− z ∂

∂y

)
, (8.6.2)

Ly ↔ −i~
(
z
∂

∂x
− x ∂

∂z

)
, (8.6.3)

Lz ↔ −i~
(
x
∂

∂y
− y ∂

∂x

)
, (8.6.4)

which can be converted into spherical coordinate differential operators, with the results

Lx ↔ i~

(
sinφ

∂

∂θ
+

cosφ cos θ

sin θ

∂

∂φ

)
, (8.6.5)

Ly ↔ i~

(
− cosφ

∂

∂θ
+

sinφ cos θ

sin θ

∂

∂φ

)
, (8.6.6)

Lz ↔ −i~ ∂

∂φ
. (8.6.7)

From these, we also obtain for the raising and lowering operators L± = Lx ± iLy as defined by

eq. (8.1.8),

L+ ↔ ~eiφ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (8.6.8)

L− ↔ ~e−iφ
(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (8.6.9)

and, using L2 = L2
x + L2

y + L2
z = (L+L− + L−L+)/2 + L2

z from eq. (8.1.15), we get

L2 ↔ −~2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (8.6.10)

For future reference, we note that L2 is closely related to the part of the Laplacian involving

angular derivatives; this is useful because the kinetic energy term in the Hamiltonian involves

∇2. More precisely,

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− 1

~2r2
L2. (8.6.11)
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When acting on a wavefunction corresponding to an eigenstate of L2 with eigenvalue ~
2l(l+1),

this becomes

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
. (8.6.12)

We now solve the eigenvalue problem for orbital angular momentum. In doing so, we can

make use of a notable feature of eqs. (8.6.5)–(8.6.10): there is no r dependence in any of

the angular momentum operator representations as differential operators on the wavefunctions.

Thus we can consider wavefunctions for eigenstates of L2 and Lz in which the r dependence is

factored out, with an orthobasis of position eigenkets that are a tensor product of radial and

angular parts,

|r, θ, φ〉 = |r〉 ⊗ |θ, φ〉 , (8.6.13)

with Dirac orthonormality conditions

〈r′|r〉 =
1

r2
δ(r − r′), (8.6.14)

〈θ′, φ′|θ, φ〉 = δ(φ− φ′) δ(cos θ − cos θ′), (8.6.15)

and completeness relations
∫ ∞

0

dr r2 |r〉 〈r| = Ir, (8.6.16)
∫
dΩ |θ, φ〉〈θ, φ| = Iθ,φ, (8.6.17)

where Ir and Iθ,φ are the identity operators on the respective Hilbert spaces, with I = Ir ⊗ Iθ,φ.
In eq. (8.6.17), and from here on, we define

dΩ = dφ d(cos θ) (8.6.18)

as the differential of solid angle in spherical coordinates, so that

∫
dΩ · · · =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ) · · · . (8.6.19)

The Hilbert space spanned by the orthobasis of angular eigenkets |θ, φ〉 is also spanned by an

orthobasis of (L2, Lz) eigenkets |l, m〉 satisfying, from eqs. (8.1.6), (8.1.7), (8.1.22), and (8.1.24),

Lz |l, m〉 = ~m |l, m〉 , (8.6.20)

L+ |l, m〉 = ~

√
l(l + 1)−m(m+ 1) |l, m+1〉 , (8.6.21)

L− |l, m〉 = ~

√
l(l + 1)−m(m− 1) |l, m−1〉 , (8.6.22)

L2 |l, m〉 = ~
2l(l + 1) |l, m〉 , (8.6.23)
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for l = 0, 1, 2, . . . and m = −l, . . . , l. The |l, m〉 also satisfy orthonormality and completeness

relations

〈l′, m′|l, m〉 = δll′ δmm′ , (8.6.24)
∞∑

l=0

l∑

m=−l
|l, m〉〈l, m| = Iθ,φ. (8.6.25)

We now define the angular wavefunctions

〈θ, φ|l, m〉 = Y m
l (θ, φ), (8.6.26)

called spherical harmonics.

The actions of the differential operators Lz, L+, L−, and L
2 defined in eqs. (8.6.7)–(8.6.10)

on the spherical harmonic wavefunctions are expressed as

LzY
m
l (θ, φ) = ~mY m

l (θ, φ), (8.6.27)

L+Y
m
l (θ, φ) = ~

√
l(l + 1)−m(m+ 1)Y m+1

l (θ, φ), (8.6.28)

L−Y
m
l (θ, φ) = ~

√
l(l + 1)−m(m− 1)Y m−1

l (θ, φ), (8.6.29)

L2Y m
l (θ, φ) = ~

2l(l + 1) Y m
l (θ, φ). (8.6.30)

These are the position representation differential operator versions of the Hilbert space operator

equations (8.6.20)–(8.6.23). For simplicity, we are using the same symbols for the differential op-

erators (acting on wavefunctions) and the corresponding Hilbert space operators (acting on kets

and bras). From eqs. (8.6.17) and (8.6.24), the spherical harmonics satisfy the orthonormality

condition
∫
dΩ Y m′

l′ (θ, φ)∗ Y m
l (θ, φ) = δll′δmm′ , (8.6.31)

and from eqs. (8.6.15) and (8.6.25), the completeness relation

∞∑

l=0

l∑

m=−l
Y m
l (θ′, φ′)∗ Y m

l (θ, φ) = δ(φ− φ′) δ(cos θ − cos θ′). (8.6.32)

The full Hilbert space is now spanned by the orthobasis of tensor product kets

|r〉 ⊗ |l, m〉 , (8.6.33)

which describe states in which the particle is known to be at a distance r from the origin, and in

which L2 and Lz are also known to be ~2l(l+1) and ~m respectively. These orthobasis elements

are an alternative to eq. (8.6.13).
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Equation (8.6.27) together with eq. (8.6.7) gives the simple differential equation

−i~ ∂

∂φ
Y m
l = ~mY m

l , (8.6.34)

which has the general solution

Y m
l (θ, φ) = eimφfml (θ), (8.6.35)

where the functions fml (θ) are now to be determined. We know already that the largest possible

value of m is l, so let us start with that case. Equation (8.6.28) implies L+Y
l
l = 0, or

(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
eilφf ll (θ) = 0 (8.6.36)

after using eq. (8.6.8). This reduces to

df ll
d(sin θ)

= l
f ll

sin θ
, (8.6.37)

which has the general solution

f ll (θ) = eC(sin θ)l, (8.6.38)

where C is a constant of integration. Thus, we can write

Y l
l (θ, φ) = (−1)l

√
(2l + 1)!

4π

1

2l l!
eilφ(sin θ)l, (8.6.39)

where a multiplicative normalization factor has been included, with magnitude chosen in such

a way that eq. (8.6.31) holds with m′ = m = l′ = l. The (−1)l factor is a choice of convention.

The spherical harmonics for the remaining values m < l can now be obtained by acting

repeatedly with L−, using eq. (8.6.29), and comparing to eq. (8.6.9). First,

Y l−1
l (θ, φ) = −e

−iφ
√
2l

(
∂

∂θ
+ l

cos θ

sin θ

)
Y l
l (θ, φ). (8.6.40)

Continuing in the same way, it can be shown by recursion that, for general −l ≤ m ≤ l,

Y m
l (θ, φ) =

(−1)l
2l l!

√
(2l + 1) (l +m)!

4π (l −m)!
eimφ (sin θ)−m

dl−m

d(cos θ)l−m
(sin θ)2l. (8.6.41)

The normalization factor in eq. (8.6.41) ensures that eqs. (8.6.31) and (8.6.32) are satisfied. The

phase convention here is determined by the choices that we have already made in eqs. (8.1.22),

(8.1.24), and (8.6.39), and is called the Condon–Shortley phase convention. (Other phase

and normalization conventions for the spherical harmonics exist, so one must be careful when

comparing results from different sources.)
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An equivalent way of writing the spherical harmonics is

Y m
l (θ, φ) =

√
(2l + 1) (l −m)!

4π (l +m)!
(−1)meimφPm

l (cos θ), (8.6.42)

where the Pm
l (u) are called associated Legendre functions. They are solutions to the differential

equations

[
(1− x2) d

2

dx2
− 2x

d

dx
+ l(l + 1)− m2

1− x2
]
Pm
l (x) = 0. (8.6.43)

For the special case m = 0, the solutions are the ordinary Legendre polynomials,

Pl(x) = P 0
l (x) =

1

2l l!

dl

dxl
(x2 − 1)l, (8.6.44)

which have a generating function

∞∑

l=0

tlPl(x) = (1− 2tx+ t2)−1/2, (8.6.45)

and satisfy the orthonormality relations

∫ 1

−1
dxPl′(x)Pl(x) =

2

2l + 1
δll′ . (8.6.46)

The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, (8.6.47)

P3(x) = (5x3 − 3x)/2, P4(x) = (35x4 − 30x2 + 3)/8. (8.6.48)

For non-negative m, the associated Legendre functions are then given by

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x), (m ≥ 0), (8.6.49)

and those with negative m are

P−ml (x) =
(l −m)!

(l +m)!
Pm
l (x), (m < 0). (8.6.50)

With the Condon–Shortley phase convention,

Y −ml (θ, φ) = (−1)mY m
l (θ, φ)∗. (8.6.51)

For large l and maximal m, Y ±ll (θ, φ) ∝ (sin θ)l, which is largest in magnitude for θ ≈ π. Thus,

states with large angular momentum about the z axis have probability densities that are peaked

near the xy plane and are suppressed near the z axis.
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Since Y m
l (θ, φ) is proportional to eimφ, the only spherical harmonics that are independent of

φ are those with m = 0,

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ). (8.6.52)

In the special case θ = 0, the coordinate φ is arbitrary. This implies that Y m
l (0, φ) cannot

possibly depend on φ, so it can only be non-zero if m = 0. From eq. (8.6.52) and Pl(1) = 1, we

therefore obtain the special value

Y m
l (0, φ) = δm0

√
2l + 1

4π
. (8.6.53)

The spherical harmonics that are most commonly encountered in practical problems are the

ones for l ≤ 2, which are

Y 0
0 =

1√
4π
, (8.6.54)

Y 0
1 =

√
3

4π
cos θ, Y ±11 = ∓

√
3

8π
e±iφ sin θ, (8.6.55)

Y 0
2 =

√
5

16π
(3 cos2 θ − 1), (8.6.56)

Y ±12 = ∓
√

15

8π
e±iφ sin θ cos θ, Y ±22 =

√
15

32π
e±2iφ sin2 θ. (8.6.57)

Note that Y m
l is always a polynomial of degree l in cos θ and sin θ.

Using completeness of the orthobasis |l, m〉 over the Hilbert space component corresponding

to the angular coordinates, as expressed in eq. (8.6.25), any wavefunction can be expanded as

ψ(r, θ, φ) =

∞∑

l=0

l∑

m=−l
(〈r| ⊗ 〈θ, φ|) |l, m〉 〈l, m|ψ〉 (8.6.58)

=

∞∑

l=0

l∑

m=−l
Y m
l (θ, φ) (〈r| ⊗ 〈l, m|) |ψ〉 . (8.6.59)

Defining functions Fl,m(r) = (〈r| ⊗ 〈l, m|) |ψ〉, this can be rewritten as

ψ(r, θ, φ) =
∞∑

l=0

l∑

m=−l
Fl,m(r) Y

m
l (θ, φ). (8.6.60)

To find the coefficient functions Fl,m(r) for a given ψ(r, θ, φ), multiply both sides of eq. (8.6.60)

by Y m′

l′ (θ, φ)∗, then integrate dΩ, then use the orthonormality condition eq. (8.6.31) to reduce

the double sum to a single term with l′ = l and m′ = m, and finally rename (l′, m′) → (l, m).

The result is

Fl,m(r) =

∫
dΩ Y m

l (θ, φ)∗ ψ(r, θ, φ). (8.6.61)
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Of course, eqs. (8.6.60) and (8.6.61) also apply if ψ and F have no dependence on r.

If the wavefunction ψ(r, θ, φ) is normalized, so that
∫∞
0
dr r2

∫
dΩ |ψ(r, θ, φ)|2 = 1, then one

can use the orthonormality condition eq. (8.6.31) again to obtain

∞∑

l=0

l∑

m=−l

∫ ∞

0

dr r2|Fl,m(r)|2 = 1. (8.6.62)

It follows that the probability of simultaneously measuring L2 and Lz and getting the results

~
2l(l + 1) and ~m is, by using Postulate 4 with r playing the role of the degeneracy label,

Pl,m =

∫ ∞

0

dr r2
∣∣∣(〈r| ⊗ 〈l, m|) |ψ〉

∣∣∣
2

=

∫ ∞

0

dr r2|Fl,m(r)|2. (8.6.63)

As a corollary, the probability of measuring just L2 and getting ~2l(l+1) is obtained by summing

this over m, so Pl =
∑l

m=−l Pl,m. And, the probability of measuring Lz and getting the result

~m is Pm =
∑∞

l=|m| Pl,m. Here, the sum over l starts at |m|, because for smaller l there are no

states that have Lz eigenvalue ~m.

In many cases, it is not necessary to actually do the radial integral in eq. (8.6.63) in order to

evaluate the probabilities; instead one can make use of ratios between the various possibilities.

As a simple but essential example, any wavefunction that is a function of r only (with no θ

or φ dependence) is proportional to Y 0
0 , so one has l = m = 0, and the measurements of the

compatible orbital angular momentum observables L2 and Lz are both certain to give 0.

For a slightly less trivial example, consider a wavefunction

ψ(r) = C sin2 θ cos2φ f(r), (8.6.64)

where C and α are constants. (Note that we are not providing any context about whether

this state is related to any particular Hamiltonian.) If L2 and/or Lz is measured, what are the

possible outcomes and their probabilities? To answer this, we seek to write the wavefunction as

a linear combination of spherical harmonics multiplied by functions of r only. A useful clue is

that the wavefunction is quadratic in sines and cosines of θ and φ, so one should expect that it

will involve l = 2 and l = 0. Indeed, one finds that

sin2 θ cos2φ =
√
π

[
2

3
Y 0
0 −

2

3
√
5
Y 0
2 +

√
2

15
Y 2
2 +

√
2

15
Y −22

]
. (8.6.65)

This implies that the measurements of (L2, Lz) can yield only the four possible pairs (0, 0) and

(6~2, 0) and (6~2, 2~) and (6~2,−2~), with probability ratios, respectively,

Pl=0,m=0 : Pl=2,m=0 : Pl=2,m=2 : Pl=2,m=−2 =

∣∣∣∣
2

3

∣∣∣∣
2

:

∣∣∣∣−
2

3
√
5

∣∣∣∣
2

:

∣∣∣∣∣

√
2

15

∣∣∣∣∣

2

:

∣∣∣∣∣

√
2

15

∣∣∣∣∣

2

. (8.6.66)
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By requiring that the sum of the probabilities is 1, it follows that

Pl=0,m=0 = 5/9, Pl=2,m=0 = 1/9, Pl=2,m=2 = Pl=2,m=−2 = 1/6. (8.6.67)

Note that the radial wavefunction here was irrelevant for the angular momentum measurement

probabilities, since it is common factor.

One often needs to consider wavefunctions for states that are pure eigenstates of L2 and Lz,

with fixed eigenvalues ~2l(l + 1) and ~m, respectively. These will have the form

ψ(r, θ, φ) = F (r)Y m
l (θ, φ). (8.6.68)

According to eq. (8.6.12), the Laplacian acting on such a wavefunction is

∇2 [F (r)Y m
l (θ, φ)] =

[
d2F

dr2
+

2

r

dF

dr
− l(l + 1)

r2
F

]
Y m
l (θ, φ). (8.6.69)

As a consequence of the rotational invariance of the Laplacian operator, this maintains the form

of an eigenfunction of L2 and Lz with the same eigenvalues.

We now state and prove an extraordinarily useful formula:

Theorem 8.6.1. (Spherical harmonics addition formula) Consider any two unit vectors

n̂ and n̂′, characterized by their spherical coordinate angles (θ, φ) and (θ′, φ′), respectively. Let

us call the angle between these vectors γ, so that

n̂ · n̂′ = cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (8.6.70)

Then, for each l,

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y m
l (θ′, φ′)∗ Y m

l (θ, φ). (8.6.71)

Proof: Since Pl(cos γ) is a function of θ and φ, it can be written as an expansion in spherical

harmonics with arguments θ and φ. Since the differential operator L2 is invariant under rotations,

the spherical harmonics involved in the linear combination all must have the same l. This is

because we can always rotate to a coordinate system in which n̂′ is the new z direction, so that

the polar angular coordinate of n̂ is γ. In that coordinate system, Pl(cos γ) is proportional to a

spherical harmonic with m = 0, an eigenfunction of the differential operator L2 with eigenvalue

~
2l(l+1). Likewise, Pl(cos γ) is also a function of θ′ and φ′, so it can also be written as a linear

combination of spherical harmonics of those angles, with the same l. Therefore, it must be that

Pl(cos γ) is a sum of terms of the form Y m′

l (θ′, φ′)∗ Y m
l (θ, φ). Each of these terms is proportional
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to ei(mφ−m
′φ′), but if one chooses φ′ = φ, then cos γ is independent of φ, so only terms with

m′ = m can occur. Therefore, we must have

Pl(cos γ) =
l∑

m=−l
almY

m
l (θ′, φ′)∗ Y m

l (θ, φ), (8.6.72)

and the remaining task is to evaluate the coefficients alm.

Because Pl(cos γ) is real, and is unchanged if we exchange (θ, φ) ↔ (θ′, φ′), the coefficients

must satisfy alm = a∗lm, so they are real. To learn more, consider the special case (θ, φ) = (θ′, φ′),

so that cos γ = 1. Then, since the Legendre polynomials satisfy Pl(1) = 1, eq. (8.6.72) gives

1 =

l∑

m=−l
alm |Y m

l (θ, φ)|2 . (8.6.73)

Integrating with respect to dΩ, and using the orthonormality condition eq. (8.6.31), we get

4π =
l∑

m=−l
alm. (8.6.74)

Next, consider the square of eq. (8.6.72), which can be written

(
Pl(cos γ)

)2
=

l∑

m=−l
almY

m
l (θ′, φ′)∗ Y m

l (θ, φ)

l∑

m′=−l
alm′Y m′

l (θ′, φ′) Y m′

l (θ, φ)∗. (8.6.75)

Let us integrate over all angles (θ′, φ′). To evaluate the integral of the left side, it is convenient

to again use coordinates such that γ is the polar angle, and making use of eq. (8.6.46), we have
∫
dΩ′
(
Pl(cos γ)

)2
= 2π

∫ 1

−1
d(cos γ)

(
Pl(cos γ)

)2
=

4π

2l + 1
. (8.6.76)

Meanwhile, the dΩ′ integral of the right side of eq. (8.6.75) is evaluated by using the orthonor-

mality condition eq. (8.6.31) again, after which only the terms with m′ = m contribute in the

double sum. Comparing the two sides, we get

4π

2l + 1
=

l∑

m=−l
a2lmY

m
l (θ, φ)∗Y m

l (θ, φ). (8.6.77)

Integrating this with respect to dΩ, and using orthonormality once again, we find

(4π)2

2l + 1
=

l∑

m=−l
a2lm. (8.6.78)

We now have enough information to solve for the coefficients. From eqs. (8.6.74) and (8.6.78),

we discover that

l∑

m=−l

(
alm −

4π

2l + 1

)2

= 0. (8.6.79)
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Since the left side is a sum of squares, the unique solution is obtained when each term vanishes,

so that alm = 4π/(2l + 1) for all l, m. This concludes the proof of the spherical harmonics

addition formula. ���

As an application, consider the identity

1

|r − r′| =
∞∑

l=0

rlmin

rl+1
max

Pl(cos γ), (8.6.80)

with

rmax = max(r, r′), rmin = min(r, r′). (8.6.81)

Equation (8.6.80) follows from the generating function eq. (8.6.45), and may be familiar from

the multipole expansion for problems with azimuthal symmetry in electrostatics. The spherical

harmonics addition formula (8.6.71) allows us to rewrite it as

1

|r − r′| =
∞∑

l=0

4π

2l + 1

rlmin

rl+1
max

l∑

m=−l
Y m
l (θ′, φ′)∗ Y m

l (θ, φ), (8.6.82)

a form that will be useful to us later.

8.7 Parity of angular momentum eigenstates

As we noted in section 5.3, angular momentum operators have even parity, which is another

way of saying that they commute with the parity operator Π. According to Theorem 2.7.1,

this means that the eigenstates of angular momentum operators J2, Jz can also be chosen to be

parity eigenstates.

First, let us work out the parity eigenvalues of the orbital angular momentum eigenstates

|l, m〉. If (x, y, z)→ (−x,−y,−z), the spherical coordinate transformations are

r → r, θ → π − θ, φ→ φ+ π, (8.7.1)

so that

cos θ → − cos θ, sin θ → sin θ, eimφ → (−1)meimφ. (8.7.2)

Using these, it follows immediately from eq. (8.6.41) that

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ). (8.7.3)

Therefore,

〈θ, φ|Π|l, m〉 = 〈π − θ, φ+ π|l, m〉 = (−1)lY m
l (θ, φ) = (−1)l 〈θ, φ|l, m〉 , (8.7.4)
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so

Π |l, m〉 = (−1)l |l, m〉 . (8.7.5)

This shows that eigenstates of orbital angular momentum are always even (odd) under parity if

the quantum number l is even (odd). This is true regardless of the quantum number m, which

can be understood from the fact that the states |l, m〉 are all obtained from |l, l〉 by acting with

L−, which commutes with Π. [Therefore, the parity eigenvalue (−1)l could actually have been

obtained by considering the spherical harmonics for only one sample value of m for each l, for

example m = l using eq. (8.6.39), rather than the more general formula of eq. (8.6.41).] Since

parity in spherical coordinates does not change the radial coordinate, the parity eigenvalue of

an angular momentum eigenstate also does not depend on the radial wavefunction or radial

quantum numbers.

Let us next consider the parity of eigenkets |s,ms〉 of intrinsic angular momentum operators

S2 and Sz. From the fact that the lowering operator S− commutes with parity and relates kets

with different ms, we know that the parity eigenvalue of |s,ms〉 cannot depend on ms. We can

therefore write

Π |s,ms〉 = η |s,ms〉 , (8.7.6)

where η is known as the intrinsic parity of the particle in question. For any given particle

type, the intrinsic parity can be chosen to be either +1 or −1, as an arbitrary convention. This

conventional choice cannot be of any practical significance at all if the number of particles of

each type does not change. This is because a change in the conventional choice of intrinsic parity

just amounts to flipping the parity for every bra and every ket, therefore not affecting matrix

elements. So, when the number of particles does not change, one might as well just always

choose η = +1, and the parity of a single particle L2 eigenstate is (−1)l, regardless of the spin.

For a system of N particles with individual orbital angular momentum quantum numbers li, the

parity eigenvalue is, from eq. (8.7.5),

π = (−1)
∑N

i=1
li . (8.7.7)

This is the case for electrons in an atom, where the parity and the angular momenta are all

defined with respect to the origin chosen to be the location of the fixed nucleus.

However, if the Hamiltonian is invariant under parity and can cause changes in the numbers of

particles, it is natural and useful to adopt a convention in which the intrinsic parities of particles

and antiparticles are chosen in a consistent way so that parity is conserved. Such Hamiltonians

arise in quantum field theory, where the electromagnetic and strong nuclear interactions conserve
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parity, while the weak nuclear interactions do not but can often be treated as a perturbation. A

generally accepted convention is to choose η = +1 for spin-1/2 particles (the electron, proton,

neutron, muon, and quarks, for example). Then the structure of kinetic terms in relativistic

quantum field theory can be used to show that their antiparticles (the positron, antiproton,

antineutron, antimuon, and antiquarks) must be assigned η = −1 in the same convention.

For a composite particle c, made out of two particles a and b with intrinsic parities ηa and ηb

in a state with relative angular momentum quantum number L, the consistent intrinsic parity

assignment is†

ηc = (−1)Lηaηb. (8.7.8)

Thus, mesons composed of a quark and an antiquark in an L = 0 bound state (for example,

pions and kaons) have intrinsic parity η = −1. For a bound state of three or more particles,

the situation is more complicated, but the intrinsic parities of bound states can always be

defined if the Hamiltonian is invariant under space inversion. In processes governed by the

electromagnetic and strong nuclear forces, one can experimentally verify parity conservation

and check the consistency of the intrinsic parity assignments. In doing so, the photon and the

gluon have intrinsic parity −1, while the Higgs particle has intrinsic parity +1. The W and

Z particles are not assigned a well-defined intrinsic parity, as they are the mediators of the

parity-violating weak interactions.

8.8 Exercises

Exercise 8.1. Consider an eigenstate |j,m〉 of J2 and Jz, as in eq. (8.1.6)-(8.1.7). Find the

expectation value and the uncertainties of Jx and Jy in this state. For which state or states |j,m〉
are these uncertainties maximized? For which are they minimized? Show that the uncertainty

relation eq. (3.3.6) is satisfied.

Exercise 8.2. Consider a particle with spin 1/2, and let n̂ = x̂ sin β + ẑ cos β be a fixed unit

vector, where β is a fixed angle.

(a) Consider the basis of eigenstates of Sz, denoted |↑〉 and |↓〉 for eigenvalues +~/2 and −~/2
respectively. In that basis, construct the matrix representation of n̂ ·S. Find its eigenvalues and

eigenvectors.

(b) Suppose that the spin is in the state |↑〉. What is the probability that the measurement of

n̂ · S yields the result +~/2?

†Note that this differs from eq. (8.7.7), since (−1)L is not always equal to (−1)la+lb . This is because the
angular momentum L and the intrinsic parity ηc in eq. (8.7.8) are defined with respect to the origin as the
center-of-mass position of the two particles, rather than a fixed origin position as in eq. (8.7.7).
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(c) Suppose that the measurement in part (b) has been carried out and the result for n̂ · S
was indeed +~/2. Immediately afterwards, Sz is measured. What is the probability that the

measurement yields −~/2 ?

(d) Check that your results for parts (b) and (c) make sense when β = 0 and π and π/2.

Exercise 8.3. Consider a spinless particle in a state with L2 eigenvalue 2~2 and Lz eigenvalue

~. As in the previous problem, let n̂ = x̂ sin β + ẑ cos β.

(a) Suppose that the angular momentum along the direction n̂ is measured. What are the

possible results, and their probabilities?

(b) For each of the possible results in part (a), suppose that Lz is then measured. What are the

possible results, and their probabilities?

(c) Check that your results make sense when β = 0 and π and π/2.

Exercise 8.4. Consider a particle in a state with spherical coordinate wavefunction of the form

ψ(r, θ, φ) = f(r)cos2 θ.

(a) Write the wavefunction in terms of spherical harmonics Y m
l (θ, φ).

(b) If L2 and Lz are measured simultaneously, find the possible results and their probabilities.

Exercise 8.5. Professor Bumble measured the spin component of a spin-1/2 system at time

t = 0 and recorded the result as definitely +~/2, but forgot whether it was Sx, Sy, or Sz.

Assigning equal probabilities to these possibilities, what is the density matrix operator ρ for

the resulting mixed state at t = 0, in the basis of Sz eigenstates? What is the von Neumann

entropy σ? If the Hamiltonian is H = ωSz, use the unitary time evolution operator to find the

probability of getting the result +~/2 for a measurement of Sx at time t.
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9 Charged particle in a magnetic field

9.1 Spin precession in a constant magnetic field

One of the simplest, and yet most useful, quantum systems is a spin carrying a magnetic moment

in a constant magnetic field. Let us assume that the particle carrying the spin has a fixed

position, so that we do not need to worry about its kinetic energy and any position-dependent

potentials. Specializing eq. (4.3.28), the Hamiltonian is therefore simply

H = −γB · S, (9.1.1)

where γ is the gyromagnetic ratio of the particle. Since we only care about the magnetic field

at the point where the particle is located, we can orient our coordinate system so that B = Bẑ,

where B is a constant number. An orthobasis of states for this system consists of the eigenstates

of Sz with eigenvalues ~/2 and −~/2, denoted |↑〉 for spin up and |↓〉 for spin down. Then the

Hamiltonian can be expressed as the spectral decomposition

H =
1

2
~ωB

(
|↑〉 〈↑| − |↓〉 〈↓|

)
, (9.1.2)

where we have defined the Larmor precession frequency

ωB = −γB. (9.1.3)

(With this sign choice, ωB is positive for the electron when B is positive, since the electron’s

gyromagnetic ratio γ = −gee/2mec is a negative number. The same is true for the muon and

the neutron. For the proton, ωB is negative when B is positive.) Thus the matrix representation

for this orthobasis is

H =
1

2
~ωB

(
1 0
0 −1

)
, (9.1.4)

with energy eigenstates |↑〉 represented by
(
1
0

)
with E↑ = ~ωB/2, and |↓〉 represented by

(
0
1

)

with E↓ = −~ωB/2. To decide which of these is the ground state requires knowing the product of

the signs of B and γ. In any case, a transition between the two stationary states typically involves

emitting or absorbing a photon with energy |E↑ − E↓| = ~|ωB|. The Planck-Einstein relation,

discussed in section 1.3, says that the wavelength of the photon will be λ = 2πc/|ωB| = 2πc/|γB|,
providing a way of determining the gyromagnetic ratio of the particle.

Another way of measuring the gyromagnetic ratio (or equivalently, the magnetic moment)

is provided by the phenomenon of precession of the spin when the state is a linear combination

of energy eigenstates. Suppose that at time t = 0 the normalized initial state is

|ψ(0)〉 = a |↑〉+ b |↓〉 , (9.1.5)
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with complex coefficients satisfying |a|2 + |b|2 = 1. The subsequent time evolution can be

obtained either by solving the time-dependent Schrödinger equation, or by applying the unitary

operator U(t) = e−itH/~, with the result

|ψ(t)〉 = ae−iωBt/2 |↑〉+ beiωBt/2 |↓〉 . (9.1.6)

If Sz is then measured, the possible results are the eigenvalues ±~/2, with probabilities

P(Sz = ~/2) = | 〈↑ |ψ(t)〉 |2 = |a|2, (9.1.7)

P(Sz = −~/2) = | 〈↓ |ψ(t)〉 |2 = |b|2, (9.1.8)

which do not depend on time. (As a check, they sum to 1 because of the normalization condition.)

It follows that the expectation value of Sz is

〈Sz〉 =
~

2
(|a|2 − |b|2), (9.1.9)

which is also independent of time.

If, instead, we measure Sx, then the possible results are again ±~/2, and the evaluation of

the probabilities makes use of the corresponding eigenstates

|↑x〉 =
1√
2

(
|↑〉+ |↓〉

)
, (for Sx = ~/2), (9.1.10)

|↓x〉 =
1√
2

(
|↑〉 − |↓〉

)
, (for Sx = −~/2). (9.1.11)

We therefore find

P(Sx = ~/2) = | 〈↑x |ψ(t)〉 |2 =

∣∣∣∣
1√
2

(
ae−iωBt/2 + beiωBt/2

)∣∣∣∣
2

(9.1.12)

=
1

2

(
|a|2 + |b|2 + a∗beiωBt + ab∗e−iωBt

)
=

1

2
+ Re

(
a∗beiωBt

)
. (9.1.13)

Similarly (or, just by requiring that the probabilities add to 1), one finds

P(Sx = −~/2) = | 〈↓x |ψ(t)〉 |2 =
1

2
− Re

(
a∗beiωBt

)
. (9.1.14)

The expectation value of Sx can be obtained either from the probability-weighted sum of eigen-

values as

〈Sx〉 =
~

2
P(Sx = ~/2)− ~

2
P(Sx = −~/2), (9.1.15)

or from matrix evaluation, using Sx = (~/2)σx, as

〈Sx〉 =
(
a∗eiωBt/2 b∗e−iωBt/2

) ~
2

(
0 1
1 0

)(
ae−iωBt/2

beiωBt/2

)
= ~Re

(
a∗beiωBt

)
. (9.1.16)
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Figure 9.1.1: The expectation value of a spin precesses about a
magnetic field B = Bẑ, with a period 2π/|ωB| = 2π/|γB|, where γ
is the gyromagnetic ratio of the particle. The polar angle θ remains
constant as the spin precesses, and is equal to arctan(2ab/(a2−b2))
for an initial state |ψ〉 = a |↑〉+ b |↓〉 with real a and b.

For a measurement of Sy, the probabilities are evaluated using the corresponding eigenstates

|↑y〉 =
1√
2

(
|↑〉+ i |↓〉

)
, (for Sy = ~/2), (9.1.17)

|↓y〉 =
1√
2

(
|↑〉 − i |↓〉

)
, (for Sy = −~/2), (9.1.18)

with the results

P(Sy = ~/2) = | 〈↑y |ψ(t)〉 |2 =
1

2
+ Im

(
a∗beiωBt

)
, (9.1.19)

P(Sy = −~/2) = | 〈↓y |ψ(t)〉 |2 =
1

2
− Im

(
a∗beiωBt

)
, (9.1.20)

and the resulting expectation value is

〈Sy〉 = ~ Im
(
a∗beiωB t

)
. (9.1.21)

The oscillation of these quantities describes precession of S about the B direction.

For example, take a and b to be real for simplicity. Then our results for the expectation

values of the spin components are summarized as

〈S〉 =
~

2

(
2ab [cos(ωBt)x̂+ sin(ωBt)ŷ] + (a2 − b2)ẑ

)
. (9.1.22)

At time t = 0, the spin expectation value lies in the xz plane. As time evolves, the angle

θ = arctan(2ab/(a2− b2)) between 〈S〉 and ẑ remains constant. (See Figure 9.1.1.) The rotation

of 〈S〉 is counterclockwise (as seen looking down from positive z) if γB is negative, since the

angle φ = ωBt of the expectation value of the spin vector projected onto the xy plane increases at

the constant rate ωB = −γB. This precession frequency is independent of the initial orientation

of the spin, provided only that ab 6= 0. Thus, the rate of precession of the spin in a known

magnetic field provides another way of measuring the gyromagnetic ratio. This effect has many

practical applications, including (in more sophisticated setups) the measurement with exquisite

accuracy of the magnetic moments of the electron and the muon and various nuclei.
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It is useful to describe the spin precession more directly in terms of the state ket, rather than

the expectation value, which after all is merely a statistical quantity. Inspired by the result of

eq. (9.1.22), consider the time-dependent unit vector

n̂ = 2ab[cos(ωBt)x̂+ sin(ωBt)ŷ] + (a2 − b2)ẑ, (9.1.23)

still taking a and b to be real. Note that n̂ · n̂ = 1 follows from the normalization condition

a2 + b2 = 1. Now define the spin component along n̂, as the Hermitian operator

Sn̂ = n̂ · S =
~

2

(
a2 − b2 2abe−iωBt

2abeiωBt b2 − a2
)
. (9.1.24)

The last expression is really the matrix representation in the Sz-eigenstate basis, obtained using

the Pauli matrices according to S = (~/2)σ. It is now straightforward to check that the state

ket |ψ(t)〉 of eq. (9.1.6), represented by the column vector
(
ae−iωBt/2

beiωB t/2

)
, (9.1.25)

satisfies the eigenvalue equation

Sn̂ |ψ(t)〉 =
~

2
|ψ(t)〉 . (9.1.26)

In other words, the time-dependent state is simply the one in which measurement of Sn̂ is always

certain to give the result ~/2.

9.2 Magnetic spin resonance and Rabi oscillations

As discussed in the previous section, the energy eigenvalues of a spin-1/2 particle with gyro-

magnetic ratio γ are split by a static magnetic field. The spin of a general state precesses in

a way that does not change its expectation value along the magnetic field direction. One way

to directly access the energy splitting is through emission or absorption of photons of the right

energy. In this section, we will discuss another way. The idea is to supplement the main static

component B of the magnetic field with a time-oscillating component B̃ in a different direction.

This oscillatory component drives transitions between the spin eigenstates defined with respect

to the static field direction. As we will see, this effect is maximally enhanced (resonant) if the

driving frequency for B̃ is chosen equal to the Larmor precession frequency for B.

Specifically, let the magnetic field be

B = Bẑ + B̃ [cos(ωt)x̂+ sin(ωt)ŷ] . (9.2.1)

The oscillatory component rotates in the xy plane at the driving frequency ω, which can be

adjusted independently by the experimentalist. Now define

ωB = −γB, Γ = −γB̃, (9.2.2)
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both with units of frequency. Note that ωB is the same as the Larmor precession frequency (see

the previous section) for the constant component of the magnetic field. The Hamiltonian matrix

in the Sz-eigenstate basis is

H =
~ωB
2

(
1 0
0 −1

)
+

~Γ

2

(
0 e−iωt

eiωt 0

)
. (9.2.3)

As an aside, this Hamiltonian can also serve as a model for a variety of other 2-state physical

systems, for which the static part of the Hamiltonian has been diagonalized by a choice of basis,

and there is an off-diagonal contribution varying harmonically with time. Thus the results below

have more general interest and applicability.

Suppose that ωB > 0, so that the ground state (neglecting the oscillating part of H) is |↓〉.
We start in this ground state, and want to find the probability to find the system in the excited

state |↑〉, as a function of time. To accomplish this goal, we will find the time-dependent state

|ψ(t)〉 = c1(t) |↑〉+ c2(t) |↓〉 (9.2.4)

that solves the Schrödinger equation for the full H , subject to the initial condition

c1(0) = 0, c2(0) = 1. (9.2.5)

In matrix form, the time-dependent Schrödinger equation is

i~
d

dt

(
c1
c2

)
=

~

2

(
ωB Γe−iωt

Γeiωt −ωB

)(
c1

c2

)
. (9.2.6)

It is helpful to define new coefficients a1(t) and a2(t), by

c1 = e−iωt/2a1, c2 = eiωt/2a2. (9.2.7)

This is convenient because the resulting coupled first-order differential equations for a1 and a2

have coefficients with no explicit time dependence:

iȧ1 + (ω − ωB)a1/2− Γa2/2 = 0, (9.2.8)

iȧ2 − (ω − ωB)a2/2− Γa1/2 = 0. (9.2.9)

Mindful of the initial conditions in eq. (9.2.5), we now try for a harmonic solution of the form

a1 = b1 sin(Ωt), (9.2.10)

a2 = cos(Ωt) + b2 sin(Ωt), (9.2.11)
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0 π/2 π 3π/2 2π 5π/2 3π

Ωt

P(↑)
Γ2

Γ2 + (ω − ωB)2

Figure 9.2.1: The probability to find a spin-1/2 system in the higher-energy state due to mag-
netic spin resonance, as a function of time, according to eq. (9.2.16). The peak probability for
the spin to flip is maximized near unity for the resonant condition that the driving frequency
ω is equal to the Larmor precession frequency ωB = −γB, where γ is the gyromagnetic ratio
of the particle and B is the constant part of the magnetic field.

where Ω and b1 and b2 are constants to be determined. Plugging this guess in, we can require

the vanishing of the coefficients of cos(Ωt) and sin(Ωt) separately in each differential equation.

Success is found provided that

Ω2 =
[
Γ2 + (ω − ωB)2

]
/4 (9.2.12)

and

b1 = −iΓ/2Ω, b2 = i(ωB − ω)/2Ω. (9.2.13)

Putting everything together, the coefficients in |ψ(t)〉 are

c1 = −i Γ
2Ω

sin(Ωt)e−iωt/2, (9.2.14)

c2 =

[
cos(Ωt) + i

ωB − ω
2Ω

sin(Ωt)

]
eiωt/2. (9.2.15)

The probability to find the spin in the excited state is therefore,

P(↑) = | 〈↑ |ψ(t)〉 |2 = |c1|2 =
Γ2

Γ2 + (ω − ωB)2
sin2 (Ωt) . (9.2.16)

This shows resonance behavior, for if the driving frequency ω is close to the Larmor precession

frequency ωB, the system periodically oscillates into the higher state with probability close to

1, as depicted in Figure 9.2.1. These Rabi oscillations (named after Isidor Rabi, who both

measured and explained them theoretically) occur with frequency 2Ω, which near resonance

is close in magnitude to |Γ| ≈ |γB̃|, where B̃ is the amplitude of the oscillating magnetic

field. Away from the resonance, the probability for a spin flip is non-zero, but smaller, and the

frequency of the observed Rabi oscillations is larger.
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In real-world applications, the driving magnetic field is rarely of the form we assumed in

eq. (9.2.1), because it is not so easy to make a substantial magnetic field whose direction rotates

at a high frequency. Instead, an oscillating magnetic field along a fixed direction, like B̃ cos(ωt)x̂,

is typically used for the driving field. This is more difficult to solve exactly, but has essentially

the same behavior near resonance. The reason is that we can decompose it as

B̃ cos(ωt)x̂ =
1

2
B̃[cos(ωt)x̂+ sin(ωt)ŷ] +

1

2
B̃[cos(ωt)x̂− sin(ωt)ŷ], (9.2.17)

which is a superposition of two rotating fields with angular frequencies +ω and −ω. When one

of these is resonant (close to ωB), the other is far from resonant and therefore has a small effect.

This phenomenon has many applications, not the least of which is magnetic resonance

imaging, commonly used in medical settings to safely produce maps of tissue using the mag-

netic moments of hydrogen nuclei (protons) affected in different signature ways by the fields of

neighboring atoms in different molecules. In other applications, nuclear magnetic resonance

is made more complicated and interesting by the fact that the nuclear spin sN need not be 1/2,

in which case the number of states involved in the resonance is not 2, but 2sN + 1.

9.3 Landau levels for a charged particle moving in a constant uniform

magnetic field

Classically, a charged particle in a constant uniform magnetic field undergoes cyclotron motion,

following a helical trajectory. This problem is exactly solvable in quantum mechanics, too, and

we will now study it in detail.

First, let us gain some insight by reviewing the classical solution. To be concrete, let us take

the particle to be an electron with charge q = −e and mass m, and in this section we orient the

coordinate system so that the magnetic field points in the negative z direction,

B = −Bẑ. (9.3.1)

Then the Lorentz force law, eq. (4.3.12), amounts to a first-order differential equation for the

velocity vector v = dr/dt of the electron,

dv

dt
= ωc v × ẑ, (9.3.2)

or ẍ = ωcẏ and ÿ = −ωcẋ and z̈ = 0 in rectangular coordinates, where

ωc =
eB

mc
(9.3.3)
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is called the cyclotron angular frequency.† Since the force has no component along ẑ, the

velocity in that direction is constant. The general solution for the classical position of the

electron is a helix, which we take to have radius R and center (xc, yc) in the xy plane,

x(t) = xc +R sin(ωct + φ0), (9.3.4)

y(t) = yc + R cos(ωct + φ0), (9.3.5)

z(t) = z0 + vzt, (9.3.6)

where φ0, z0, and vz are the other constants needed to specify the initial conditions. It is impor-

tant that the cyclotron frequency is independent of all 6 of these parameters. Since the classical

motion is harmonic with angular frequency ωc, it should not be too surprising that we will be

able to solve the corresponding quantum mechanical problem using the algebraic technology that

we developed for harmonic oscillators in section 7.3, and that the energy quantum for orbital

excitations for a free electron in a magnetic field will turn out to be

~ωc = 1.15768× 10−4 eV

(
B

Tesla

)
. (9.3.7)

This is approximately twice the product of the magnetic field and the Bohr magneton defined

in eq. (4.3.26).

The expression for the Hamiltonian depends on the choice of gauge for the vector potential.

One convenient choice maintains manifest rotational symmetry about the ẑ axis,

A =
1

2
B(yx̂− xŷ) = −1

2
Brφ̂, (9.3.8)

where (r, φ, z) are the cylindrical coordinates. From the general form of eq. (4.3.28), the total

Hamiltonian operator is then

Htotal =
1

2m

(
Π2
x +Π2

y + P 2
z

)
− eΦ(z) + gee

2mc
B · S, (9.3.9)

where we have included spin and allowed for the possibility of a z-dependent electric potential,

and the kinetic momentum operators

Πx = Px +
eB

2c
Y, Πy = Py −

eB

2c
X (9.3.10)

obey the commutation relation

[Πx,Πy] = i
e~

c
B. (9.3.11)

†For an isolated electron, the cyclotron frequency is nearly the same as the Larmor frequency ωB = (ge/2)ωc

defined in the context of spin precession in section 9.1. However, for electrons that are not isolated, m in
eq. (9.3.3) should be interpreted as the effective mass of the electron moving in its environment, which can
differ greatly from the nominal 0.511 MeV/c2. This can give a very different numerical value for ωc in practical
applications involving electrons in materials, sometimes modifying eq. (9.3.7) dramatically.
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Since S and Pz and Φ(z) commute with Πx and Πy, it makes sense to separate the spin and

z-dependent parts of the Hamiltonian as Htotal = H +Hs +Hz, where our primary interest is

H =
1

2m

(
Π2
x +Π2

y

)
, (9.3.12)

the Hamiltonian for the 2-dimensional motion in the xy plane, and the other parts are

Hs = −
geeB

2mc
Sz, Hz =

P 2
z

2m
− eΦ(z). (9.3.13)

The eigenvalues of Hs are just Es = ∓ge~eB/4mc, for spin-up states with Sz = ~/2 and spin-

down states with Sz = −~/2. Thus, each spin-up state is lower than its counterpart spin-down

state by an energy splitting ge~eB/2mc ≈ ~ωc. We now assume that the eigenvalues Ez of

Hz have also been found. For example, if Φ = 0, the Hz eigenstates are plane waves with

momentum pz along the z-direction and Ez = p2z/2m. In the opposite extreme, it might be that

the potential Φ(z) effectively confines the electron to the vicinity of a plane of constant z, by

requiring a large energy gap for excitations along the z direction. In any case, we can concentrate

on the remaining 2-dimensional problem with Hamiltonian H , to which the constants Es and

Ez can be added to find the total energy.

Since H is quadratic in two Hermitian operators with a constant commutator, we are inspired

to follow the logical path of the harmonic oscillator by defining raising and lowering operators

a† =
−i√
2~ωcm

(Πx − iΠy) , a =
i√

2~ωcm
(Πx + iΠy) . (9.3.14)

You can check that they obey the usual ladder operator commutation relation

[a, a†] = 1, (9.3.15)

and that the Hamiltonian has the simple form

H = ~ωc(a
†a+ 1/2). (9.3.16)

So, the energy levels are the same as for a 1-dimensional harmonic oscillator with frequency ωc,

En = ~ωc(n + 1/2), (9.3.17)

where we will soon verify that n = 0, 1, 2, . . .. These are called the Landau levels for a charged

particle in a magnetic field, after Lev Landau. The energy spacing between them grows linearly

with the applied magnetic field.

At this point, one might naively suppose that the Landau level states obey a |n〉 = √n |n−1〉
and a† |n〉 =

√
n+1 |n+1〉. However, one must take into account the fact that in the present 2-

dimensional problem the states at each level n are not unique, unlike the 1-dimensional harmonic
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oscillator. In fact, each Landau level is infinitely degenerate. This corresponds to the classical

property that the energy is determined by the radius R of the helix, but one can always translate

it so that it is centered about any desired point in the xy plane, without changing the energy.

To understand the quantum version of this degeneracy, let us first define two operators

corresponding to the center of the classical trajectory. Solving eqs. (9.3.4) and (9.3.5) for (xc, yc)

in terms of x(t) and y(t) and their time derivatives ẋ = πx/m and ẏ = πy/m, and then promoting

these objects to operators, we define

Xc = X +
1

mωc
Πy, Yc = Y − 1

mωc
Πx. (9.3.18)

You can check that these are both constants of the motion, meaning that [H,Xc] = [H, Yc] = 0.

However, they do not commute with each other, as one finds

[Xc, Yc] = −i
~c

eB
. (9.3.19)

Therefore, a CSCO can include either one of them (or any linear combination), but not both.

For example, a valid CSCO choice would be H and Xc. In that case, the degeneracy of the

orthobasis kets with fixed n is uncountably infinite, and corresponds to the eigenvalue of Xc.

However, let us make another choice, which we will see involves Xc and Yc in a different way.

Since the problem has symmetry under rotations about the z axis, we know (and can explicitly

check) that the angular momentum component

Lz = XPy − Y Px (9.3.20)

commutes with H . Therefore, we take the CSCO to consist of H and Lz, and denote the

corresponding orthonormal energy eigenstate basis elements as |n, λ〉, where

H |n, λ〉 = ~ωc(n + 1/2) |n, λ〉 , (9.3.21)

Lz |n, λ〉 = ~λ |n, λ〉 . (9.3.22)

From the general theory of rotations, in section 5.3, we know that λ must be an integer, but

we will soon find that in the present problem it must satisfy the further restriction of being

bounded from below, but not from above. This asymmetry is related to the sign of the magnetic

field in eq. (9.3.1). In this basis, the infinite degeneracy of the Landau levels is countable, since

Lz has discrete eigenvalues, unlike Xc.

From the operator definitions, you can check that

[H, a] = −~ωca, [Lz , a] = ~a, (9.3.23)

[H, a†] = ~ωca
†, [Lz, a

†] = −~a†. (9.3.24)
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Acting on |n, λ〉 with eq. (9.3.23), we find that a |n, λ〉 must be an eigenstate of H and Lz with

eigenvalues ~ωc(n−1/2) and ~(λ+1), respectively. It follows that a not only lowers n by 1, but

must simultaneously raise λ by 1, so a |n, λ〉 = c |n−1, λ+1〉 , for some normalization constant

c. Using orthonormality of the basis kets, the norm of the right side is |c|2, while the norm of

the left side is 〈n, λ|a†a|n, λ〉 = n, where we have made use of eq. (9.3.16) and the definition of

n in eq. (9.3.21). Therefore, we must have c =
√
n, where an arbitrary phase convention has

been chosen. Doing a similar computation for a† |n, λ〉, we arrive at

a† |n, λ〉 =
√
n + 1 |n+1, λ−1〉 , (9.3.25)

a |n, λ〉 =
√
n |n−1, λ+1〉 . (9.3.26)

Equation (9.3.26) shows that n must be a non-negative integer, just as in the case of the ordinary

harmonic oscillator, because acting with a on any of the states |0, λ〉 results in the null ket. The

infinitely degenerate set of states with n = 0 and varying λ is called the lowest Landau level.

Acting with a or a† changes both the energy level and the angular momentum. We will now

construct raising and lowering operators for the angular momentum that leave the energy fixed.

One clue to this construction is the fact, already noted, that Xc and Yc commute with H . A

second clue is that Xc and Yc have a constant commutator with each other. We are therefore

inspired to define a second pair of raising and lowering operators,

b† =
1√
2ℓB

(Xc + iYc) , b =
1√
2ℓB

(Xc − iYc) , (9.3.27)

where we have defined the magnetic length,

ℓB =

√
~c

eB
= 2.56556× 10−8 meters

(
Tesla

B

)1/2

. (9.3.28)

These operators obey the usual ladder commutation relation

[b, b†] = 1, (9.3.29)

and are independent in the sense that they commute with the a, a† operators,

[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0. (9.3.30)

Furthermore, you are invited to check from the operator definitions that

b†b =
1

~ωc
H +

1

~
Lz − 1/2, (9.3.31)

and that the counterparts of eqs. (9.3.23) and (9.3.24) are

[H, b] = 0, [Lz , b] = −~b, (9.3.32)

[H, b†] = 0, [Lz, b
†] = ~b†. (9.3.33)
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With this information, it is now a short exercise, very similar to the derivation of eqs. (9.3.25)

and (9.3.26), to check that (up to the usual arbitrary phase choice),

b† |n, λ〉 =
√
λ+ n+ 1 |n, λ+1〉 , (9.3.34)

b |n, λ〉 =
√
λ+ n |n, λ−1〉 . (9.3.35)

This shows how the infinite degeneracy of each Landau level n arises, as the operators b† and

b change the angular momentum within each level. However, eq. (9.3.35) also shows that λ is

restricted to be not less than −n, as lowering it further would result in the null ket.

The complete set of eigenstates of H and Lz can now be constructed, from the state with

n = λ = 0, as

|n, λ〉 =

(
b†
)λ+n

√
(λ+ n)!

(
a†
)n

√
n!
|0, 0〉 , (9.3.36)

where n = 0, 1, 2, . . . is a non-negative integer, and λ = −n,−n+1,−n+2, . . . so that λ + n is

also a non-negative integer. This is a complete orthobasis for the two-dimensional degrees of

freedom of a charged particle in a magnetic field.

To construct the corresponding wavefunctions ψn,λ(x, y) = 〈x, y|n, λ〉, it is convenient to

define dimensionless complex coordinates z, z∗ by

z =
x+ iy√
2ℓB

=
reiφ√
2ℓB

, z∗ =
x− iy√
2ℓB

=
re−iφ√
2ℓB

, (9.3.37)

with partial derivatives defined by

∂

∂z
=

ℓB√
2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z∗
=

ℓB√
2

(
∂

∂x
+ i

∂

∂y

)
, (9.3.38)

so that

∂z

∂z
=
∂z∗

∂z∗
= 1,

∂z∗

∂z
=

∂z

∂z∗
= 0. (9.3.39)

Then the position representations of the ladder operators are simply

a =
∂

∂z∗
+ z/2, a† = − ∂

∂z
+ z∗/2, (9.3.40)

b =
∂

∂z
+ z∗/2, b† = − ∂

∂z∗
+ z/2. (9.3.41)

Now, an eigenstate of Lz with eigenvalue ~λ must have wavefunction proportional to eiλφ, as

we found on general grounds in section 5.3. Therefore, ψ0,0 cannot depend on φ, and so must

depend on position only through the combination zz∗. Writing ψ0,0 = f(zz∗), and noting that it

must be annihilated by a (and also by b), we find f ′(zz∗)+f(zz∗)/2 = 0, which has the solution
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f(zz∗) = ce−zz
∗/2, with a normalization constant c. The other states in the lowest Landau level

(n = 0) are found by acting repeatedly with b†. Applying eq. (9.3.41) λ times, this gives the

elegant result

ψ0,λ =
c√
λ!
zλe−zz

∗/2. (9.3.42)

Rewriting this in cylindrical coordinates, and requiring
∫ 2π

0
dφ
∫∞
0
dr r|ψ0,0|2 = 1 to fix c, we

obtain the normalized wavefunctions

ψ0,λ =
1√

2πλ! ℓB

(
r eiφ√
2ℓB

)λ
exp

(
−r2/4ℓ2B

)
. (9.3.43)

The wavefunctions for the higher Landau levels are more complicated, but can now be obtained

by acting with (a†)n/
√
n!.

The wavefunction ψ0,0 is sharply peaked at the origin r = 0, which is arbitrarily chosen. For

nonzero λ, the probability density |ψ0,λ|2 instead has a ring-like profile, vanishing at the origin,

and maximum at r = Rλ =
√
2λℓB. For very large angular momentum λ, the radius of the ring

Rλ is much larger than its width (defined as the range of r near Rλ for which the wavefunction

is appreciable), which is always comparable to ℓB, independent of λ.

If we now suppose that the electron is confined to a disk of radius R centered at the origin in

the xy plane, then the infinite degeneracy of each Landau level is reduced to a finite degeneracy.

Intuitively, valid states must have Rλ <∼ R, implying λ <∼ R2/2ℓ2B, in order for the wavefunction

ring to “fit” inside the disk. This is not exact, because confining the electrons to r < R introduces

a boundary condition that modifies the stationary state wavefunctions in a complicated way.

However, in a macroscopic disk with R ≫ ℓB, only the tiny fraction of states with R − Rλ

comparable to ℓB will be distorted significantly. For the purposes of counting the number of

states in a macroscopic area, this makes almost no difference. So, we estimate that the number

N of states in the lowest Landau level should be (one more than) the maximum allowed λ,

N ≈ λmax ≈
R2

2ℓ2B
=

eΦm
2π~c

=
Φm
Φ0

, (9.3.44)

where Φm = πR2B is the magnetic flux through the disk, and

Φ0 = 2π~c/e = 4.13567× 10−11Tesla · cm2 (9.3.45)

is the natural quantum unit‡ of magnetic flux. Thus, by varying the applied magnetic field, one

can dial the number of electrons that can fit in the lowest Landau level, and in each higher energy

‡In the context of superconductivity, a conventional definition of Φ0 is used that is half as big, corresponding
to a (Cooper pair of electrons) charge that is twice as large.
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level. This affects the conductivity properties of materials, and in particular is an important

ingredient in the quantum Hall effect.

It is instructive to treat the same problem in a different gauge. The magnetic field B = −Bẑ
can also be obtained as ∇× A where we now choose

A = −Bxŷ. (9.3.46)

This vector potential is invariant under translations in the y direction, rather than maintaining

manifest invariance under rotations about the z axis. The Hamiltonian in this gauge is

H =
1

2m
P 2
x +

1

2m

(
Py −

eB

c
X

)2

. (9.3.47)

Since this version of H commutes with Py due to our gauge choice, we use them as our CSCO,

and look for an orthobasis of common eigenstates |n, k〉 that satisfy

H |n, k〉 = ~ωc(n+ 1/2) |n, k〉 , (n = 0, 1, 2, . . .), (9.3.48)

Py |n, k〉 = ~k |n, k〉 , (k = real). (9.3.49)

Here we have used the fact that we already know the energy eigenvalues, since they are mea-

surable and so cannot depend on our choice of gauge. The infinite degeneracy in the Landau

levels is now represented by the freedom to choose any Py eigenvalue ~k, independently of n.

Substituting Py = ~k, and defining

x0 = ~k/mωc = kℓ2B, (9.3.50)

the Hamiltonian becomes

H =
1

2m
P 2
x +

1

2
mω2

c (X − x0)2. (9.3.51)

This is simply a 1-dimensional harmonic oscillator with angular frequency ωc describing motion

in the x direction, and displaced by the constant distance x0 depending on the y momentum

eigenvalue. The orthobasis position representation wavefunctions are, up to normalization,

ψn,k(x, y) = 〈x, y|n, k〉 = ψn(x− x0)eiky, (9.3.52)

where ψn(x) are the harmonic oscillator wavefunctions of section 7.2, with ω = ωc and length

scale b = ℓB. Thus our new choice of gauge achieves a clean separation of x and y wavefunctions.

The more general lesson is that different gauge choices are useful for highlighting different aspects

of a problem.

Suppose now that our electron is confined to a rectangular area, 0 < x < dx and 0 < y < dy,

with macroscopic lengths dx and dy. We could try to impose a boundary condition that the
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wavefunction vanishes outside of this rectangle, but then it would become difficult to solve the

H,Py eigenvalue equations exactly. Fortunately, for many purposes we can still use the solutions

found above, to a good approximation. For the vast majority of states in the lowest Landau

levels, the boundary conditions at x = 0 and x = dx have almost no effect because the support

of the wavefunctions is limited to a distance comparable to ℓB. For example, the lowest Landau

level (n = 0) states have wavefunctions (up to normalization)

ψ0,k(x, y) = exp[−(x− x0)2/2ℓ2B] eiky. (9.3.53)

Because of the exponential suppression, the distortion of this wavefunction resulting from the

existence of the x = 0 and x = dx boundaries is very small except for the tiny fraction of

states for which x0 or dx − x0 is comparable to ℓB. This argument does not apply for the

y = 0 and y = dy boundaries, because the wavefunction factor eiky has constant magnitude.

However, we can use the trick of imposing periodic boundary conditions in the y direction, so

that y = 0 is identified with y = dy. Since dy is a macroscopic length, the microscopic physics

should not depend very much on whether we identify the two distant sides, or more generally

on what boundary conditions we impose, as long as they are consistent. The point is that

imposing periodic boundary conditions in y is particularly easy to do in a consistent way for

the wavefunctions proportional to eiky (and in particular is much easier than trying to impose

ψ = 0 at y = 0 and y = dy). It just restricts the allowed eigenvalues to

k = 2πny/dy, (ny = integer). (9.3.54)

We can now repeat the estimate of the number of states per unit area in the lowest Landau level.

To a good approximation, the valid states will be the ones for which x0 = ℓ2B2πny/dy fits between

0 and dx. This means that the allowed ny are the integers in the range 0 < ny < dxdy/2πℓ
2
B,

resulting in a degeneracy for the lowest Landau level of

N ≈ eBdxdy
2π~c

=
Φm
Φ0

. (9.3.55)

This agrees exactly with our previous result of eq. (9.3.44) obtained using the rotationally

symmetric gauge choice corresponding to the H,Lz orthobasis.

9.4 Exercises

Exercise 9.1. Show that the spin expectation value precession result of eq. (9.1.22) obeys

Ehrenfest’s Theorem, eq. (3.4.16), with S playing the role of A.

Exercise 9.2. A spin-1/2 particle with gyromagnetic ratio γ is in a uniform but time-varying

magnetic field B = B(t)ẑ so that the Hamiltonian is H = −γB · S. At time t = 0, the
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spin of the particle along the direction n̂ = (x̂ + ẑ)/
√
2 is measured to be +~/2. You should

express your answers in terms of the definite integral I(t) =
∫ t
0
dt′B(t′). [Hint: in this problem

the Hamiltonian is not constant in time, so you need to solve a differential equation for the

components of the state vector. That’s where the definite integral comes in.]

(a) If the ẑ component of the spin is measured at time t > 0, what is the probability that the

result will be Sz = −~/2 ?

(b) If, instead, the ŷ component of the spin is measured at time t > 0, what is the probability

that the result will be Sy = +~/2 ?

(c) Find the expectation value of Sx as a function of time t > 0.

Exercise 9.3. For the Rabi oscillation solution of eqs. (9.2.14) and (9.2.15), find the expectation

value of the spin operator, 〈S〉, as a function of time. Simplify the result as much as possible,

and show that it obeys Ehrenfest’s Theorem, eq. (3.4.16) with S playing the role of A.

Exercise 9.4. Consider the magnetic spin resonance system treated in section 9.2, but now

assume that the system is initially in an eigenstate of Sx with eigenvalue ~/2, so that the

boundary condition for the differential equations (9.2.8) and (9.2.9) is a1(0) = a2(0) = 1/
√
2.

Find the Rabi oscillation solution for a1(t) and a2(t) with the same Ω2 = [Γ2 + (ω − ωB)2]/4.
Show that the probability to find the system in the state |↑〉 is P(↑) = 1/2 + n sin2(Ωt), where

n is a quantity that you will find. What happens to this probability at resonance (ω = ωB)?

Under what conditions can |n| = 1/2, so that the probability periodically reaches 0 and 1?

Exercise 9.5. Prove each of eqs. (9.3.29)-(9.3.35) from the operator definitions given earlier.

Exercise 9.6. Find the n = 1 and n = 2 Landau level state wavefunctions ψ1,λ and ψ2,λ in the

H,Lz eigenstate basis. Write your answers in terms of z and z∗ defined in eq. (9.3.37).

Exercise 9.7. Consider an electron moving in the xy plane in the presence of uniform constant

fields B = −Bẑ and E = Ex̂. Use the same gauge choice as in eqs. (9.3.46) and (9.3.47). The

presence of the electric field just adds a term eEX to the Hamiltonian.

(a) Show that there are stationary states with energies En,k = ~ωc(n+1/2)+c1kE/B+c2E
2/B2,

where c1 and c2 are constants that you will determine, with corresponding wavefunctions

ψn,k(x, y) = ψn(x − x′0)eiky where ψn are the standard 1-d harmonic oscillator wavefunctions,

and x′0 is another constant that you will find.

(b) A wavepacket superposition of states with nearly the same k will have a velocity in the

y direction, with dispersion because the energy depends on the wavenumber. Find the group

velocity vg = (1/~)∂En,k/∂k. (This is equal to the time-averaged velocity for the cycloid motion

of the corresponding classical problem.)
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10 Examples with spherical symmetry

10.1 Stationary states with spherical symmetry

Consider a Hamiltonian of the form

H =
P 2

2µ
+ V (R). (10.1.1)

In this chapter, we will write µ for the mass of the particle, to avoid confusion with the eigenvalue

~m of Lz , and R is the operator corresponding to the classical spherical coordinate r. Thus V (R)

is a spherically symmetric potential, with no dependence on θ or φ. Likewise, the momentum

squared operator

P 2 = P 2
x + P 2

y + P 2
z = −~2∇2 (10.1.2)

is rotationally invariant, so there is no preferred direction associated with the Hamiltonian. It

follows that H , L2, and Lz are compatible observables, and we can look for an orthobasis of

common eigenstates

|E, l,m〉 , (10.1.3)

where E is the energy of the state, the eigenvalue of the Hamiltonian. Because of eq. (8.7.5),

these are also parity eigenstates, with eigenvalue (−1)l.
In the following, we will work in the position wavefunction representation with

ψE,l,m(r, θ, φ) = 〈r, θ, φ|E, l,m〉 = RE,l(r)Y
m
l (θ, φ), (10.1.4)

where RE,l(r) is a radial wavefunction. Note that RE,l(r) will depend on both E and l in general,

but it will not depend on m, because the operators L+ and L− raise and lower m without

changing l or the radial dependence of the wavefunction. The time-independent Schrödinger

equation in this basis is

[
−~

2∇2

2µ
+ V (r)

]
ψE,l,m(r, θ, φ) = EψE,l,m(r, θ, φ). (10.1.5)

Now, using eq. (8.6.12), this becomes

− ~
2

2µ

[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]
RE,l(r) + V (r)RE,l(r) = ERE,l(r), (10.1.6)

where the spherical harmonics have been factored out.

In many cases, we will find that the radial wavefunction RE,l(r) has a power-law behavior rp

near the origin, for an integer p. By requiring the total probability to be finite, it is clear that
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p cannot be less than −1; otherwise, the normalization integral
∫
dr r2|RE,l(r)|2 would diverge

even for a finite volume. But in almost all cases, one can make the even stronger statement that

RE,l(r) must be finite as r → 0. This is because ∇2(1/r) = −4πδ(r), so that p = −1 would

necessarily imply the presence of a delta function contribution to the potential V (r). In the

examples to follow, we will often make use of the finiteness of the radial wavefunction.

It is often useful to define a function

UE,l(r) = rRE,l(r), (10.1.7)

in which one power of the radial coordinate has been factored out. The eigenvalue differential

equation then becomes
[
− ~

2

2µ

d2

dr2
+

~
2l(l + 1)

2µr2
+ V (r)

]
UE,l = EUE,l, (10.1.8)

with the nice feature that there is no term with a single r derivative; that is the reason for

sometimes using UE,l rather than RE,l.

Indeed, eq. (10.1.8) for UE,l is very similar to the one-dimensional time-independent Schrödinger

equation (6.3.3) with x replaced by r. However, there are two important differences. First, the

domain of the independent variable is now limited to non-negative values,

0 ≤ r < ∞, (10.1.9)

unlike the one-dimensional Schrödinger equation. Second, the potential has effectively been

modified to

Veff(r) = V (r) +
~
2l(l + 1)

2µr2
, (10.1.10)

where the second term is a repulsive centrifugal contribution that blows up at r = 0, and

therefore makes the wavefunction vanish there unless l = 0. In fact, if V (r) is finite at r = 0,

one finds from eq. (10.1.8) that for l 6= 0, RE,l must scale like rl at small r.

With these caveats, the problem of stationary states for a particle in a spherically symmetric

potential has been reduced to a particular type of one-dimensional problem. The same results

that we derived in section 6.3 [see the discussion surrounding eqs. (6.3.6)–(6.3.8)] for matching

wavefunctions at special points holds here as for the one-dimensional problems. In particular, the

radial wavefunction is always continuous, and if the potential is finite (not necessarily continuous)

at a point r = r0, then its first derivative with respect to r is continuous there.

10.2 Free particle in spherical coordinates

We have already discussed the position and momentum eigenstates and wavefunctions for a free

particle moving in three dimensions, in section 2.8. For position eigenstates, the CSCO used was
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(X, Y, Z), while for momentum eigenstates, it was (Px, Py, Pz). Now we will discuss the same

physical problem using the CSCO (H, L2, Lz) with eigenvalues (E, ~2l(l + 1), ~m), starting

from eq. (10.1.8) with V (r) = 0. We will solve the time-independent Schrödinger equation for

fixed (E, l,m) in the position wavefunction representation with coordinates (r, θ, φ), where the

domain may consist of only a sub-volume of the whole space. The resulting solutions can then

be applied, using matching of the wavefunction, to problems in which a particle moves freely

only in that sub-volume. They can also be applied to scattering problems in three dimensions.

To simplify things, define

k2 = 2µE/~2, ρ = kr. (10.2.1)

From the discussion in section 2.8, we already know that the allowed eigenvalues E are positive,

so that k is a real number with units of 1/[length]. Thus ρ is a radial coordinate re-scaled to

make it dimensionless. In terms of these, eq. (10.1.8) becomes
(
d2

dρ2
+ 1− l(l + 1)

ρ2

)
Ul(ρ) = 0. (10.2.2)

Note that this equation and the forms of its solutions Ul(ρ) do not depend on E, because the

dependence has been hidden in ρ.

Let us start with the case l = 0. Then eq. (10.2.2) is a familiar equation, with the familiar

solutions U0(ρ) = sin(ρ) or cos(ρ). Of these, the first solution U0 = sin(ρ) gives a constant for

R(r) as r → 0. However, the second solution U0 = cos(ρ) approaches a constant as r → 0.

This renders it physically unacceptable if the origin is included in the spatial region under

consideration, because then R(r) ∼ 1/r, which is divergent and would require a delta function

potential V (r) at the origin, since ∇2(1/r) = −4πδ(r). Nevertheless, it is acceptable if we are

solving for the free-particle wavefunction only in a region that does not include the origin. We

therefore have two solutions for L2 = 0, labeled A and B,

UA
0 (kr) = sin(kr), UB

0 (kr) = − cos(kr), (10.2.3)

where the minus sign is a phase choice for later convenience, and the B solution is understood

to be acceptable if, and only if, the origin is excluded. These solutions for l = 0 can be used as

seeds to find solutions for l > 0, as we will now see.

Writing the solution for general l in the form

Ul(ρ) = ρl+1fl(ρ), (10.2.4)

the differential equation (10.2.2) becomes
(
d2

dρ2
+

2(l + 1)

ρ

d

dρ
+ 1

)
fl(ρ) = 0. (10.2.5)
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Now we note that if fl(ρ) satisfies the differential equation for l, then

fl+1(ρ) ≡ −1

ρ

dfl
dρ

(10.2.6)

will satisfy it for l + 1, as can be proved by computing d2fl+1/dρ
2 and dfl+1/dρ and plugging

into eq. (10.2.5). So, for each of our two l = 0 solutions from eq. (10.2.3),

fA0 (ρ) =
sin ρ

ρ
, fB0 (ρ) = −cos ρ

ρ
, (10.2.7)

by recursion we will have a solution

fl =

(
−1

ρ

d

dρ

)l
f0. (10.2.8)

Therefore, for each value of l, we have two linearly independent solutions

RA
l (ρ) = ρlfAl = ρl

(
−1

ρ

d

dρ

)l(
sin ρ

ρ

)
≡ jl(ρ), (10.2.9)

RB
l (ρ) = ρlfBl = ρl

(
−1

ρ

d

dρ

)l(
−cos ρ

ρ

)
≡ nl(ρ). (10.2.10)

The functions jl(ρ) are called the spherical Bessel functions, and nl(ρ) are called the spher-

ical Neumann functions. The lowest few are

j0(ρ) =
sin ρ

ρ
, n0(ρ) = −cos ρ

ρ
, (10.2.11)

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ
, n1(ρ) = −cos ρ

ρ2
− sin ρ

ρ
, (10.2.12)

j2(ρ) =

(
3

ρ3
− 1

ρ

)
sin ρ− 3

ρ2
cos ρ, n2(ρ) =

(
− 3

ρ3
+

1

ρ

)
cos ρ− 3

ρ2
sin ρ. (10.2.13)

For small ρ, they can be shown to behave like

jl(ρ) ∼
ρl

(2l + 1)!!
, (10.2.14)

nl(ρ) ∼ −(2l − 1)!!

ρl+1
, (10.2.15)

where the double factorial notation means

(2l + 1)!! = (2l + 1)(2l− 1) · · · (1) = (2l + 1)!/(2ll!), (10.2.16)

with the special value (−1)!! = 1. Thus the jl solutions are well-behaved at the origin, but the

nl solutions are not. For large ρ, they both fall off like 1/ρ multiplied by oscillating functions,

jl(ρ) ∼
1

ρ
sin(ρ− lπ/2), (10.2.17)

nl(ρ) ∼ −1

ρ
cos(ρ− lπ/2). (10.2.18)
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The functions nl(ρ) are not needed for the case of a completely free particle (one that has no

potential everywhere including r = 0). However, they are useful in situations where we piece

together the free-particle solution(s) in region(s) not including the origin to other solutions that

do include the origin, as for example in section 10.4.

For example, suppose we have a potential that is spherically symmetric and piece-wise con-

stant within radial intervals, so that

V (r) =





V0 (0 ≤ r < a1),
V1 (a1 < r < a2),
· · · · · ·
VN (aN < r <∞).

(10.2.19)

In each of these regions, the constant potential Vn can be absorbed into the constant energy, so

the possible stationary-state solution wavefunctions are

(
A

(n)
l jl(knr) +B

(n)
l nl(knr)

)
Y m
l (θ, φ), for (an < r < an+1), (10.2.20)

for some constants A
(n)
l and B

(n)
l , but now with

kn =
√

2µ(E − Vn)/~. (10.2.21)

The coefficients A
(n)
l and B

(n)
l can be determined by matching the wavefunctions, and their

first derivative with respect to r, at each of the points an. This procedure also simultaneously

determines the energy eigenvalue E. In the region 0 ≤ r < a1, the Neumann function solutions

are not allowed, so one must have B
(0)
l = 0, but in all other regions B

(n)
l is allowed to be non-

zero. Note that there is a degeneracy 2l + 1 for each of these stationary states, due to the fact

that the energy does not depend on m = −l, . . . , l. One can also match such wavefunctions to

regions in which the potential is something more complicated.

Different linear combinations of jl and nl are useful in certain kinds of problems. The

spherical Hankel functions defined by

h
(1)
l (ρ) = jl(ρ) + inl(ρ) = −iρl

(
−1

ρ

d

dρ

)l(
eiρ

ρ

)
, (10.2.22)

h
(2)
l (ρ) = jl(ρ)− inl(ρ) = iρl

(
−1

ρ

d

dρ

)l(
e−iρ

ρ

)
, (10.2.23)

correspond to outgoing and ingoing spherical waves, respectively. To understand this, note that

from eqs. (10.2.17) and (10.2.18) their behavior for large ρ = kr is

h
(1)
l (ρ) ≈ 1

ρ
ei[ρ−π(l+1)/2] = i−leiρ/ρ, (10.2.24)

h
(2)
l (ρ) ≈ 1

ρ
e−i[ρ+π(l+1)/2] = ile−iρ/ρ, (10.2.25)
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so that the time dependence of the corresponding wavefunctions is

〈r |ψ(1)(t)〉 ∝ e−itE/~eikr/r, (10.2.26)

〈r |ψ(2)(t)〉 ∝ e−itE/~e−ikr/r. (10.2.27)

These maintain constant phase at r = (E/~k) t+constant and r = −(E/~k) t+constant, re-

spectively. (The phase velocity is therefore ω/k = E/p = ~k/2m, but recall from the discussion

leading to eq. (6.2.11) that wavepacket superpositions will have a group velocity twice this,

~k/m, which is the classical value.)

For problems in which E < Vn in at least one region, k will be imaginary in that region.

Then the solutions will involve jl(kr) and nl(kr) or h
(1)
l (kr) and h

(2)
l (kr), where now k =

i
√

2µ(Vn − E)/~ is a pure imaginary number. In many such cases, a more convenient basis of

solutions is provided by the modified spherical Bessel functions,

il(ρ) = jl(iρ)/i
l = ρl

(
1

ρ

d

dρ

)l(
sinh ρ

ρ

)
, (10.2.28)

kl(ρ) = − ilh(1)l (iρ) = ρl
(
−1

ρ

d

dρ

)l(
e−ρ

ρ

)
, (10.2.29)

where now

ρ = κr, κ = k/i =
√
2µ(Vn −E)/~. (10.2.30)

The function il(ρ) is well-defined and useful for regions that include r = 0, while the function

kl(ρ) is useful for regions that extend to r =∞.

For the rest of this section, we consider the (H,L2, Lz) orthobasis eigenstate wavefunctions

for the completely free particle whose domain includes all space, including the origin. They are

〈r |k, l,m〉 = ψk,l,m(r) = Rk,l(r)Y
m
l (θ, φ), (E = ~

2k2/2µ), (10.2.31)

where the radial wavefunctions Rk,l(r) = Ak,l jl(kr) contain a normalization constant Ak,l to be

fixed. To do so, we can use the orthonormality relations for the spherical Bessel functions,†

∫ ∞

0

dr r2jl(kr)jl(k
′r) =

π

2k2
δ(k − k′), (10.2.32)

for each l. It follows that if we choose Ak,l =
√
2/π, so that the radial wavefunctions are

Rk,l(r) =

√
2

π
jl(kr), (10.2.33)

†Equation 10.2.32 is technically ill-defined, because the integration does not converge, even for k 6= k′. It
should therefore be viewed as a formal relation, to be used within expressions where k or k′ is integrated over.
This is similar to the technically ill-defined nature of the Fourier integral for the delta function in eq. (2.2.20).
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then we have the orthonormality relations,
∫
dr r2Rk′,l(r)Rk,l(r) =

1

k2
δ(k − k′), (10.2.34)

and for the full eigenstates and their wavefunctions,

〈k′, l′, m′ |k, l,m〉 =
∫
d3r ψk′,l′,m′(r)∗ ψk,l,m(r) =

1

k2
δ(k − k′) δll′δmm′ . (10.2.35)

With our choice of normalization in eqs. (10.2.33)–(10.2.35), we also have the completeness of

the orthobasis in terms of an integral over k,

∫ ∞

0

dk k2
∞∑

l=0

l∑

m=−l
|k, l,m〉〈k, l,m| = I, (10.2.36)

from which follows

∫ ∞

0

dk k2
∞∑

l=0

l∑

m=−l
ψk,l,m(r

′)∗ψk,l,m(r) = δ(3)(r − r ′). (10.2.37)

A perfectly good alternative normalization choice would be to express the same results in

terms of “energy normalization” kets

|E, l,m〉 =

√
µk

~
|k, l,m〉 , (10.2.38)

and the corresponding radial wavefunctions

RE,l(r) =

√
2µk

π~2
jl(kr). (10.2.39)

If one uses |E, l,m〉, RE,l(r), and ψE,l,m(r), then the Dirac orthonormality and completeness

relations will have the same form as eqs. (10.2.34)-(10.2.37), but with δ(E − E ′) replacing

δ(k − k′)/k2 and
∫∞
0
dE replacing

∫∞
0
dk k2. This follows from δ(k − k′) = δ(E −E ′)~2k/µ.

Let us now consider the relation between the plane wavefunctions associated with momentum

eigenstates |p〉 and the spherical waves associated with the (H,L2, Lz) eigenstates |k, l,m〉. Using
the completeness relation, we have

〈r|p〉 =

∫ ∞

0

dk k2
∞∑

l=0

l∑

m=−l
〈r|k, l,m〉〈k, l,m|p〉 . (10.2.40)

Now, both |p〉 and |k, l,m〉 are eigenstates of H with energy eigenvalues E = |p|2/2µ and

~
2k2/2µ, respectively. Therefore, Theorem 2.6.5 says that the last inner product in eq. (10.2.40)

must vanish unless |p| = ~k, and so it must be of the form

〈k, l,m|p〉 =
1

(2π~)3/2
δ(k − |p|/~)

√
π

2
Cl,m(θ~p, φ~p), (10.2.41)
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for some functions Cl,m that depend only on l, m, and the angular coordinates of the vector

p. (The Cl,m cannot depend on the magnitude k, because they are dimensionless and there

is no other dimensionful quantity on which they could depend.) Since k = |p|/~ is enforced

by the delta function, we can define k = p/~ and use eqs. (2.8.62) and (10.2.31) to find that

eq. (10.2.40) reads

ei
~k·~r

(2π~)3/2
=

1

(2π~)3/2

∞∑

l=0

l∑

m=−l
Cl,m(θ~k, φ~k) jl(kr)Y

m
l (θ, φ). (10.2.42)

The claim is that the coefficient functions turn out to be

Cl,m(θ~k, φ~k) = 4πilY m
l (θ~k, φ~k)

∗, (10.2.43)

so that we have the remarkable identity relating plane waves to spherical waves,

ei
~k·~r =

∞∑

l=0

l∑

m=−l
4πil Y m

l (θ~k, φ~k)
∗ jl(kr)Y

m
l (θ, φ). (10.2.44)

Note that (θ~k, φ~k) are the spherical coordinate angles for the vector k, while (θ, φ) are the angles

for the vector r in the same coordinate system. The interpretation of eq. (10.2.44) is that

a plane wave with momentum p = ~k consists of a superposition of spherical waves with all

allowed (quantized) values of orbital angular momentum.

To prove the claimed eq. (10.2.44), we first consider the case that k = kẑ. Then θ~k = 0,

and k · r = kr cos θ, so ei
~k·~r = eikr cos θ. Because this does not depend on φ at all, its expansion

in terms of spherical harmonics will only include the m = 0 functions Y 0
l (θ, φ), which are

proportional to the ordinary Legendre polynomials Pl(cos θ). So, in this case the expansion in

eq. (10.2.44) has the simpler form

eikr cos θ =

∞∑

l=0

cl jl(kr)Pl(cos θ), (10.2.45)

where cl are some coefficients that we need to determine. Now we can multiply both sides of

eq. (10.2.45) by Pl′(cos θ), and integrate with respect to cos θ, making use of the identity

∫ 1

−1
du Pl(u)Pl′(u) =

2

2l + 1
δll′ . (10.2.46)

The result, after relabeling l′ → l, is

cl jl(kr) =
2l + 1

2

∫ 1

−1
d(cos θ)Pl(cos θ)e

ikr cos θ. (10.2.47)
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This must hold for all r, so we can consider the leading behavior as r → 0 in particular. Using

eq. (10.2.14), this gives

cl
(kr)l

(2l + 1)!!
+O(rl+1) =

2l + 1

2

∫ 1

−1
du Pl(u)e

ikru. (10.2.48)

This shows that the right side evidently must be proportional to rl in the limit of small r.

Expanding eikru in a power series in r, using eikru =
∑∞

n=0(ikru)
n/n!, this implies the identities

∫ 1

−1
du unPl(u) = 0 (for integer n < l), (10.2.49)

and the result we need (from the n = l term),

cl
kl

(2l + 1)!!
=

2l + 1

2

(ik)l

l!

∫ 1

−1
du ulPl(u). (10.2.50)

Using eq. (8.6.44) for the Legendre polynomials, one can obtain the integral

∫ 1

−1
du ulPl(u) =

2(l!)

(2l + 1)!!
, (10.2.51)

by integrating by parts l times. Thus, eq. (10.2.50) simplifies to

cl = (2l + 1)il, (10.2.52)

so that

eikr cos θ =
∞∑

l=0

(2l + 1)il jl(kr)Pl(cos θ). (10.2.53)

Now for the case of k in an arbitrary direction, substitute kr cos θ → k · r in the preceding, or

cos θ → k̂ · r̂. (10.2.54)

Using the spherical harmonic addition identity, eq. (8.6.71), one finally arrives at eq. (10.2.44).

10.3 Particle confined to a sphere

As an application of the results of the previous section, consider a particle of mass µ that is

confined within a sphere of radius a, but is otherwise free, so that the potential is

V (r) =

{
0 (r < a),

∞ (r ≥ a).
(10.3.1)

The stationary-state wavefunctions are

ψE,l,m =

{
CE,l,m jl(kr)Y

m
l (θ, φ) (r < a),

0 (r ≥ a),
(10.3.2)
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Figure 10.3.1: The solutions of the transcendental
equation X = tanX for positive X = ka provide the
eigenvalues for k for the l = 1 states of a particle con-
fined to a ball of radius a. This graph shows the low-
est three solutions X ≈ π(1.4303, 2.4590, 3.4709) =
(4.4934, 7.7253, 10.9041), obtained as the intersec-
tions of Y = tanX with the line Y = X .

where CE,l,m are normalization constants and E = ~
2k2/2µ. Continuity of the wavefunction at

r = a requires that

jl(ka) = 0, (10.3.3)

and this boundary condition determines the allowed quantized energy levels En,l. Let us see

how this works for l = 0, 1, 2.

For l = 0, eq. (10.3.3) becomes simply sin(ka)/ka = 0, so ka = nπ, where n is a positive

integer. The energies are therefore

En,0 =
~
2k2

2µ
=

~
2π2n2

2µa2
(10.3.4)

for l = m = 0, with corresponding wavefunctions

ψn,0,0 = Cn,0,0
sin(nπr/a)

nπr/a
. (10.3.5)

Note that these wavefunctions approach a non-zero constant at r = 0. The number of zeros of

the radial wavefunction, including the one at r = a, is n. The constant can be fixed by requiring

the unit normalization condition 1 = 4π
∫ a
0
dr r2|ψn,0,0|2, which yields Cn,0,0 = n

√
π/2a3.

For l = 1, the boundary condition (10.3.3) reads

tan(ka) = ka, (10.3.6)

which is a transcendental equation that can be understood graphically and then solved nu-

merically for X = ka as shown in Figure 10.3.1. The lowest three energy solutions have

ka/π ≈ (1.4303, 2.4590, 3.4709, . . .), so

En,1 ≈
~
2π2

2µa2
(2.0458, 6.0468, 12.0471, . . .) for n = (2, 3, 4, . . .), (10.3.7)
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where the label n is again the number of zeros of the radial wavefunction. In the l = 1 case,

r = 0 and r = a are always both zeros, so n ≥ 2. Each of the l = 1 energy levels has degeneracy

3, because the quantum number m = −1, 0, 1 does not affect the energy.

For l = 2, the boundary condition (10.3.3) becomes

tan(ka) =
ka

1− (ka)2/3
, (10.3.8)

which again is transcendental, but whose solutions can again be found numerically, with the

results ka/π ≈ (1.8346, 2.8950, 3.9225, . . .), so

En,2 ≈
~
2π2

2µa2
(3.3656, 8.3812, 15.3861, . . .) for n = (2, 3, 4, . . .), (10.3.9)

where again the label n is the number of zeros of the radial wavefunction j2(kr). Each of these

energy levels has degeneracy 5, corresponding to m = −2,−1, 0, 1, 2.
The energy eigenvalues for higher angular momentum quantum number l can be numerically

solved for in a similar way, and have increasingly higher energies. The degeneracy of each energy

level En,l is 2l+1, corresponding to the allowed values of the Lz eigenvalue ~m. The lowest few

energy levels, with En,l < 10~2π2/µa2 and l ≤ 7, are depicted in Fig. 10.3.2.

Energy

0

5

10

15

20

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

Figure 10.3.2: The lowest energy levels, in units of the ground-state energy E1,0 = ~
2π2/2µa2,

for a particle of mass µ confined to a sphere of radius a, labeled by the angular momentum
quantum number l. All energy eigenvalues with En,l < 10~2π2/µa2 and l ≤ 7 are shown.
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10.4 Particle in a spherical potential well

Consider a particle of mass µ in a spherical potential well of radius a and finite depth V0,

V (r) =

{ −V0 (r < a),

0 (r ≥ a).
(10.4.1)

We will consider bound state solutions, which have E < 0. As discussed in section 10.2, the

stationary-state solution for the region r < a involves the ordinary spherical Bessel function

jl(kr), but now with

k =
√

2µ(E + V0)/~. (10.4.2)

The Neumann functions nl(ρ) are not well-behaved at ρ = 0 and so do not appear for r < a.

The solution for r > a uses the modified spherical Bessel function kl(κr) [see eq. (10.2.29)] with

κ =
√
−2µE/~, (10.4.3)

because kl(ρ) is the linear combination that is well-behaved at ρ = ∞. The stationary-state

wavefunctions are therefore

ψE,l,m(r) =

{
Ajl(kr) Y

m
l (θ, φ) (r ≤ a),

B kl(κr) Y
m
l (θ, φ) (r ≥ a),

(10.4.4)

where A and B are normalization constants, and

k2 + κ2 = 2µV0/~
2 (10.4.5)

from eqs. (10.4.2) and (10.4.3).

At r = a, the wavefunction and its first derivative with respect to r are continuous, since

the potential is finite there. This gives

Ajl(ka) = B kl(κa), (10.4.6)

kA j′l(ka) = κB k′l(κa). (10.4.7)

Taking the ratio of these to eliminate A and B yields

k j′l(ka)

jl(ka)
=

κ k′l(κa)

kl(κa)
, (10.4.8)

which is a transcendental equation that can be used together with eq. (10.4.5) to solve for

the allowed eigenvalues k, κ, and thus E. As always for a spherically symmetric potential,

the allowed energies depend on l, but not m. Either equation (10.4.6) or (10.4.7) then also

allows for the ratio A/B to be found for each E, l. The remaining unknown corresponds to the
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overall magnitude of the constants A and B, which can be fixed by the normalization of the

wavefunction.

For example, if l = 0, eq. (10.4.8) yields

−k cot(ka) = κ. (10.4.9)

Writing dimensionless variables X = ka and Y = κa, eqs. (10.4.5) and (10.4.9) give

X2 + Y 2 = 2µV0a
2/~2, (10.4.10)

−X cotX = Y. (10.4.11)

Fortunately, these are exactly the same equations we encountered for the odd-parity solutions of

the one-dimensional square well problem, with L→ 2a. [Compare to eqs. (6.5.12) and (6.5.18).]

The same graphical and numerical analysis therefore applies. In particular, if we label the l = 0

stationary states by n = 1, 2, 3, . . ., then the condition for the bound state |ψn〉 to exist is

µV0a
2

~2
>

π2

2
(n− 1/2)2. (10.4.12)

Recall that in the case of a particle in a one-dimensional square well, there is always at least

one bound state, but for a sufficiently shallow potential well only the even-parity ground state

exists as a bound state. For the three-dimensional spherical well, since only the analogs of the

odd-parity one-dimensional square-well states exist, eq. (10.4.12) tells us that the existence of

a bound state requires the potential to be sufficiently deep, V0 > π2
~
2/8µa2. The more general

lesson is that three-dimensional potentials may have no bound states if they are not sufficiently

attractive.

10.5 Isotropic three-dimensional harmonic oscillator

In section 7.5, we have already encountered the isotropic three-dimensional harmonic oscillator

as a special case of the general anisotropic version, and obtained its stationary-state energy

levels and degeneracies. We did this using a CSCO of (Hx, Hy, Hz), the individual Hamiltonians

for excitations in the x, y, and z directions. In this section, we will solve the problem again,

this time with a CSCO consisting of (H,L2, Lz). This is possible because, in the isotropic case,

H =
P 2

2µ
+

1

2
µω2R2 (10.5.1)

is invariant under all rotations and therefore commutes with L2 and Lz . Note that we are now

using µ as the symbol for the mass of the particle.
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Before proceeding, let us consider what sort of answer we expect, given the results of section

7.5. At an energy level E = ~ω(n + 3/2) with n = nx + ny + nz, the wavefunctions must be

linear combinations of wavefunctions of the form

〈x, y, z|nx, ny, nz〉 ∝ Hnx(x/b)Hny(y/b)Hnz(z/b) e
−(x2+y2+z2)/2b2 , (10.5.2)

where the length scale in the problem is

b =
√

~/µω, (10.5.3)

and the Hna are the Hermite polynomials. After translating to spherical coordinates, such a

linear combination that is an eigenstate of L2 and Lz must be of the form

〈r, θ, φ |n, l,m〉 = Y m
l (θ, φ)Rn,l(r), (10.5.4)

where

Rn,l(r) = (polynomial of degree n in r) e−r
2/2b2 . (10.5.5)

Our goal is to solve for the functions Rn,l(r).

In section 10.1, we found the differential equation for Un,l = rRn,l, which in the present case

becomes
[
− ~

2

2µ

d2

dr2
+

1

2
µω2r2 +

~
2l(l + 1)

2µr2
−E

]
Un,l = 0. (10.5.6)

Inspired by eq. (10.5.5), we define dimensionless quantities x and y(x) by

x = r/b, Un,l = y(x)e−x
2/2. (10.5.7)

When plugged into eq. (10.5.6), this gives

y′′ − 2xy′ +
[
E − 1− l(l + 1)/x2

]
y = 0, (10.5.8)

where

E = 2µb2E/~2 = 2E/~ω (10.5.9)

is a dimensionless combination proportional to the energy eigenvalue. We already know from

eq. (7.5.13) that the allowed eigenvalues are E = 2n + 3 for non-negative integers n, and from

eq. (10.5.5) that y(x) is a polynomial, but in the following derivation we will proceed as if these

facts were not known.
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We now try a series solution for y(x), of the form

y = xq
∞∑

p=0

cpx
p. (10.5.10)

Here q and the cp are constants, with c0 6= 0 by definition. (Otherwise, we would adjust the

value of q to make it so.) Now we prepare to plug in to eq. (10.5.8) by computing

y′′ =
∞∑

p=0

cp(p+ q)(p+ q − 1)xp+q−2, (10.5.11)

y/x2 =

∞∑

p=0

cpx
p+q−2, (10.5.12)

xy′ =

∞∑

p=0

cp(p+ q)xp+q =

∞∑

p=0

cp−2(p+ q − 2)xp+q−2, (10.5.13)

y =
∞∑

p=0

cp−2x
p+q−2, (10.5.14)

where in the last equality of each of eqs. (10.5.13) and (10.5.14) we have used the trick of

relabeling p→ p− 2 and defining c−2 = c−1 = 0. The motivation behind this relabeling trick is

that now all of the summands have the same powers of x, and so eq. (10.5.8) becomes

∞∑

p=0

xp+q−2
{
cp
[
(p+ q)(p+ q − 1)− l(l + 1)]− cp−2[2(p+ q − 2) + 1− E

]}
= 0. (10.5.15)

For this equation to be satisfied for all x, each coefficient of a given power of x must vanish, so

the quantity in braces must vanish for each p.

From the first term p = 0, using c−2 = 0 we find

c0
[
q(q − 1)− l(l + 1)

]
= 0. (10.5.16)

Since c0 6= 0, the possible solutions are q = l + 1 and q = −l. However, the latter can be

rejected on physical grounds, since it would imply that y ∼ x−l for small x, which would mean

Rn,l ∼ 1/rl+1 for small r, and the wavefunction would not be finite at the point r = 0. Therefore,

q = l + 1, (10.5.17)

which implies that Rn,l ∼ rl for small r. This suppression for small r is consistent with the

existence of the repulsive ~2l(l+1)/2µr2 centrifugal barrier contribution to the effective potential

for non-zero angular momentum, see eq. (10.1.10) or eq.(10.5.6).

The second term p = 1 gives us

c1
[
q(q + 1)− l(l + 1)

]
= 0, (10.5.18)
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because c−1 = 0. Now, plugging in q = l + 1, this becomes 2(l + 1)c1 = 0. Since our knowledge

of the angular momentum eigenvalue problem tells us that l + 1 cannot vanish, we must have

c1 = 0.

For all larger p, the vanishing of eq. (10.5.15) implies (after using q = l + 1) that

cp p(p+ 2l + 1) = cp−2 (2p+ 2l − 1− E). (10.5.19)

Since c1 = 0, it follows that cp = 0 for all odd p. Defining Cj = c2j , we have

y = xl+1
∞∑

j=0

Cjx
2j , (10.5.20)

with, from eq. (10.5.19) by taking p = 2(j + 1), the recurrence relation

Cj+1 =
4j + 2l + 3− E

2(j + 1)(2j + 2l + 3)
Cj . (10.5.21)

For large j, we have Cj ≈ Cj−1/j, so if the series does not terminate, it would behave asymp-

totically like y ∼ xl+1
∑

j(x
2)j/j! ∼ xl+1ex

2

, which would imply that Rn,l ∼ rle−r
2/2b2er

2/b2 ∼
rler

2/2b2 . As in the case of the one-dimensional harmonic oscillator, such a solution that blows

up exponentially as r →∞ is unphysical, since it cannot be normalized.

We can therefore conclude that the series must terminate, and y(x) is actually a polynomial,

in agreement with eq. (10.5.5). Then the recurrence relation eq. (10.5.21) implies that physically

valid solutions for y(x) must have Ck+1 = 0 for some integer k ≥ 0, and so satisfy

E = 4k + 2l + 3, (10.5.22)

or, using eq. (10.5.9),

E = ~ω(2k + l + 3/2). (10.5.23)

The integer n = nx+ny+nz must then be equal to 2k+ l, and the energy eigenkets |E, l,m〉 are
linear combinations of the kets |nx, ny, nz〉. An interesting feature of these results is that, unlike

the particle-in-a-sphere and particle-in-a-spherical-well examples of sections 10.3 and 10.4, here

the degeneracies in the energy levels are not entirely due to the rotational invariance of the

problem. For a given l, there are 2l + 1 degenerate states with m = −l, . . . , l that have the

same energy. But, there are also “accidental” energy degeneracies between states with different

angular momenta, for example k = 0, l = 2 and k = 1, l = 0.

Summarizing what we now know about the three-dimensional isotropic harmonic oscillator

stationary-state wavefunctions with definite (L2, Lz),

ψk,l,m(r, θ, φ) = ARk,l(r) Y
m
l (θ, φ), (10.5.24)
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where A is a normalization constant. The radial wavefunctions are of the form

Rk,l(r) = (r/b)lPk,l(r
2/b2)e−r

2/2b2 , (10.5.25)

where, with z = x2,

Pk,l(z) =

k∑

j=0

Cjz
j . (10.5.26)

Using eq. (10.5.22), the recurrence relation (10.5.21) becomes

Cj+1 =
2(j − k)

(j + 1)(2j + 2l − 3)
Cj. (10.5.27)

For the lowest few values k = 0, 1, 2, 3, we have (leaving the coefficient C0 as an arbitrary

normalization for the moment):

P0,l(z) = C0, (10.5.28)

P1,l(z) = C0

(
1− 2

2l + 3
z
)
, (10.5.29)

P2,l(z) = C0

(
1− 4

2l + 3
z +

4

(2l + 3)(2l + 5)
z2
)
, (10.5.30)

P3,l(z) = C0

(
1− 6

2l + 3
z +

12

(2l + 3)(2l + 5)
z2 − 8

(2l + 3)(2l + 5)(2l + 7)
z3
)
. (10.5.31)

These polynomials are proportional to associated Laguerre polynomials, for which there

are unfortunately at least three different notational conventions in common use. Adopting here

the definition of the associated Laguerre polynomial Lαk (z) used by Mathematica,†

Pk,l(z) = L
l+1/2
k (z), (10.5.32)

corresponding to the choice

C0 =
(2l + 2k + 1)!!

2k k! (2l + 1)!!
=

(2l + 2k + 1)! l!

22k (2l + 1)! (l + k)! k!
. (10.5.33)

More generally, the conventional normalization is such that, at z = 0 and for any α,

Lαk (0) =
Γ(k + α + 1)

k! Γ(α+ 1)
. (10.5.34)

Here, the Gamma function is defined by

Γ(z) =

∫ ∞

0

dt tz−1e−t, (10.5.35)

†The relations between the definition of the associated Laguerre polynomials used here and in some other
sources is Γ(N + α+ 1)Lα

N(z)here,Mathematica = Lα
N(z)some other books = (−1)αLα

N+α(z)still other books.
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and satisfies Γ(z) = (z − 1)Γ(z − 1). When z is an integer, then z! = Γ(z + 1). Another useful

value is Γ(1/2) =
√
π.

An explicit, general form for the associated Laguerre polynomials is

LαN (z) =
1

N !
z−αez

dN

dzN
(
e−zzN+α

)
. (10.5.36)

Note that the lower index N is always an integer equal to the degree of the polynomial, but the

raised index α need not be, as in the present application where α = l + 1/2. They satisfy the

differential equation
[
z
d2

dz2
+ (1− z + α)

d

dz
+N

]
LαN (z) = 0, (10.5.37)

and the orthogonality relation
∫ ∞

0

dz e−zzαLαN (z)L
α
N ′(z) =

Γ(N + α + 1)

k!
δNN ′ . (10.5.38)

The degree N is also equal to the number of zeros (in the present case N = k), which all occur

for positive real z.

Putting everything together, the wavefunctions for the stationary states of the three-dimensional

isotropic harmonic oscillator with energies E = ~ω(2k + l + 3/2) are

ψk,l,m(r, θ, φ) =

√
2(k!)

b3 Γ(k + l + 3/2)

(r
b

)l
L
l+1/2
k (r2/b2) e−r

2/2b2 Y m
l (θ, φ). (10.5.39)

The normalization factor A in eq. (10.5.24) has been chosen, with the aid of eq. (10.5.38), so

that orthonormality holds,

〈k′, l′, m′|k, l,m〉 =

∫ ∞

0

dr r2
∫
dΩ [ψk′,l′,m′(r, θ, φ)]∗ ψk,l,m(r, θ, φ) = δkk′δll′δmm′ . (10.5.40)

10.6 Exercises

Exercise 10.1. Consider a particle of mass µ in a spherically symmetric potential V (R) in a

stationary bound state with energy E and zero angular momentum, so that the wavefunction

ψ(r) is only a function of r. The quantity |ψ(0)|2 is useful for evaluating “contact” quantities

that depend on the probability for the particle to be found at the potential source, the origin.

(An example is the Darwin term of the hydrogen atom fine structure.) Show that in general

|ψ(0)|2 =
µ

2π~2

〈
V ′(R)

〉
, (10.6.1)

with the standard wavefunction normalization such that 4π
∫∞
0
dr r2 |ψ(r)|2 = 1. [Hint: multiply

the Schrödinger equation − ~2

2µ

(
ψ′′ + 2

r
ψ′) + [V (r)− E

]
ψ = 0 by ψ′(r), and integrate by parts.]

Check this result in the special cases of the l = 0 states of a particle confined to the interior of

a sphere, and the ground state of the isotropic harmonic oscillator.
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Exercise 10.2. Use the spherical Bessel and Neumann function forms in eqs. (10.2.11)-(10.2.13)

to verify the large-distance forms of eqs. (10.2.14) and (10.2.15) for l = 0, 1, 2.

Exercise 10.3. Consider a particle of mass µ trapped inside a ball of radius b that has a hard

core of radius a, so that the potential in spherical coordinates is

V (r) =

{ ∞ (for r < a and for r > b).

0 (for a < r < b)
(10.6.2)

This means that the eigenstates ofH , L2, and Lz have wavefunctions of the form ΨE,l,m(r, θ, φ) =

[Ajl(kr) +Bnl(kr)]Y
m
l (θ, φ) for the region a < r < b.

(a) Find all of the allowed energy eigenstates and eigenvalues for l = 0. [Hint: use boundary

conditions to solve for the ratio B/A twice, and require the two expressions to be equal.]

(b) For the case l = 1, find a transcendental equation whose solutions will yield the energy

eigenvalues. Put your equation into the form tan[k(b− a)] = {an expression not involving sines

or cosines}. [Hint: first put the equation into a form that is polynomial in ka, kb, and their

sines and cosines; then use trigonometric identities for sin(kb− ka) and cos(kb− ka).]
(c) For the special case l = 1 and b = 2a, write your transcendental equation in the form

tanX = X/(1 +NX2), where X = ka and N is a certain integer that you will discover. Solve

for X numerically to at least 3 digits of accuracy, and obtain the lowest energy for l = 1. How

does it compare to the lowest energy for l = 0 that you found in part (a)?

Exercise 10.4. Consider the isotropic 3-d harmonic oscillator problem, with potential V (x, y, z) =
1
2
µω2(x2 + y2 + z2). The Hamiltonian H can be written as the sum of Hx = ~ω(a†xax + 1/2),

Hy = ~ω(a†yay + 1/2), and Hz = ~ω(a†zaz + 1/2), which form a CSCO with corresponding or-

thonormal eigenbasis |nx, ny, nz〉. Another choice of CSCO is H , L2, and Lz, with corresponding

eigenbasis |n, l,m〉′, where n = nx + ny + nz. (The ′ distinguishes the two types of orthobasis

elements, since they both have three integer labels.)

(a) Show that the angular momentum component operators Lx, Ly, and Lz can be written as

Lb = i~ǫbcdaca
†
d. (10.6.3)

(b) Construct the operator L2 in terms of the ladder operators. You should write the answer in

“normal-ordered” form, which means that the commutation relations have been used to ensure

that no creation operator appears to the right of an annihilation operator, as

L2 = ~
2
[
N1(a

†2
x a

2
y + a†2x a

2
z + a†2y a

2
x + a†2y a

2
z + a†2z a

2
x + a†2z a

2
y)

+N2(a
†
xa
†
yaxay + a†xa

†
zaxaz + a†ya

†
zayaz) +N3(a

†
xax + a†yay + a†zaz)

]
, (10.6.4)

where N1, N2, and N3 are certain integers that you will discover. Note that Lx, Ly, Lz, and L
2

all give 0 acting on the ground state with n = 0.
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(c) For the subspace of states |1, 0, 0〉, |0, 1, 0〉, and |0, 0, 1〉 with n = 1, find the action of L2 and

Lz. What are their matrix representations in that basis? Find the eigenvalues and eigenvectors

of Lz within this subspace.

(d) For the subspace of states with n = 2, find the action of L2 on each of the |nx, ny, nz〉 basis.
Using these results, and using the ordering |2, 0, 0〉, |0, 2, 0〉, |0, 0, 2〉, |1, 1, 0〉, |1, 0, 1〉, |0, 1, 1〉,
find the corresponding 6× 6 matrix representation for L2. Find the eigenvalues and normalized

eigenvectors of L2 for the n = 2 subspace in that basis.

(e) Compute the action of Lz on each of the simultaneous eigenvectors of H,L2 found in the

previous part. Within each sub-subspace of fixed n = 2 and fixed l, find the eigenvalues

and eigenvectors of Lz, and so conclude by writing the six |2, l, m〉′ orthobasis states as linear

combinations of the six |nx, ny, nz〉 eigenstates.
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11 Coulomb potential and hydrogen-like atoms

11.1 Bound states for hydrogen atom

One of the most important exactly solvable problems in quantum mechanics is that of a particle

moving in a Coulomb potential. This includes the hydrogen atom, and more generally hydrogen-

like ions, which consist of a single electron with mass me and charge −e [with the normalization

as defined in Gaussian cgs metric system units, see eqs. (1.1.1) and (1.1.2)] and a heavy nucleus

with mass mN and charge Ze, where Z is an integer. As discussed in a general context in section

4.2, the problem can be separated into center-of-mass and relative degrees of freedom, where

the latter use a reduced mass µ = memN/(me+mN), which is very close to me. In this chapter,

we neglect the small effects of special relativity and electron and nuclear spins, which will be

treated in Chapter 17. So, our Hamiltonian is H = P 2/2µ+ V (R), where the potential energy

in the position representation is

V (r) = −Ze2/r. (11.1.1)

The special case Z = 1 is the hydrogen atom. Because the potential is spherically symmetric,

we choose the CSCO to be (H,L2, Lz), and look for an orthobasis of eigenstates |E, l,m〉 with
wavefunctions

ψE,l,m(r, θ, φ) = 〈r, θ, φ |E, l,m〉 = RE,l(r) Y
m
l (θ, φ). (11.1.2)

The goal is to find the energy eigenvalues and the radial wavefunctions RE,l(r).

In this section, we will work out the properties of the bound state solutions, for which the

energy eigenvalues are discrete and satisfy E < V (∞) = 0, and |RE,l| decreases exponentially

as r →∞. Unlike the case of the three-dimensional harmonic oscillator, there are also unbound

energy eigenstates, for which E is continuous and non-negative, and rRE,l oscillates with an

amplitude approaching a constant for large r. The unbound state solutions will be found in

section 11.2.

The time-independent Schrödinger equation for the radial wavefunction is

[
− ~

2

2µ

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
− Ze2

r
− E

]
RE,l(r) = 0. (11.1.3)

A good first step is to replace r by a dimensionless variable. Since −~2/2µE has units of [length]2

and is a positive number for the bound states, we define a rescaled radial coordinate

s = 2r/b, b = ~/
√
−2µE. (11.1.4)
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With this change of variables, eq. (11.1.3) becomes
(
d2

ds2
+

2

s

d

ds
− l(l + 1)

s2
+
n

s
− 1

4

)
RE,l = 0, (11.1.5)

where we have introduced

n =
Ze2

~

√
−µ
2E

, (11.1.6)

a dimensionless quantity that parameterizes the energy eigenvalue. Note that n is a real number

for E < 0, and is pure imaginary for E > 0. We will soon find out [see eq. (11.1.15)] that n

must be a positive integer for a bound-state solution, but we do not know that yet.

The next part of our strategy is to identify, and factor out, the large-distance and short-

distance behaviors of RE,l. For s → ∞, eq. (11.1.5) becomes d2R/ds2 ≈ R/4, which has two

linearly independent solutions, es/2 and e−s/2. The first of these is unphysical, as it blows up for

s→∞ and so is not normalizable. In the opposite limit s→ 0, the last two terms of eq. (11.1.5)

can be neglected, and there is a power-law solution for R proportional to sl. We therefore write

RE,l = sle−s/2f(s), (11.1.7)

which factors out the leading behavior in the two limits. Plugging this into eq. (11.1.5) gives

s
d2f

ds2
+ (2l + 2− s)df

ds
+ (n− l − 1)f = 0, (11.1.8)

which we must now solve simultaneously for the eigenfunctions f(s) and the corresponding

eigenvalues n.

Equation (11.1.8) is a special case of a famous differential equation, called the confluent

hypergeometric equation, which in its traditional general form is

x
d2F

dx2
+ (c− x)dF

dx
− aF = 0, (11.1.9)

where a and c are constants. This has a unique (up to a multiplicative constant) solution that

is finite as x→ 0, the confluent hypergeometric function, which has a series expansion

F (a, c, x) = 1 +
a

c
x+

a(a+1)

c(c+1)

x2

2!
+
a(a+1)(a+2)

c(c+1)(c+2)

x3

3!
+ · · · , (11.1.10)

as can be verified by direct substitution into the differential equation. This series converges for

all finite |x|, even if a, c, and x are complex, provided that c 6= 0,−1,−2, . . .. One can check

(either from the series solution, or by direct substitution into the differential equation) that it

has an integral representation

F (a, c, x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

dt etx ta−1(1− t)c−a−1, (11.1.11)
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provided that Re[a] > Re[c] > 0. For real x large and positive, it has the asymptotic form

F (a, c, x) ≈ Γ(c)

Γ(a)
xa−c ex (large real x, and a 6= 0,−1,−2, . . .). (11.1.12)

However, as we are about to see, the special case relevant for our present purposes will arise

when a is a non-positive integer; in that case, F (a, c, x) is instead a polynomial in x of degree

−a, because the series in eq. (11.1.10) terminates.

For the present application to the bound states of the hydrogen-like atom, we have x = s

and a = l + 1 − n and c = 2l + 2, by comparing eq. (11.1.8) to (11.1.9). Therefore, f(s) in

eq. (11.1.7) is equal to F (l+1−n, 2l+2, s), up to normalization, so

Rn,l = Cn,l s
le−s/2F (l+1−n, 2l+2, s), (11.1.13)

Here we have replaced the subscript label E by the label n, which contains the same information,

and Cn,l is a normalization constant to be chosen later. In the large-distance limit s→∞, the

asymptotic form of eq. (11.1.12) would seem to tell us

Rn,l ∝ s−n−1es/2 (n−l−1 6= 0, 1, 2, . . .). (11.1.14)

However, the exponential factor es/2 is the form that we already rejected as non-normalizable

and therefore physically unacceptable; it would imply that no matter how far from the nucleus

you look, the electron must have infinitely larger probability to be farther away. The only way

to get a physically sensible bound state is to arrange for eq. (11.1.14) not to apply. In other

words, it is necessary that the series solution eq. (11.1.10) for F (l+1−n, 2l+2, s) terminates,

so that instead of being proportional to es, it is actually a polynomial in s with degree that we

will call k. This implies that

n = k + l + 1. (11.1.15)

Since k, being the degree of the polynomial, is a non-negative integer, and l + 1 is always a

positive integer, n must be a positive integer, called the principal quantum number of the

hydrogen atom bound state.

Inverting eq. (11.1.6), the allowed energy eigenvalues are

En = −
(
e4µ

2~2

)
Z2

n2
= −

(
e2

2a0

)
Z2

n2
, (11.1.16)

which depend only on n, not k and l individually. To write the last expression we have defined†

†The definitions of the Bohr radius and Rydberg energy units used here are appropriate for the infinite nuclear
mass limit, with µ = me. An alternative definition uses, instead of the electron mass me, the reduced mass µ
for the lightest isotope of hydrogen, which is smaller by a factor mp/(me +mp) ≈ 0.999453. From here on, we
ignore the small difference between me and µ, which can be restored by replacing me → µ in the obvious way.
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n = 1

n = 2

n = 3
n = 4, 5, . . .

continuum

l = 0 l = 1 l = 2 l = 3 l = 4

E = 0

E = −13.6 eV

Figure 11.1.1: Stationary-state energy levels of the hydrogen atom for l ≤ 4. The bound
state levels with En = −13.6 eV/n2 for n = 1, 2, 3, . . . are discrete and have degeneracy n2,
with 0 ≤ l ≤ n − 1. For each non-negative integer l, there are also unbound continuum
energy eigenstates with E ≥ 0.

the Bohr radius (named after Niels Bohr),

a0 =
~
2

e2me
= 5.292× 10−11meters = Bohr radius. (11.1.17)

The scale of energy is therefore

e4me

2~2
=

e2

2a0
=

~
2

2mea
2
0

= 2.180× 10−18 Joules = 13.606 eV = Rydberg, (11.1.18)

named after Johannes Rydberg. The ground state has n = 1 and k = l = 0. More generally, for

each l, the lowest possible energy is obtained for k = 0, so that n = l + 1.

The energy levels of the hydrogen atom are depicted in Fig. 11.1.1. At each bound-state

energy level n, the values of l that can occur are the integers from 0 to n − 1, each with

degeneracy 2l + 1, which comes from m = −l, . . . , l. The total degeneracy for each energy level

En is therefore

gn =

n−1∑

l=0

(2l + 1) = n2. (11.1.19)

Because this includes states with different angular momenta, the energy degeneracy is accidental,

meaning that it cannot be explained by rotational invariance alone. This was also the case for

the three-dimensional isotropic harmonic oscillator. For hydrogen-like atoms, this degeneracy is

slightly broken by spin and relativistic effects, as we will discuss in detail in Chapter 17.
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The distinct values of l are given letter codes that go back to the early history of spectroscopic

analysis. This spectroscopic notation is as follows:

l = 0 ↔ s “sharp”,

l = 1 ↔ p “principal”,

l = 2 ↔ d “diffuse”,

l = 3 ↔ f “fundamental”,

l = 4 ↔ g “grotesque”,

l = 5 ↔ h “horrendous”,

· · · · · · (11.1.20)

The letter codes are in alphabetical order f, g, h, i, k, . . . for l = 3, 4, 5, 6, 7, . . ., but j is omitted.

(And I’m just kidding about the names “grotesque” and “horrendous”; unlike the first four, I

just made those up, and they do not actually have standard names to fit the standard letters.)

A supposedly useful mnemonic is “sober physicists don’t find giraffes hiding in kitchens”. The

hydrogen atom states are often referred to in the notation nl, but with l = 0, 1, 2, 3, 4, 5, . . .

replaced by the spectroscopic code‡ letter s, p, d, f, g, h . . ., so that the ground state is called 1s

and the first excited states are 2s and 2p, and the second excited states are 3s, 3p, and 3d.

Returning to the radial wavefunction, eq. (11.1.13) tells us that

Rn,l = Cn,l s
le−s/2Fn,l, (11.1.21)

where we are now adopting the shorter notation

Fn,l = F (l+1−n, 2l+2, s), (11.1.22)

which is a polynomial of degree k = n − l − 1. Recalling that s = 2r/b from eq. (11.1.4), the

exponential factor tells us that the spatial support of wavefunctions is set, in terms of the Bohr

radius, by the length scale

b = na0/Z. (11.1.23)

Equations (11.1.16) and (11.1.23) show that the magnitude of the binding energy scales like Z2,

while the characteristic size of a given wavefunction’s support scales like 1/Z. In the classical

limit ~→ 0, the Bohr radius goes to 0 and the binding energy of the ground state goes to −∞,

in accord with the discussion of the classical instability of atoms in section 1.1.

‡In some other contexts, the letter codes for orbital angular momentum in eq. (11.1.20) are capitalized.
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For the lowest few energy states, the polynomials are, from eq. (11.1.10),

F1,0 = 1, (11.1.24)

F2,1 = 1, F2,0 = 1− s

2
, (11.1.25)

F3,2 = 1, F3,1 = 1− s

4
, F3,0 = 1− s+ s2

6
, (11.1.26)

F4,3 = 1, F4,2 = 1− s

6
, F4,1 = 1− s

2
+
s2

20
, F4,0 = 1− 3s

2
+
s2

2
− s3

24
. (11.1.27)

More generally, in terms of the associated Laguerre polynomials LαN (x) already defined explicitly

by eq. (10.5.36), it can be shown that

Fn,l =
(n−l−1)! (2l+1)!

(n+l)!
L2l+1
n−l−1(s). (11.1.28)

The lower index on LαN is always equal to the degree of the associated Laguerre polynomial,

which is also the number of its zeros, in this case N = k − 1. Note, however, that in the case

of the isotropic three-dimensional harmonic oscillator the upper index α was always half-integer

[see eq. (10.5.32)], while here α = 2l + 1 is always a positive odd integer.

From Theorem 2.6.5, we know that the kets |n, l,m〉 and |n′, l′, m′〉 are orthogonal whenever
any of n, l, or m differ from n′, l′, or m′, respectively. The orthogonality conditions δll′ and

δmm′ are already enforced by the proportionality of the wavefunctions to spherical harmonics.

It follows that the associated Laguerre polynomials must also satisfy an orthogonality relation

of the form (taking x = ns = 2Zr/a0):
∫ ∞

0

dx x2l+2 L2l+1
n−l−1(x/n)L

2l+1
n′−l−1(x/n

′) e−x(1/n+1/n′)/2 = δnn′ Bnl, (11.1.29)

for n, n′ = 1, 2, 3, . . . and l = 0, 1, . . . ,min(n, n′) − 1. Although not obvious, it can be checked

that this is true, with

Bnl =
2 (n+ l)!n2l+4

(n− l − 1)!
. (11.1.30)

Note that eq. (11.1.29) is a quite different orthogonality relation for associated Laguerre polyno-

mials than the one that was useful for the three-dimensional harmonic oscillator, eq. (10.5.38).

Putting together eqs. (11.1.4), (11.1.21), (11.1.23), and (11.1.28), we obtain the radial wave-

functions of the hydrogen-like atom bound states,

Rn,l(r) = An,l e
−Zr/na0

(
2Zr

na0

)l
L2l+1
n−l−1(2Zr/na0), (11.1.31)

where we have introduced a new normalization constant factor

An,l =

(
2Z

a0

)3/2
nl√
Bn,l

=

(
Z

a0

)3/2
2

n2

√
(n− l − 1)!

(n+ l)!
, (11.1.32)
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chosen so that
∫ ∞

0

dr r2Rn,l(r)Rn′,l(r) = δnn′. (11.1.33)

The full wavefunction [obtained by including the Y m
l (θ, φ) factor according to eq. (11.1.2)] is

ψn,l,m(r, θ, φ) = Rn,l(r)Y
m
l (θ, φ). (11.1.34)

An arbitrary choice of phase has been made in An,l, as usual. With this sensible choice, the

radial wavefunctions Rn,l are all real.

We now have everything necessary to evaluate the wavefunctions for the lowest few energy

levels. For the ground state,

R1,0(r) =

(
Z

a0

)3/2

2e−Zr/a0, (11.1.35)

and for the first excited states,

R2,0(r) =

(
Z

a0

)3/2
1

2
√
2

(
2− Zr

a0

)
e−Zr/2a0 , (11.1.36)

R2,1(r) =

(
Z

a0

)3/2
1

2
√
6

Zr

a0
e−Zr/2a0 , (11.1.37)

and for the second excited states,

R3,0(r) =

(
Z

a0

)3/2
2

81
√
3

[
27− 18

Zr

a0
+ 2

(
Zr

a0

)2
]
e−Zr/3a0 , (11.1.38)

R3,1(r) =

(
Z

a0

)3/2
2
√
2

81
√
3

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 , (11.1.39)

R3,2(r) =

(
Z

a0

)3/2
2
√
2

81
√
15

(
Zr

a0

)2

e−Zr/3a0 . (11.1.40)

These radial wavefunctions, and the corresponding radial probability densities r2|Rn,l|2, are

graphed in Figure 11.1.2 for Z = 1. For future reference, we also note that the hydrogen atom

radial wavefunction at r = 0 can be evaluated, using eqs. (11.1.28), 11.1.31), and (11.1.32), as

Rn,l(0) = 2

(
Z

na0

)3/2

δl0. (11.1.41)

In particular, it is only non-zero for states with orbital angular momentum l = 0.

Putting in the spherical harmonics with the Condon–Shortley phase convention, the wave-

functions for the lowest few energy levels are

ψ1,0,0 =

(
Z

a0

)3/2
1√
π
e−Zr/a0 , (11.1.42)
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Figure 11.1.2: Radial wavefunctions Rn,l in units of 1/a
3/2
0 (left column) and radial probability

densities r2|Rn,l|2 in units of 1/a0 (right column) for the Z = 1 hydrogen atom stationary states
with n = 1, 2, 3, as functions of r/a0. Note the differing vertical scales.
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for the ground state, and

ψ2,0,0 =

(
Z

a0

)3/2
1

4
√
2π

(
2− Zr

a0

)
e−Zr/2a0 , (11.1.43)

ψ2,1,0 =

(
Z

a0

)3/2
1

4
√
2π

Zr

a0
e−Zr/2a0 cos θ, (11.1.44)

ψ2,1,±1 = ∓
(
Z

a0

)3/2
1

8
√
π

Zr

a0
e−Zr/2a0 sin θ e±iφ, (11.1.45)

for the first excited states, and

ψ3,0,0 =

(
Z

a0

)3/2
1

81
√
3π

[
27− 18

Zr

a0
+ 2

(
Zr

a0

)2
]
e−Zr/3a0 , (11.1.46)

ψ3,1,0 =

(
Z

a0

)3/2 √
2

81
√
π

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 cos θ, (11.1.47)

ψ3,1,±1 = ∓
(
Z

a0

)3/2
1

81
√
π

[
6
Zr

a0
−
(
Zr

a0

)2
]
e−Zr/3a0 sin θ e±iφ, (11.1.48)

ψ3,2,0 =

(
Z

a0

)3/2
1

81
√
6π

(
Zr

a0

)2

e−Zr/3a0(3 cos2 θ − 1), (11.1.49)

ψ3,2,±1 = ∓
(
Z

a0

)3/2
1

81
√
π

(
Zr

a0

)2

e−Zr/3a0 sin θ cos θ e±iφ, (11.1.50)

ψ3,2,±2 =

(
Z

a0

)3/2
1

162
√
π

(
Zr

a0

)2

e−Zr/3a0 sin2 θ e±2iφ, (11.1.51)

for the second excited states.

Let us now work out the expectation value of Rp in the ground state, for integer p,

〈1, 0, 0|Rp|1, 0, 0〉 =

∫ ∞

0

dr r2
∫
dΩ rp

(
Z

a0

)3
1

π
e−2Zr/a0 . (11.1.52)

Using
∫
dΩ = 4π, this evaluates to

〈1, 0, 0|Rp|1, 0, 0〉 =





1

2
(p+ 2)!

( a0
2Z

)p
(p ≥ −2),

∞ (p ≤ −3).
(11.1.53)

In particular, plugging in p = 0 gives 〈1, 0, 0|1|1, 0, 0〉 = 1 (confirming the correct normalization

of the wavefunction), while p = 1 gives

〈1, 0, 0|R|1, 0, 0〉 = 〈R〉 = 3a0
2Z

, (11.1.54)

and p = −1 gives

〈1, 0, 0| 1/R |0, 0, 1〉 = Z/a0. (11.1.55)
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(Note that this is not equal to 1/〈R〉.) We can also directly compute, for the ground state,

〈1, 0, 0|P 2|1, 0, 0〉 =

∫ ∞

0

dr r2
∫
dΩψ∗1,0,0(−~2∇2)ψ1,0,0 = ~

2Z2/a20. (11.1.56)

As a check, the expectation value of the Hamiltonian in the ground state is

〈H〉 = 〈P 2〉 /2me − Ze2 〈1/R〉 = −Z2e2/2a0 = −Z2 Rydberg, (11.1.57)

in agreement with the energy eigenvalue.

Later, we will want more general expressions for the expectation values 〈Rp〉 in arbitrary

hydrogen-like atom stationary bound states |n, l,m〉, for various integer powers p. A helpful tool

to find these for all integer p ≥ −1, and for all integer p ≤ −3 in terms of the single seed case

p = −2, is the Kramers–Pasternack recurrence formula, which relates the expectation

values for any three consecutive integer powers of the radial coordinate R. It is

q+1

n2
〈Rq〉 − (2q+1)

a0
Z
〈Rq−1〉 + q

4

[
(2l+1)2 − q2

] a20
Z2
〈Rq−2〉 = 0, (11.1.58)

valid for all q > −2l − 1.

The proof of eq. (11.1.58) is far from obvious, but goes as follows. Start from the differential

equation for the radial wavefunction Rn,l(s) with s = 2Zr/na0, as given in eq. (11.1.5). Multi-

ply by 4sq+3R′n,l + 2(1 − q)sq+2Rn,l (this is perhaps the most non-obvious part), and integrate

with respect to s. Then, expand the integrand and eliminate all derivatives of Rn,l using the

integration-by-parts identities§

∫ ∞

0

ds
d

ds

(
sq+3R ′2n,l

)
= 0, (11.1.59)

∫ ∞

0

ds
d

ds

(
sq+2Rn,lR

′
n,l

)
= 0, (11.1.60)

∫ ∞

0

ds
d

ds

(
spR2

n,l

)
= 0, (11.1.61)

with p = q + 1, q + 2, and q + 3 in the last equation. The result is
∫ ∞

0

ds
{
(q + 1)sq+2 − 2(2q + 1)nsq+1 + q

[
(2l + 1)2 − q2

]
sq
}
R2
n,l = 0. (11.1.62)

Finally, using the change-of-integration-variable relation,

〈Rp〉 =

∫ ∞

0

dr rp+2 [Rn,l(r)]
2 = (na0/2Z)

p+3

∫ ∞

0

ds sp+2 [Rn,l(s)]
2 , (11.1.63)

from eqs. (11.1.4), and (11.1.23), we arrive at eq. (11.1.58).

§The ′ denotes a derivative with respect to s. The boundary terms in eqs. (11.1.59)–(11.1.61) vanish for
q > −2l− 1, because Rn,l scales like s

l for s→ 0, and like e−s/2 for s→∞.
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Using q = 0 in the Kramers–Pasternack formula of eq. (11.1.58), and 〈R0〉 = 〈1〉 = 1, we

immediately find

〈1/R〉 =
Z

n2a0
, (11.1.64)

in agreement with the n = 1 special case in eq. (11.1.55). Then, using q = 1, one obtains

〈R〉 =
a0
2Z

[3n2 − l(l + 1)]. (11.1.65)

Using this as a measure of the “size” of the state |n, l,m〉, we note that it does not depend on

the magnetic quantum number m, and

• shrinks with larger nuclear charge Z,

• grows with larger n, for fixed l,

• shrinks with larger l, for fixed n.

The last two of these features can be compared visually to the probability density distributions

in the right column of Figure 11.1.2.

Applying eq. (11.1.58) with q = 2, we get

〈R2〉 =
a20
Z2

n2

2

[
5n2 − 3l(l + 1) + 1

]
. (11.1.66)

One can apply eq. (11.1.58) recursively to find 〈Rp〉 for any desired positive integer p. However,

for negative p, one finds an obstacle, that 〈1/R2〉 cannot be determined by the recurrence relation

alone. In section 15.6, we will use another method to find

〈1/R2〉 =
Z2

a20n
3(l + 1/2)

. (11.1.67)

With this as a seed, all results for 〈Rp〉 with p ≤ −3 can then be determined by the recurrence

relation. In particular, using q = −1 in eq. (11.1.58) yields¶

〈1/R3〉 =
Z3

a30n
3l(l + 1)(l + 1/2)

. (11.1.68)

The expectation value of P 2 can also be found by relating it to the Hamiltonian,

〈P 2〉 = 2me

(
〈H〉+ Ze2 〈1/R〉

)
= me

(
e2

2a0

)
2Z2

n2
=

~
2Z2

a20n
2
, (11.1.69)

where we have used the known energy eigenvalues and eq. (11.1.64). This result can also be

obtained from the Virial Theorem, eq. (3.6.5).

¶Note that 〈1/R3〉 diverges for l = 0. More generally, 〈Rp〉 =
∫∞
0 dr r2+p|Rn,l(r)|2 diverges if p ≤ −2l − 3,

because |Rnl| ∝ rl for small r.
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The characteristic size of the hydrogen atom with Z = 1 is set by the Bohr radius a0 =

~
2/mee

2. This could have been estimated by a dimensional analysis construction from the

available quantities in the problem, by requiring it to have units of length, and demanding that

it vanish in each of the following three extreme limits: (1) the classical limit ~ → 0, and (2)

the limit that the electron mass me is taken very large, and (3) the limit of large e2 so that the

attractive electrical force between the nucleus and the electron is large.

However, if we add the speed of light c to our toolbox of quantities, then there is a dimen-

sionless quantity that we can form out of the available parameters in the problem, namely the

fine structure constant,

α =
e2

~c
≈ 1/137.036. (11.1.70)

So, we can construct another significant length scale, the reduced‖ Compton wavelength of

the electron,

λ̄e = αa0 =
~

mec
≈ 3.862× 10−13meters. (11.1.71)

Named for Arthur Compton’s studies of the scattering of electrons by high-energy photons,

this is the (very small) length scale at which virtual electron-positron pair production becomes

important for understanding the energy levels of electron bound states. To see this, note that

according to Einstein’s famous formula relating energy and mass, the amount of energy needed to

make such a pair is ∆E = 2mec
2. For ultra-relativistic particles, energy is related to momentum

by ∆E ∼ c∆p, so e−e+ pair production becomes important for ∆p > 2mec. From the uncertainty

principle (∆x)(∆p) ≥ ~/2, confinement of the electron to a size ∆x ∼ ~/4mec ∼ λ̄e/4 will

result in large enough fluctuations ∆p to cause virtual e−e+ pair production to be an issue.

Furthermore, if we call v =
√
〈P 2〉/me the order of magnitude of the “velocity” of electrons in

a hydrogen-like atom state with principal quantum number n, then

v ∼ Z~

na0me
= Zαc/n. (11.1.72)

These considerations show that the approximation we have made in this section works only

because the fine structure constant is small. That is what ensures λ̄e ≪ a0 and v ≪ c, so that

electron-positron pair production and other relativistic corrections to the Hamiltonian can be

neglected, to first approximation. However, for atoms with very large Z, the speeds of atomic

electrons increase, and relativistic effects become important.

A related point is that the binding energy of the hydrogen atom is very small compared to

mec
2 = 0.511 MeV, the rest energy of the electron. In terms of the fine structure constant,

1 Rydberg =
e2

2a0
=

e4me

2~2
=

1

2
α2mec

2. (11.1.73)

‖The ordinary Compton wavelength of the electron is defined as λe = h/mec = 2πλ̄e.
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To estimate (very roughly) the size of the relativistic corrections to the energies, we can take

the total classical relativistic energy of an electron with momentum p, and subtract off the rest

energy, then expand in small p,

Erelativistic =
√
m2
ec

4 + p2c2 −mec
2 =

p2

2me

− p4

8m3
ec

2
+ · · · , (11.1.74)

where we have used the binomial expansion
√
1 + x = 1+x/2−x2/8+· · · for small x = p2/m2

ec
2.

The first term is just the nonrelativistic kinetic energy that we have been using in the quantum

Hamiltonian. So, we can estimate that relativistic effects should make a difference of order

∆Erelativistic ∼ − 〈P
2〉2

8m3
ec

2
= −α

2Z4

4n4
Rydberg. (11.1.75)

However, it turns out that a correct relativistic analysis must take into account spin. We

will carry this out in section 17.1, with a final result in eq. (17.1.26). We will do it again in

section 27.5, using a manifestly relativistic approach. Our crude estimate in eq. (11.1.75) is

parametrically correct in the sense that the fine structure effects indeed modify the binding

energies by amounts that are suppressed by α2 and by powers of n, but we will see that the

numerical details are quite different than the naive estimate of eq. (11.1.75).

When an electron transitions between states of the hydrogen atom, it releases or absorbs a

photon with energy equal to the difference in energy levels, ∆E = En − En′ . This is equal to

~ω where ω is the angular frequency of the photon. Therefore, taking Z = 1 for the remainder

of this section,

ωn,n′ =
13.6 eV

~

(
1

n′2
− 1

n2

)
, (11.1.76)

or equivalently in terms of wavelength,

λn,n′ = (9.11× 10−8meters)
n′2

1− n′2/n2
. (11.1.77)

This formula was found empirically by Rydberg in 1888, generalizing work by Johann Balmer.

For transitions between the ground state n′ = 1 and the states with n ≥ 2, these spectral lines

are called the Lyman series, after Theodore Lyman. They are all in the ultraviolet range,

Lyman series: ωn,1 = (2.067× 1016 s−1)

(
1− 1

n2

)
, (n = 2, 3, 4, . . . ,∞), (11.1.78)

with wavelengths from λ2,1 = 1.216 × 10−7 meters to λ∞,1 = 9.11 × 10−8 meters. The latter

wavelength, corresponding to a photon emitted when a free electron is captured to the ground

state of a hydrogen atom, or absorbed in the process of ionizing a hydrogen atom that was
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initially in its ground state, is called the Lyman limit. The spectral line with n′ = 1 and n = 2

is called the Lyman-alpha line, and is important in astronomy as an absorption feature when

observing distant sources, for example as a tool to learn about intervening gas.

The Balmer series comes from transitions between n′ = 2 and all higher-energy states n ≥ 3,

Balmer series: ωn,2 = (5.168× 1015 s−1)

(
1− 4

n2

)
, (n = 3, 4, 5, . . . ,∞), (11.1.79)

with wavelengths ranging from λ3,2 = 6.56 × 10−7 meters to λ∞,2 = 3.97 × 10−7 meters. The

Balmer lines are particularly interesting because four of them can be seen by the human eye. For

n = 3 the Balmer line is red, which is responsible for the reddish color of supernova remnants and

star-forming regions, including the Orion nebula. The n = 4, 5, and 6 Balmer lines are greenish-

blue, blue, and violet, respectively, while n = 7, . . . ,∞ are in the ultraviolet. The remaining

named series are all entirely in the infrared, and are called Paschen (transitions between n′ = 3

and n ≥ 4), Brackett (transitions between n′ = 4 and n ≥ 5), Pfund (transitions between n′ = 5

and n ≥ 6), and Humphreys (transitions between n′ = 6 and n ≥ 7), with higher n′ series not

named. There is significant overlap between the infrared series of spectral lines. Within each

series, the spectral lines are called α, β, etc. in order of decreasing wavelength.

11.2 Unbound states of Coulomb potentials

We now consider the unbound stationary states of the Coulomb problem, with E ≥ 0. These

include the ionized states of the hydrogen-like atom, describing an electron that is influenced

by the nucleus but not localized near it. The electron’s wavefunction can again be split into the

product of a radial wavefunction and an angular part consisting of a spherical harmonic,

〈r|ΦE,l,m〉 = ΦE,l,m(r, θ, φ) = R̃E,l(r)Y
m
l (θ, φ) (E ≥ 0). (11.2.1)

We write ΦE,l,m and R̃E,l here to distinguish them from the bound-state wavefunctions ψn,l,m

and Rn,l of the preceding section. For the unbound states, each E ≥ 0 can have any non-negative

integer value of l, as depicted in Fig. 11.1.1.

The differential equation satisfied by the radial wavefunction for unbound states is the same

as eq. (11.1.5), with the important differences that the rescaled radial coordinate s and the quan-

tity n, defined in eqs. (11.1.4) and (11.1.6) respectively, are imaginary for E > 0. Accordingly,

we make the replacement†

n→ i

ka0
, (11.2.2)

†In this section, we set µ = me and Z = 1 for simplicity, with the understanding that general Z can always
be restored by the replacement a0 → a0/Z.
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which defines a continuous real wavenumber parameter k with units of 1/[length]. Comparing

to the definition of n in eq. (11.1.6) gives

ka0 =

√
2~2E

mee4
, (11.2.3)

or, equivalently,

E =
1

2
(ka0)

2 Rydberg. (11.2.4)

Then, from eq. (11.1.4) the rescaled radial coordinate used in the previous section becomes

s = 2ikr. (11.2.5)

It follows that, up to normalization, we can obtain the solution in terms of the confluent hyper-

geometric function defined in eq. (11.1.10), by simply re-using eq. (11.1.13) with the preceding

substitutions for n and s. Since s is now imaginary, there is no problem with having an asymp-

totic behavior like es/2 for large s, and therefore no restriction that the confluent hypergeometric

function must be a polynomial; that is why there is no discrete quantization of k. The result is

R̃E,l(r) = Ck,l (2kr)
l e−ikr F (l+1+

i

ka0
, 2l+2, 2ikr), (11.2.6)

where Ck,l is a normalization constant to be determined, which we will choose to be real.

Despite the appearance of the phase factor e−ikr and the complex arguments of the confluent

hypergeometric function, R̃E,l(r) as given in eq. (11.2.6) is real. This follows immediately from

a property of the confluent hypergeometric function,

F (a, c, z) = ezF (c− a, c,−z), (11.2.7)

which can in turn be proved quickly from the integral representation of eq. (11.1.11) by using

the change of integration variable t→ 1− t.
Let us now consider the behavior of the radial wavefunction R̃E,l for large r. This can be done

by using the asymptotic form for the confluent hypergeometric function for complex arguments,

F (a, c, z) ≈ Γ(c)

Γ(c− a)(−z)
−a +

Γ(c)

Γ(a)
ezza−c (large |z|), (11.2.8)

which generalizes eq. (11.1.12) for real arguments. The Γ function for complex arguments

was defined in eq. (10.5.35). Applying this to eq. (11.2.6), the two terms turn out to give

contributions that are complex conjugates of each other, as required by the previous paragraph.

After some simplification, one finds the asymptotic form

R̃E,l(r) ≈ Ck,l
(2l + 1)! e−π/2ka0

|Γ(l + 1 + i/ka0)|
1

kr
sin
(
kr +

1

ka0
ln(2kr)− π

2
l − δ

)
(11.2.9)
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for large kr, where

δ = Arg
[
Γ
(
l + 1 + i/ka0

)]
. (11.2.10)

The radial probability density rR̃E,l(r) approaches a sinusoidal oscillation with a constant am-

plitude at large distances, but with a phase shift that depends logarithmically on kr.

In order to determine the normalization constant, we first define the orthonormality prop-

erties of the states. Since the energy E ≥ 0 is continuous, we will use a Dirac orthonormality

condition for unbound states |E, l,m〉, along with the ordinary discrete orthonormality of the

bound states |n, l,m〉 of the previous section. So,

〈E ′, l′, m′|E, l,m〉 = δ(E − E ′) δll′ δmm′ , (11.2.11)

〈n′, l′, m′|E, l,m〉 = 0, (11.2.12)

〈n′, l′, m′|n, l,m〉 = δnn′ δll′ δmm′ . (11.2.13)

In terms of the radial wavefunctions for each l, these become
∫ ∞

0

dr r2 R̃E′,l(r)R̃E,l(r) = δ(E − E ′), (11.2.14)

∫ ∞

0

dr r2 R̃E′,l(r)Rn,l(r) = 0, (11.2.15)

∫ ∞

0

dr r2Rn′,l(r)Rn,l(r) = δnn′. (11.2.16)

Now, for the purposes of normalizing the radial wavefunction in eq. (11.2.9), note that when

E = E ′, one need only consider the asymptotic form at very large r, because contributions

to
∫∞
0
dr r2 |R̃E,l(r)|2 from any finite range in r contribute only an infinitesimal fraction of the

total. In the very large r limit, the logarithmic variation in the phase shift can be neglected,

and the normalization problem is the same as for the simpler wavefunctions

fk(r) = A
sin(kr + β)

kr
, (11.2.17)

for some phase shift β, where

A = Ck,l
(2l + 1)! e−π/2ka0

|Γ(l + 1 + i/ka0)|
. (11.2.18)

The norm of this wavefunction is infinite, but integrating over a finite range gives

∫ D

0

dr r2 fk′(r)fk(r) =
A2

2kk′

{
sin[(k − k′)D]

k − k′ +
sin[2β]− sin[2β + (k + k′)D]

k + k′

}
. (11.2.19)

In the formal limit D → ∞, one can interpret the first term in the braces as a delta function

distribution [see eq. (2.2.22)], while the remaining part remains bounded for all k and k′, and

263



vanishes for an infinite number of choices D = 2πq/(k+k′), for arbitrarily large integers q. This

allows us to interpret, when inserted in any expression in which k or k′ is integrated over,
∫ ∞

0

dr r2 fk′(r)fk(r) = A2 π

2k2
δ(k − k′) = A2 π~

2

4mek
δ(E −E ′). (11.2.20)

Thus we can adopt the energy normalization for Dirac orthonormality, by taking A2 = 4mek/π~
2,

allowing us to solve eq. (11.2.18) for Ck,l. Using this in eq. (11.2.6), the final result for the un-

bound energy eigenstate state radial wavefunction is

R̃E,l(r) =
2

~

√
mek

π

|Γ(l+1+i/ka0)|eπ/2ka0
(2l + 1)!

(2kr)l e−ikr F (l+1+
i

ka0
, 2l + 2, 2ikr), (11.2.21)

where k is related to E by eq. (11.2.3) or eq. (11.2.4). Although this is not the simplest result

one might have hoped for, we again remark that at least it is real, despite naive appearances.

The completeness relation corresponding to the energy eigenstates of eqs. (11.2.11)-(11.2.13)

contains both a sum over bound states and an integral over unbound states:

∞∑

n=1

n−1∑

l=0

l∑

m=−l
|n, l,m〉〈n, l,m| +

∫ ∞

0

dE

∞∑

l=0

l∑

m=−l
|E, l,m〉〈E, l,m| = I. (11.2.22)

This combination of ordinary and Dirac orthonormality and completeness will be crucial in the

evaluation of the ground state energy of the hydrogen atom in an electric field (the quadratic

Stark effect), in section 15.7.

For a general potential V (r) = −Ze2/r, the results above can be obtained by making the

replacement a0 → a0/Z everywhere in the preceding discussion. This includes the case of a

repulsive potential with Z < 0, but with one qualitative difference: the bound states |n, l,m〉 do
not exist, and the orthonormality and completeness relations therefore include only the unbound

states with continuous positive E.

11.3 Exercises

Exercise 11.1. In this problem, we will reconstruct the Coulomb potential from the functional

form of its ground-state wavefunction. Suppose that a particle in a spherical potential V (r) has

a stationary state wavefunction ψE(r, θ, φ) = Ne−r/b, where N and b are constants.

(a) Assume that V (r) vanishes as r →∞. Use this to find the energy eigenvalue E, by matching

leading terms in Schrödinger’s equation as r →∞.

(b) Now that you have found E, consider finite r and find the potential V (r).

Exercise 11.2. For the ground state of the hydrogen atom, what would be the maximum

allowed classical distance of the electron from the proton, if the energy is 1 Rydberg? Compute

the probability for the electron to be found farther away from the proton than this distance.
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Exercise 11.3. For the ground state of the hydrogen atom, find the uncertainties of the rect-

angular coordinate Z and its momentum component Pz. Check that the uncertainty principle

is satisfied by your answers.

Exercise 11.4. For the ground state and the first excited states of the hydrogen atom, find

all of the matrix elements of the rectangular coordinate operators for every pair of such states,

〈n′, l′, m′|X|n, l,m〉 and 〈n′, l′, m′|Y |n, l,m〉 and 〈n′, l′, m′|Z|n, l,m〉, with n = 1, 2 and n′ = 1, 2.

(Hint: many of them are zero.)

Exercise 11.5. Use the Kramers–Pasternack formula (11.1.58) to derive the expectation values

〈n, l,m|Rp|n, l,m〉 for all integers −3 ≤ p ≤ 3. As seeds, you may use the obvious fact 〈1〉 = 1,

and also 〈1/R2〉 = 2/(a20n
3(2l + 1)), which will be found in section 15.6 using another trick.

Exercise 11.6. (a) For the ground state of the hydrogen atom, by taking the Fourier transform

as in eq. (2.8.64), show that the momentum wavefunction is

ψ̃(p) =
C

(p2 + ~2/a20)
N
, (11.3.1)

where N is an integer and C is a normalization factor, both of which you will discover. [Hint:

since the ground state is spherically symmetric, the momentum wavefunction cannot depend on

the direction of p. So, for the purposes of computing the integral, you can take p = pẑ.]

(b) Use your result from the previous part to compute 〈P 2〉 and 〈(P 2)2〉. The first of these

should agree with the n = 1, Z = 1 special case of eq. (11.1.69).

(c) Taking the result of part (a) at face value (ignoring the reality of relativity), compute

numerically the probability for the magnitude of the electron’s momentum to exceed mec =

~/αa0, where me is the electron’s mass.

Exercise 11.7. A particle of mass µ moves in the potential V (R) = −a/R + ~
2b/2µR2, where

a and b are positive constants. Consider stationary-state wavefunctions of the form ψ(r) =

R(r)Y m
l (θ, φ). Find the bound-state wavefunctions and energy eigenvalues for orbital angular

momentum l. (Hint: note that the radial effective potential has the same form as for the

hydrogen atom, but with a modification of the angular momentum contribution.)
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12 Addition of angular momenta

12.1 Statement of the problem

In quantum mechanical problems, we often deal with two or more distinct angular momenta.

The sum of two independent angular momentum operators,

J = J1 + J2, (12.1.1)

is also an angular momentum operator. This expresses the fact that if all components of J1 com-

mute with all components of J2, and if the components of J1 and J2 each satisfy the commutator

algebra (5.3.33), then so will the components of J .

Since J2
1 , J

2
2 , J1z, and J2z are compatible operators, we can find an orthobasis of common

eigenkets for them, labeled

|j1 j2m1m2〉 ≡ |j1m1〉 ⊗ |j2m2〉 , (12.1.2)

with eigenvalues ~2j1(j1+1), ~2j2(j2+1), ~m1, and ~m2, respectively. We call this the product

orthobasis for two angular momenta, because its elements consist of the tensor products of

elements of the orthobases for the individual angular momenta. Here we have suppressed any

degeneracy labels, which might correspond to different radial wavefunctions, for example. For

fixed j1 and j2, there are 2j1 + 1 allowed values of m1, and 2j2 + 1 allowed values of m2,

m1 = j1, j1−1, . . . , −j1+1, −j1, (12.1.3)

m2 = j2, j2−1, . . . , −j2+1, −j2. (12.1.4)

So, there are (2j1 + 1)(2j2 + 1) orthobasis kets of the form eq. (12.1.2) for fixed j1 and j2.

Another set of compatible operators is J2
1 , J

2
2 , J

2, and Jz. They also have a set of common

eigenkets that form a different orthobasis, whose kets we can write as

|j1 j2 j m〉 . (12.1.5)

This is called the total angular momentum orthobasis. As we will see in the following

sections, for fixed j1 and j2, the possible values of j range from a maximum of j1+ j2 to a

minimum of |j1−j2|, with integer increments,

j = j1+j2, j1+j2−1, . . . , |j1−j2|+1, |j1−j2|. (12.1.6)

Intuitively, the extremes for j correspond to the two angular momenta aligned in the same and

in opposite directions, respectively. Then, for each j, there are 2j+1 allowed values

m = j, j−1, . . . ,−j+1, −j. (12.1.7)
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As a check, the number of total angular momentum basis states for fixed j1 and j2 is

j1+j2∑

j=|j1−j2|
(2j + 1) = (2j1 + 1)(2j2 + 1), (12.1.8)

matching the result for the number of product basis kets.

There is a potentially annoying problem of notation to be addressed here, because both

orthobases are labeled by four numbers. In many cases, this will not cause confusion, but what

if it does? Our solution to this problem will be to use a colon to separate the last two (magnetic

quantum number) labels for the product angular momentum orthobasis whenever there is a

chance of confusion. All other labels in both the product and total angular momentum bases

are separated by no punctuation, or by a comma when it is typographically convenient (or

just suits our mood). Also, there will be many occasions in which the labels j1 and j2 that

are common to both orthobases are fixed, and understood from context. In that case, we can

suppress those labels and call the total angular momentum orthobasis kets |jm〉 or |j,m〉, and
the product orthobasis kets |m1m2〉 or |m1, m2〉, but use the notation |m1 :m2〉 if there is a

significant chance of confusion with the total angular momentum orthobasis.

A frequently encountered situation is that we might have to evaluate matrix elements in-

volving the dot product of two angular momentum operators. If we are working in the product

basis, the most straightforward way to do this is to write the dot product in terms of raising

and lowering operators,

J1 · J2 =
1

2
(J1+J2− + J1−J2+) + J1zJ2z, (12.1.9)

which follows from eq. (8.1.10). Then each of J1+, J1−, and J1z can be evaluated by their actions

on the |j1m1〉 component using the rules of eqs. (8.1.7), (8.1.22), (8.1.24), and similarly for the

actions of J2+, J2−, and J2z on the |j2m2〉 part. However, it is often more convenient to use

instead the total angular momentum basis. This is because one can use J2 = (J1 + J2)
2 =

J2
1 + J2

2 + 2J1 · J2 to write

J1 · J2 =
1

2

(
J2 − J2

1 − J2
2

)
. (12.1.10)

Now, when acting on the total angular momentum basis kets |j1 j2 j m〉, this operator just

evaluates to a number,

J1 · J2 =
~
2

2
[j(j + 1)− j1(j1 + 1)− j2(j2 + 1)] , (12.1.11)

independent of m. Solving problems in quantum mechanics is often the art of turning operators

into numbers, and using the correct choice of basis can make things easier. The specific lesson
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here is that the appearance of a dot product of angular momenta should immediately suggest

using the total angular momentum basis.

Because they are both bases, each element of the total angular momentum orthobasis must

be a linear combination of the product orthobasis kets, and vice versa. In general, the problem

of addition of angular momenta is to evaluate the coefficients appearing in these linear

combinations.

We will start with two useful and common special cases before taking on the most general

case. First, in section 12.2, we consider the case of two spins s1 = s2 = 1/2, for two particles

with orbital angular momenta absent or disregarded. Next, in section 12.3, we will take up the

example of a single particle with arbitrary orbital angular momentum l and spin s = 1/2, which

can be combined to form the total angular momentum of the particle. In section 12.4 we will

discuss the general case of addition of two arbitrary angular momenta. These results can be

applied recursively to combine any number of angular momenta.

12.2 Addition of two spins

Consider two spins with s1 = s2 = 1/2. Spin magnitudes are always fixed, so we suppress those

labels, and write the four product orthobasis kets as

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (12.2.1)

Here the first ↑ or ↓ label on each ket stands for the eigenvalue ~/2 or −~/2 of S1z, and the

second label similarly stands for the eigenvalue of S2z. We say that the individual spins in this

basis are either “up” or “down” relative to our choice of the ẑ direction. Now, define the total

spin operator by

S = S1 + S2. (12.2.2)

The product orthobasis kets are also eigenkets of Sz, since

Sz |m1m2〉 = S1z |m1m2〉+ S2z |m1m2〉 = ~(m1 +m2) |m1m2〉 , (12.2.3)

so that Sz |↑↑〉 = ~ |↑↑〉, and Sz |↑↓〉 = Sz |↓↑〉 = 0, and Sz |↓↓〉 = −~ |↓↓〉. Choosing a represen-

tation in which

|↑↑〉 ↔




1
0
0
0


 , |↑↓〉 ↔




0
1
0
0


 , |↓↑〉 ↔




0
0
1
0


 , |↓↓〉 ↔




0
0
0
1


 , (12.2.4)
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we have the matrix representation

Sz ↔ ~




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 . (12.2.5)

However, the product orthobasis kets are not all eigenstates of S2. The operation of S2 on

them can be obtained from

S2 = (S1 + S2) · (S1 + S2) = S2
1 + S2

2 + 2S1 · S2

=
3

2
~
2 + S1+S2− + S1−S2+ + 2S1zS2z, (12.2.6)

where in the last equality we have taken advantage of the fact that all of the kets in the state

space under consideration are eigenkets of both S2
1 and S2

2 with eigenvalues 3~2/4, and then

applied eq. (8.1.10) to write the result in terms of the angular momentum raising and lowering

operators. Now, recall from eqs. (8.1.22) and (8.1.24) that, for any j = 1/2 system,

J+ |↑〉 = 0, J+ |↓〉 = ~ |↑〉 , (12.2.7)

J− |↓〉 = 0, J− |↑〉 = ~ |↓〉 . (12.2.8)

Applying these for each of J = S1 and S2, we obtain from eq. (12.2.6),

S2 |↑↑〉 = 2~2 |↑↑〉 , (12.2.9)

S2 |↑↓〉 = ~
2 |↑↓〉+ ~

2 |↓↑〉 , (12.2.10)

S2 |↓↑〉 = ~
2 |↑↓〉+ ~

2 |↓↑〉 , (12.2.11)

S2 |↓↓〉 = 2~2 |↓↓〉 . (12.2.12)

In matrix representation form, this reads

S2 ↔ ~
2




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 . (12.2.13)

This matrix has eigenvalues 2~2, 2~2, 2~2, and 0, which correspond to S2 = ~
2s(s + 1) with

s = 1 and s = 0. The addition of two spins with s1 = s2 = 1/2 thus gives a triplet of states

|1, m〉 with total spin s = 1 and m = −1, 0, 1, plus a singlet state with total spin s = 0, denoted

|0, 0〉. By finding the eigenkets corresponding to the eigenvalue pairs (s,m), we can summarize

269



the information about the addition of two spin-1/2 systems as

total spin basis |s,m〉 product basis |m1m2〉
|1, 1〉 = |↑↑〉 , (12.2.14)

|1, 0〉 =
1√
2
(|↑↓〉+ |↓↑〉) , (12.2.15)

|1,−1〉 = |↓↓〉 , (12.2.16)

|0, 0〉 =
1√
2
(|↑↓〉 − |↓↑〉) . (12.2.17)

Both orthobases have 4 members, and we can of course invert the relationship for the m = 0

states, to find

|↑↓〉 =
1√
2
(|1, 0〉+ |0, 0〉) , (12.2.18)

|↓↑〉 =
1√
2
(|1, 0〉 − |0, 0〉) . (12.2.19)

As a way of expressing the fact that the tensor product of two spin-1/2 systems gives a sum

of angular momenta 0 and 1, we write

1

2
⊗ 1

2
= 0A ⊕ 1S, (12.2.20)

Here, the ⊗ represents the addition of angular momenta, while the ⊕ indicates the combinations

of total angular momenta. The subscripts A and S in this notation are a reminder that the

s = 0 singlet state is antisymmetric under exchange of the two spins, while each of the s = 1,

m = 1, 0,−1 triplet states is symmetric, as can be seen in eqs. (12.2.14)-(12.2.17).

An important practical question is: which orthobasis should we use? The answer depends on

the problem under consideration. As a general rule, it is convenient to use a basis in which the

operators most important to us are diagonal. For example, suppose that we have a Hamiltonian

of the form

H = b1S1z + b2S2z, (12.2.21)

which could occur if both spins are interacting with a magnetic field, but not with each other.

This Hamiltonian is diagonal in the product basis, where the kets are already eigenvalues of S1z

and S2z, but it is diagonal in the total angular momentum basis only if b1 = b2. On the other

hand, suppose that our Hamiltonian is of the form

H = aS1 · S2, (12.2.22)

which comes from the magnetic moments of the particles interacting with each other. In that

case, we can use the standard trick of writing

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)
. (12.2.23)
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The right side shows that this operator is diagonal in the total spin basis, where it evaluates to

S1 · S2 =
~
2

2
[s(s+ 1)− 3/2] , (12.2.24)

with s = 1 when acting on the triplet states and s = 0 for the singlet state. In other cases, a

judgment can be made about which is the most convenient basis, often based on which part of

the Hamiltonian, or some other observable of interest, is the most important.

As a classic example, the hyperfine splitting of the hydrogen atom ground state arises from

the interaction of the electron’s spin with the spin of the proton. The hyperfine Hamiltonian Hhf

has exactly the form of eq. (12.2.22), with a constant a that is positive, and very small compared

to the Rydberg energy scale divided by ~
2. Before taking into account fine or hyperfine effects,

the hydrogen atom energy eigenstates can be given in the product spin basis labeled as

|n, l,ml︸ ︷︷ ︸
orbital

,

electron spin︷ ︸︸ ︷
se, mse , sp, msp︸ ︷︷ ︸

proton spin

〉 = |n, l,ml, mse, msp〉 , (12.2.25)

or we can use the total spin basis,

|n, l,ml, se, sp, s,ms〉 = |n, l,ml, s,ms〉 . (12.2.26)

In both cases, the individual spin labels se, sp = 1/2 are completely fixed and therefore can be

suppressed, as indicated. Our present interest is the effect on the ground state with n = 1 and

l = 0. Since Horbital = P 2/2me − e2/R trivially commutes with

Hhf = aSe · Sp, (12.2.27)

they have an orthobasis of common eigenstates. The eigenvalues of Hhf are found immediately

in the total spin basis, using eq. (12.2.24), as

Ehf =

{
a~2/4 (s = 1),

−3a~2/4 (s = 0),
(12.2.28)

for the triplet and singlet total spin states, respectively. The energy splitting between these

states is therefore a~2, which for the ground state of the hydrogen atom is, numerically,

∆Ehf = a~2 = 5.87× 10−6 eV, (12.2.29)

corresponding to a wavelength λ = 2πc/a~ = 0.211 meters. This is the famous 21 centimeter

line of radio astronomy. The rate for transitions between the s = 1 and s = 0 states turns out

to be highly suppressed (for reasons to be discussed in section 22.5), but space is big and mostly

cold, so it is a very useful observational tool in astrophysics and experimental cosmology.

271



There is a special consideration when the two spin-1/2 particles are identical. The Pauli

exclusion principle says that two identical particles with half-integer spin cannot be in the

same quantum state, and more generally that the quantum state describing two identical par-

ticles must be antisymmetric under their exchange. Such particles are called fermions, after

Enrico Fermi, while particle with integer spin are called bosons after Satyendra Nath Bose. For

example, suppose that the orbital wavefunctions of two spin-1/2 fermions are ψa(r) and ψb(r),

corresponding to single-particle kets (neglecting spins for the moment) |ψa〉 and |ψb〉. From

these, one can form symmetric and antisymmetric combinations

|ψa, ψb〉S =
1√
2

(
|ψa, ψb〉+ |ψb, ψa〉

)
, (12.2.30)

|ψa, ψb〉A =
1√
2

(
|ψa, ψb〉 − |ψb, ψa〉

)
, (12.2.31)

where, on the right-hand sides, the first and second entries in each ket correspond to particle

labels 1 and 2, respectively. Then the allowed states constructed from the tensor product of the

orbital and total spin states must be either symmetric in orbital kets and antisymmetric in spin

kets, or vice versa,

|ψa, ψb〉S ⊗
1√
2

(
|↑↓〉 − |↓↑〉

)
(s = 0), (12.2.32)

|ψa, ψb〉A ⊗ |↑↑〉 (s = 1, ms = 1), (12.2.33)

|ψa, ψb〉A ⊗ 1√
2

(
|↑↓〉+ |↓↑〉

)
(s = 1, ms = 0), (12.2.34)

|ψa, ψb〉A ⊗ |↓↓〉 (s = 1, ms = −1). (12.2.35)

Other kets, such as |ψa, ψb〉S ⊗ |↑↑〉, do not exist as physical states. For example, the ground

state of helium, with two electrons, has an orbital part that is symmetric under interchange of

the positions of the two electrons. The spin state is therefore the antisymmetric total spin s = 0

combination.

12.3 Addition of orbital angular momentum and spin

In this section, we consider the combination of two angular momenta j1 and j2, with j1 arbitrary

and j2 = 1/2. This applies, for example, to the case where we are combining the orbital L and

intrinsic S angular momenta for a single spin-1/2 particle such as the electron. We will frame

our discussion in that context.

As we saw in section 8.2, the spin states of an electron can be associated with a two-

component spinor, with the spin operator S represented by 2 × 2 matrices ~

2
σ. In the position

wavefunction spinor representation corresponding to the CSCO (R, S2, Sz), the orbital angular
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momentum operators L and L2 are represented by differential operators proportional to the unit

matrix in the spin sector, for example [compare eqs. (8.6.7) and (8.6.8)]

Lz ↔ −i~
(
1 0
0 1

)
∂

∂φ
, L+ ↔ ~eiφ

(
1 0
0 1

)(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
, (12.3.1)

etc. However, it is often more useful in problems with spherical symmetry to replace R in the

CSCO with the radial coordinate operator R and the operators L2 and Lz , so that all of the

angular momentum operators are represented by matrices rather than differential operators on

wavefunctions.

The angular momentum product orthobasis consists of common eigenkets of the compatible

operators (L2, S2, Lz, Sz). The corresponding basis kets can be labeled |l smlms〉, where we have
suppressed one or more degeneracy labels (which might correspond to the radial wavefunction).

Then, also suppressing the labels l, s, the product basis states are

|ml, ↑〉 and |ml, ↓〉 , (12.3.2)

where ms = 1/2 and −1/2 are represented by ↑ and ↓, respectively. Using J = L + S, we

have another choice of compatible operators, (L2, S2, J2, Jz), associated to the total angular

momentum orthobasis eigenkets

|l s j m〉 = |j, m〉 . (12.3.3)

Our goal is to express the kets of eq. (12.3.3) as linear combinations of the product basis kets

(12.3.2), for each l.

If l = 0, then things are very easy; the product basis kets |0, ↑〉 and |0, ↓〉 are already

eigenstates of J2 with eigenvalue 3~2/4, and of Jz with eigenvalues ±~/2, respectively. Therefore,
the total angular momentum basis kets have j = 1/2 and m = ±1/2, and are |1

2
, 1
2
〉 = |0, ↑〉 and

|1
2
,−1

2
〉 = |0, ↓〉.

For l 6= 0, we begin with some preliminary counting, in order to know what to expect. There

are (2l+1)2 product basis kets |ml, ↑〉 and |ml, ↓〉. They are all eigenkets of Jz = Lz + Sz, and

the largest eigenvalue of Jz is ~m = ~(l + 1/2). This implies that there must be, in the total

angular momentum basis, a multiplet with j = l + 1/2, which will have 2(l + 1/2) + 1 = 2l + 2

basis elements. Exactly one of those will have m = l − 1/2, but we also know that there

are two linearly independent states with that eigenvalue in the product basis, namely |l, ↓〉 and
|l−1, ↑〉. Therefore, there must also be a multiplet with j = l−1/2, which has 2(l−1/2)+1 = 2l

orthobasis members. Since we have accounted for all 4l + 2 linearly independent kets, we have

established that the tensor product of angular momentum l with angular momentum 1/2 must
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consist of states with total angular momenta j = l+1/2 and l−1/2, and no others. In notation

similar to eq. (12.2.20), this is expressed as

l ⊗ 1

2
= (l− 1

2
)⊕ (l+

1

2
). (12.3.4)

Unlike eq. (12.2.20), there are no A or S subscripts here, because one cannot define antisym-

metrization or symmetrization with respect to angular momenta that are are not the same.

To construct a complete map between the total and product orthobases, let us start with

the state |ml, ms〉 = |l, ↑〉. Acting on this with Jz gives

Jz |l, ↑〉 = (Lz + Sz) |l, ↑〉 = ~(l + 1/2) |l, ↑〉 . (12.3.5)

This is the unique eigenstate of J2 and Jz with quantum numbers j = l+1/2 and m = l+ 1/2.

So, up to a phase that we can set arbitrarily,

|l+1/2, l+1/2〉 = |l, ↑〉 . (12.3.6)

Now we can use this to construct all of the other states with j = l + 1/2, by acting repeatedly

with the lowering operator J− = L− + S−. From eq. (8.1.24),

J− |l+1/2, l+1/2〉 = ~
√
2l + 1 |l+1/2, l − 1/2〉 , (12.3.7)

so we get

|l+1/2, l−1/2〉 =
1

~
√
2l + 1

(S− + L−) |l, ↑〉 , (12.3.8)

or, using eq. (8.1.24) again to evaluate the action of each of S− and L−,

|l+1/2, l−1/2〉 =
1√

2l + 1

(
|l, ↓〉+

√
2l |l−1, ↑〉

)
. (12.3.9)

This is our second total angular momentum orthobasis eigenket. Acting with J− on it in a gives

|l+1/2, l−3/2〉 =
1√

2l + 1

(√
2 |l−1, ↓〉+

√
2l − 1 |l−2, ↑〉

)
. (12.3.10)

Using the same strategy of applying J−, by induction we obtain all of the j = l+1/2 kets,

|l+1/2, m〉 = 1√
2l + 1

(√
l−m+1/2 |m+1/2, ↓〉+

√
l+m+1/2 |m−1/2, ↑〉

)
(12.3.11)

for all m = −l−1/2, . . . , l+1/2.

Having found all the states with total angular momentum j = l+1/2, now we find the states

with j = l−1/2. Each state with j = l−1/2 must be a linear combination of the form

|l−1/2, m〉 = a |m+1/2, ↓〉+ b |m−1/2, ↑〉 . (12.3.12)
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We know this because the product orthobasis kets on the right side are the only two that have

the correct eigenvalue m of Jz/~. Now, we can appeal to Theorem 2.6.5, which assures us

that, since J2 is Hermitian, the state |l−1/2, m〉 must be orthogonal to the state |l+1/2, m〉.
Carrying out the inner product of eq. (12.3.11) with eq. (12.3.12), we learn that

a
√
l −m+ 1/2 = −b

√
l +m+ 1/2. (12.3.13)

As an arbitrary phase convention, we choose a real and positive. Requiring unit normalization

of the ket then uniquely determines that for j = l − 1/2,

|l−1/2, m〉 = 1√
2l + 1

(√
l+m+1/2 |m+1/2, ↓〉 −

√
l−m+1/2 |m−1/2, ↑〉

)
, (12.3.14)

for m = −l+1/2, . . . , l−1/2.
That concludes our task. To recap, in eqs. (12.3.11) and (12.3.14), we have obtained the

J2, Jz orthobasis kets as linear combinations of the product orthobasis kets.

As the simplest non-trivial concrete example, which we will have occasion to use later (at

the end of section 17.3), consider the addition of an angular momentum l = 1 to a spin-1/2:

1⊗ 1

2
=

3

2
⊕ 1

2
. (12.3.15)

Applying eq. (12.3.11), we have the j = 3/2 total angular momentum basis states

∣∣3
2 ,

3
2

〉
= |1, ↑〉 , (12.3.16)

∣∣3
2 ,

1
2

〉
=

√
1
3 |1, ↓〉+

√
2
3 |0, ↑〉 , (12.3.17)

∣∣3
2
,−1

2

〉
=

√
2
3
|0, ↓〉+

√
1
3
|−1, ↑〉 , (12.3.18)

∣∣3
2 ,−

3
2

〉
= |−1, ↓〉 , (12.3.19)

and applying eq. (12.3.14) we get the j = 1/2 total angular momentum basis states

∣∣1
2 ,

1
2

〉
=

√
2
3 |1, ↓〉 −

√
1
3 |0, ↑〉 , (12.3.20)

∣∣1
2
,−1

2

〉
=

√
1
3
|0, ↓〉 −

√
2
3
|−1, ↑〉 . (12.3.21)

12.4 The general case and Clebsch–Gordan coefficients

Now consider the general case of addition of angular momenta J1 and J2. Let us apply reasoning

similar to the counting that led to eq. (12.3.4). The largest eigenvalue of Jz = J1z + J2z is

~(j1 + j2), and there is only one such state, |j1 : j2〉, so there must be exactly one total angular

momentum multiplet with j = j1 + j2. (In this section, product angular momentum basis kets
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will always be distinguished by use of a colon.) The subspace with Jz eigenvalue ~(j1 + j2 − 1)

has dimension 2, spanned by the two states in the product basis |j1 − 1 : j2〉 and |j1 : j2 − 1〉.
One linear combination of these is found in the j = j1 + j2 multiplet, so to contain the other

there must also be exactly one total angular momentum multiplet with j = j1+j2−1. Similarly,

the subspace with Jz eigenvalue ~(j1 + j2 − 2) has dimension 3, spanned by the product basis

kets |j1 − 2 : j2〉 and |j1 − 1 : j2 − 1〉 and |j1 : j2 − 2〉. Two linear combinations of these will

occur in the j = j1 + j2 and j = j1 + j2 − 1 multiplets that we already know about, so there

must also be exactly one total angular momentum multiplet with j = j1 + j2 − 2.

Continuing in this way, one finds that the tensor product of a multiplet with J2
1 eigenvalue

~
2j1(j1 + 1) and a multiplet with J2

2 eigenvalue ~
2j2(j2 + 1) must consist of a sum of multiplets

with J2 = ~
2j(j+1), with j taking on the values from |j1−j2| to j1+j2, with integer increments,

j1 ⊗ j2 = |j1 − j2| ⊕ · · · ⊕ (j1 + j2). (12.4.1)

Each of the total angular momentum basis kets |j1 j2 j,m〉 is a linear combination of the product

basis kets |j1 j2m1 :m2〉. By the completeness of the latter, we can write

|j1 j2 j,m〉 =

j1∑

m1=−j1

j2∑

m2=−j2
|j1 j2m1 :m2〉 〈j1 j2m1 :m2|j1 j2 j,m〉 (12.4.2)

=

j1∑

m1=−j1

j2∑

m2=−j2
|j1 j2m1 :m2〉Cj1 j2 j

m1m2m (12.4.3)

where the inner products

Cj1 j2 j
m1m2m

≡ 〈j1 j2m1 :m2|j1 j2 j,m〉 (12.4.4)

are known as Clebsch–Gordan coefficients, after mathematicians Alfred Clebsch and Paul

Gordan. Various different notations and conventions for them appear in the literature. We will

usually use the C notation for these inner products, as a way of saving space, with commas

inserted between the superscripts or subscripts when it helps to make the meaning clear.

The Clebsch–Gordan coefficients obey selection rules; they can be non-zero only if

|j1 − j2| ≤ j ≤ j1 + j2, (triangle condition), (12.4.5)

j1 + j2 − j is an integer, (12.4.6)

m = m1 +m2. (12.4.7)

The first two of these simply restate eq. (12.4.1), and the last follows immediately from evaluating

the matrix element of Jz = J1z + J2z between 〈j1 j2m1 :m2| and |j1 j2 j,m〉.
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In general, the Clebsch–Gordan coefficients are subject to ambiguities, because the normal-

ized states |j1 j2 j,m〉 are determined only up to a phase. These phase ambiguities are resolved

here by adopting a convention that Cj1 j2 j
m1m2m is real and positive when m1 = j1 and m = j. (Note

that this convention gives a special role to the first of the angular momenta being combined.)

The coefficient vanishes unless m2 = j − j1, so we can specify the convention as

phase convention: Cj1 j2 j
j1,j−j1,j is real and positive. (12.4.8)

Then, because the actions of J− and J1− and J2− each only involve real coefficients, as given

by eq. (8.1.24), we find, by acting on eq. (12.4.3) repeatedly with J− on the left side and its

equivalent J1− + J2− on the right side, the convenient and useful result that all of the Clebsch–

Gordan coefficients will be real.

One can also use completeness with respect to the orthobasis elements |j1 j2 j,m〉, to ob-

tain the inverse relation to eq. (12.4.3), which gives each product orthobasis ket as a linear

combination of the total angular momentum orthobasis kets,

|j1 j2m1 :m2〉 =

j1+j2∑

j=|j1−j2|

j∑

m=−j
|j1 j2 j,m〉 〈j1 j2 j,m|j1 j2m1 :m2〉 (12.4.9)

=

j1+j2∑

j=|j1−j2|

j∑

m=−j
|j1 j2 j,m〉 Cj1 j2 j

m1m2m
. (12.4.10)

The matrix elements on the right are actually the complex conjugates of the Clebsch–Gordan

coefficients, but in our phase convention, all of them are real anyway.

As eqs. (12.4.3) and (12.4.10) demonstrate, results for total angular momentum orthobasis

states in terms of product states, or vice versa, can always be expressed in terms of Clebsch–

Gordan coefficients. For example, the content of the results for l⊗ 1
2
= (l− 1

2
)⊕ (l+ 1

2
) that we

found in eqs. (12.3.11) and (12.3.14) can be expressed, writing m = ml± 1/2 as appropriate, as

C
l, 1

2
, l+ 1

2

ml,− 1

2
, ml− 1

2

=

√
l + 1−ml

2l + 1
, C

l, 1

2
, l+ 1

2

ml,
1

2
, ml+

1

2

=

√
l + 1 +ml

2l + 1
, (12.4.11)

C
l, 1

2
, l− 1

2

ml,− 1

2
, ml− 1

2

=

√
l +ml

2l + 1
, C

l, 1

2
, l− 1

2

ml,
1

2
, ml+

1

2

= −
√
l −ml

2l + 1
, (12.4.12)

from which the results in eqs. (12.3.16)-(12.3.21) follow as the special case with l = 1. Although

we claimed to be interested in the case that l was an orbital angular quantum number, there is

no difference in the arithmetic for any angular momentum, and l can even be taken to be a half

integer in these formulas.

As another useful example, consider the angular momentum addition problem j ⊗ 1 =

(j−1) ⊕ j ⊕ (j+1). By a similar strategy, to be formalized below in the general case, the
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relevant non-zero Clebsch–Gordan coefficients are found to be

Cj, 1, j+1
m,±1, m±1 =

√
(j+1±m)(j+2±m)

2(j+1)(2j+1)
, Cj, 1, j+1

m, 0, m =

√
(j+1−m)(j+1+m)

(j+1)(2j+1)
, (12.4.13)

Cj, 1, j
m,±1, m±1 = ∓

√
(j+1±m)(j ∓m)

2j(j+1)
, Cj, 1, j

m, 0, m =

√
m

j(j+1)
, (12.4.14)

Cj, 1, j−1
m,±1, m±1 =

√
(j−1∓m)(j ∓m)

2j(2j+1)
, Cj, 1, j−1

m, 0, m = −
√

(j+m)(j−m)

j(2j+1)
. (12.4.15)

One can easily find published or online tables of Clebsch–Gordan coefficients, and software

implementations of them, but it is a good idea to read the fine print to make sure of the phase

convention being used.

We now point out some important identities satisfied by Clebsch–Gordan coefficients in

general. First, by using eqs. (8.1.22) and (8.1.24) to evaluate†

〈m1 :m2|J−|j,m〉 = 〈m1 :m2| (J1− + J2−) |j,m〉 =
(
〈j,m|(J1+ + J2+)|m1 :m2〉

)∗
, (12.4.16)

one finds

√
j(j + 1)−m(m− 1)Cj1 j2 j

m1,m2,m−1 =
√
j1(j1 + 1)−m1(m1 + 1)Cj1 j2 j

m1+1,m2,m

+
√
j2(j2 + 1)−m2(m2 + 1)Cj1 j2 j

m1,m2+1,m, (12.4.17)

Similarly, from evaluating matrix elements of J+,

√
j(j + 1)−m(m+ 1)Cj1 j2 j

m1,m2,m+1 =
√
j1(j1 + 1)−m1(m1 − 1)Cj1 j2 j

m1−1,m2,m

+
√
j2(j2 + 1)−m2(m2 − 1)Cj1 j2 j

m1,m2−1,m. (12.4.18)

From the total angular momentum orthonormality relations, using completeness of the product

basis and the reality of the Clebsch–Gordan coefficients in our chosen convention, we also obtain

j1∑

m1=−j1

j2∑

m2=−j2
Cj1 j2 j
m1m2mC

j1 j2 j′

m1m2m′ = δjj′ δmm′ . (12.4.19)

Similarly, from the product basis orthonormality relations,

j1+j2∑

j=|j1−j2|

j∑

m=−j
Cj1 j2 j
m1m2mC

j1 j2 j
m′

1
m′

2
m = δm

1
m′

1
δm

2
m′

2
, (12.4.20)

which follows from completeness of the total angular momentum orthobasis.

†In the rest of this section, the labels j1, j2 on bras and kets are always the same, and so are omitted.
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Consider eq. (12.4.18) in the special case m = j, so that the left side vanishes. This gives

Cj1 j2 j
m1−1,m2, j

= −
(√

j2(j2 + 1)−m2(m2 − 1)/
√
j1(j1 + 1)−m1(m1 − 1)

)
Cj1 j2 j
m1,m2−1, j. This rela-

tion can be used to lower m1 and raise m2 in unit steps, starting from m1 = j1, giving a sign

flip each time. Therefore, in our convention

sign
(
Cj1 j2 j
m1, j−m1, j

)
= (−1)j1−m1 . (12.4.21)

In particular, taking m1 = j − j2, we must have

sign
(
Cj1 j2 j
j−j2, j2, j

)
= (−1)j1+j2−j. (12.4.22)

Meanwhile, directly from our convention in eq. (12.4.18), we also have

sign
(
Cj2 j1 j
j2, j−j2, j

)
= 1. (12.4.23)

Now, the states |j1 j2 j, j〉 and |j2 j1 j, j〉 obtained by interchanging the roles of J1 and J2 are

really the same state physically, so they can only differ by a phase, which in our convention

must be simply a sign.‡ Comparing the previous two equations, we see that this sign must be

|j1 j2 j, j〉 = (−1)j1+j2−j |j2 j1 j, j〉 . Now we can act on this equation repeatedly with J− to get

the relation between the more general states |j1 j2 j,m〉 and |j2 j1 j,m〉. Doing so cannot change

the relative sign, because the operator J− = J1− + J2− does not know or care which of the two

angular momenta we chose to be the first one, so

|j1 j2 j,m〉 = (−1)j1+j2−j |j2 j1 j,m〉 . (12.4.24)

We therefore arrive at the rule for Clebsch–Gordan coefficients when we interchange the two

angular momenta being added,

Cj1 j2 j
m1m2m

= (−1)j1+j2−jCj2 j1 j
m2m1m

. (12.4.25)

Although we used a convention choice in the intermediate steps of deriving it, eq. (12.4.25) is

actually independent of the convention choice. A similar sort of strategy (with details omitted

here) can be used to show that if one simultaneously flips the signs of m1, m2, and m, then the

Clebsch–Gordan coefficients must also satisfy

Cj1 j2 j
m1m2m = (−1)j1+j2−j Cj1 j2 j

−m1,−m2,−m (12.4.26)

in our phase convention.

‡Note that we are implicitly defining the product orthobasis kets to be invariant under interchange of the roles
of the two angular momenta, |j1 j2m1 :m2〉 = |j2 j1m2 :m1〉 = |j1,m1〉 ⊗ |j2,m2〉.
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The following recipe can be used to construct the total angular momentum orthobasis states,

and thus the Clebsch–Gordan coefficients, in a general case. Assume that j1 ≥ j2. (Otherwise,

one can simply reverse the roles of j1 and j2.) Start with the state with the highest possible

m, which is m = j1 + j2 = j. Since there is only one product orthobasis state with J1z + J2z

eigenvalue equal to ~(j1 + j2), we have, using our phase convention choice,

|j1+j2, j1+j2〉 = |j1 : j2〉. (12.4.27)

Now we follow the strategy of repeatedly acting with the lowering operator J− = J1− + J2− to

find new states |j1 + j2, m〉. Using eq. (8.1.24) gives

J−|j1+j2, j1+j2〉 = ~

√
2(j1 + j2)|j1+j2, j1+j2−1〉, (12.4.28)

which also can be evaluated as

J1−|j1 : j2〉+ J2−|j1 : j2〉 = ~

√
2j1|j1−1 : j2〉+ ~

√
2j2|j1 : j2−1〉. (12.4.29)

Therefore,

|j1+j2, j1+j2−1〉 =
1√

j1 + j2

(√
j2|j1 : j2−1〉+

√
j1|j1−1 : j2〉

)
. (12.4.30)

[The special cases j1 = j2 = 1/2 and j1 = l, j2 = 1/2 were previously found in eqs. (12.2.15) and

(12.3.9), respectively.] Continuing to act with J−, we similarly find all of the orthobasis kets

|j1+j2, m〉. Eventually we will obtain m = −j1 − j2, which is then annihilated by J−.

Next, we proceed to obtain the states that have total j = j1 + j2 − 1. We start by writing

the most general possible expression for the state with the largest possible m,

|j1+j2−1, j1+j2−1〉 = a|j1 : j2−1〉+ b|j1−1 : j2〉. (12.4.31)

The coefficients a and b can be uniquely identified by requiring that this ket is orthogonal to

|j1+ j2, j1+ j2−1〉, that the ket is normalized so that |a|2 + |b|2 = 1, and that a is real and

positive according to our phase convention. This gives

|j1+j2−1, j1+j2−1〉 =
1√

j1 + j2

(√
j1|j1 : j2−1〉 −

√
j2|j1−1 : j2〉

)
. (12.4.32)

[Again, we had previously derived this in the special cases j1 = j2 = 1/2 and j1 = l, j2 = 1/2,

in eqs. (12.2.17) and (12.3.14), respectively.] Now, we again apply the operator J− repeatedly,

to obtain all of the other states |j1+j2−1, m〉.
Continuing on our vaunted quest, we proceed to the states with j = j1 + j2 − 2, starting

again with the maximum value ofm. This must be some linear combination of the three product

orthobasis kets with m = m1 +m2 = j1 + j2 − 2, which we can write as

|j1+j2−2, j1+j2−2〉 = a|j1 : j2−2〉+ b|j1−1 : j2−1〉+ c|j1−2 : j2〉. (12.4.33)
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The three unknown coefficients a, b, c can be obtained by demanding that this be orthogonal

to both of the kets |j1+j2, j1+j2−2〉 and |j1+j2−1, j1+j2−2〉, as required by Theorem 2.6.5

(since all three are eigenvectors of J2 with different eigenvalues), and that the ket is normalized,

so |a|2 + |b|2 + |c|2 = 1, and that a is real and positive according to our phase convention. The

remaining states |j1+j2−2, m〉 are then obtained by acting repeatedly with J−.

The preceding illustrates the general procedure, which is shown schematically in Figure

12.4.1. Each column represents the repeated action of J− on the state with the highest m for a

given j. After completing each column, we move to the next column by first writing a candidate

ket |j, j〉 as a linear combination of the product orthobasis kets that have m1 +m2 = m = j.

The coefficients are determined by requiring orthogonality to all of the previously obtained total

angular momentum orthobasis kets with that value of m and total angular momentum j + 1 or

larger. Demanding that the ket be normalized and obey our phase convention, the state is then

uniquely determined, and the rest of the states |j, m〉 follow by applying J− repeatedly. The

Start→ |j1+j2, j1+j2〉
↓ J−

orthog.

|j1+j2, j1+j2−1〉 −→ |j1+j2−1, j1+j2−1〉
↓ J− ↓ J−

orthog.

|j1+j2, j1+j2−2〉 |j1+j2−1, j1+j2−2〉 −→ |j1+j2−2, j1+j2−2〉
↓ J− ↓ J− ↓ J−
...

...
... . . .

↓ J− ↓ J− ↓ J−
|j1+j2,−j1−j2+2〉 |j1+j2−1,−j1−j2+2〉 |j1+j2−2,−j1−j2+2〉

↓ J− ↓ J−
|j1+j2,−j1−j2+1〉 |j1+j2−1,−j1−j2+1〉

↓ J−
|j1+j2,−j1−j2〉

Figure 12.4.1: A plan to compute the total angular momentum orthobasis kets |j1 j2 j,m〉,
abbreviated here as |j,m〉, in terms of product orthobasis kets, when two angular momenta
j1 and j2 are combined. The process starts at the upper left with j = m = j1 + j2. Each
column has fixed j, and is constructed from top to bottom using J−. Then the next column
is started by constructing the state with maximum m, by requiring it to be orthogonal to all
of the previously found kets with that same m. The process ends after the rightmost column
with j = |j1−j2| is finished, with m = −|j1−j2|. This process provides the Clebsch–Gordan
coefficients 〈m1 :m2|j,m〉 = 〈j1 j2m1 :m2|j1 j2 j,m〉 = Cj1 j2 j

m1m2m
.
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process iterates by moving to the next column with j lower by 1. Eventually, we will finish the

last column of orthobasis kets, which will have j = |j1 − j2|, and there will be none more.

Consider the special case of adding two angular momenta j1 = 1 and j2 = 1. The resulting

allowed values of j are 0, 1, and 2. By following the procedure summarized in Figure 12.4.1,

one finds the j = 2 states

|2, 2〉 = |1 : 1〉 , (12.4.34)

|2, 1〉 =
(
|1 : 0〉+ |0 : 1〉

)
/
√
2, (12.4.35)

|2, 0〉 =
(
|1 :−1〉+ 2 |0 : 0〉+ |−1 : 1〉

)
/
√
6, (12.4.36)

|2,−1〉 =
(
|0 :−1〉+ |−1 : 0〉

)
/
√
2, (12.4.37)

|2,−2〉 = |−1 :−1〉 , (12.4.38)

which are all symmetric under m1 ↔ m2, followed by the j = 1 states

|1, 1〉 =
(
|1 : 0〉 − |0 : 1〉

)
/
√
2, (12.4.39)

|1, 0〉 =
(
|1 :−1〉 − |−1 : 1〉

)
/
√
2, (12.4.40)

|1,−1〉 =
(
|0 :−1〉 − |−1 : 0〉

)
/
√
2, (12.4.41)

which are each antisymmetric under the same exchange, and finally the j = 0 state

|0, 0〉 =
(
|1 :−1〉 − |0 : 0〉+ |−1 : 1〉

)
/
√
3, (12.4.42)

which is symmetric. [These results can also be checked using the general Clebsch–Gordan

coefficients for j ⊗ 1 in eqs. (12.4.13)-(12.4.15).] To summarize what has been learned, one

writes

1⊗ 1 = 2S ⊕ 1A ⊕ 0S, (12.4.43)

where the S and A subscripts indicate the symmetry or antisymmetry of the total angular

momentum orthobasis kets under exchange of the two product basis eigenvalues m1 and m2.

More generally, for the combination of two equal angular momenta j1 = j2 = j, the symmetry

and antisymmetry properties for exchange of m1 and m2 are summarized by

j ⊗ j = (2j)S ⊕ (2j − 1)A ⊕ (2j − 2)S ⊕ · · · ⊕ 0, (12.4.44)

with alternating S and A, so that the singlet on the right is symmetric if j is an integer

and antisymmetric if j is a half-integer. These symmetry and antisymmetry properties follow

immediately from eq. (12.4.25).
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The simplest nontrivial example that cannot be obtained from eqs. (12.4.11)-(12.4.12) or

from (12.4.13)-(12.4.15) is j1 = j2 = 3/2. Call the resulting total angular momentum quantum

number J . Then you can show that the J = 3, mJ = 3 and J = 3, mJ = 0 and J = 0, mJ = 0

states are, in terms of product basis states |m1 : m2〉,

|3, 3〉 =
∣∣3
2
: 3
2

〉
, (12.4.45)

|3, 0〉 =
1√
20

(∣∣3
2
:−3

2

〉
+
∣∣−3

2
: 3
2

〉
+ 3
∣∣1
2
:−1

2

〉
+ 3
∣∣−1

2
: 1
2

〉)
, (12.4.46)

|0, 0〉 =
1

2

(∣∣3
2 :−

3
2

〉
−
∣∣−3

2 :
3
2

〉
−
∣∣1
2 :−

1
2

〉
+
∣∣−1

2 :
1
2

〉)
, (12.4.47)

respectively. It is left as Exercise 12.7 to work out the other total angular momentum orthobasis

states |J,mJ〉 in this example.

One can also combine three (or more) angular momenta, to obtain an orthobasis of kets that

are eigenstates of the observables J2 and Jz for the total angular momentum J = J1 + J2 + J3.

This can be done recursively, by first combining J1 and J2 into an angular momentum operator

J12, and then combining the results with J3. For example, combining three spin-1/2 angular

momenta results in

1

2
⊗ 1

2
⊗ 1

2
= (1⊕ 0)⊗ 1

2
= (1⊗ 1

2
)⊕ (0⊗ 1

2
) = (3/2)S ⊕ (1/2)a ⊕ (1/2)b. (12.4.48)

The subscript S on the j = 3/2 multiplet indicates that the states in it are symmetric under

exchange of any two of the three individual spins, as we will soon check. There are also two

j = 1/2 multiplets in the result, distinguished by degeneracy labels a and b. To check the

multiplicities of states, we note that on the left side of eq. (12.4.48) there are 23 = 8 product

orthobasis states, since each individual spin has 2 values of ms = ±1/2. On the right, the

multiplicities of the total angular momentum states are 4+2+2 = 8. To explicitly construct the

total angular momentum orthobasis kets, one can first use eqs. (12.2.14)–(12.2.17) to construct

the J2
12, J12z eigenstate kets. Combining the resulting j12 = 1 states with the third spin, one

finds, by using eq. (12.3.11), that the j = 3/2 states are

|3
2
, 3
2
〉 = |↑↑↑〉 , (12.4.49)

|3
2
, 1
2
〉 =

1√
3

(
|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉

)
, (12.4.50)

|32 ,−
1
2〉 =

1√
3

(
|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉

)
, (12.4.51)

|3
2
,−3

2
〉 = |↓↓↓〉 , (12.4.52)
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and, by using eq. (12.3.14), the j = 1/2 states

|1
2
, 1
2
, a〉 =

1√
6

(
2 |↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉

)
, (12.4.53)

|12 ,−
1
2 , a〉 =

1√
6

(
|↑↓↓〉+ |↓↑↓〉 − 2 |↓↓↑〉

)
. (12.4.54)

From combining the j12 = 0 states from eq. (12.2.17) with the third spin, we have the additional

j = 1/2 total angular momentum basis states

|12 ,
1
2 , b〉 =

1√
2

(
|↑↓↑〉 − |↓↑↑〉

)
, (12.4.55)

|12 ,−
1
2 , b〉 =

1√
2

(
|↑↓↓〉 − |↓↑↓〉

)
. (12.4.56)

The explicit forms for the j = 3/2 states show that they are indeed each symmetric under

exchange of any two of the three individual spins. For the j = 1/2 states, the ones labeled

a are symmetric, and the ones labeled b are antisymmetric, under exchange of the first two

spins. However, these j = 1/2 states do not have a complete symmetry or antisymmetry under

exchange of every pair of spins. Also note that there is no totally antisymmetric combination of

three or more spin 1/2 states, simply because in the product basis there are only two values ↑
and ↓ available, so that every product orthobasis ket is symmetric under interchange of at least

one pair of spins.

Similarly, combining four spin-1/2 angular momenta gives

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= (1⊕ 0)⊗ (1⊕ 0) = 2S ⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (12.4.57)

Here the counting is that the number of product orthobasis states on the left is 24 = 16,

while the counting of multiplicities of total angular momentum orthobasis states on the right is

5 + 3 + 3 + 3 + 1 + 1 = 16. Only the total spin 2 multiplet is totally symmetric, and there is

no totally antisymmetric multiplet. The other multiplets on the right side of eq. (12.4.57) have

mixed symmetry properties under exchange of the spins.

In the case of N electrons in an atom, the angular momentum eigenstates are often given

in spectroscopic notation, defined as follows. First, combine all of the individual spin operators

Si to obtain the total spin angular momentum operator S =
∑

i Si. The eigenvalues of the

operator S2 = S ·S are then denoted by ~
2S(S+1) where S is a number.§ Clearly, if N is even,

then the number S must be an integer with 0 ≤ S ≤ N/2. If N is odd, then the number S

must be half-integer, with 1/2 ≤ S ≤ N/2. Next, combine all of the individual orbital angular

momenta operators Li to obtain the total orbital angular momentum operator L =
∑

i Li. The

§Following a common but potentially confusing notation, in the case of combined angular momenta, capital
letters are often used both for the names of the operators as well as the corresponding quantum numbers.
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eigenvalues of the operator L2 = L · L are likewise denoted ~
2L(L + 1), where the quantum

number L is always an integer. Finally, the operators S and L are combined to form the total

angular momentum operator J , and the operators J2 and Jz have eigenvalues denoted ~
2J(J+1)

and ~mJ , respectively. The traditional notation for a multiplet of common eigenstates of the

observables S2, L2, and J2 is then

2S+1LJ , (12.4.58)

where S, L, and J are the quantum numbers, but with L replaced by the capital letter code S, P ,

D, F , G, . . ., according to whether the number L is 0, 1, 2, 3, 4, . . ., as indicated in eq. (11.1.20).

The degeneracy, or multiplicity, of each group of states denoted by 2S+1LJ is 2J + 1, since the

eigenvalue mJ can take on the values −J, −J+1, . . . , J−1, J .
For example, a single electron always has S = 1/2. For L = 0, it has J = 1/2, and for L ≥ 1

it can have J = L ± 1/2, as we saw in section 12.3. So, the list of total angular momentum

multiplets for a single electron in an atom is

2S1/2,
2P1/2,

2P3/2,
2D3/2,

2D5/2,
2F5/2,

2F7/2,
2G7/2,

2G9/2, . . . . (12.4.59)

For two electrons, the possible total spin quantum numbers are S = 0 and 1, as we saw

in section 12.2. The orbital angular momenta L1 and L2 with quantum numbers l1 and l2 can

be combined into L = |l1− l2|, . . . , l1+ l2. Therefore, the possible total angular momentum

eigenstates for two electrons are

1S0,
1P1,

1D2,
1F3,

1G4, . . . (12.4.60)

for S = 0, and

3S1,
3P0,

3P1,
3P2,

3D1,
3D2,

3D3,
3F2,

3F3,
3F4, . . . (12.4.61)

for S = 1. However, as we will discuss in more detail in section 18.1, Fermi–Dirac statistics

requires that the total state must be antisymmetric under exchange of the two electrons. In the

special case that the electrons have the same radial wavefunction and the same orbital angular

momentum quantum number l1 = l2, then one can use eq. (12.4.44) to see that if L is odd

(an antisymmetric position wavefunction) then only the symmetric spin combination S = 1 is

allowed, and if L is even (a symmetric position wavefunction), then only the antisymmetric spin

combination S = 0 is allowed.

12.5 How spherical harmonics combine

The spherical harmonics are the position representations of the orbital angular momentum

eigenstates of L2 and Lz. In this section, we will learn how the addition of angular momentum

technology is realized in terms of the spherical harmonics.
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Let us start by considering fixed l1, l2, l, and m. We then define the following function of

θ, φ, as a linear combination of products of spherical harmonics weighted by the Clebsch–Gordan

coefficients defined by eq. (12.4.4),

Ψm
l (θ, φ) ≡

∑

m1,m2

Y m1

l1
(θ, φ) Y m2

l2
(θ, φ)C l1l2l

m1m2m
, (12.5.1)

where the sums are over all m1 and m2 such that the Clebsch–Gordan coefficient does not

vanish. Our goal is to find another simple expression for Ψm
l (θ, φ). We claim that, as its

labeling suggests, this wavefunction is an eigenstate of the differential operators L2 and Lz, with

eigenvalues ~2l(l + 1) and ~m, respectively, and it is therefore proportional to Y m
l (θ, φ).

To prove this claim, we will check the action of the differential operators Lz , L+, and L− on

it. First, by applying eq. (8.6.27), we find

LzΨ
m
l =

∑

m1,m2

(~m1 + ~m2) Y
m1

l1
Y m2

l2
C l1l2l
m1m2m

. (12.5.2)

The Clebsch–Gordan coefficient enforces that all non-zero contributions have m1 +m2 = m, so

LzΨ
m
l = ~mΨm

l . (12.5.3)

Next, applying eq. (8.6.29) we find

L−Ψ
m
l = ~

∑

m1,m2

[√
l1(l1 + 1)−m1(m1 − 1) Y m1−1

l1
Y m2

l2

+
√
l2(l2 + 1)−m2(m2 − 1)Y m1

l1
Y m2−1
l2

]
C l1l2l
m1m2m

. (12.5.4)

Since we are summing over all m1 and m2, we can use the trick of relabeling m1 → m1 + 1 in

the first term and m2 → m2 + 1 in the second term, to obtain

L−Ψ
m
l = ~

∑

m1,m2

[√
l1(l1 + 1)−m1(m1 + 1)C l1l2l

m1+1,m2,m

+
√
l2(l2 + 1)−m2(m2 + 1)C l1l2l

m1,m2+1,m

]
Y m1

l1
Y m2

l2
. (12.5.5)

Now the Clebsch–Gordan recurrence relation eq. (12.4.17) turns this into

L−Ψ
m
l = ~

∑

m1,m2

√
l(l + 1)−m(m− 1)C l1l2l

m1,m2,m−1 Y
m1

l1
Y m2

l2
, (12.5.6)

or, using the definition of eq. (12.5.1), simply,

L−Ψ
m
l = ~

√
l(l + 1)−m(m− 1)Ψm−1

l . (12.5.7)
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In an exactly analogous way, one finds

L+Ψ
m
l = ~

√
l(l + 1)−m(m+ 1)Ψm+1

l . (12.5.8)

Taken together, eqs. (12.5.3), (12.5.7) and (12.5.8), combined with L2 = (L+L−+L−L+)/2+L
2
z

from eq. (8.1.15), show that this wavefunction also obeys

L2Ψm
l = ~

2l(l + 1)Ψm
l . (12.5.9)

Since the spherical harmonic Y m
l is the unique (θ, φ) function with L2 eigenvalue ~

2l(l+ 1) and

Lz eigenvalue ~m, eqs. (12.5.3) and (12.5.9) show that Ψm
l must be proportional to it, and

Ψm
l (θ, φ) = cl1l2lm Y

m
l (θ, φ) (12.5.10)

as claimed, for some constant cl1l2lm (independent of θ, φ).

Furthermore, by acting with L− on both sides of the previous equation, we obtain

L−Ψ
m
l = cl1l2lm L−Y

m
l = cl1l2lm~

√
l(l + 1)−m(m− 1) Y m−1

l , (12.5.11)

but also from eq. (12.5.7) this is equal to

L−Ψ
m
l = ~

√
l(l + 1)−m(m− 1) cl1l2l,m−1 Y

m−1
l . (12.5.12)

Comparing these informs us that cl1l2lm = cl1l2l,m−1 for all −l + 1 ≤ m ≤ l, so the constant of

proportionality does not actually depend on m, and we therefore drop that label.

All of the preceding just served to prove that we can write

∑

m1,m2

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)C l1l2l

m1m2m = cl1l2l Y
m
l (θ, φ) (12.5.13)

for some proportionality constant cl1l2l. Our remaining task is to identify this constant. Fortu-

nately, there is a trick to do this very easily; just consider the special case θ = 0. Using the fact

found in eq. (8.6.53),

Y m
l (0, φ) = δm0

√
2l + 1

4π
, (12.5.14)

the double sum in eq. (12.5.13) collapses to a single term with m1 = m2 = 0, and it reads
√

2l1 + 1

4π

√
2l2 + 1

4π
C l1l2l

000 = cl1l2l

√
2l + 1

4π
. (12.5.15)

Solving this for cl1l2l, eq. (12.5.13) becomes

∑

m1,m2

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)C l1l2l

m1m2m =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 Y
m
l (θ, φ). (12.5.16)
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This accomplishes our goal.

To derive a related interesting and useful identity, start with eq. (12.5.16), multiply by

C l1l2l
m′

1
m′

2
m, then sum over all l, m, then apply the orthogonality of the Clebsch–Gordan coefficients

of eq. (12.4.20) on the left side, and finally relabel m′1 → m1 and m′2 → m2. The result is

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

l1+l2∑

l=|l1−l2|

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 C
l1l2l
m1m2m

Y m
l (θ, φ), (12.5.17)

where m = m1 +m2 on the right side. The product of any two spherical harmonics is thus an

appropriately weighted sum over the spherical harmonics selected by the corresponding addition

of angular momenta.

Another closely related identity follows. Start from eq. (12.5.17), multiply by Y m′

l′ (θ, φ)∗,

integrate over the angular coordinates, then apply the orthonormality of the spherical harmonics

using eq. (8.6.31) on the right side, and finally relabel l′ → l and m′ → m. The result is

∫
dΩ
[
Y m
l (θ, φ)

]∗
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l1l2l

000 C
l1l2l
m1m2m. (12.5.18)

This is the Wigner–Eckart formula for spherical harmonics. It is a special case of the

general Wigner–Eckart theorem (a statement about matrix elements of operators, and applicable

not just to orbital angular momentum) to be derived in section 13.3. Remarkably, the integral

only depends on the magnetic quantum numbers m1, m2, and m through the coefficient C l1l2l
m1m2m,

so the Clebsch–Gordan selection rules (12.4.5)–(12.4.7) also govern which integrals of this type

can be non-zero. This formula can be used to evaluate the integral of any product of three

spherical harmonics (with or without complex conjugates), simply by making use of eq. (8.6.51).

12.6 Exercises

Exercise 12.1. Two angular momentum operators L and S each satisfy the commutation

algebra of the form in eq. (5.3.33). Use this to show that all three components of J = L + S

commute with L · S.

Exercise 12.2. An atomic electron is in a state with orbital angular momentum l = 2, with Lz

and Sz eigenvalues 0 and ~/2, respectively. If its total angular momentum squared is measured

to be J2 = ~
2j(j + 1), what are the possible results for j, and their probabilities?

Exercise 12.3. Two particles both have spin 1/2, and one of them is in a p-wave orbital

angular momentum state while the other is in a d-wave orbital angular momentum state. If

J is the total angular momentum operator, what are the allowed eigenvalues of J2, and their

degeneracies? [Hint: start by figuring out the total number of basis states by multiplying
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together the individual angular momentum multiplicities. You should find 60, so that should be

the sum of the degeneracies.]

Exercise 12.4. Consider a quantum system with two independent spin-1/2 operators, S1 and

S2, so that the state space is spanned by an orthobasis of S1z and S2z eigenstates |↑↑〉, |↑↓〉, |↓↑〉,
and |↓↓〉. In each ket, the first entry labels states with S1z eigenvalue ±~/2, and the second

entry labels states with S2z eigenvalue ±~/2. At time t = 0, the system is in the state

|ψ(0)〉 = 1

2
|↑↑〉+ 1

2
|↑↓〉+ 1√

2
|↓↓〉 . (12.6.1)

(a) At time t = 0, we simultaneously measure S2 and Sz, where S = S1 + S2 is the total spin

operator. What are the possible outcomes, and their probabilities?

(b) Suppose that instead of the above measurements, we let the system evolve until time t, with

the Hamiltonian H = ω1S1z + ω2S2z, where ω1 and ω2 are constants. What is the state at time

t? If we measure S1z at time t, what are the possible outcomes, and their probabilities? Use

these results to find the expectation value 〈S1z〉 as a function of time.

(c) Now suppose that instead the Hamiltonian of the system is H = aS1 · S2, where a is a

constant. What is the state at time t, and what are the possible outcomes and probabilities for

a measurement of S1z? Use these results to find 〈S1z〉 as a function of time. [Hint: to find the

state at time t, it is best to use the total angular momentum basis, in which H is diagonal.]

Exercise 12.5. Consider the hyperfine splitting of the n = 1 level of the hydrogen atom in the

presence of a constant external magnetic field B = Bẑ. Since we are only treating the ground

state, there is no orbital angular momentum L. Let the electron and proton spin operators be

S and I respectively, and let their total be J = S + I. The Hamiltonian is

H =
Eγ
~2
S · I + 2µB

~
B · S, (12.6.2)

where µB is the Bohr magneton and Eγ is the energy of the 21.4 cm line. (There is also an

interaction term −(gpµN/~)B · I, but it is neglected because µN ≪ µB.)

(a) Evaluate each of the two operators S · I and B ·S acting on each of the product basis states

labeled by the eigenvalues of Sz and Iz, and find the matrix representation of H in that basis.

(b) Repeat part (a), but this time use the total angular momentum basis labeled by the eigen-

values of J2 and Jz.

(c) In the limit that B is so large that Eγ can be neglected, find the energy eigenvalues, and the

corresponding energy eigenstates in the product orthobasis.

(d) In the limit that B is so small that it can be neglected, find the energy eigenvalues and the

corresponding energy eigenstates in the total angular momentum basis.
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(e) Find the energy eigenvalues for general B. Expand them to show agreement with the special

limits obtained in parts (c) and (d). (You do not need to find the energy eigenstates.)

(f) Graph the energy eigenvalues in units of µeV as a function of 0 < B < 1200 gauss. Label

the energies near B = 0 with j = 0 and j = 1, and the energies for large B with mS and mI .

Exercise 12.6. The electron and its antiparticle, the positron, can form bound states before

they annihilate, called positronium. The positronium states with lowest energy and zero orbital

angular momenta have a Hamiltonian

H =
a

~2
Se · Sp +

b

~
(Sez − Spz), (12.6.3)

where Se and Sp are the spin operators for the electron and positron respectively, and a =

8.41× 10−4 eV, and b = 2~eB/mec where B is an external magnetic field in the ẑ direction.

(a) Working in the total spin basis of eigenstates of S2 and Sz where S = Se + Sp, find the

Hamiltonian as a 4× 4 matrix in terms of a and b, and find its eigenvalues and eigenvectors.

(b) The 1S0 singlet (parapositronium) state decays rather quickly by annihilation to two photons,

with a lifetime of about 1.25×10−10 seconds, while the 3S1 triplet (orthopositronium) states are

relatively stable, with a lifetime of about 1.42 × 10−7 seconds. (Assume that these statements

do not depend on the applied magnetic field.) Estimate the magnetic field B required to make

the ground state lifetime longer by 10%.

Exercise 12.7. For the addition of two angular momenta j1 = j2 = 3/2, find all of the total an-

gular momentum states in terms of the product basis states, completing eqs. (12.4.45)-(12.4.47).

Summarize the results as a list of the nonzero Clebsch–Gordan coefficients.

Exercise 12.8. General expressions for the Clebsch–Gordan coefficients for the addition of

angular momenta l and 1 were given in eqs. (12.4.13)-(12.4.15). Use the results to write each

of Y m
l (θ, φ) cos θ and Y m

l (θ, φ) sin θ cosφ and Y m
l (θ, φ) sin θ sinφ as linear combinations of other

spherical harmonics, with constant coefficients.
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13 Tensor operators and useful rules they obey

13.1 Irreducible tensor operators

Consider a finite spatial rotation generated by a unitary operator, so that a state ket |ψ〉 is trans-
formed to |ψ′〉 = U(α) |ψ〉, as discussed in section 5.3. Recall, from the discussion surrounding

eqs. (2.5.26)–(2.5.31), that for any operator A we can consider the corresponding rotated version

defined by A′ = U(α)AU(α)†, so that any matrix element 〈χ|A|ψ〉 is equal to the matrix ele-

ment of the rotated operator for the rotated states, 〈χ′|A′|ψ′〉. We will now study operators that

transform under rotations in a simple and useful way, specifically, as irreducible representations

of the rotation group.

An irreducible tensor operator (also known as a spherical tensor operator) of order

j is a collection of 2j + 1 component operators labeled by an index m,

T (j)
m , (m = −j, . . . , j), (13.1.1)

which, by definition, are required to obey the following transformation rule for every unitary

rotation operator U(α),

U(α) T (j)
m U(α)† =

j∑

m′=−j
T

(j)
m′ D

(j)
m′m(α), (13.1.2)

with the Wigner rotation matrices D(j)(α) as defined in eq. (8.5.2). Using the form of U(α) for

an infinitesimal rotation in terms of the total angular momentum operator J in eq. (8.5.1), and

the actions of Jz, J+, and J− on angular momentum eigenstates as given in eqs. (8.1.7), (8.1.22),

and (8.1.24), which are reproduced here for convenience,

Jz |j,m〉 = ~m |j,m〉 , (13.1.3)

J+ |j,m〉 = ~

√
j(j + 1)−m(m+ 1) |j,m+1〉 , (13.1.4)

J− |j,m〉 = ~

√
j(j + 1)−m(m− 1) |j,m−1〉 , (13.1.5)

it is left to Exercise 13.1 to show that the components of an irreducible tensor operator must

obey the commutation relations

[
Jz, T

(j)
m

]
= ~mT (j)

m , (13.1.6)
[
J+, T

(j)
m

]
= ~

√
j(j + 1)−m(m+ 1)T

(j)
m+1, (13.1.7)

[
J−, T

(j)
m

]
= ~

√
j(j + 1)−m(m− 1)T

(j)
m−1. (13.1.8)

Equations (13.1.6)-(13.1.8) serve as an equivalent necessary and sufficient requirement for T
(j)
m

to form an irreducible tensor operator. Their similarity to eqs. (13.1.3)–(13.1.5) suggests that
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the operators T
(j)
m “carry” angular momentum as indicated by the quantum number labels j

and m. Indeed this intuition is valid, as we will explain in the following, with the most precise

statement to be given in eq. (13.3.9).

The simplest type of irreducible tensor operator is obtained for j = 0 with a single component,

and is called a scalar operator. A scalar operator S obeys U(α)S U(α)† = S, or equivalently

it commutes with the total angular momentum operators Jz, J+, J−, and therefore also with Jx

and Jy and J2. Consider a state |α, j,m〉 that is an eigenstate of J2 and Jz with eigenvalues

~
2j(j + 1) and ~m, with α a degeneracy label. It follows that the state S |α, j,m〉 is also an

eigenstate of J2 and Jz with the same eigenvalues. In that sense, the scalar operator S carries

no total angular momentum.

Irreducible tensor operators with j = 1/2, or more generally with half-integer j, are called

spinor operators. However, these cannot be observables, because they are necessarily double-

valued; under a rotation by 2π they acquire a minus sign, just as we saw for matrix represen-

tations of rotations of states with half-integer angular momentum in eqs. (8.5.16) and (8.5.19).

Observables can be constructed by taking the product of an even number of spinor operators,

using Theorem 13.1.1 below. We will not discuss them further here, although they do play a

very important role in quantum field theories with fermions.

An irreducible tensor operator with order j = 1 and three components m = −1, 0, 1 is called

a vector operator V
(1)
m . These can be used to define the familiar rectangular x, y, z components

of V = x̂Vx + ŷVy + ẑVz, as follows:

Vx =
(
V

(1)
−1 − V

(1)
1

)
/
√
2, (13.1.9)

Vy = i
(
V

(1)
−1 + V

(1)
1

)
/
√
2, (13.1.10)

Vz = V
(1)
0 . (13.1.11)

These can be shown, using eqs. (13.1.6)–(13.1.8) with j = 1, to obey the commutation relations

[Ja, Vb] = i~ǫabcVc, (a, b, c = x, y, z), (13.1.12)

which is often taken as the defining property of a vector operator in rectangular coordinates.

For example, the rectangular coordinate position operators found in R = x̂X + ŷY + ẑZ can be

expressed in terms of components of an irreducible tensor operator R(1), as

R
(1)
0 = Z, (13.1.13)

R
(1)
1 = −(X + iY )/

√
2, (13.1.14)

R
(1)
−1 = (X − iY )/

√
2, (13.1.15)

and it is left as an exercise to check that the requisite commutation relations (13.1.6)–(13.1.8)

are indeed satisfied. Besides the position operator, other examples of vector operators are the
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momentum operator P , the orbital angular momentum L, the spin S, and the total angular

momentum operator itself, J = L + S. Note that the angular momentum raising and lowering

operators defined by eq. (8.1.8) are actually given in the irreducible tensor component formalism

by J+ = −
√
2J

(1)
1 and J− =

√
2J

(1)
−1 , respectively, while Jz = J

(1)
0 .

Given any two irreducible tensor operators, one can multiply them to construct others. The

way to do this is specified by the following theorem.

Theorem 13.1.1. (Product rules for tensor operators) If T (j1) and S(j2) are irreducible

tensor operators of orders j1 and j2 respectively, and C
j1 j2 j
m1m2m

are the Clebsch–Gordan coefficients

defined in eq. (12.4.4), then

W (j)
m =

∑

m1

∑

m2

T (j1)
m1

S(j2)
m2

Cj1 j2 j
m1m2m

(m = −j, . . . , j) (13.1.16)

is an irreducible tensor operator of order j. Furthermore,

T (j1)
m1

S(j2)
m2

=
∑

j

∑

m

W (j)
m Cj1 j2 j

m1m2m
. (13.1.17)

The proof is left as Exercise 13.3.

As an example, consider two vector operators V (1) and U (1). Then, using the results of

eqs. (12.4.34)–(12.4.42) to extract the necessary Clebsch–Gordan coefficients for 1⊗1 = 0⊕1⊕2,
we apply eq. (13.1.16) to construct the following three tensor operators, of orders 0, 1, and 2:

W
(0)
0 =

(
V

(1)
1 U

(1)
−1 + V

(1)
−1 U

(1)
1 − V

(1)
0 U

(1)
0

)
/
√
3, (13.1.18)

and

W
(1)
±1 = ±

(
V

(1)
±1 U

(1)
0 − V

(1)
0 U

(1)
±1

)
/
√
2, (13.1.19)

W
(1)
0 =

(
V

(1)
1 U

(1)
−1 − V

(1)
−1 U

(1)
1

)
/
√
2, (13.1.20)

and

W
(2)
±2 = V

(1)
±1 U

(1)
±1 , (13.1.21)

W
(2)
±1 =

(
V

(1)
±1 U

(1)
0 + V

(1)
0 U

(1)
±1

)
/
√
2, (13.1.22)

W
(2)
0 =

(
V

(1)
1 U

(1)
−1 + V

(1)
−1 U

(1)
1 + 2V

(1)
0 U

(1)
0

)
/
√
6. (13.1.23)

Now, W
(0)
0 is a scalar operator, equal to −V ·U/

√
3. It is also not hard to check that W

(1)
m forms

a vector operator, and using eqs. (13.1.9)–(13.1.11), the corresponding rectangular components
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are found to be those of i(V × U)/
√
2. The j = 2 tensor operator can be rewritten, in terms of

the rectangular components of V and U , as

W
(2)
±2 = (Vx ± iVy)(Ux ± iUy)/2, (13.1.24)

W
(2)
±1 = [(∓Vx − iVy)Uz + Vz(∓Ux − iUy)] /2, (13.1.25)

W
(2)
0 = (2VzUz − VxUx − VyUy) /

√
6. (13.1.26)

A different basis for these j = 2 operators consists of the five operators

VxUy + VyUx, VxUz + VzUx, VyUz + VzUy,

VxUx − VyUy, 2VzUz − VxUx − VyUy, (13.1.27)

which can also be recognized as a basis for the entries of the traceless symmetric 3× 3 matrix

Wab = (VaUb + VbUa)/2 − δabV · U/3, (a, b = x, y, z). (13.1.28)

Therefore, W
(2)
m and Wab are the same operators in different guises. In terms of rectangular

components, the product of Va and Ub decomposes to a linear combination of the irreducible

tensor operators with j = 0, 1, 2, as

VaUb = δabV · U/3 + ǫabc(V × U)c/2 + Wab. (13.1.29)

This can be checked using ǫabc(V ×U)c = VaUb−VbUa. Thus VaUb is an example of a reducible

tensor operator.†

As a further specialization, we can take V = U = R, the position operator. The resulting

j = 2 spherical tensor is called the quadrupole moment operator,

Q
(2)
±2 = (X ± iY )2/2, (13.1.30)

Q
(2)
±1 = (∓X − iY )Z, (13.1.31)

Q
(2)
0 = (2Z2 −X2 − Y 2)/

√
6. (13.1.32)

This five-component operator has the same content as the five rectangular components of the

traceless symmetric tensor

Qab = RaRb − δabR2/3, (13.1.33)

in the sense that each is comprised of (complex) linear combinations of the other. This operator

will appear in our study of absorption and emission of electromagnetic radiation, in section 22.5.

†A Cartesian tensor operator Ta1,...,an
with n ≥ 2 indices ai = x, y, z is generically (if no special symmetry,

antisymmetry, or trace conditions are imposed) reducible, in the sense that its entries can be written as linear
combinations of irreducible tensor operators with more than one j.
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It is straightforward to check that the position representation of the quadrupole moment

operator can be expressed in terms of spherical harmonics as

Q(2)
m =

√
8π

15
r2Y m

2 (θ, φ) (13.1.34)

This is not an accident, as any 2l+1-component operator with position representation of the form

f(r)Y m
l (θ, φ) can be shown to satisfy the requirements (13.1.6)-(13.1.8) for a tensor operator of

order l. In particular, consider the multipole moment operator

T (l)
m = rlY m

l (θ, φ). (13.1.35)

As we have just seen, the quadrupole moment operator is the special case l = 2 (up to a

normalization). The dipole moment operator with l = 1 is equivalent to the position vector

operator, as in eqs. (13.1.13)-(13.1.15). The octopole moment operator has l = 3, etc. To justify

the terminology, recall that for a classical charge distribution ρ(r), the electrostatic potential is

Φ(r) =

∫
d3r′

ρ(r′)

|r − r′| . (13.1.36)

Applying the expansion formula (8.6.82), this can be rewritten as

Φ(r) =
∞∑

l=0

4π

2l + 1

l∑

m=−l
q∗lm

Y m
l (θ, φ)

rl+1
, (13.1.37)

where

qlm =

∫
d3r′ ρ(r′)T (l)

m (r′, θ′, φ′). (13.1.38)

Thus, for a particle of charge q and wavefunction ψ(r), the qlm can be obtained by integrating

T
(l)
m weighted by the charge probability distribution ρ(r) = q|ψ(r)|2. In bra-ket form,

qlm = q 〈ψ|T (l)
m |ψ〉 , (13.1.39)

the expectation value of the multipole moment operator.

13.2 Selection rules for scalar and vector operators and the Landé

projection formula

As remarked in the previous section, scalar operators do not change the total angular momentum

quantum numbers of the states they act on. Furthermore, their matrix elements between total

angular momentum (J2, Jz) eigenstates do not depend on the magnetic quantum number. Both

properties are incorporated in the following:
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Theorem 13.2.1. (Scalar operator selection rule) If S is a scalar operator, and |αjm〉 are
eigenstates of the total angular momentum operators J2 and Jz, with additional labels α, β, . . .,

then

〈βj′m′|S|αjm〉 = δj′jδm′m 〈βj‖S‖αj〉 , (13.2.1)

where 〈βj‖S‖αj〉 does not depend on m.

As terminology, the object 〈βj‖S‖αj〉 is called a reduced matrix element. This is not a

matrix element in the usual sense, but rather just a symbol denoting a number that depends on

α, β, and j and on the choice of the operator S, but not on m or m′.

To prove Theorem 13.2.1, consider 〈βj′m′|[Jz, S]|αjm〉, which is 0 from the definition of

a scalar operator. Evaluating each Jz acting on the bra or ket to which it is adjacent, this

immediately tells us that (~m′ − ~m) 〈βj′m′|S|αjm〉 = 0, so the matrix element in question

can only be non-zero if m′ = m. Similarly, the matrix element of [J2, S] = 0 tells us that

[~2j′(j′ + 1) − ~
2j(j + 1)] 〈βj′m′|S|αjm〉 = 0, so the matrix element can only be non-zero if

j′ = j, since the other root j′ = −j − 1 is impossible because j and j′ are both non-negative. It

remains to show that the matrix element is independent of m. This follows from

〈β, j,m+1|S|α, j,m+1〉 = 〈β, j,m|S|α, j,m〉 , (13.2.2)

which can be obtained by using the following facts: |α, j,m+1〉 is proportional to J+ |α, j,m〉;
and 〈β, j,m| is proportional to 〈β, j,m+1| J+ with the same constant of proportionality, namely

~
√
j(j + 1)−m(m+ 1); and [J+, S] = 0 for a scalar operator.

Theorem 13.2.1 is a powerful selection rule which can be applied, for example, if S is a part

of the Hamiltonian, which is often invariant under rotations and therefore a scalar operator.

(Examples of exceptions include a charged particle in the presence of an external electric or

magnetic field, which will always pick out a special direction that destroys the rotational sym-

metry. For example, if there is a constant external electric field E, the Hamiltonian will contain

a term proportional to E ·R, which is not a scalar operator. This is because E, being constant,

does not transform as a vector operator in the sense we have defined.) This theorem will even

be useful to us in the seemingly trivial case that S is the identity operator.

We now turn our attention to vector operators, which in this section we will treat in terms

of their rectangular coordinate components Va for a = x, y, z with V = x̂Vx + ŷVy + ẑVz. By

definition, these satisfy

[Ja, Vb] = i~ǫabcVc. (13.2.3)
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One useful observation is that the operator J ·V = V ·J does not depend on the ordering, since

each Ja commutes with the corresponding component Va. Furthermore, it is a scalar operator:

[
Ja, J · V

]
= 0. (13.2.4)

One can also check straightforwardly that

[
J2, Va

]
= i~ǫabc(VbJc + JcVb). (13.2.5)

From this, and the identity ǫabcǫdec = δadδbe − δaeδbd, one can establish the double commutator

relation

[
J2,
[
J2, Va

]]
= 2~2

(
J2Va + VaJ

2 − 2Ja(J · V )
)
. (13.2.6)

We now exploit eq. (13.2.6) by evaluating both sides as a matrix element between orthobasis

states 〈β, j′, m′| and |α, j,m〉, where α and β are degeneracy labels. Each instance of J2 can be

immediately evaluated as either ~2j(j + 1) or ~2j′(j′ + 1), leading to

~
4
(
[j(j + 1)− j′(j′ + 1)]2 − 2[j(j + 1) + j′(j′ + 1)]

)
〈β, j′, m′|Va|α, j,m〉 =

−4~2 〈β, j′, m′|Ja(J · V )|α, j,m〉 . (13.2.7)

The matrix element on the right can be separated, by using completeness, to get

〈β, j′, m′|Ja(J · V )|α, j,m〉 =
∑

γ,j′′,m′′

〈β, j′, m′|Ja|γj′′m′′〉 〈γj′′m′′|J · V |α, j,m〉 . (13.2.8)

Here, the first matrix element vanishes unless γ = β and j′′ = j′, while according to Theorem

13.2.1 the second matrix element vanishes unless j′′ = j and m′′ = m. Therefore, only one term

in the completeness sum contributes, and eq. (13.2.7) simplifies to a remarkably useful formula,

~
2(j + j′ + 2)(j + j′)[(j − j′)2 − 1] 〈β, j′, m′|Va|α, j,m〉 =

−4δjj′ 〈j,m′|Ja|j,m〉 〈β, j,m|J · V |α, j,m〉 , (13.2.9)

where the irrelevant label β has been removed from the first matrix element on the right.

One important application of eq. (13.2.9) is the special case j′ = j. Then it immediately

reduces to the following result due to Alfred Landé:

Theorem 13.2.2. (Vector operator projection rule) If an operator V transforms as a

vector with respect to rotations generated by the angular momentum operator J , then the Landé

projection formula holds:

〈β, j,m′|V |α, j,m〉 = 〈j,m′|J |j,m〉 〈β, j‖J · V ‖α, j〉
~2j(j + 1)

(13.2.10)
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for j 6= 0, where the reduced matrix element

〈β, j‖J · V ‖α, j〉 ≡ 〈β, j,m|J · V |α, j,m〉 (13.2.11)

does not depend on m or m′. For the special case j = 0,

〈β, 0, 0|V |α, 0, 0〉 = 0. (13.2.12)

Because J ·V is a scalar operator, Theorem 13.2.1 reminds us that the right side of eq. (13.2.11)

does not actually depend onm, as claimed. So, in applications, we can pick any convenient value

for m to do the evaluation of 〈β, j‖J · V ‖α, j〉. (The most convenient choice is usually either

m = j or m = 0.) Of course, if j = 0 then eq. (13.2.10) fails, but in that case j = m = m′ = 0,

and the vanishing of 〈β, 0, 0|V |α, 0, 0〉 follows from spherical symmetry. The j = 0 states do not

have any special direction along which the matrix element of a vector operator could point.

Intuitively, the Landé projection formula says that, within each subspace of fixed j, all

vector operators are proportional to each other, and in particular to the angular momentum

operator. As a check, if we take V = J , then J · V = J2, and eq. (13.2.10) is satisfied. The

reason for the word “projection” in the name is that it implies that fixed-j matrix elements

of V are equal to those of J(J · V )/J2, the formal geometric projection of V onto the angular

momentum operator direction. The projection formula is a particularly useful special case of

the Wigner–Eckart theorem discussed in the next section.

Another important application of eq. (13.2.9) occurs if we take V = R, the position op-

erator. As a notable example, this will be useful for evaluating absorption and emission of

electromagnetic radiation in the electric dipole approximation (in section 22.4). For this reason,

the conditions on the matrix elements of the components of R that we are about to derive are

often called the dipole selection rules.

When considering matrix elements of R, we can take J to be just the orbital angular momen-

tum operator L, since that is what generates rotations for R; the spin is not relevant. Further,

L ·R = (R× P ) · R = 0, so the right side of eq. (13.2.9) vanishes, and it gives simply

~
2(l + l′ + 2)(l + l′)[(l − l′)2 − 1] 〈β, l′, m′|R |α, l,m〉 = 0. (13.2.13)

Therefore, for the matrix element to be non-zero, we need

(l + l′ + 2)(l + l′)[(l − l′)2 − 1] = 0. (13.2.14)

Now, l+l′+2 cannot vanish because l and l′ are always non-negative. Also, the condition l+l′ = 0

can only be satisfied if l = l′ = 0, but then 〈β, l′, m′|R |α, l,m〉 can only be 〈β, 0, 0|R |α, 0, 0〉,
which must vanish anyway due to the spherical symmetry of the state wavefunctions. From
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eq. (13.2.14), the only other possibility for a non-vanishing matrix element is (l− l′)2 = 1. Thus,

we have the first dipole selection rule,

〈β, l′, m′|R |α, l,m〉 6= 0 requires l′ − l = ±1. (13.2.15)

Since this holds for the whole vector R, it is also true for the matrix elements of each of its

components, X , Y , and Z. The remaining dipole selection rules are

〈β, l′, m′|Z|α, l,m〉 6= 0 requires m′ = m, (13.2.16)

〈β, l′, m′|(X + iY )|α, l,m〉 6= 0 requires m′ = m+ 1, (13.2.17)

〈β, l′, m′|(X − iY )|α, l,m〉 6= 0 requires m′ = m− 1. (13.2.18)

To prove these, we can suppress the labels α, β, which play no role. Taking the matrix element of

the commutation relation [Lz , Z] = 0 gives 〈l′, m′|[Lz, Z]|l, m〉 = (~m′−~m) 〈l′, m′|Z|l, m〉 = 0.

This shows that if 〈l′, m′|Z|l, m〉 is to be non-zero, we need m′ = m. A simple alternative

proof uses the φ-dependence of the position representations of the spherical harmonics and

X , Y , and Z. We have 〈l′, m′|Z|l, m〉 ∝
∫ 2π

0
dφ
(
e−im

′φ
)(
1
)(
eimφ

)
∝ δmm′ , and similarly,

〈l′, m′|(X ± iY )|l, m〉 ∝
∫ 2π

0
dφ
(
e−im

′φ
)(
e±iφ

)(
eimφ

)
∝ δm′,m±1. Equations (13.2.17) and

(13.2.18) also imply that the corresponding matrix elements ofX and Y vanish unlessm′ = m±1.
As a last application of eq. (13.2.9), consider the selection rules for the matrix elements

〈β, j,m′|V |α, j,m〉 of a general vector operator. The only difference compared to the special

case of R that led to eq. (13.2.15) is that now we must admit the possibility that the right side

of eq. (13.2.9) does not vanish for j = j′. Therefore, the general vector operator selection

rules are

〈β, j′, m′|V |α, j,m〉 6= 0 requires j′ − j = 0,±1. (13.2.19)

〈β, j′, m′|Vz|α, j,m〉 6= 0 requires m′ = m, (13.2.20)

〈β, j′, m′|(Vx + iVy)|α, j,m〉 6= 0 requires m′ = m+ 1, (13.2.21)

〈β, j′, m′|(Vx − iVy)|α, j,m〉 6= 0 requires m′ = m− 1. (13.2.22)

The last three can be obtained by using [Jz, Vz] = 0 and [J+, V+] = 0 and [J−, V−] = 0.

13.3 The Wigner–Eckart Theorem and selection rules for tensor op-
erators

In this section we will state and prove the Wigner–Eckart Theorem for matrix elements of

irreducible tensor operators. Developed independently by Wigner and Carl Eckart, this is a

generalization of three simpler results that we have already given: eq. (12.5.18) for spherical
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harmonics, Theorem 13.2.1 for scalar operators, and Theorem 13.2.2 for vector operators. The

reader may wish to contemplate the parallels between the following derivations and those used

in section 12.5 for spherical harmonics.

Consider an irreducible tensor operator T
(j1)
m1 with m1 = −j1, . . . , j1, and a multiplet of

angular momentum eigenstates |αj2m2〉 with m2 = −j2, . . . , j2, where α is a degeneracy label.

Now we construct the states

|γjm〉 =
∑

m1,m2

T (j1)
m1
|αj2m2〉 Cj1 j2 j

m1m2m
, (13.3.1)

for j = |j1−j2|, . . . , j1+j2 and m = −j, . . . , j, where Cj1 j2 j
m1m2m

are Clebsch–Gordan coefficients

as defined by eq. (12.4.4). We claim that, as the labeling suggests, eq. (13.3.1) is an eigenstate

of J2 and Jz with eigenvalues ~2j(j + 1) and ~m, respectively. (It is not necessarily normalized

to unity.) To prove this, it suffices to show that

Jz |γjm〉 = ~m |γjm〉 , (13.3.2)

J− |γjm〉 = ~

√
j(j + 1)−m(m− 1) |γ, j,m− 1〉 , (13.3.3)

J+ |γjm〉 = ~

√
j(j + 1)−m(m+ 1) |γ, j,m+ 1〉 , (13.3.4)

as then the result for J2 = (J+J− + J−J+)/2 + J2
z follows.

To prove eq. (13.3.2), we use eq. (13.1.6) to obtain

Jz |γjm〉 =
∑

m1,m2

T (j1)
m1

(~m1 + Jz) |αj2m2〉 Cj1 j2 j
m1m2m

. (13.3.5)

Then, use Jz |αj2m2〉 = ~m2 |αj2m2〉, and eq. (13.3.2) follows by noting that the Clebsch–Gordan

coefficient enforces that only m1 +m2 = m contributes in the sum.

To prove eq. (13.3.3), we similarly use eq. (13.1.8) and then eq. (13.1.5) to find

J− |γjm〉 = ~

∑

m1,m2

Cj1 j2 j
m1m2m

(√
j1(j1 + 1)−m1(m1 − 1)T

(j1)
m1−1 |αj2m2〉

+
√
j2(j2 + 1)−m2(m2 − 1)T (j1)

m1
|α, j2, m2 − 1〉

)
. (13.3.6)

Now, since we are summing over all m1 and m2, we can use the trick of relabeling the indices

according to m1 → m1 + 1 in the first term and m2 → m2 + 1 in the second term. The result is

J− |γjm〉 = ~

∑

m1,m2

T (j1)
m1
|αj2m2〉

(√
j1(j1 + 1)−m1(m1 + 1)Cj1 j2 j

m1+1,m2,m (13.3.7)

+
√
j2(j2 + 1)−m2(m2 + 1)Cj1 j2 j

m1,m2+1,m

)
. (13.3.8)

Equation (13.3.3) then follows immediately from using the Clebsch–Gordan recurrence relation

eq. (12.4.17). The proof of eq. (13.3.4) is completely analogous.
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Having established that the states |γjm〉 defined by eq. (13.3.1) are really eigenstates of

J2 and Jz, we can now invert the relationship by solving for each T
(j1)
m1 |αj2m2〉 in terms of

|γjm〉. Starting from eq. (13.3.1), multiply by Cj1 j2 j
m′

1
m′

2
m, sum over all j and m, and then use the

Clebsch–Gordan orthonormality relation eq. (12.4.20) to collapse the m1, m2 sums to a single

term, and finally relabel m′1 → m1 and m′2 → m2. The result is

T (j1)
m1
|αj2m2〉 =

∑

j,m

|γjm〉 Cj1 j2 j
m1m2m

. (13.3.9)

This is the precise version of the intuitive statement that T
(j1)
m1 carries angular momentum

quantum numbers j1 and m1, and that it imparts them to the states it acts on, yielding a

sum of states that occur in the addition of angular momenta j1 and j2.

Now acting on eq. (13.3.9) with 〈βj′m′|, and then relabeling j′ → j and m′ → m, we obtain

〈βjm|T (j1)
m1
|αj2m2〉 = 〈βjm|γjm〉Cj1 j2 j

m1m2m. (13.3.10)

By its construction, the state |γjm〉 depends on α and the choice of tensor operator T (j1) and

j. However, the matrix element 〈βjm|γjm〉 clearly does not depend on m1 or m2, and applying

Theorem 13.2.1 with S taken to be the identity operator, we learn that it does not actually

depend on m either. Therefore, we have proved a powerfully general result:

Theorem 13.3.1. (Wigner–Eckart) If T (j1) is an irreducible tensor operator, and |αj2m2〉
and |βjm〉 are eigenstates of J2 and Jz with eigenvalues as labeled, then†

〈βjm|T (j1)
m1
|αj2m2〉 = 〈βj‖T (j1)‖αj2〉 Cj1 j2 j

m1m2m
, (13.3.11)

where the reduced matrix element 〈βj‖T (j1)‖αj2〉 does not depend on m, m1, or m2.

For j1 = m1 = 0, so that T
(0)
0 = S is a scalar operator, we can use the fact that C0j j′

0mm′ =

δjj′δmm′ to recover Theorem 13.2.1 as a special case of the Wigner–Eckart Theorem. This is

hardly surprising, since we just used the former in the proof of the latter. The Landé projection

formula, eq. (13.2.10), can be shown to be equivalent to the special case obtained for vector

operators, when j1 = 1. The triple spherical harmonic integral relation eq. (12.5.18) is equivalent

to the special case in which the generator of rotations J is taken to be the orbital angular

momentum L, and the tensor operator is taken to be defined by the position representation

T
(l1)
m1 = Y m1

l1
(θ, φ).

One way to use the Wigner–Eckart Theorem is as a labor-saving device. If we know the

matrix element on the left side of eq. (13.3.11) for just one instance (m1, m2, m) for which it is

†Some sources define the reduced matrix element with other normalization conventions, most commonly by
including a factor of 1/

√
2j + 1 (and sometimes a different sign) on the right side of eq. (13.3.11).
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non-zero, then we can infer the reduced matrix element. Once that is done, all other cases of

(m1, m2, m) with the same α, β, j1, j2, and j will also be known.

The Wigner–Eckart Theorem also provides selection rules, since it implies that the matrix

element can only be non-zero if the Clebsch–Gordan coefficient Cj1 j2 j
m1m2m

is non-zero. This means

that the same selection rules apply, so that 〈βjm|T (j1)
m1 |αj2m2〉 can be non-zero only if

j = |j1−j2|, . . . , j1+j2−1, j1+j2, (13.3.12)

m = m1+m2. (13.3.13)

These tensor operator selection rules generalize the results in eqs. (13.2.19)–(13.2.22) that

we obtained for the special case of vector operators.

13.4 Exercises

Exercise 13.1. Prove the angular momentum commutation relations for tensor operators,

eqs. (13.1.6)-(13.1.8), from earlier results.

Exercise 13.2. Suppose that V and W are rectangular-coordinate vector operators, obeying

eq. (13.1.12). Show that their cross-product V × W is also a vector operator by the same

definition, and that their dot product V ·W is a scalar operator (commutes with J).

Exercise 13.3. Prove Theorem 13.1.1, which allows tensor operators to be constructed from

products of other tensor operators.

Exercise 13.4. Consider angular momentum eigenstates |α, j,mj〉 with J2 and Jz eigenvalues

~
2j(j+1) and ~mj, respectively. For what j,mj is the matrix element 〈α, j,mj|(X2 − Y 2)|β, 0, 0〉

possibly non-zero? What about 〈α, j,mj |XY |β, 0, 0〉 and 〈α, j,mj |XZ|β, 0, 0〉?

Exercise 13.5. Show that for any angular momentum eigenstate |α, j,mj〉, the expectation

values of the components of an irreducible tensor operator T
(l)
m vanish unless l ≤ 2j and m = 0.

This applies in particular to the multipole moment operator defined in eq. (13.1.35). Thus

the only non-zero quadrupole moment [as defined in eq. (13.1.39)] for an angular momentum

eigenstate is q20, and only for states with j ≥ 1. A spin-0 or spin-1/2 particle cannot have a

quadrupole moment, even if it is composite.

Exercise 13.6. The deuteron is a composite particle with charge Q = 1 and spin one, which

means that q = e and j = 1 in its rest frame. Apply the Wigner-Eckart theorem to find the ratios

of the electric quadrupole moment operator expectation values q20, defined in eq. (13.1.39), for

the three states with mj = 1, 0,−1.
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Exercise 13.7. Consider a basis of angular momentum eigenstates |α, j,m〉 for a particle of unit
charge, for fixed α and j, and m = −j, . . . , j. Suppose that the electric dipole and quadrupole

moments defined by the expectation values in the highest-m state,

p = 〈α, j, j|Z|α, j, j〉 , (13.4.1)

q = 〈α, j, j|(2Z2 −X2 − Y 2)|α, j, j〉 /
√
6, (13.4.2)

are known. Use the Wigner–Eckart Theorem to find, in terms of p and q and appropriate

Clebsch–Gordan coefficients,

(a) all of the matrix elements 〈α, j,m′|A|α, j,m〉 for each of A = X and Y and Z.

(b) all of the matrix elements 〈α, j,m′|A|α, j,m〉 for each of the operators A = XY and XZ

and Y Z and X2 − Y 2 and (2Z2 −X2 − Y 2)/
√
6. For which m,m′ can the results be non-zero?
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14 Entanglement, the EPR problem, hidden variables,

and Bell inequalities

14.1 The Einstein–Podolsky–Rosen problem in Bohm’s formulation

Although Einstein played an important role in the early development of quantum mechanics, like

many others he was troubled by some of its implications. This was in part due to his discomfort

with the reliance of Postulates 4 and 5 on probabilities for the result of a measurement and the

subsequent state, rather than completely deterministic time evolution. Even after he grudgingly

accepted the possibility of non-determinism, Einstein found the implications of entanglement

of quantum states to be difficult to accept, and doubted whether the standard formulation of

quantum mechanics should be regarded as a complete framework.

In 1935, Einstein, Boris Podolsky, and Nathan Rosen [Phys. Rev. 47, 777, (1935)] described

a thought experiment that highlighted the perceived weirdness associated with measurements

involving entangled states. This problem is often called the EPR paradox, but it should be

emphasized at the outset that although it may be troubling to humans accustomed to classical

ways of thinking, in the end we will find that there is really nothing paradoxical about it.

(Indeed, EPR themselves did not call it a “paradox”.) EPR described the problem in terms of

measurements of positions and momenta, but David Bohm later distilled the basic ideas into a

simpler form in terms of measurements of components of two entangled spins, and that is the

version we will now describe.

Consider a system of two spin-1/2 particles, labeled 1 and 2, in a state with the total spin

S = S1 + S2 equal to 0,

|S = 0〉 =
1√
2

(
|↑↓〉 − |↓↑〉

)
=

1√
2

(
|+ẑ,−ẑ〉 − |−ẑ,+ẑ〉

)
. (14.1.1)

The notation is such that, for example, |↑↓〉 = |+ẑ,−ẑ〉 ≡ |+ẑ〉1 ⊗ |−ẑ〉2 is an eigenstate of

both S1z and S2z, with eigenvalues +~/2 and −~/2, respectively. The state of the system is

thus represented by a ket in the tensor product of the Hilbert spaces for the two individual

particles. In the following, we will purposely avoid the ↑ and ↓ notations for the spins, because

we will want to consider components of the spins other than the z component. In fact, since the

S = 0 state is spherically symmetric, there is nothing special about the ẑ direction, and up to

an irrelevant phase we could just as easily write the state in eq. (14.1.1) as

|S = 0〉 =
1√
2

(
|+n̂,−n̂〉 − |−n̂,+n̂〉

)
(14.1.2)

for any convenient unit vector direction n̂. Importantly, there is no way to write this total spin-0

ket as a single product of kets in the individual spin-1/2 particle Hilbert spaces; no matter the
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π0e± e∓

A B

Figure 14.1.1: The setup for Bohm’s version of the EPR problem. Decays of neutral pions at rest
produce two spin-1/2 particles moving in opposite directions, in an entangled spin state with
total spin 0, and with spatial wavefunctions that have no overlap at late times. Two distant
observers Alice and Bob can each measure any component they choose of the spin of the particle
that arrives at their respective detector A or B.

choice of bases for the individual spins, it is always a non-trivial linear combination of such

products. Thus, it is an example of an entangled state as defined in section 2.9.

The particles also have spatial wavefunctions that we need not write explicitly. The only

thing important for us is that they describe localized wavepackets moving away from each other.

The two spins, although entangled, are therefore separated by a large distance at late times.

This is sometimes called nonlocal entanglement.

One way to realize such a state would be an electron-positron pair from the decay of a neutral

pion at rest in a suitable reference frame,†

π0 → e−e+. (14.1.3)

The pion has spin 0, and since we are in its rest frame, the total angular momentum is also

0. We imagine that this experiment will be conducted many times, with two ideal observers

Alice and Bob located on opposite sides of the point where the pions decay, and far away, as

shown in Figure 14.1.1. They each have a small detector capable of measuring any desired

component of the spin of a particle moving through it. Since the detectors are far apart, where

the spatial wavefunctions for the two particles have no overlap, Alice can only measure one of

the spins, and Bob can only measure the other. Let us choose the labeling of the particles so

that Alice always makes measurements on particle 1 (which on an event-by-event basis might

be either the electron or the positron), and Bob always on particle 2. They can each measure

any component of that spin, or choose to make no measurement. For simplicity, we assume that

the Hamiltonian is just that of free particles, so that the spin states have no Hamiltonian time

evolution. Throughout this chapter, we will use spin operators with a factor of ~/2 extracted,

so

σk =
2

~
Sk (14.1.4)

for particle k, represented by the Pauli matrices.

†This is a very rare decay, occurring for less than 10−7 of all neutral pions. But this is a thought experiment;
we only care that it is possible in principle, not about such practical difficulties.
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Now suppose that Alice measures All three components of σ1 commute with all three com-

ponents of σ2, because they operate on distinct one-particle Hilbert spaces. σ1z. The result

will be either +1 or −1, with equal probability. If the result was +1, then if Bob measured σ2z

the result will necessarily be −1. This follows from the form of the state eq. (14.1.1). We can

say that Alice has collapsed the state to |+ẑ,−ẑ〉 by her measurement of σ1z, so that the only

possible outcome for Bob is σ2z = −1. Conversely, if Alice instead measured σ1z to be −1, then
if Bob measures σ2z the result must be +1. There is a perfect anticorrelation between their

measurements.

This perfect anticorrelation in Alice’s and Bob’s measured results for σ1z and σ2z is not at all

surprising. In fact, it is actually much more general, in the sense that it does not even rely on

quantum mechanics being correct. It would inevitably be true in any alternative theory, just as

long as angular momentum is conserved. There is a similar perfect anticorrelation between the

measured electric charges; if Alice sees that particle 1 is an electron, then she can immediately

be sure that Bob’s particle 2 will be a positron, due to conservation of charge. As an analogy,

suppose that Charlie at the central point had taken a pair of shoes and shipped one to Alice and

one to Bob, concealed in boxes. Before opening her box, Alice would know nothing about the

shoe Bob received, but if she opens her box to find a left shoe, she would immediately gain the

information that Bob’s box has a right shoe. This has nothing to do with quantum mechanics,

of course.

However, spins are much more interesting than electric charges or shoes, and can reveal

nontrivial aspects of measurement correlations in quantum mechanics. This is because spins

can point in arbitrary directions, and Alice and Bob could choose to make measurements of

different spin components. For example, suppose Alice measures σ1x but Bob still measures σ2z .

If Alice obtains the result σ1x = +1, then from eq. (14.1.2) with n̂ = x̂, we can say that the

total state collapses to |+x̂,−x̂〉. Then, since |−x̂〉2 = (|+ẑ〉2 − |−ẑ〉2)/
√
2, Bob will obtain the

results σ2z = ±1 randomly, and with equal probability. The same random results will occur for

Bob’s measurement of σ2z if the result of Alice’s measurement was instead σ1x = −1, or if she
decided to make no measurement at all.

To be more general, suppose that Alice and Bob measure arbitrary spin components â·σ1 and
b̂ · σ2, respectively, for unit vectors â and b̂. Neither can predict with certainty what the other

will measure on an event-by-event basis (unless â and b̂ are parallel), but there is a statistical

correlation between their measurements, which can be expressed as the expectation value

C(â, b̂) = 〈â · σ1 b̂ · σ2〉 (14.1.5)

in the state |S = 0〉. A labor-saving trick for evaluating this is to note that when acting on the

state |S = 0〉, one can always replace b̂ · σ2 with −b̂ · σ1, followed by use of the Pauli matrix
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identity (â · σ)(b̂ · σ) = â · b̂+ i(â× b̂) · σ from eq. (8.2.17). Then, since the expectation value of

σ1 in the S = 0 state vanishes, the prediction of quantum mechanics is

C(â, b̂) = −â · b̂. (14.1.6)

This agrees with the special cases already discussed; for â = b̂, the measurements are perfectly

anticorrelated, and when â and b̂ are orthogonal there is no correlation. More generally, C(â, b̂)

is always in the range from −1 (perfect anticorrelation) to +1 (perfect correlation).

The key issue that bothered EPR is that the possible results obtained by Bob would seem

to depend on the choices made by Alice, and vice versa, even if they are so far apart from

each other that there is no possibility of communication between them when they each choose

which spin measurement to make. They could even make their individual decisions about which

spin components to measure at random for each individual pion decay after it has occurred

and while the electron and positron are already in flight. At the last moment before particle 1

arrives, Alice could decide to measure σ1z. Then, from the results of Alice’s measurement alone,

she can be immediately certain of the result if Bob measures σ2z, a measurement occurring far

away and quite out of her control. Or, she could decide instead to measure σ1x, in which case

(regardless of the outcome of her own measurement) she would correctly assign a probability of

50% to the outcome of a measurement by Bob of σ2z . The same follows if she decided to make

no measurement at all. This is all despite the fact that, because of the finite speed of light, no

signal carrying the news of her last-moment decision could reach Bob before his measurement

occurs. Einstein referred to this sort of thing as “spooky action at a distance”, and argued

that it pointed to an incompleteness of the standard quantum theory as a description of reality.

However, Nature does not care whether we, or even Einstein, find a phenomenon peculiar or

spooky. There are two things to check to make sure that there is not a problem with the

quantum theory, let alone a true paradox.

The first thing to check is that the predictions of quantum mechanics are really consistent

and unambiguous. In the preceding, we have phrased things in terms of Alice’s measurement

collapsing the state, with implications for what Bob will see. But the situation is symmetrical;

we could just as easily describe any pair of measurements in terms of Bob collapsing the state,

with implications for what Alice will see. For the case in which Alice measured σ1z = +1 and Bob

measured σ2z = −1, we could choose to say that Bob has collapsed the total state to |+ẑ,−ẑ〉,
which means that the only possible result for Alice’s measurement was, indeed, σ1z = +1. This

outcome is fully consistent with the interpretation in which Alice’s measurement collapses the

state first. A third way is to view the collapse symmetrically, by taking Alice’s and Bob’s

measurements to be a single measurement. (This is possible because all components of σ1 and

σ2 commute with each other.) Again, the state collapses to |+ẑ,−ẑ〉. For any given outcome of
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Figure 14.1.2: If instantaneous communication were possi-
ble, then you could send a signal to a relay R which would
be instantaneous (at constant time) in some other refer-
ence frame, but would arrive at an earlier time in your
own reference frame. The relay could then send a signal,
instantaneous in a different reference frame, which could be
used to somehow prevent your parents from meeting, pre-
venting your own birth. Fortunately, instantaneous com-
munication is not a consequence of quantum mechanics.

both measurements, quantum mechanics indeed always gives the same result for the collapse of

the state regardless of what order we assign to the measurements.‡ To see this more generally,

suppose that Alice measures â · σ1 to be +1 and Bob measures b̂ · σ2 to be +1. As you will

verify when you do Exercise 14.1, these three ways of describing the state collapse give the same

probabilities for this outcome, and the same final state.

The second thing to check is that quantum mechanics does not provide any instantaneous

communication between the distant Alice and Bob, whose measurements are events occurring at

a space-like separation in the language of special relativity. In general, an instantaneous (or even

faster-than-light) communication between space-like separated points in one inertial reference

frame would appear to travel backwards in time in some other inertial frame that is moving with

respect to the first. This would imply causality paradoxes, because signals by combinations of

actors in different inertial frames can be constructed in such a way that a message could be

received on a time-like path before it is sent from a previous point on the same path. For

example, you could use instantaneous communications to convince your parents not to meet,

thus paradoxically preventing your own birth, as illustrated in Figure 14.1.2.

To see that Alice and Bob’s experiments do not actually allow instantaneous communica-

tion, we need only note that no matter what each of them chooses to measure, the results of

their individual measurements will always appear to be completely random, until they meet

to compare them or at least send a conventional signal at a speed not exceeding that of light.

Even if Alice and Bob agree to seek maximum anticorrelation by measuring σ1z and σ2z respec-

tively (and even assuming that they do not break their promises!), each will record their data

locally as a random sequence of +1 and −1, containing no information. After communicating

by conventional means, they can check that their results do have correlations in agreement with

quantum mechanics, but the key point is that no information is transmitted in either direction

‡This is necessary, because if the measurements of Alice and Bob are space-like separated events, special
relativity says that there is no invariant sense of which occurred first. There is an inertial frame in which they
are simultaneous, but in some other inertial frames, Alice’s measurement was first, and in others Bob’s was first.
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until that happens.

Why, then, did EPR view the situation as disturbing? The essential issue is that one must not

fall into the trap of thinking of the state of a system as always defined only by local information,

a viewpoint sometimes called local realism. If you try to think about particle 2 only in terms of

non-entangled kets such as |+ẑ〉2 or |−x̂〉2, then it might indeed appear paradoxical that Alice’s

distant measurement of S1z can affect what Bob measures. However, that way of thinking about

the state of particle 2 is explicitly rejected by quantum mechanics, which insists that we take

into account the full nonlocal entanglement in order to get correct and consistent predictions.

The quantum state describes both particles at the same time, not one particle or the other. The

real value of the EPR problem is that it forces us to recognize this fundamental truth about

how quantum mechanics works.

One sometimes sees grand pronouncements, inspired by the EPR problem, along the lines

of “quantum mechanics is nonlocal”. However, one must be careful about what this implies,

because the word “nonlocal” has several completely different meanings in physics. For example,

it is possible to define a Hamiltonian that has nonlocal dynamics; that is what quantum field

theorists usually mean when they talk about the possibility of nonlocality. That is certainly not

the case in the preceding discussion, as we took H = 0 for the spin degrees of freedom, and even

the H describing the time evolution of the spatial wavefunctions was (implicitly) just that of free

particle propagation. The entanglement of the state occurred due to perfectly local processes.

The rejection of local realism in favor of nonlocal entanglement of states does not imply that we

need to accept a nonlocal Hamiltonian, for which there is absolutely no experimental evidence.

14.2 Hidden variables and Bell’s inequality

Having learned in the previous section that standard quantum mechanics rejects local realism in

favor of allowing nonlocal entanglement, it must be recognized that this is a falsifiable hypothesis

to be experimentally tested against alternatives. There is a general class of alternatives called

hidden variables theories, which attempt to incorporate local realism in a way consistent with

experiment. In the remaining sections of this chapter, we will consider local hidden variables

theories, see how they make predictions that are incompatible with quantum mechanics, and

understand why experiments show that they cannot be correct.

Hidden variables are supposed to be quantities that we cannot directly measure or control,

but are necessary to completely characterize the state of a system. They could be part of

some completely deterministic proposed alternative to quantum mechanics, or could be an extra

part of a framework that otherwise looks like conventional quantum mechanics. In the latter

version, it is not just a ket |ψ〉 that describes the state of the system, but rather the state ket
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together with the hidden variable(s), which we will generically call λ. They are supposed to be

distributed in a way that is either truly random, or just seems to be random because of our lack

of knowledge of them. For any given system, the distribution of the hidden variables can be

described by a probability density function µ(λ) with the properties

∫
dλ µ(λ) = 1, (14.2.1)

µ(λ) ≥ 0, (14.2.2)

so that µ(λ0) dλ is the probability that λ will be found between λ0 and λ0 + dλ. The function

µ(λ) might depend on the particulars of the system and its history.

The presence of λ is supposed to be responsible for the illusion of random outcomes of

measurements. For some observable A, and a state fully characterized by non-hidden properties

ψ and hidden variables λ, the hypothesis is that the outcome of a measurement is not random,

but rather determined as some function

measured value of A = fA,ψ(λ). (14.2.3)

The function fA,ψ(λ) can be chosen so that as λ runs over all possible values, it returns all allowed

values predicted by quantum mechanics for the measurement of A in the state ψ. Because we

have no way of knowing what λ is, the results of individual measurements appear random. So,

the mean value of many measurements of A for apparently identical states ψ will be

A =

∫
dλ µ(λ) fA,ψ(λ). (14.2.4)

This is the counterpart of the expectation value 〈A〉 = 〈ψ|A|ψ〉 in standard quantum theory.

For example, let us consider how this would work for a system with two spin-1/2’s combined

to have total spin S = 0 in an entangled state coming from π0 decay, as considered in section

14.1. To be general, consider the measurements by Alice and Bob of arbitrary components of

the spins of particle 1 and 2, say â · σ1 and b̂ · σ2, where â and b̂ are unit vectors. Then the

outcomes for Alice’s and Bob’s measurements are respectively determined by some functions

â · σ1 = fA(â, λ) = ±1, (14.2.5)

b̂ · σ2 = fB(b̂, λ) = ±1. (14.2.6)

To incorporate local realism, the value of λ is assumed to be the same for both particles 1 and 2,

and is fixed at the moment that the parent pion decays. Thus, in each event, λ has an unknown,

but specific, value, which already determines what the ensuing measurement of any component

of the spins will be, through the functions fA and fB.
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In the case of spins, the functions determining the measurement outcomes must satisfy some

constraints. First, a measured value for n̂ · σk is the same as the negative of a measured value

for −n̂ · σk, so fA(n̂, λ) = −fA(−n̂, λ) and fB(n̂, λ) = −fB(−n̂, λ), for any n̂. Also, to be

consistent with angular momentum conservation, it must be true that whenever â = b̂ = n̂, the

measurement results are perfectly anticorrelated in the case of the EPR setup. Thus,

fB(n̂, λ) = −fA(n̂, λ) (14.2.7)

so that the measurements are consistent with total spin S = 0.

We can now write down the hidden-variables prediction for the statistical correlation of

Alice’s and Bob’s measurements. It is given by the product of the possible measurement results,

integrated over the hidden variables weighted by their probability density,

C(â, b̂) =

∫
dλ µ(λ) fA(â, λ)fB(b̂, λ). (14.2.8)

This hidden variables result should be contrasted with the prediction of quantum mechanics

that we found in eq. (14.1.6), which was C(â, b̂)QM = −â · b̂.
The hidden variables result for C(â, b̂) is clearly less specific than the quantum mechanics

prediction, because we have not committed to a particular form for the functions µ, fA, and fB.

Nevertheless, it is possible to draw some specific conclusions. In the case that b̂ = â, the hidden

variables prediction is

C(â, â) =

∫
dλ µ(λ) fA(â, λ)fB(â, λ) = −

∫
dλ µ(λ) fA(â, λ)

2 = −
∫
dλ µ(λ)

= −1, (14.2.9)

where we used eq. (14.2.7) to get the second equality, then the fact that fA(â, λ) = ±1, and
finally eq. (14.2.1). In this special case, the hidden variables prediction does agree with that of

quantum mechanics. This had to be true, simply because in our hidden variables theory we built

in the perfect anticorrelation required by angular momentum conservation, through eq. (14.2.7).

However, for more general â and b̂, it is not immediately clear whether the hidden variables

predictions for C(â, b̂) can be made to always agree with the predictions of quantum mechanics.

In 1964, John S. Bell† answered the question by discovering that the correlations predicted by

hidden variables theories must satisfy an inequality that is clearly violated by the correlations

predicted by quantum mechanics. Surprisingly, this is true for any choices of the functions µ(λ),

fA(â, λ), and fA(b̂, λ) in the hidden variables theory. This provides a way for experiment to

decisively settle the question of whether the general hidden variables idea or standard quantum

mechanics is true.

†Physics, 1, 195, (1964), reprinted in J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, (1987).
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Bell’s inequality is remarkably simple to derive. We start with

C(â, b̂)− C(â, ĉ) =

∫
dλ µ(λ)

[
fA(â, λ)fB(b̂, λ)− fA(â, λ)fB(ĉ, λ)

]
(14.2.10)

= −
∫
dλ µ(λ)

[
fA(â, λ)fA(b̂, λ)− fA(â, λ)fA(ĉ, λ)

]
, (14.2.11)

where we have used eq. (14.2.7) to replace fB in favor of fA. Multiply the second term on the

right side by 1 = [fA(b̂, λ)]
2, and rearrange to get

C(â, b̂)− C(â, ĉ) = −
∫
dλ µ(λ)

[
1− fA(b̂, λ)fA(ĉ, λ)

]
fA(â, λ)fA(b̂, λ). (14.2.12)

Now, take the absolute value of both sides, and use the general fact that the absolute value of

any integral is always less than or equal to the integral of the magnitude of the integrand:

∣∣∣∣
∫
dλF (λ)

∣∣∣∣ ≤
∫
dλ |F (λ)| . (14.2.13)

Let F (λ) be the integrand on the right side of eq. (14.2.12). Then since fA(â, λ)fA(b̂, λ) is

always equal to ±1, and both µ(λ) and 1 − fA(b̂, λ)fA(ĉ, λ) are always non-negative, we have

|F (λ)| = µ(λ)
[
1− fA(b̂, λ)fA(ĉ, λ)

]
. Therefore we obtain

∣∣C(â, b̂)− C(â, ĉ)
∣∣ ≤

∫
dλ µ(λ)

[
1− fA(b̂, λ)fA(ĉ, λ)

]
(14.2.14)

or, using eqs. (14.2.1) and (14.2.7) and (14.2.8) again,

∣∣C(â, b̂)− C(â, ĉ)
∣∣ ≤ 1 + C(b̂, ĉ). (14.2.15)

This is Bell’s original inequality governing correlations of spin-1/2 measurements in a total spin

S = 0 state in hidden variables theories.

To see that Bell’s inequality is predicted to be violated by quantum mechanics, consider

what happens if we substitute the quantum prediction of the correlation from eq. (14.1.6) into

eq. (14.2.15),

∣∣â · b̂− â · ĉ
∣∣ ≤ 1− b̂ · ĉ. (14.2.16)

This reduces the question to a purely geometric claim about three arbitrary unit vectors. A

single example will be sufficient. Take â = x̂, b̂ = ŷ, and ĉ = (x̂ + ŷ)/
√
2. The left side

of eq. (14.2.16) is 1/
√
2, while the right side is 1 − 1/

√
2, which is less, so the inequality is

violated. Thus, quantum mechanics makes a specific prediction that cannot be satisfied in any

local hidden variables theory.
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14.3 Quantum mechanics vs. hidden variables, without inequalities

There are various other Bell-type inequalities, which show that quantum mechanics and hid-

den variables theories can be distinguished by measuring statistical correlations. In this section

we will discuss another way, which is theoretically even sharper because it does not rely on

inequalities or statistics, although in practical terms it is somewhat harder to realize experi-

mentally. The result in this example is that quantum mechanics and hidden variables theories

make predictions that disagree, not just for correlations on a statistical basis, but for certain

measurements on an event-by-event basis with 100% probability.

Consider the following entangled state involving three spin-1/2 particles,†

|ψ〉 =
1√
2

(
|+ẑ,+ẑ,+ẑ〉 − |−ẑ,−ẑ,−ẑ〉

)
. (14.3.1)

We assume that the three particles, labeled 1, 2, and 3, start from a central point and are

spatially separated without disturbing the spins. The particles are observed by Alice, Bob,

and Charlie at three remote sites. It is agreed that each of them will independently measure a

random choice of either the x or y component of the spin, so that Alice always measures either

σ1x or σ1y, while Bob always measures σ2x or σ2y, and Charlie always measures σ3x or σ3y. The

experiment is repeated many times, always with the same state |ψ〉, and then the observers meet

to compare their results.

Let us first analyze the situation according to the standard rules of quantum mechanics. The

state |ψ〉 is not an eigenstate of any of the individual spin operators σ1x, σ1y, σ2x, σ2y, σ3x, or

σ3y, and each of the individual measurements of Alice, Bob, and Charlie will have a random

result ±1 with equal probability. However, you can check that |ψ〉 has the remarkable property

that it is an eigenstate of all four of the operators of the form

Ωabc = σ1aσ2bσ3c, (14.3.2)

where (a, b, c) = (x, x, x), (x, y, y), (y, x, y), and (y, y, x). For the operator Ωxxx the eigenvalue

is −1, and for each of the other three operators Ωxyy, Ωyxy, and Ωyyx, the eigenvalue is +1.

Before meeting, Alice, Bob, and Charlie have not learned anything except that their own

individual measurement results appear completely random. However, consider what they find

when they finally get together to compare their results. They decide to first look only at the

results for cases in which two of them had chosen to measure the y component of the spin, and

the other had measured the x component of the spin. In those cases, we can equivalently say

†This three-spin state was proposed by N. David Mermin Am. J. Phys. 58, 731, (1990), following a similar
four-spin state given by Daniel Greenberger, Michael Horne, and Anton Zeilinger, in Bell’s Theorem, Quantum

Theory, and Conceptions of the Universe (1989). Examples of this type are commonly called GHZ states.
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that collectively they had measured one of the observables Ωxyy or Ωyxy or Ωyyx, and because

Ωxyy |ψ〉 = Ωyxy |ψ〉 = Ωyyx |ψ〉 = |ψ〉 , (14.3.3)

they must find that the product of their measured results was definitely +1, every time. (Some-

times all three of them will have measured the result to be +1, and sometimes two of them will

have obtained −1 and the other will have obtained +1.) On the other hand, in the cases where

all three had chosen to measure the x component of the spin, we can equivalently say that their

choices amounted to measuring Ωxxx. Now, since

Ωxxx |ψ〉 = − |ψ〉 , (14.3.4)

it must be that the product of their three measurements is −1. (Sometimes they will all get the

result −1, and sometimes two will get +1 and the other will get −1.)
So far, we have analyzed the experiment assuming the predictions of quantum mechanics.

Now let us try to explain these results in terms of a general local hidden variables theory, in

which the measurement of σ1x is supposed to be determined to be some fA(x̂, λ) = ±1 and the

measurement of σ2y is fB(ŷ, λ) = ±1, etc. The hidden variable(s) λ are supposed to be different

for each repetition of the experiment, giving the illusion of randomness. Then, the observed

results for Ωxyy,Ωyxy,Ωyyx would imply that, respectively,

fA(x̂, λ) fB(ŷ, λ) fC(ŷ, λ) = 1, (14.3.5)

fA(ŷ, λ) fB(x̂, λ) fC(ŷ, λ) = 1, (14.3.6)

fA(ŷ, λ) fB(ŷ, λ) fC(x̂, λ) = 1, (14.3.7)

for every λ. Now, multiplying these three equations together, and using fA(ŷ, λ)
2 = fB(ŷ, λ)

2 =

fC(ŷ, λ)
2 = 1, we discover that

fA(x̂, λ) fB(x̂, λ) fC(x̂, λ) = 1. (14.3.8)

This tells us that in those cases where they had all measured the x component of spin, the

product of their measurements should have been +1, with 100% certainty, according to the

hidden variables theory. This is in direct contradiction to the quantum mechanics prediction.

To recapitulate: if we stipulate that the measurement of Ωxyy, Ωyxy, or Ωyyx always gives

+1, then, according to any local hidden variables theory, measurement of Ωxxx must always give

+1 as well. However, the prediction of quantum mechanics, for the given state |ψ〉, is that Ωxxx
always gives −1. The hidden variables and quantum mechanics hypotheses make contradictory

predictions. One of them must be wrong. The experimental verdict will be revealed at the end

of the next section.
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14.4 Aspect’s experiments and the demise of local hidden variables

In practice, the most decisive real-world experimental tests, many first conducted by Alain

Aspect and collaborators, involve polarizations of photons in entangled states, rather than spin-

1/2 systems. In a series of increasingly sensitive experiments, the Bell-type inequalities of local

hidden variables theories have been put to the test and found to be clearly violated, and in just

the way predicted by standard quantum mechanics. In this section, we will describe a Bell-

type inequality for hidden variables, and the corresponding quantum prediction, as tested by

A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982), referred to in the following

as the ADR experiment.

Consider observables A(â) and B(b̂) that can only take on the values ±1, and depend on

unit vectors â and b̂, and are associated with spatially separated detectors. These generalize

the spin-1/2 observables â · σ1 and b̂ · σ2 of Alice and Bob in the previous two sections. The

experiment can change â and b̂ independently at any time. According to the hidden variables

proposal, the measured values are supposed to be determined by some functions

A(â) = fA(â, λ) = ±1, (14.4.1)

B(b̂) = fB(b̂, λ) = ±1. (14.4.2)

The hidden variables λ are assumed to be local, implying that they are the same for A and

B, since they will have originated from a single location and event. Their probability density

distribution is some non-negative function µ(λ), just as in eqs. (14.2.1). The correlation between

measurement results C(â, b̂) is again given by the formula eq. (14.2.8). However, since the

observables are not necessarily components of angular momenta (and will not be in the ADR

experiment), we will not assume or use eq. (14.2.7). This means that the Bell inequality we are

about to derive applies more generally than the original one.

Consider the combination of correlations

C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′) =

∫
dλ µ(λ)

[
fA(â, λ)fB(b̂, λ)− fA(â, λ)fB(b̂′, λ)

+fA(â
′, λ)fB(b̂, λ) + fA(â

′, λ)fB(b̂
′, λ)

]
, (14.4.3)

for arbitrary unit vectors â and â′ associated with observable A, and b̂ and b̂′ associated with

observable B. Since each of the four terms is bounded by −1 and +1, in any conceivable theory

the left side must be in the range from −4 to 4, inclusive. However, in hidden variables theories, a

stronger statement holds. This is because a simple brute-force enumeration of all of the possible

results for the contents of the square brackets on the right side shows that it can only be 2 or

−2. (See Table 14.4.3.) Using eq. (14.2.1), this implies that the magnitude of the integral on the
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fA(â, λ) fA(â
′, λ) fB(b̂, λ) fB(b̂

′, λ) [result]
1 1 1 1 2
1 1 1 −1 2
1 1 −1 1 −2
1 −1 1 1 −2
1 1 −1 −1 −2
1 −1 1 −1 2
1 −1 −1 1 −2
1 −1 −1 −1 2

Table 14.4.3: Possible measurement results pertaining to the ADR experiment, as dictated by
eqs. (14.4.1)–(14.4.3), in a theory of local hidden variables. In addition to the eight possibilities
shown, there are eight more in which all measurements have the opposite signs. The [result] in
the last column is the quantity inside the square brackets on the right side of eq. (14.4.3). It is
2 or −2 in all cases.

right side of eq. (14.4.3) is bounded by 2, and so we have another Bell-type result, the CHSH

inequality, named for John Clauser, Michael Horne, Abner Shimony, and Richard Holt,

∣∣C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′)
∣∣ ≤ 2, (14.4.4)

which must be obeyed in any local hidden variables theory.

In the ADR experiment, an excited state of a calcium atom with total angular momentum

J = 0 decays to an intermediate state with J = 1 by emitting one photon in an electric dipole

transition, and then to another J = 0 state by emitting a second photon in another electric

dipole transition. The photons travel in opposite directions to distant detectors A and B, which

by a choice of coordinates are located on the positive and negative z axis, respectively. Both

photons are emitted with circular polarization, with angular momenta S1z = ±~ and S2z = ∓~,
in a total spin S = 0 state by angular momentum conservation. Thus, if one photon is in a

L-circular polarization state, then the other also has L-circular polarization, because both its

momentum direction and its spin are opposite to the first. Similarly, the two photons could

both have R-circular polarization.

However, the detectors A and B measure the linear polarizations of the photons, not circular

polarizations, as follows. A linear polarizer sends each photon into one photomultiplier if the

linear polarization is along a selected direction, and into a different one if the linear polarization

is in the orthogonal direction. (The allowed polarizations are always orthogonal to the photon

momentum direction.) If detector A measures the linear polarization along the chosen direction

â, then it records A(â) = +1, and if it instead detects the polarization perpendicular to â, then

it records A(â) = −1. Similarly, if B sees the linear polarization along the chosen direction b̂,

then it records B(b̂) = +1, and if it detects the polarization perpendicular to b̂, then it records
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B(b̂) = −1. The experiment is designed so that detector A can switch between two choices â and

â′, and detector B can switch between b̂ and b̂′. The switching is done randomly and quickly,

with times shorter than the light travel time between the two detectors. This avoids possible

biasing of the results by some hypothetical communication mechanism that might relate the

choices made by the detectors.

Let us now work out the quantum mechanics prediction for the correlations of measurements

of A(â) and B(b̂). As already noted, the photons are produced in a state where the circular

polarizations are the same, but could be either both L or both R. Since the atomic transitions

have equal amplitudes for these two possibilities due to spherical symmetry, we can write

|S = 0〉 =
1√
2

(
|L, L〉+ |R,R〉

)
. (14.4.5)

where the first and second ket labels refer to the photons that are seen by detectors A and

B, respectively. The single-photon orthobasis states obey 〈R|R〉 = 〈L|L〉 = 1 and 〈L|R〉 =
〈R|L〉 = 0. To make contact with the measurements made by the experiment, it is convenient

to rewrite the state using a linear polarization orthobasis. Our chosen coordinates imply that

the momenta of the photons that reach detectors A and B point in the directions k̂A = ẑ and

k̂B = −ẑ. Then the transformations from the circular polarization orthobases to the linear

polarization orthobases are

|L〉A =
1√
2

(
|x̂〉A − i |ŷ〉A

)
, (14.4.6)

|R〉A =
1√
2

(
|x̂〉A + i |ŷ〉A

)
, (14.4.7)

|L〉B =
1√
2

(
|x̂〉B + i |ŷ〉B

)
, (14.4.8)

|R〉B =
1√
2

(
|x̂〉B − i |ŷ〉B

)
, (14.4.9)

where |x̂〉 and |ŷ〉 are states with linear polarizations along the x and y axes respectively, and

〈x̂|x̂〉 = 〈ŷ|ŷ〉 = 1 and 〈x̂|ŷ〉 = 〈ŷ|x̂〉 = 0 in each case. Using eqs. (14.4.6)–(14.4.9) in eq. (14.4.5),

|S = 0〉 =
1√
2

(
|x̂, x̂〉+ |ŷ, ŷ〉

)
. (14.4.10)

Note that this state has even parity, because it is invariant under (x̂, ŷ)→ (−x̂,−ŷ), in agreement

with the fact that the transition involves two even-parity atomic states.

A state |n̂〉 describing a photon with linear polarization n̂ has, up to an arbitrary phase,

〈n̂|x̂〉 = n̂x, 〈n̂|ŷ〉 = n̂y. (14.4.11)

Therefore, if we use |â, b̂〉 to denote the state in which the linear polarizations are â and b̂, then

〈â, b̂|S = 0〉 =
1√
2

(
âxb̂x + ây b̂y

)
, (14.4.12)
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â

b̂

â′
b̂′

θ

θ

θ

Figure 14.4.1: The configuration for the unit vectors â,
â′, b̂, and b̂′ that provides the maximum violation of the
Bell-type inequality eq. (14.4.4) in the ADR photon po-
larization experiment, using the quantum mechanics pre-
diction of eq. (14.4.15). The three angles labeled θ are
all equal to π/8, so that θab = θa′b = θa′b′ = π/8, and
θab′ = 3π/8.

again up to an irrelevant phase. So, the probability for the linear polarizations to be observed

as A(â) = 1, B(b̂) = 1 is

1

2
(â · b̂)2 =

1

2
cos2 θab, (14.4.13)

where θab is the angle between â and b̂. The same result is obtained for the probability to observe

the polarizations both orthogonal to â and b̂, so that A(â) = −1, B(b̂) = −1. The probabilities

to observe A(â) = 1, B(b̂) = −1 and A(â) = −1, B(b̂) = 1 are both

1

2
|â× b̂|2 =

1

2
sin2 θab. (14.4.14)

Weighting each of the outcomes for A(â)B(b̂) by these respective probabilities, we arrive at

C(â, b̂) = 〈A(â)B(b̂)〉 =
1

2
cos2 θab +

1

2
cos2 θab −

1

2
sin2 θab −

1

2
sin2 θab

= cos(2θab). (14.4.15)

This is the quantum mechanics prediction for the correlation.

The local hidden variables Bell inequality, eq. (14.4.4), is incompatible with the quantum

mechanics result of eq. (14.4.15) for many choices of â, â′, b̂, and b̂′. (Due to the geometry of the

experiment and the transverse polarization of photons, these four unit vectors must all lie in the

xy plane.) The most extreme violation of the inequality, used in the actual ADR experiment,

occurs if one chooses the unit vectors as depicted in Figure 14.4.1, with

C(â, b̂) = C(â′, b̂) = C(â′, b̂′) = cos(π/4) =
1√
2
, (14.4.16)

C(â, b̂′) = cos(3π/4) = − 1√
2
. (14.4.17)

The (idealized) quantum mechanics prediction for that particular geometry is therefore

∣∣C(â, b̂)− C(â, b̂′) + C(â′, b̂) + C(â′, b̂′)
∣∣ = 2

√
2 ≈ 2.828. (14.4.18)

The expected quantum mechanics prediction for the ADR experiment as performed was slightly

lower at 2.70 ± 0.05, due to experimental non-ideal realities. This was in excellent agreement
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with the actual experimental result 2.697 ± 0.015 reported by ADR. This experimental result

is also completely incompatible with the upper bound of 2 from eq. (14.4.4) in all theories with

local hidden variables.

Further experiments have sharpened the result that local hidden variables cannot explain

observed phenomena, and nonlocal entanglement of states as predicted by quantum mechanics

is both consistent and supported by the experimental evidence. In particular, these experiments

address a perverse loophole in Bell’s original argument that we have not mentioned yet. It is

natural to expect that the detector settings made in each trial (in the Aspect experiment case,

the choice of â or â′, and the choice of b̂ or b̂′) should not be correlated in any special way with

the hidden variables λ of the decaying particle. But what if they are, because of some influence

in their shared past? This could mean that event statistics are somehow biased by the detector

setting choices in just such a very special way as to allow a hidden variables theory to not only

violate Bell-type inequalities but closely mimic the standard quantum mechanics predictions, a

possibility sometimes called superdeterminism. Experiments of various types have taken great

pains to choose the detector settings randomly in very different (and often quite convoluted)

ways to discount this already implausible conspiracy theory scenario. Furthermore, the strik-

ing perfect-correlation quantum mechanics prediction for a state of the GHZ type discussed in

section 14.3 (but with photon polarizations rather than spins) has been confirmed within experi-

mental uncertainties by J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter and A. Zeilinger,

“Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entan-

glement”, Nature 403, 515 (2000). The experimental conclusion is that “local realism” is not

real.

Since local hidden variables theories do not agree with experiment, one might entertain

the possibility of “nonlocal hidden variables”, which could allow interactions between space-like

separated points. This is hard to rule out in general because it could predict anything, including

causality violation; one might as well explain experiments by invoking sorcery. Furthermore,

nonlocal hidden variables abandon the original motivation of local realism, and in any case are

a cure for a disease that does not exist.

14.5 Exercises

Exercise 14.1. Consider the nonlocally entangled EPR state |S = 0〉 of section 14.1. Suppose

that Alice and Bob measure â · σ1 and b̂ · σ2, respectively. Let θ be the angle between â and

b̂. The four possible outcomes of their measurements are denoted (+1,+1), (+1,−1), (−1,+1),

and (−1,−1).
(a) Suppose Alice’s measurement was first. For the outcome â·σ1 = +1, the associated projection
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operator can be written as

Pâ·~σ1=+1 = |â, n̂〉 〈â, n̂| + |â,−n̂〉 〈â,−n̂| (14.5.1)

for any choice of unit vector n̂. It is convenient to choose n̂ = â, both in eq. (14.5.1) and in the

expression for the starting state |S = 0〉 in eq.(14.1.2). Apply Postulates 4 and 5 to show that

the probability of this outcome is 1/2, and that the normalized state after the measurement is

|â,−â〉. Now consider Bob’s subsequent measurement. The projection operator associated with

Bob’s outcome b̂ · σ2 = +1 is

Pb̂·~σ2=+1 = |n̂, b̂〉 〈n̂, b̂| + |−n̂, b̂〉 〈−n̂, b̂| , (14.5.2)

where again n̂ is any unit vector. It is again convenient to choose n̂ = â. Apply Postulates 4

and 5 again to show that the probability for the outcome (+1,+1) is P(+1,+1) = 1
2
sin2(θ/2),

and that the state after the measurements is |â, b̂〉.
(b) Repeat part (a), but this time take Bob’s measurement first. Show that the final state and

the probability for the outcome (+1,+1) are the same as found in part (a).

(c) Repeat parts (a) and (b), but this time assuming the measurements are simultaneous, using

a projection operator

Pâ·~σ1=+1, b̂·~σ2=+1 = |â, b̂〉 〈â, b̂| . (14.5.3)

Check that the results agree with those found in parts (a) and (b).

(d) Repeat the analysis of parts (a), (b), and (c) for each of the other three outcomes (+1,−1),
(−1,+1), and (−1,−1). As a check, your four probabilities should add to 1. As a further check,

use your four probabilities to obtain the expectation value 〈â · σ1 b̂ · σ2〉 given in eq. (14.1.6).

Exercise 14.2. Show that Mermin’s 3-spin GKZ-type state in eq. (14.3.1) satisfies the eigen-

value equations (14.3.3) and (14.3.4) for the operators Ωxyy, Ωyxy, Ωyyx and Ωxxx defined in

terms of the individual spin components in eq. (14.3.2).
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15 Stationary-state perturbation theory

15.1 Perturbative expansion for energy eigenstates

Given a Hamiltonian H that does not depend on time, we would like to solve the time-

independent Schrödinger equation,

H|ψn〉 = En|ψn〉, (15.1.1)

as an eigenvalue problem for the stationary states |ψn〉 and their energies En. Unfortunately,

in many cases this is too hard to do exactly. However, suppose that it is possible to split the

Hamiltonian into two parts,

H = H0 + λW, (15.1.2)

where H0 is a simpler Hamiltonian for which we already know how to solve the eigenvalue

problem, and λ is a small parameter, so that W can be treated as a perturbation. Then we

can hope to find an approximate solution for the full Hamiltonian H , by expanding in λ. We

will now work out how to do this. This is called time-independent perturbation theory or

stationary-state perturbation theory.

To begin, assume that we have found the complete set of eigenstates |n〉 and eigenvalues En
for H0, so that

H0|n〉 = En|n〉. (15.1.3)

In general, the states |n〉 for a given En might be degenerate, but for now we assume they

are not. For each unperturbed stationary state |n〉 and energy En, we want to solve for the

corresponding |ψn〉 and energy En. The connection between the unperturbed and perturbed

stationary-state solutions is assumed to be smoothly continuous in λ in order for the following

strategy to work. In particular, there should be a one-to-one correspondence between the known

|n〉 and the desired |ψn〉 for all λ, as long as it is not too large.

The perturbation theory strategy is to write the unknown full eigenstates and energy eigen-

values each as a power series in λ,

|ψn〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ λ3|ψ(3)

n 〉+ · · · , (15.1.4)

En = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n + · · · . (15.1.5)

Now, λ = 0 must recover the unperturbed solutions, so

|ψ(0)
n 〉 = |n〉, (15.1.6)

E(0)
n = En. (15.1.7)
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The unperturbed stationary states are a complete orthobasis, with

∑

n

|n〉〈n| = I, (15.1.8)

〈n′|n〉 = δnn′. (15.1.9)

This is always true, because H0 is assumed to be an observable.

We could also choose unit normalization for the eigenkets |ψn〉, but we won’t. It is much

more convenient to choose the following normalization condition for them instead:

〈n|ψn〉 = 1 (for each n), (15.1.10)

which will result in 〈ψn|ψn〉 6= 1. After obtaining the solutions for |ψn〉, we can re-normalize

them later, as a last step. Plugging eq. (15.1.4) into eq. (15.1.10), we have

〈n|
(
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
= 1. (15.1.11)

Since 〈n|n〉 = 1, in order to have a solution for general λ, it is necessary and sufficient that the

coefficient of λk in eq. (15.1.11) vanishes for each k ≥ 1, which implies

〈n|ψ(k)
n 〉 = 0 (for k = 1, 2, 3, . . .). (15.1.12)

Thus, the normalization choice eq. (15.1.10) ensures that all of the corrections to each state are

orthogonal to the corresponding unperturbed state. This is extremely important, and will be

used repeatedly in the following.

The time-independent Schrödinger equation (15.1.1) now reads

(H0 + λW )
(
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
=

(
En + λE(1)

n + λ2E(2)
n + · · ·

) (
|n〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

)
. (15.1.13)

Expanding both sides, and matching the coefficient of each power λk, we get

λ0 : H0|n〉 = En|n〉, (15.1.14)

λ1 : H0|ψ(1)
n 〉+W |n〉 = En|ψ(1)

n 〉+ E(1)
n |n〉, (15.1.15)

λ2 : H0|ψ(2)
n 〉+W |ψ(1)

n 〉 = En|ψ(2)
n 〉+ E(1)

n |ψ(1)
n 〉+ E(2)

n |n〉, (15.1.16)

and, in general,

λk : H0|ψ(k)
n 〉+W |ψ(k−1)

n 〉 = En|ψ(k)
n 〉+

k−1∑

j=1

E(j)
n |ψ(k−j)

n 〉+ E(k)
n |n〉. (15.1.17)

Equation (15.1.14) is, of course, just a repetition of eq. (15.1.3).
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Consider first the effect of the perturbation at order λ1. Taking the inner product of

eq. (15.1.15) with 〈n| gives

〈n|H0|ψ(1)
n 〉+ 〈n|W |n〉 = En〈n|ψ(1)

n 〉+ E(1)
n 〈n|n〉. (15.1.18)

Now using 〈n|H0 = En〈n| on the first term, we see that it and the first term on the right side

are equal, and both vanish due to eq. (15.1.12). Therefore, using the orthonormality condition

eq. (15.1.9) on the last term, eq. (15.1.18) simplifies to

E(1)
n = 〈n|W |n〉, (15.1.19)

so that

En = En + λ〈n|W |n〉+ · · · . (15.1.20)

To first order in the expansion in λ, the energy shift in the state |n〉 is simply the expectation

value of the Hamiltonian perturbation. This is the most important and commonly used result

from stationary-state perturbation theory.

To find the first-order correction to the energy eigenkets, we note that completeness of the

H0 eigenstates allows us to write

|ψ(1)
n 〉 =

∑

m6=n
|m〉〈m|ψ(1)

n 〉, (15.1.21)

where we have made good use of eq. (15.1.12) to dispense with the m = n term. We now need

to find the coefficients 〈m|ψ(1)
n 〉 for m 6= n. To do so, take the inner product of 〈m| acting on

eq. (15.1.15),

〈m|H0|ψ(1)
n 〉+ 〈m|W |n〉 = En〈m|ψ(1)

n 〉+ E(1)
n 〈m|n〉. (15.1.22)

The last term vanishes due to the orthonormality of the unperturbed stationary states eq. (15.1.9),

and the first term on the left can be simplified using 〈m|H0 = Em〈m|. Therefore,

(En − Em) 〈m|ψ(1)
n 〉 = 〈m|W |n〉 (m 6= n). (15.1.23)

Now, assuming that there are no degeneracies, so that Em 6= En for m 6= n, we can solve for

〈m|ψ(1)
n 〉, and eq. (15.1.21) becomes

|ψ(1)
n 〉 =

∑

m6=n
|m〉〈m|W |n〉En − Em

. (15.1.24)

We have thus obtained the perturbed energy eigenstates at first order in the expansion in λ,

|ψn〉 = |n〉+ λ
∑

m6=n
|m〉〈m|W |n〉En − Em

+ · · · . (15.1.25)
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We can now see why the normalization condition eq. (15.1.10) was so useful and important; it

gave us eq. (15.1.12), which in turn allowed us to exclude m = n from the sum, which avoided

a term with a disastrous vanishing denominator† in |ψ(1)
n 〉, and in similar expressions to follow.

Having solved the perturbation theory problem at order λ1, we can continue iteratively to

obtain the perturbed energies and their eigenstates at any desired order in λ. We will now

find the necessary recurrence relations in general. At order λk, the inner product of 〈n| with
eq. (15.1.17) is

〈n|H0|ψ(k)
n 〉+ 〈n|W |ψ(k−1)

n 〉 = En 〈n|ψ(k)
n 〉+

k−1∑

j=1

E(j)
n 〈n|ψ(k−j)

n 〉+ E(k)
n . (15.1.26)

The first term on the left vanishes because of eq. (15.1.12), after pulling out H0 = En. On the

right side of the equality, using eq. (15.1.12) again ensures that all of the terms vanish except

the last one, where we have used 〈n|n〉 = 1. So, we find the remarkable result

E(k)
n = 〈n|W |ψ(k−1)

n 〉, (15.1.27)

that the λk correction to each energy eigenvalue is always obtained in terms of the λk−1 correction

to the corresponding ket.

Also, using completeness, we can write

|ψ(k)
n 〉 =

∑

m6=n
|m〉〈m|ψ(k)

n 〉, (15.1.28)

where once again eq. (15.1.12) has been used to eliminate them = n term. To find the coefficients

〈m|ψ(k)
n 〉 for m 6= n, we take 〈m| acting on eq. (15.1.17), which gives

(En − Em) 〈m|ψ(k)
n 〉 = 〈m|W |ψ(k−1)

n 〉 −
k−1∑

j=1

E(j)
n 〈m|ψ(k−j)

n 〉, (15.1.29)

where 〈m|n〉 = 0 has been used to eliminate the term proportional to E
(k)
n . The right-hand

side only involves expressions from orders less than k. Therefore, eqs. (15.1.27), (15.1.28), and

(15.1.29) can be used to solve iteratively for E
(k)
n and then |ψ(k)

n 〉 at each successive level k.

Let us apply the preceding for k = 2. Evaluating eq. (15.1.27) using eq. (15.1.24) gives

E(2)
n =

∑

m6=n

|〈m|W |n〉|2
En − Em

. (15.1.30)

We have thus obtained the second-order corrections to the energies. Also, eq. (15.1.29) gives

〈m|ψ(2)
n 〉 =

1

En − Em

(
〈m|W |ψ(1)

n 〉 − E(1)
n 〈m|ψ(1)

n 〉
)
, (15.1.31)

†Of course, the denominator is still a disaster if the unperturbed states have energy degeneracies, so that
Em = En for some m 6= n. This issue is addressed by “degenerate perturbation theory”, in section 15.6.
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or, using eqs. (15.1.19) and (15.1.24),

〈m|ψ(2)
n 〉 =

∑

p 6=n

〈m|W |p〉〈p|W |n〉
(En − Ep)(En − Em)

− 〈m|W |n〉〈n|W |n〉
(En − Em)2

(15.1.32)

for n 6= m. Summarizing the results to order λ2:

En = En + λ〈n|W |n〉+ λ2
∑

m6=n

|〈m|W |n〉|2
En − Em

+ · · · , (15.1.33)

and

|ψn〉 = |n〉+ λ
∑

m6=n
|m〉〈m|W |n〉En − Em

+λ2
∑

m6=n
|m〉

(
∑

p 6=n

〈m|W |p〉〈p|W |n〉
(En − Ep)(En − Em)

− 〈m|W |n〉〈n|W |n〉
(En − Em)2

)
+ · · · . (15.1.34)

Don’t forget that, by design, this ket |ψn〉 does not have unit norm, but now it can be renor-

malized as |ψn〉/
√
〈ψn|ψn〉, if desired. In doing so, it often makes sense to expand in λ and drop

the terms of order λ3 or higher. From eq. (15.1.34), we find using the orthonormality of the

unperturbed kets that

〈ψn|ψn〉 = 1 + λ2
∑

m6=n

|〈m|W |n〉|2
(En − Em)2

+ · · · , (15.1.35)

so that, working consistently to second order in λ, the normalized eigenstate can be obtained

by just multiplying the first term |n〉 in eq. (15.1.34) by

1/
√
〈ψn|ψn〉 = 1− λ2

2

∑

m6=n

|〈m|W |n〉|2
(En − Em)2

+ · · · . (15.1.36)

It is also worth noting that, using eq. (15.1.27), the energy eigenvalue to all orders in λ is

En = En +
∞∑

k=1

λk〈n|W |ψ(k−1)
n 〉 = En + λ〈n|W

∞∑

k=1

λk−1|ψ(k−1)
n 〉, (15.1.37)

which can be rewritten

En = En + λ〈n|W |ψn〉. (15.1.38)

The all-orders energy En is therefore known exactly in terms of the all-orders state ket |ψn〉. Of

course, the latter may well be only known partially as a perturbative expansion.

So far, we have used the parameter λ as a way of keeping track of the order of perturbation

theory. In any given term, the power of λ is the same as the number of matrix elements of
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W , so we can simply absorb λ into the definition of W without losing any information. (The

convergence of perturbation theory still relies on the assumption that the properties ofW allow it

to be treated as a small correction. For example,W may contain one or more small dimensionless

parameters that effectively play the role of λ.) Equivalently, taking λ = 1, we have

En = En + E(1)
n + E(2)

n + E(3)
n + · · · , (15.1.39)

|ψn〉 = |n〉+ |ψ(1)
n 〉+ |ψ(2)

n 〉+ |ψ(3)
n 〉+ · · · . (15.1.40)

The preceding results can be expressed more compactly with the following simplifying notation,

Wmn = 〈m|W |n〉 , (15.1.41)

Enm = En − Em. (15.1.42)

Then, the energy eigenvalue corrections are summarized as

E(1)
n = Wnn, (15.1.43)

E(2)
n =

∑

m6=n

|Wmn|2
Enm

, (15.1.44)

E(3)
n =

∑

m6=n

∑

p 6=n

WnmWmpWpn

EnpEnm
−Wnn

∑

m6=n

|Wmn|2
E2nm

, (15.1.45)

etc., and for the (un-normalized) energy eigenstates,

|ψ(1)
n 〉 =

∑

m6=n
|m〉Wmn

Enm
, (15.1.46)

|ψ(2)
n 〉 =

∑

m6=n
|m〉

(
∑

p 6=n

WmpWpn

EnpEnm
− WnnWmn

E2nm

)
, (15.1.47)

etc. All higher order corrections likewise involve powers of matrix elements of W in the numera-

tors, and powers of unperturbed energy differences Enm’s in the denominators. This means that

the perturbative expansion, as we have constructed it here, may fail to converge for a state |n〉
if there is some other state |m〉 such that Enm is zero, or small compared to the matrix elements

of W . To treat such cases, we will need to use degenerate perturbation theory (section 15.6), or

almost-degenerate perturbation theory (section 15.8), respectively.

15.2 Simple examples of perturbation theory

Consider the one-dimensional harmonic oscillator with a linear perturbation:

H0 =
P 2

2m
+

1

2
mω2X2, W = −fX. (15.2.1)
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Here f is a constant force, which plays the role of the expansion parameter λ in the discussion

of section 15.1. Before solving this as a problem in perturbation theory for small f , we recall

that it is special in that the stationary states can actually be found exactly. As already noted

at the end of section 7.4, this is because the total Hamiltonian can be rewritten, by completing

the square, as

H =
P 2

2m
+

1

2
mω2

(
X − f

mω2

)2
− f 2

2mω2
, (15.2.2)

so that after a shift of variables X → X + f/mω2, the new H will have the same m, ω, and

energy eigenvalues, except that the latter will be offset by a constant −f 2/2mω2. Thus we have

En = ~ω(n+ 1/2)− f 2/2mω2, (15.2.3)

exactly. Furthermore, the corresponding energy eigenstates must be

|ψn〉 = T (f/mω2) |n〉 , (15.2.4)

where T (a) is the translation operator of eq. (5.2.1), and |n〉 are the stationary states of H0. We

can expand this exact result to linear order in f , using eq. (7.3.4) for the momentum operator

in terms of harmonic oscillator creation and annihilation operators, to get

T (f/mω2) = I +
f√

2m~ω3
(a† − a) +O(f 2), (15.2.5)

so that the eigenstates of H are

|ψn〉 = |n〉+ f√
2m~ω3

(√
n+ 1 |n+1〉 −

√
n |n−1〉

)
+O(f 2) (15.2.6)

in terms of the eigenstates of H0.

Now let us use solve the same problem using the technology of perturbation theory that we

have developed. The unperturbed energy eigenvalues and eigenstates are En = ~ω(n+1/2) and

|n〉. The general matrix elements needed for the perturbative expansion are

Wn′n = 〈n′|W |n〉 = −f 〈n′|X|n〉 = −f
√

~

2mω
〈n′|(a† + a)|n〉

= −f
√

~

2mω

(√
n + 1 δn′,n+1 +

√
n δn′,n−1

)
. (15.2.7)

Now, since this vanishes for n′ = n, the first-order correction to the energies are all 0. From

eqs. (15.1.43) and (15.1.44), we get, through second order,

E(1)
n = 0, (15.2.8)

E(2)
n =

∣∣−f
√

~(n+ 1)/2mω
∣∣2

En − En+1
+

∣∣−f
√

~n/2mω
∣∣2

En − En−1
, (15.2.9)
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where only two terms in the sum contributed. Now En − En+1 = −~ω and En − En−1 = ~ω, so

eq. (15.2.9) simplifies to

E(2)
n = −f 2/2mω2, (15.2.10)

and we have

En = ~ω(n+ 1/2)− f 2/2mω2 + · · · . (15.2.11)

This agrees with the exact result of eq. (15.2.3). In fact, this comparison shows that the possible

higher-order terms (indicated by the ellipsis here) must actually conspire to vanish. The first-

order perturbative correction to the stationary state |n〉, applying eq. (15.1.46), also only has

two terms in the sum,

|ψ(1)
n 〉 = −f

√
~

2mω

(√
n + 1 |n+1〉
−~ω +

√
n |n−1〉
~ω

)
(15.2.12)

=
f√

2m~ω3

(√
n+ 1 |n+1〉 −

√
n |n−1〉

)
. (15.2.13)

Again this agrees with the exact result in eq. (15.2.4), after the expansion for linear order in f

as in eq. (15.2.6).

As a second example, less amenable to an easy exact calculation, consider the potential

V (x) =






V0 (|x| < a/2),

0 (a/2 < |x| < L/2),

∞ (|x| > L/2),

(15.2.14)

as in Figure 15.2.1. This is an infinite square well with a perturbation bump in the middle, so

we define H = H0 +W where, using a hybrid operator/position-representation notation,

H0 =
P 2

2m
+

{
0 (|x| < L/2),

∞ (|x| > L/2),
(15.2.15)

V (x)

x

L/2−L/2 a/2−a/2

V0

Figure 15.2.1: An infinite one-dimensional
square well potential with width L, with a
symmetric bump of height V0 and width a
to be treated as a perturbation.
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and the perturbation Hamiltonian is the bump potential

W =

{
V0 (|x| < a/2),

0 (|x| > a/2).
(15.2.16)

The infinite square well problem defined by H0 was solved in section 6.4. The wavefunctions

〈x|n〉 = φn(x) for the unperturbed H0 eigenstates |n〉 were found to be

φn(x) =

√
2

L
cos(nπx/L) (n = 1, 3, 5, . . .), (15.2.17)

φn(x) =

√
2

L
sin(nπx/L) (n = 2, 4, 6, . . .), (15.2.18)

with, in both cases, energies

En =
~
2π2n2

2mL2
. (15.2.19)

Applying eq. (15.1.19) or its equivalent eq. (15.1.43), the leading correction to the energy eigen-

value for the state n is

E(1)
n = V0

∫ a/2

−a/2
dx |φn(x)|2. (15.2.20)

For the ground state with n = 1, the energy eigenvalue to first order in V0 evaluates to

E1 =
~
2π2

2mL2
+ V0

(
a

L
+

1

π
sin(πa/L)

)
. (15.2.21)

As a check, note that if a = L, then the perturbation simply adds V0 to the energy eigenvalue,

independent of L. This is just a constant shift in the Hamiltonian.

For the change in the ground-state wavefunction, we apply eq. (15.1.46). This requires us to

find Wk1/E1k, which for odd k 6= 1 is

〈k|W |1〉
E1 − Ek

=
2mL2

~2π2(1− k2)
2V0
L

∫ a/2

−a/2
dx cos

(
πkx

L

)
cos
(πx
L

)
(15.2.22)

=
4V0mL

2

~2π3(1− k2)

[
sin(πa(k − 1)/2L)

k − 1
+

sin(πa(k + 1)/2L)

k + 1

]
. (15.2.23)

For even k we have instead

〈k|W |1〉
E1 − Ek

= 0, (15.2.24)

because of

∫ a/2

−a/2
dx sin

(
πkx

L

)
cos
(πx
L

)
= 0. (15.2.25)
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This reflects (sorry not sorry about the pun) the parity selection rule of eq. (5.4.16). Since the

perturbation Hamiltonian has even parity πW = 1, and πk = (−1)k−1 for a state |k〉, the parity

selection rule tells us that 〈k|W |n〉 vanishes if k + n is odd, and in particular that 〈k|W |1〉 = 0

for even k. It follows that the corrected ground-state wavefunction is

ψ1(x) =

√
2

L
cos
(πx
L

)
+ ψ

(1)
1 (x), (15.2.26)

with

ψ
(1)
1 (x) =

∑

k=3,5,7,...

〈k|W |1〉
E1 − Ek

φk(x) (15.2.27)

The corrections to the energies and wavefunctions of the other stationary states are left as an

exercise.

For a third example, let us estimate the effect of the proton size on the energy levels of the

hydrogen atom. In doing so, we will treat the proton (not completely realistically) as a ball of

uniform charge density with radius ap. For all r ≥ ap, the electric field is the same as if the

proton were a point charge. For r ≤ ap, an elementary application of Gauss’ Law in classical

electrostatics shows that the electric field rises linearly with r, so that the potential energy of

the electron is

V (r) =





−e2
(

3

2ap
− r2

2a3p

)
, (r ≤ ap),

−e
2

r
, (r ≥ ap),

(15.2.28)

as shown in Figure 15.2.2. Therefore, compared to our treatment in section 11.1, the perturba-

tion to the Hamiltonian is

W =





e2
(
1

r
− 3

2ap
+

r2

2a3p

)
, (r ≤ ap),

0, (r ≥ ap),

(15.2.29)

V (r)

r

−e2/ap

−3e2/2ap

ap

Figure 15.2.2: The solid line shows the shape of
the potential energy for the electron in the hydro-
gen atom, with the proton modeled as a sphere of
radius ap with uniform charge density. The dashed
line shows the potential with the proton modeled
as a point, as in section 11.1.
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in the position representation. So, the first-order correction to the ground state energy is

E
(1)
1,0,0 = 〈1, 0, 0|W |1, 0, 0〉 (15.2.30)

= 4π

∫ ap

0

dr r2
(

1√
πa30

e−r/a0
)2

e2
(
1

r
− 3

2ap
+

r2

2a3p

)
, (15.2.31)

where the 4π factor comes from the angular integration. Within the radial integral, e−2r/a0 ≈ 1

is an excellent approximation, since ap ≪ a0. The integration then yields

E
(1)
1,0,0 =

2e2a2p
5a30

=
4a2p
5a20

Rydberg ≈ 2.1× 10−10 Rydberg, (15.2.32)

where we have used ap ≈ 8.5× 10−16 meters in the last approximation.

In the preceding, we used the small size of the proton compared to the Bohr radius to

effectively replace the radial wavefunction by its (very nearly constant) value at r = 0, with

|R1,0(r)|2 → |R1,0(0)|2. For a general n, l,m state, the same procedure will give

E
(1)
n,l,m = |Rn,l(0)|2

∫
dΩ |Y m

l (θ, φ)|2
∫ ap

0

dr r2 e2
(
1

r
− 3

2ap
+

r2

2a3p

)
. (15.2.33)

Now,
∫
dΩ|Y m

l |2 = 1, and Rn,l(0) = 0 unless l = 0, which also implies m = 0. From

eq. (11.1.41), we know that the hydrogen atom radial wavefunction evaluated at r = 0 is

Rn,l(0) = δl02/(na0)
3/2. So, we find

E
(1)
n,l,m = δl0 δm0

4a2p
5a20n

3
Rydberg. (15.2.34)

Thus the finite proton radius only affects the energies of the states with no angular momentum,

and with decreasing importance for larger principal quantum number n.

The preceding calculation is just an estimate, as the proton is certainly not a ball of uniform

charge density. A more sophisticated calculation can be used to define the effective charge

radius of the proton, which can then be compared to various experimental determinations of

the same quantity. This has recently been the subject of some interest and controversy, because

experimental determinations of the proton charge radius inferred from electron scattering seem

to be slightly larger than those obtained from measuring the energy levels of muonic hydrogen,

in which a muon replaces the electron. The muon is used because its much larger mass gives

it a smaller Bohr radius than the electron, leading to a larger effect in eq. (15.2.34) by a factor

m2
µ/m

2
e ≈ 42753; the heavier muon is much more likely to be found inside the proton than an

electron, and therefore provides a better probe.
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15.3 Helium atom ground state from first-order perturbation theory

In this section, we consider the helium atom consisting of two electrons each with mass me and

charge −e, and a heavy nucleus with charge Ze = +2e at the origin, as pictured in Figure 15.3.1.

+2e

−e −e

r1
r2

r1 − r2
Figure 15.3.1: The helium atom consists of
two electrons with massme and charge−e at
positions r1 and r2, and a very heavy nucleus
of charge +2e at the origin.

The Hamiltonian is†

H = H1 +H2 +H12, (15.3.1)

in which, in the position representation,

H1 = − ~
2

2me

∇2
1 −

Ze2

r1
, H2 = − ~

2

2me

∇2
2 −

Ze2

r2
, (15.3.2)

H12 =
e2

|r1 − r2|
, (15.3.3)

where Z = 2, and r1 and r2 describe the position coordinates of the two electrons, and ∇2
1 and

∇2
2 are the corresponding Laplacians. If the electrons did not interact with each other, then

H1 and H2 would just be the Hamiltonians for hydrogen-like atoms with Z = 2. The electron-

electron interaction term H12 is the source of complications, and in this section we treat it as

the perturbation W , although it is not particularly small.

The lowest energy eigenstate of the unperturbed Hamiltonian H0 = H1 +H2 is simply the

tensor product of two hydrogen-like atomic ground states with (n, l,m) = (1, 0, 0),

|(1, 0, 0), (1, 0, 0)〉 = |1, 0, 0〉1 ⊗ |1, 0, 0〉2. (15.3.4)

The position wavefunction for the unperturbed state is

ψ(r1, r2) = 〈r1|1, 0, 0〉1 〈r2|1, 0, 0〉2 = ψ1,0,0(r1)ψ1,0,0(r2), (15.3.5)

where, as we found in eq. (11.1.42),

ψ1,0,0(r) =

√
Z3

πa30
e−Zr/a0. (15.3.6)

†For simplicity, we ignore small effects due to spin interactions and the finite mass of the nucleus. Also, we
ignore the fact that the electrons are identical; this issue turns out to not affect the following treatment of the
ground state because the electron spins will be oriented oppositely. It does affect the excited states of helium,
as we will discuss later, in section 18.3.
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The corresponding unperturbed total energy eigenvalue for H1 +H2 is, including the contribu-

tions of both electrons,

E0 = 2

(
−Z

2e2

2a0

)
= −8Rydberg = −108.85 eV. (15.3.7)

This turns out to be about 30% lower than the experimental value (the minimum energy needed

to completely ionize the helium atom). The reason is that the electron-electron Coulomb repul-

sive potential H12 raises the energy, by an amount that we now estimate.

At first order in perturbation theory, the ground-state energy correction is

E(1) = 〈(1, 0, 0), (1, 0, 0)|H12|(1, 0, 0), (1, 0, 0)〉 (15.3.8)

=

∫
d3r1

∫
d3r2 |ψ1,0,0(r1)|2|ψ1,0,0(r2)|2

e2

|r1 − r2|
. (15.3.9)

We therefore have

E(1) = e2
(
Z3

πa30

)2

I, (15.3.10)

with

I =

∫ ∞

0

dr1 r
2
1

∫
dΩ1

∫ ∞

0

dr2 r
2
2

∫
dΩ2 e

−2Zr1/a0e−2Zr2/a0
1

|r1 − r2|
. (15.3.11)

Our challenge now is to evaluate the integral I. To do so, recall the identity [rewritten from

eq. (8.6.82)]

1

|r1 − r2|
=

∞∑

l=0

4π

2l + 1

rlmin

rl+1
max

l∑

m=−l
Y m
l (θ2, φ2)

∗ Y m
l (θ1, φ1), (15.3.12)

in which

rmax = max(r1, r2), rmin = min(r1, r2). (15.3.13)

Using eq. (15.3.12) in the integral I, we therefore have
∫
dΩ1 Y

m
l (θ1, φ1) = 0 unless l = m = 0,

and similarly for the dΩ2 integral. Since only that one term survives, we can replace

1

|r1 − r2|
→ 4π

rmax
Y 0
0 (θ2, φ2)

∗ Y 0
0 (θ1, φ1)δl0 = δl0/rmax, (15.3.14)

eliminating all of the angular dependences of the integrand. So, using
∫
dΩ1 =

∫
dΩ2 = 4π,

I = (4π)2
∫ ∞

0

dr1 r
2
1

∫ ∞

0

dr2 r
2
2 e
−2Zr1/a0e−2Zr2/a0

1

rmax

. (15.3.15)

Separating the dr2 integral into two parts, according to whether r2 < r1 or r2 > r1, now gives

I = (4π)2
∫ ∞

0

dr1

(∫ r1

0

dr2 r1r
2
2 +

∫ ∞

r1

dr2 r
2
1r2

)
e−2Zr1/a0e−2Zr2/a0 , (15.3.16)
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which can be done straightforwardly. The two parts turn out to contribute equally to the total,

I =
5π2a50
8Z5

. (15.3.17)

Putting this into eq. (15.3.10), the first-order correction to the ground-state energy is

E(1) =
5Ze2

8a0
. (15.3.18)

Combining this with eq. (15.3.7), and plugging in Z = 2, the total ground-state energy for

helium estimated from first-order perturbation theory is

E = E0 + E(1) = (−8 + 5/2) Rydberg = −74.83 eV. (15.3.19)

Note that the first-order correction is not suppressed by an adjustable small parameter compared

to the unperturbed energy; it is 5/16 as large in magnitude. This might cause worry that perhaps

the perturbative expansion is not converging fast enough to be trusted. Nevertheless, our final

result differs by only about 5.3% from the experimental result of −79.01 eV. In section 16.4, we

will use a non-perturbative technique, the variational method, to do even better.

15.4 Brillouin–Wigner perturbation theory

The standard organization of stationary-state perturbation theory summarized in eqs. (15.1.39)–

(15.1.47) has an alternative, called Brillouin–Wigner perturbation theory after Léon Bril-

louin and Wigner, which sometimes has better numerical convergence behavior. To derive it,

we start with the eigenvalue problem in the form

(H0 +W −En) |ψn〉 = 0, (15.4.1)

using the same notations as in section 15.1, but with λ = 1 from the start. Now, act with the

unperturbed bra 〈m|, then use 〈m|H0 = 〈m|Em, and rearrange the result to get

〈m|ψn〉 =
〈m|W |ψn〉
En − Em

. (15.4.2)

Note the simultaneous presence in the denominator of the full energy eigenvalue En and the

unperturbed energy Em. From completeness of the unperturbed states |m〉, we also have

|ψn〉 =
∑

m

|m〉〈m|ψn〉 = |n〉〈n|ψn〉+
∑

m6=n
|m〉〈m|ψn〉 . (15.4.3)

As in section 15.1.47, we choose the normalization condition 〈n|ψn〉 = 1, and use eq. (15.4.2) in

(15.4.3) to obtain

|ψn〉 = |n〉+
∑

m6=n
|m〉 〈m|W |ψn〉

En − Em
. (15.4.4)
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This has a straightforward iterative solution,

|ψn〉 = |n〉+
∑

m6=n
|m〉 1

En − Em
〈m|W |n〉

+
∑

m6=n

∑

p 6=n
|m〉 1

En − Em
〈m|W |p〉 1

En − Ep
〈p|W |n〉+ · · · , (15.4.5)

as can be checked by plugging it in. To find an equation for the corresponding energy eigenvalues,

we now use eq. (15.1.38) to obtain

En = En + 〈n|W |n〉+
∑

m6=n
〈n|W |m〉 1

En − Em
〈m|W |n〉

+
∑

m6=n

∑

p 6=n
〈n|W |m〉 1

En − Em
〈m|W |p〉 1

En − Ep
〈p|W |n〉+ · · · . (15.4.6)

Equations (15.4.5) and (15.4.6) summarize Brillouin–Wigner perturbation theory. They have a

simpler structure than the standard perturbation theory of section 15.1, but have the disadvan-

tage that they are not yet a complete solution, since the full energy En appears on both sides

of eq. (15.4.6).

At first order in Brillouin–Wigner perturbation theory, only the first two terms on the right-

hand side of eq. (15.4.6) are included, and the solution for En is the same as in standard

perturbation theory. At second order or beyond, the equation for En is a non-linear algebraic

equation, and often can only be obtained numerically as an approximation. However, this can

be a good thing, because the results so obtained are often more accurate than those found from

the standard perturbation theory of section 15.1 at the same order. One way of thinking about

this is that, at a given order in perturbation theory, the En appearing in the denominators of

Brillouin–Wigner perturbation theory contain more complete information than the En appearing
in the denominators of standard perturbation theory. Once En has been obtained by solving

eq.(15.4.6) truncated at a specific order in the expansion, it can be plugged into eq. (15.4.5) to

obtain the corresponding energy eigenstate.

15.5 Dalgarno–Lewis method for simplifying perturbation theory

The formulas of stationary-state perturbation theory found in section 15.1 for the state, and for

the energy beyond first order, contain sums over all of the unperturbed states. For example,

the second-order correction to the energy contains the sum

E(2)
n =

∑

m6=n

|〈m|W |n〉|2
En − Em

(15.5.1)

While this is a well-defined formal solution, in practice it is sometimes hard to compute such

sums directly. It is especially difficult if some of the unperturbed states form a continuum, in
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which case the corresponding part of the summation will actually be an integration. Fortunately,

there is an elegant method, due to Alexander Dalgarno and John T. Lewis, that allows these

sums to be recast into a form that can often be solved exactly. Even when an exact solution

cannot be obtained, the Dalgarno–Lewis method still allows for a systematic approximation,

often by numerically solving a differential equation.

Suppose that, given |n〉, one can find an operator A that satisfies

[A,H0] |n〉 = (W − c) |n〉 , (15.5.2)

where H0 and W are the unperturbed and perturbation parts of the Hamiltonian, respectively,

and c is a constant. Actually, c is not arbitrary, because after acting on both sides of eq. (15.5.2)

with 〈n|, the left side vanishes, which implies c = 〈n|W |n〉 = E
(1)
n . Also, since only the

commutator of A appears in eq. (15.5.2), one can always add a constant multiple of the identity

operator to it, to ensure that

〈n|A|n〉 = 0. (15.5.3)

Note that the required operator A is different for each |n〉. Now, for every other unperturbed

orthobasis state |m〉, eq. (15.5.2) implies 〈m|W |n〉 = 〈m|[A,H0]|n〉+c 〈m|n〉, or, since orthonor-
mality of the H0 eigenstates eliminates the c term,

〈m|W |n〉 = (En − Em) 〈m|A|n〉 . (15.5.4)

The Dalgarno–Lewis idea is to use eq. (15.5.4) to cancel the energy denominators in the results

of perturbation theory, by expressing matrix elements of W in terms of matrix elements of A.

So, if we can find A, the expressions in perturbation theory can then be simplified using the

completeness relation for the unperturbed states.

For example, the first-order correction to the state is, from eq. (15.1.24),

|ψ(1)
n 〉 =

∑

m6=n
|m〉 〈m|W |n〉En − Em

=
∑

m6=n
|m〉〈m|A|n〉 =

∑

m

|m〉 〈m|A|n〉 . (15.5.5)

The last equality relies on the fact that the additional term with m = n vanishes, because

of eq. (15.5.3). Now, from the completeness relation
∑

m |m〉〈m| = I, we conclude that the

first-order correction to the state |n〉 is simply

|ψ(1)
n 〉 = A |n〉 . (15.5.6)

In words, the desired operator A turns the unperturbed state into the first-order correction to

the state. Similarly, the second-order correction to the energy is, from eq. (15.5.1),

E(2)
n =

∑

m6=n
〈n|W |m〉 〈m|A|n〉 =

∑

m

〈n|W |m〉 〈m|A|n〉 = 〈n|WA|n〉 , (15.5.7)
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where we have again used eq. (15.5.3) to account for the vanishing of the additional term with

m = n, and then used completeness. As a check, this can be rewritten as

E(2)
n = 〈n|W |ψ(1)

n 〉 , (15.5.8)

in accord with eq. (15.1.27) with k = 2. In a similar way, it is not too hard to show that even

the third-order correction to the energy can be written as

E(3)
n = 〈ψ(1)

n |W |ψ(1)
n 〉 − 〈ψ(1)

n |ψ(1)
n 〉〈n|W |n〉 , (15.5.9)

without energy-difference denominators.

Of course, this wonderful simplification does not come for free. To make use of the Dalgarno–

Lewis method, one must either find the operator A, or equivalently (and more directly) solve

for the ket A|n〉 = |ψ(1)
n 〉. Rewriting eq. (15.5.2), the key equation to be solved is

(En −H0) |ψ(1)
n 〉 = W |n〉 − |n〉 〈n|W |n〉 . (15.5.10)

In favorable cases, this can be solved exactly for |ψ(1)
n 〉 or the corresponding wavefunction; we

will see an example of this in section 15.7 when we treat the ground state of the hydrogen

atom in an electric field (the quadratic Stark effect). Even when this is not feasible, it is often

possible to cast eq. (15.5.10) in the position representation as a differential equation that can

be solved approximately, perhaps numerically. This is often faster and simpler than trying to

do the sums over all other states |m〉 with energy denominators En − Em, especially if there are

an infinite number of such states. The great advantage of the Dalgarno–Lewis method is that

eq. (15.5.10) only involves the eigenvalues and matrix elements of the unperturbed state |n〉 that
one is considering. Once it has been solved to find |ψ(1)

n 〉, the second and third-order corrections

to the energy follow immediately from eqs. (15.5.8) and (15.5.9), respectively.

15.6 Degenerate perturbation theory

As noted in section 15.1, a special problem arises when unperturbed states |n〉 have degen-

eracies, because then the energy differences Enm = En − Em appearing in the denominators of

eqs. (15.1.44)–(15.1.47) will vanish. In this section, we show how to deal with this difficulty.

The bad-denominator problem is related to the fact that perturbation theory requires a

smooth one-to-one correspondence between the unperturbed states and the perturbed states

as the expansion parameter λ varies. Specifically, this is what allowed us to demand that the

unperturbed state |n〉 and the corrections to it |ψ(k)
n 〉 are orthogonal, as we did in eq. (15.1.12).

This in turn was used to exclude the terms in the sums that would otherwise have had vanishing

energy difference denominators. In the degenerate case, the essential problem is that for a given
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Figure 15.6.1: Perturbed energies as a function of the expansion parameter λ, for non-
degenerate (left) and degenerate (right) perturbation theory. In degenerate perturbation
theory, for each of the perturbed states |ψ1〉, |ψ2〉, |ψ3〉 there is an ambiguity in choosing the
corresponding unperturbed states |1〉, |2〉, |3〉, since arbitrary linear combinations of them
have the same H0 eigenvalue E1= E2 = E3. This ambiguity is resolved (at least in part) by
choosing the unperturbed states to diagonalize the perturbation HamiltonianW within each
subspace of degenerate En.

perturbed state |ψn〉 there is an ambiguity in deciding which of the degenerate unperturbed

states |n〉 corresponds to it and therefore can be excluded from the sums, since arbitrary linear

combinations of them have the same H0 eigenvalue En. This is illustrated in Figure 15.6.1, which

compares the situations for non-degenerate and degenerate unperturbed states.

To resolve the problem, we need to answer the following question: if a group of unperturbed

states {|n〉} have the same unperturbed energy En, then which linear combinations of them are

the |ψ(0)
n 〉? The problem of avoiding bad (vanishing) denominators in perturbation theory is the

same as the problem of choosing the correct linear combinations of unperturbed energy states.

Consider what happens when we return to eq. (15.1.23), rewritten here for convenience,

(En − Em) 〈m|ψ(1)
n 〉 = 〈m|W |n〉 (m 6= n), (15.6.1)

but now allowing for the possibility that some unperturbed states have degenerate unperturbed

energies. Whenever Em 6= En, we can still solve

〈m|ψ(1)
n 〉 =

Wmn

Enm
, (Em 6= En). (15.6.2)

However, for Em = En, we instead learn only that 〈m|W |n〉 must vanish for m 6= n, in order to

have a consistent perturbative solution. It is therefore required that the matrix elements of W

form a diagonal matrix when restricted to each subspace with degenerate unperturbed energies,

〈m|W |n〉 = δnmWnn (for Em = En). (15.6.3)
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Fortunately, this is always possible to arrange by a suitable choice of the orthobasis of stationary

states |n〉. This is assured by Theorem 2.6.6, since W is Hermitian.

Equation 15.6.3 is a necessary (but not always sufficient, as we will see) requirement on the

choice of unperturbed states. The point is that by choosing a “good” basis of unperturbed

states in this way, the perturbation Hamiltonian matrix Wmn does not connect pairs of distinct

unperturbed states for which the energy-difference denominators would vanish.

In practice, one must solve the eigenvalue problem for gEn × gEn matrices, formed by the

matrix elements of the operator W restricted to each gEn-dimensional degenerate subspace.

Once we choose the states |n〉 as the resulting orthonormal eigenvectors, then it follows from

eq. (15.1.19) that the eigenvalues are the corresponding first-order corrections to the energies,

E(1)
n =Wnn, (15.6.4)

the same result as for the non-degenerate case. Note that it is only necessary to diagonalize W

within the subspaces for degenerate En. In particular, for each unperturbed state |n〉 that is

non-degenerate, there is nothing to do; W restricted to that subspace is simply a 1× 1 matrix,

so |n〉 is automatically an eigenvector, with eigenvalue Wnn = 〈n|W |n〉.
Often, only the first-order energy corrections are required; then eq. (15.6.4) is sufficient

provided that the unperturbed energy basis has been chosen to satisfy eq. (15.6.3), and in that

case you can skip the complications of the next few paragraphs, from here to eq. (15.6.15).

If one needs the first-order corrections to the state ket |ψ(1)
n 〉 and the second-order corrections

to the energies E
(2)
n , then one must confront the fact that eq. (15.6.1) provides no information

about 〈m|ψ(1)
n 〉 for Em = En. By completeness,

|ψ(1)
n 〉 =

∑′

m

|m〉Wmn

Enm
+
∑′′

m

|m〉 〈m|ψ(1)
n 〉 , (15.6.5)

where we have introduced the notations, always for fixed n = the state being perturbed,

∑′

m

= sum over all m such that Em 6= En, (15.6.6)

∑′′

m

= sum over all m such that m 6= n and Em = En, (15.6.7)

and used eq. (15.6.2) in the first summation. To solve for the remaining matrix elements 〈m|ψ(1)
n 〉

appearing in the last summation, one must use the equations governing the perturbative expan-

sion at order λ2, and possibly beyond.

To see how this goes, consider eq. (15.1.29) with k = 2 and Em = En, which yields

E(1)
n 〈m|ψ(1)

n 〉 = 〈m|W |ψ(1)
n 〉 , (for m 6= n and Em = En). (15.6.8)
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After using E
(1)
n = Wnn, and eq. (15.6.5) with m replaced by p, and defining an operator W (2)

with matrix elements

W (2)
mn ≡

∑′

p

WmpWpn

Enp
, (15.6.9)

eq. (15.6.8) becomes

Wnn 〈m|ψ(1)
n 〉 = W (2)

mn +
∑′′

p

Wmp 〈p|ψ(1)
n 〉 , (for m 6= n and Em = En). (15.6.10)

In the last summation, we know that Wmp = δmpWmm, because of eq. (15.6.3). Therefore, only

the single term with p = m in that sum survives, and eq. (15.6.10) reduces to

(Wnn −Wmm) 〈m|ψ(1)
n 〉 = W (2)

mn, (for m 6= n and Em = En). (15.6.11)

Now, for states that are non-degenerate at first order, so that Wmm 6= Wnn, we obtain

〈m|ψ(1)
n 〉 =

W
(2)
mn

Wnn −Wmm

(for Em = En and Wmm 6= Wnn), (15.6.12)

but in the opposite case we learn only that

W (2)
mn = 0, (for m 6= n and Em = En and Wmm =Wnn). (15.6.13)

This is a second condition that must be imposed on the choice of the unperturbed states, in

addition to eq. (15.6.3).

In words, we have found that we must choose the unperturbed kets |n〉 so that on sub-

spaces where both H0 and W are proportional to the identity, the matrix W (2) is also diagonal.

Fortunately, this is always possible, because W (2) is a Hermitian matrix when restricted† to

this subspace. Now, the second-order corrections to the energy eigenvalues are obtained from

eq. (15.1.27), and are simply

E(2)
n = W (2)

nn =
∑′

m

|Wmn|2
Enm

, (15.6.14)

where it is crucial that the unperturbed states satisfy the conditions given in both eqs. (15.6.3)

and (15.6.13), and there is no vanishing denominator problem because of the fact that the sum

excludes all terms with Em = En.
There may still be some ambiguity in the matrix elements 〈m|ψ(1)

n 〉, if for some m 6= n one

has Em = En and Wmm = Wnn and W
(2)
mm = W

(2)
nn , so that the degeneracy is not completely lifted

†The operatorW (2) is not Hermitian on the whole state space, because n and m are not treated symmetrically
in the definition eq. (15.6.9). However, it is Hermitian within the subspace of matrix elements with Em = En,
for which W

(2)∗
mn =W

(2)
nm.
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even at second order. In that case, one must use the information from third order, that is, k = 3

in eq. (15.1.17). One then finds a third condition on the choice of unperturbed states |n〉, that
the operator W (3) with matrix elements

W (3)
mn ≡

∑′

q

∑′

p

WmqWqpWpn

EnqEnp
−Wnn

∑′

p

WmpWpn

E2np
(15.6.15)

is diagonal on each subspace of states where the operators H0, W , and W (2) are proportional to

the identity operator. If the degeneracy of unperturbed states is still not removed at third order

(that is, W (3) has degenerate eigenvalues when restricted to that subspace of states), one must

continue to k = 4 in eq. (15.1.17), etc. These considerations from k ≥ 3 affect the determination

of |ψ(1)
n 〉 (through 〈m|ψ(1)

n 〉) even though they seemingly involve higher orders in perturbation

theory, but they do not affect the determination of E
(2)
n given by eq. (15.6.14).

Practical applications of degenerate perturbation theory often only need E
(1)
n as given in

eq. (15.6.4), and therefore one only needs to worry about choosing the unperturbed states to

satisfy eq. (15.6.3). Examples will appear in sections 15.7 and 15.8 and in Chapter 17.

To conclude this section, we exploit first-order perturbation theory to infer the exact matrix

element 〈1/R2〉 for the states |n, l,m〉 of the hydrogen atom, fulfilling a promise made in section

11.1. Consider the Hamiltonian Hλ = H0+λ/R
2, where H0 = P 2/2me−e2/R is the unperturbed

hydrogen atom Hamiltonian, and λ is a small parameter. In this case, the operator 1/R2

commutes with the angular momentum operators L2 and Lz, so it is diagonal in the orthobasis

of states |n, l,m〉 for fixed n and different l, m. Therefore |n, l,m〉 is a good basis for degenerate

first-order perturbation theory in λ, and the first-order correction to the energy eigenvalue for

each state is simply proportional to the expectation value that we seek,

E
(1)
n,l,m = λ〈1/R2〉n,l,m. (15.6.16)

Meanwhile, the exact energy eigenvalues Eλ,k,l,m of Hλ are the solutions to the radial wavefunc-

tion eigenvalue problem
[
− ~

2

2me

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
+
λ

r2

]
Rk,l = Eλ,k,l,mRk,l, (15.6.17)

where the integer k is the radial quantum number (the number of zeros of Rk,l(r) for 0 < r <∞).

Now we can define a quantity l′ by

~
2

2me
l′(l′ + 1) =

~
2

2me
l(l + 1) + λ, (15.6.18)

or, equivalently,

l′ =
√

(l + 1/2)2 + 2meλ/~2 − 1/2. (15.6.19)
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Note that l′ need not be an integer, unlike l. Nevertheless, the analysis of the radial wavefunction

eigenvalue problem that led to eq. (11.1.16) goes through, but with l replaced everywhere by l′,

and n replaced by k+ l′+1. In particular, it is crucial that k is a non-negative integer, in order

that the wavefunction is normalizable. The result is

Eλ,k,l,m = − e2

2a0(k + l′ + 1)2
. (15.6.20)

Expanding in small λ, for fixed integers k and l,

Eλ = Eλ=0 + λ
dEλ
dλ

∣∣∣∣
λ=0

+ · · · , (15.6.21)

and by comparing to eq. (15.6.16), we find

〈1/R2〉n,l,m =
d

dλ

( −e2
2a0(k + l′ + 1)2

) ∣∣∣∣
λ=0

=
e2

a0(k + l + 1)3
dl′

dλ

∣∣∣∣
λ=0

. (15.6.22)

From eq. (15.6.19), we have

dl′

dλ

∣∣∣∣
λ=0

=
me

~2(l + 1/2)
. (15.6.23)

Plugging eq. (15.6.23) into eq. (15.6.22), and using n = k + l + 1, we obtain

〈1/R2〉n,l,m =
mee

2

~2a0n3(l + 1/2)
=

1

a20n
3(l + 1/2)

. (15.6.24)

Equation (11.1.67) follows by restoring the general nuclear charge Z, using the rule a0 → a0/Z.

The same sort of perturbation theory trick can be used to check the result we found for

〈1/R〉n,l,m in eq. (11.1.64). Consider HZ = P 2/2me − Ze2/R, the Hamiltonian for general Z.

We rewrite this as HZ = H0 + W , where H0 = P 2/2me − e2/R is the Z = 1 Hamiltonian,

and W = (1 − Z)e2/R is treated as a perturbation by taking Z to be close to 1. Then, for an

eigenstate of H0 with principal quantum number n, the first-order energy correction is

E(1)
n = (1− Z)e2〈1/R〉n,l,m, (15.6.25)

which is proportional to the expectation value that we seek. (Again we are making use of the

fact that the basis |n, l,m〉 is a good one for first-order degenerate perturbation theory, in the

sense that the perturbation 1/R is diagonal for fixed n and different l, m.) On the other hand,

the exact energies were found in eq. (11.1.16) to be

En = − Z2e2

2a0n2
= = − e2

2a0n2

[
1 + 2(Z − 1) + (Z − 1)2

]
. (15.6.26)

Comparing the terms linear in small Z − 1 in eqs. (15.6.25) and (15.6.26), we must have

〈1/R〉n,l,m =
1

a0n2
. (15.6.27)

This confirms eq. (11.1.64) with Z = 1.
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15.7 Hydrogen atom in electric field (Stark effect)

Consider a hydrogen atom in a static external electric field E = Eẑ. The corresponding electro-

static potential seen by the electron is Φ(r) = −Ez, giving a potential energy contribution to

the Hamiltonian,

W = −eΦ = eEZ, (15.7.1)

which we will treat as a perturbation. The calculation of shifts in the atomic energy levels,

known as the Stark effect, provides a nice example of both non-degenerate second-order and

degenerate first-order perturbation theory.

For the ground state |n, l,m〉 = |1, 0, 0〉, the first-order correction to the energy vanishes,

E
(1)
1,0,0 = 〈1, 0, 0|W |1, 0, 0〉 = eE〈1, 0, 0|Z|1, 0, 0〉 = 0. (15.7.2)

This can be understood as a consequence of the parity selection rule, eq. (5.4.16). More generally,

the expectation value of Z in any parity eigenstate is always 0, because ΠZΠ = −Z, so that

πZ = −1, giving πZπ2
n,l,m = −1. Another way to see that the matrix element vanishes is the

dipole selection rule of eq. (13.2.15).

Since the first-order correction to the ground-state energy is 0, we turn to the second-order

correction. Applying the general formula of eq. (15.1.44), and remembering that the unperturbed

energies do not depend on l and m, we have

E
(2)
1,0,0 = e2E2

∞∑

n=2

n−1∑

l=0

l∑

m=−l

| 〈n, l,m|Z|1, 0, 0〉 |2
E1 − En

+ e2E2

∫ ∞

0

dE
∞∑

l=0

l∑

m=−l

| 〈E , l, m|Z|1, 0, 0〉 |2
E1 − E

.

(15.7.3)

Note that this includes integration over the unbound states |E , l, m〉 with continuous unperturbed

energies E > 0 as well as summation over the bound states |n, l,m〉 with discrete unperturbed

energies En = −e2/2a0n2, excluding n = 1. Equation (15.7.3) simplifies considerably if we use

the dipole selection rules of eqs. (13.2.15) and (13.2.16), which inform us that only the l = 1

and m = 0 matrix elements are non-zero. Therefore, it can be rewritten as

E
(2)
1,0,0 = −e2E2

( ∞∑

n=2

| 〈n, 1, 0|Z|1, 0, 0〉 |2
En − E1

+

∫ ∞

0

dE | 〈E , 1, 0|Z|1, 0, 0〉 |
2

E − E1

)
, (15.7.4)

where the overall minus sign appears because the denominators have flipped sign to make them

positive. Since both the sum and the integral are clearly positive, eq. (15.7.4) is negative; the

presence of the electric field lowers the hydrogen atom energy.

The evaluation of eq. (15.7.4) is not trivial, so we will study it using a series of tricks with

instructive value. First, we will find a simple lower bound on its magnitude, then a simple upper
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bound, and then attempt a numerical approximation by including only the bound state sum

contribution. Finally, we will obtain the exact value of E
(2)
1,0,0 by exploiting the power of the

Dalgarno–Lewis method of section 15.5.

To obtain the lower bound, note that the magnitude of eq. (15.7.4) is certainly greater than

that of the n = 2 term alone, since all of the contributions have the same sign. So, using

E2 − E1 = 3e2/8a0,

|E(2)
1,0,0| > (n=2 term only) =

8

3
a0E

2|〈2, 1, 0|Z|1, 0, 0〉|2. (15.7.5)

The relevant matrix element is

〈2, 1, 0|Z|1, 0, 0〉 =
∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2 (R21Y
0
1 )
∗ r cos θ (R10Y

0
0 ) =

128
√
2

243
a0. (15.7.6)

Therefore, we have

|E(2)
1,0,0| >

218

311
E2a30 ≈ 1.4798E2a30 (15.7.7)

as a lower bound on the energy shift of the ground state due to the external electric field E.

We also obtain a bound from the other direction, by noting that the denominators in

eq. (15.7.4) with n 6= 2 are all larger than they would be if each instance of En or E were

replaced by E2. So,

|E(2)
1,0,0| <

8

3
a0E

2

( ∞∑

n=2

|〈n, 1, 0|Z|1, 0, 0〉|2 +
∫ ∞

0

dE|〈E , 1, 0|Z|1, 0, 0〉|2
)
. (15.7.8)

Now that the annoying energy-difference denominators are gone, we can evaluate the whole

quantity in parentheses using the completeness identity of eq. (11.2.22), remembering that the

missing l 6= 1 and m 6= 0 terms vanish by the dipole selection rules. The result is

|E(2)
1,0,0| <

8

3
a0E

2 〈1, 0, 0|Z2|1, 0, 0〉. (15.7.9)

Another trick: by rotational symmetry of the ground state, we can replace Z2 in the expectation

value by the average of X2, Y 2, and Z2, which is easier to compute. So

〈1, 0, 0|Z2|1, 0, 0〉 =
1

3
〈1, 0, 0|(X2 + Y 2 + Z2)|1, 0, 0〉 = 1

3
〈1, 0, 0|R2|1, 0, 0〉 = a20, (15.7.10)

where, at the end, we have used eq. (11.1.53) with p = 2. Thus we have

|E(2)
1,0,0| <

8

3
E2a30 ≈ 2.6667a30E

2 (15.7.11)

as an upper bound on the energy shift to complement the lower bound in eq. (15.7.7).
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As an attempt to do better than the bounds in eqs. (15.7.7) and (15.7.11), one can add up

the exact contributions from all bound states n = 2, 3, 4, . . . with En = −e2/2a0n2 in eq. (15.7.4).

It is possible, but quite non-trivial, to show that

e2
| 〈n, 1, 0|Z|1, 0, 0〉 |2

En − E1
=

(2n)9(n− 1)2n−6

3(n+ 1)2n+6
a30. (15.7.12)

The sum over all integers n ≥ 2 in eq. (15.7.4) is then found to converge to a numerical value

E
(2), partial
1,0,0 ≈ −1.8316E2a30, (15.7.13)

which is indeed between the two bounds that we have already obtained. However, this turns

out to be numerically far from the true answer; as we are about to discover, the integral over

unbound states contributes significantly.

Fortunately, one can obtain the correct result while avoiding having to perform directly the

difficult sum plus integration, by instead using the Dalgarno–Lewis method described in section

15.5. To do this, we must first use eq. (15.5.10) to solve for the first-order correction to the

ground-state wavefunction, ψ
(1)
1,0,0(r). In the position representation, this equation is

(E1 −H0)ψ
(1)
1,0,0 = eE r cos θ ψ

(0)
1,0,0, (15.7.14)

where E1 = −e2/2a0 and ψ
(0)
1,0,0 = e−r/a0/

√
πa30 from the results of section 11.1, and we have

used the fact that W = eEZ has vanishing expectation value in the unperturbed ground state.

The unperturbed Hamiltonian operator is

H0 = − ~
2

2me
∇2 − e2

r
= −a0e

2

2

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
− e2

r
, (15.7.15)

where, in the second equality, we have used the fact that there is no φ dependence because

of the symmetry of the problem about the z-axis, and ~
2/2me = a0e

2/2. Given the form of

eq. (15.7.14), it is reasonable to try for a solution of the form

ψ
(1)
1,0,0 = f(r) cos θ ψ

(0)
1,0,0, (15.7.16)

where f(r) is to be determined. With this guess, the differential equation (15.7.14) becomes

1

2
f ′′ +

(
1

r
− 1

a0

)
f ′ − 1

r2
f =

E

ea0
r, (15.7.17)

in which we are delighted to see that the θ dependence has disappeared. Since the inhomogeneous

part is linear in r, we are inspired to make the further guess that f is a quadratic polynomial

in r, and are rewarded with the simple solution

f = −E
e
(a0 + r/2)r. (15.7.18)
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[This corresponds to the Dalgarno–Lewis operator A = −E
e
(a0 + R/2)Z as the solution to

eqs. (15.5.2) and (15.5.3), although we do not directly need it.]

Having successfully found ψ
(1)
1,0,0, the rest is relatively easy. We get, using eq. (15.5.8) in the

position representation,

E
(2)
1,0,0 =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2
(
eEr cos θ

)(
−E
e
(a0 + r/2)r cos θ

)
|ψ(0)

1,0,0|2, (15.7.19)

which evaluates finally to the correct, and surprisingly simple, result

E
(2)
1,0,0 = −9

4
a30E

2 = −2.25a30E2. (15.7.20)

Because the leading correction to the ground state energy comes from second order in perturba-

tion theory, and is therefore quadratic in the applied electric field, this is called the quadratic

Stark effect.

Let us now see how to connect eq. (15.7.20) to an experimental measurement. In general,

for a dipole moment p induced by an external electric field E, the polarizability α is defined by

p = αE. (15.7.21)

As the electric field is increased, the change in the energy of the dipole is

dU = −p · dE = −αE dE, (15.7.22)

so that the total energy of the induced dipole is

U = −1
2
αE2. (15.7.23)

Comparing to eq. (15.7.20), we have −9
4
a30E

2 = −1
2
αE2, or

α =
9

2
a30 = 6.67× 10−31m3, (15.7.24)

which agrees well with the experimental value for the polarizability of atomic hydrogen in the

ground state.

Let us now turn to the Stark effect for the first excited (n = 2) stationary states of the

hydrogen atom. The unperturbed states are

|n, l,m〉 = |2, 0, 0〉, |2, 1, 0〉, |2, 1, 1〉, and |2, 1,−1〉, (15.7.25)

which all have the same unperturbed energy E2 = −e2/8a0. We therefore need to apply the

method of degenerate perturbation theory as outlined in section 15.6. To start, we must choose

the unperturbed orthobasis of n = 2 states as the eigenkets of the 4× 4 matrix

W(l′,m′), (l,m) = 〈2, l′, m′|eEZ|2, l, m〉. (15.7.26)
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Using the dipole selection rule of eqs. (13.2.15) and (13.2.16), the only non-zero entries of this

matrix come from

〈2, 1, 0|Z|2, 0, 0〉 = 〈2, 0, 0|Z|2, 1, 0〉, (15.7.27)

which can be evaluated as

〈2, 1, 0|Z|2, 0, 0〉 =

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

∫ ∞

0

dr r2
(
R21Y

0
1 )
∗ (r cos θ

) (
R20Y

0
0 ) (15.7.28)

=
1

16

∫ 1

−1
d(cos θ) cos2 θ

∫ ∞

0

dr

(
r

a0

)4

(2− r/a0) e−r/a0 (15.7.29)

= −3a0. (15.7.30)

So, in the orthobasis of eq. (15.7.25), the perturbation Hamiltonian has the matrix representation

W ↔ −3a0eE




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , (15.7.31)

which has eigenvalues −3a0eE, +3a0eE, 0, and 0. Thus, the energy eigenvalues to first order

in the perturbing electric field and the corresponding unperturbed energy states are

Energies States (15.7.32)

− e2

8a0
− 3a0eE

1√
2
(|2, 0, 0〉+ |2, 1, 0〉) , (15.7.33)

− e2

8a0
+ 3a0eE

1√
2
(|2, 0, 0〉 − |2, 1, 0〉) , (15.7.34)

− e2

8a0
|2, 1, 1〉, |2, 1,−1〉. (15.7.35)

Because the perturbed n = 2 energy levels vary linearly with the applied electric field, this is

called the linear Stark effect.

Now that we have found the leading results in perturbation theory for the n = 1 and

n = 2 energy levels, it is time to confess the awful truth that in this example, the perturbative

expansion does not converge! The perturbation Hamiltonian W = eEZ is negative with an

arbitrarily large magnitude; it approaches −∞ for z → −∞. This implies that in the idealized

problem of a hydrogen atom in a uniform electric field filling infinite space, there are no bound

states at all. Instead, the exact stationary-state solutions will have only continuous energies,

with resonances near the bound state energies that we have obtained. For this reason, the

perturbative expansion in powers of the electric field E actually cannot converge to the supposed

atomic bound states.
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Fortunately, however, in any real-world version of the Stark effect, the electric field is cut off

at some large distance, and the perturbation Hamiltonian remains finite. So, our effort was not

at all wasted. In fact, the practically relevant results really are the perturbative ones we found,

not the “exact” calculation for unbound states based on an unattainable ideal.

15.8 Almost-degenerate perturbation theory

The perturbative expansion can also face problems if the perturbed state is almost, but not

quite, degenerate with some other states. This means that for some subset of stationary states

|n1〉, |n2〉, . . . |nN〉, the differences in unperturbed energies Enj
−Enk

are all small compared to the

magnitudes of the matrix elements of W . In this case, the terms in the perturbation expansions

for Enj
and |ψnj

〉 will be finite, but will not become smaller at higher orders, and convergence

will fail. To get sensible results we must formulate almost-degenerate perturbation theory

to evaluate them, as follows.

For inspiration, we write the perturbation Hamiltonian as

W =
∑

n

∑

m

|n〉〈n|W |m〉〈m|, (15.8.1)

by using completeness twice. Consider a projection operator onto the subspace of almost-

degenerate states that we wish to consider,

Pdeg =
∑

k

|nk〉〈nk|. (15.8.2)

Now we define the perturbation Hamiltonian projected onto the almost-degenerate subspace,

Wdeg = PdegWPdeg, (15.8.3)

which is equivalent to only including the orthobasis elements for the degenerate subspace in the

summations in eq. (15.8.1). Note that PdegWdegPdeg = Wdeg, since P
2
deg = Pdeg, as always for

projection operators.

The strategy is to now re-divide the full Hamiltonian as

H = H ′0 +W ′, (15.8.4)

where

H ′0 = H0 +Wdeg, (15.8.5)

W ′ = W −Wdeg. (15.8.6)

One now endeavors to solve the eigenvalue problem for H ′0 exactly, and then treat W ′ as the

perturbation. In favorable circumstances, for example if the dimension of the almost-degenerate
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subspace is small, this can be done exactly. In less favorable cases, one might have to solve the

eigenvalue problem for H ′0 in an approximation, before then applying W ′ as the perturbation.

In any case, let us refer to the unperturbed eigenstates of H ′0 within the almost-degenerate

subspace as |n′j〉, with unperturbed energies En′
j
. The point is that all of the W ′ matrix elements

within the almost-degenerate subspace vanish,

〈n′j |W ′|n′k〉 = 0. (15.8.7)

This follows because the left side can be rewritten, using |n′k〉 = Pdeg|n′k〉, as

〈n′j|Pdeg(W −Wdeg)Pdeg|n′k〉 = 〈n′j|(Wdeg −Wdeg)|n′k〉 = 0. (15.8.8)

One can now fearlessly apply the usual non-degenerate perturbation theory results of eqs. (15.1.43)–

(15.1.47) with H ′0 as the unperturbed Hamiltonian with eigenstates |n′j〉, and W ′ as the pertur-

bation, because small denominators En′
j
− En′

k
can never appear in the sums.

As a minimal example of all three types of stationary-state perturbation theory (non-

degenerate, degenerate, almost-degenerate), consider a system with only 2 states, with

H0 =

(
a 0
0 b

)
, W =

(
0 c
c∗ 0

)
, (15.8.9)

where a, b are real numbers and c is complex. Of course, 2×2 matrices are easy, so the eigenvalues

for H = H0 +W can be done exactly in this example, with the results

E1,2 =
1

2

(
a+ b∓

√
(a− b)2 + 4|c|2

)
. (15.8.10)

If one applies non-degenerate perturbation theory, one readily obtains (assuming that b > a)

E1 = a− |c|2/(b− a) + · · · , E2 = b+ |c|2/(b− a) + · · · , (15.8.11)

with the perturbation c contributing quadratically. On the other hand, if b = a, then the

previous expansion fails, but one can apply degenerate perturbation theory, with the result

E1 = a− |c|+ · · · , E2 = a + |c|+ · · · , (15.8.12)

in which the perturbation c contributes linearly. In this simple example, the application of

almost-degenerate perturbation theory is just the exact result, which behaves quadratically with

|c| for small |c| ≪ |a − b|, and transitions to behaving linearly with |c| for large |c| ≫ |a + b|.
These statements are illustrated in Figure 15.8.1. The fact that increasing the off-diagonal

perturbation moves the energy eigenvalues apart is called level repulsion.
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Figure 15.8.1: Perturbation theory results at leading order for energy eigenvalues of a
two-state system with Hamiltonian given by eq. (15.8.9), for non-degenerate perturbation
theory with b − a ≫ |c| (left), degenerate perturbation theory with a = b (center), and
almost-degenerate perturbation theory with a ≈ b (right). For a two-state system, almost-
degenerate perturbation theory is the exact result, by definition. In all three cases, the
energy eigenvalues are moved apart by the perturbation, illustrating level repulsion.

As a less minimal example of almost-degenerate perturbation theory, consider a state space

of dimension 3, with matrix representations for the unperturbed and perturbation Hamiltonians

H0 =



a−∆ 0 0

0 a+∆ 0
0 0 b


 , W =



0 δ ǫ
δ 0 0
ǫ 0 0


 , (15.8.13)

where a, b,∆, δ, and ǫ are all real constants. The exact eigenvalues of H = H0 + W can be

obtained by solving a cubic equation, but the results are complicated. However, it is worth

noting that, because of the theorem in linear algebra that the sum of the eigenvalues of a matrix

is equal to the trace, the exact energies must satisfy a simple sum rule,

E1 + E2 + E3 = 2a+ b, (15.8.14)

regardless of the values of the other parameters. Now let us see what perturbation theory says.

First, let us find the energy eigenvalues by applying non-degenerate perturbation theory.

Because H0 is diagonal, the unperturbed stationary states are the kets represented by the unit

column vectors

|1〉 =




1
0
0



 , |2〉 =




0
1
0



 , |3〉 =




0
0
1



 , (15.8.15)

with

E1 = a−∆, E2 = a+∆, E3 = b. (15.8.16)
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From eq. (15.1.43), the first-order corrections to the energies vanish, because W has no non-

zero diagonal entries. Applying (15.1.44) gives the energy eigenvalues at second order in non-

degenerate perturbation theory in δ, ǫ,

E1 = a−∆+ ǫ2/(a− b−∆)− δ2/2∆, (15.8.17)

E2 = a+∆+ δ2/2∆, (15.8.18)

E3 = b+ ǫ2/(b− a+∆). (15.8.19)

As a check, these do satisfy the sum rule eq.(15.8.14).

However, if ∆ is small compared to δ, then the last term in each of eqs. (15.8.17) and

(15.8.18) will be large, signaling a breakdown in the perturbative expansion because the unper-

turbed states |1〉 and |2〉 are too close in energy. In that case, one must use almost-degenerate

perturbation theory. In this example,

Pdeg =




1 0 0
0 1 0
0 0 0



 , Wdeg =




0 δ 0
δ 0 0
0 0 0



 , (15.8.20)

and so

H ′0 =



a−∆ δ 0
δ a+∆ 0
0 0 b


 , W ′ =



0 0 ǫ
0 0 0
ǫ 0 0


 . (15.8.21)

Note that W ′ is indeed 0 within the 2 × 2 subspace of almost-degenerate states. It is not too

hard to find the unperturbed energies and eigenstates of H ′0,

E1′ = a−
√
δ2 +∆2, |1′〉 =

√
r+
2
|1〉 −

√
r−
2
|2〉, (15.8.22)

E2′ = a+
√
δ2 +∆2, |2′〉 =

√
r−
2
|1〉+

√
r+
2
|2〉, (15.8.23)

E3′ = b, |3′〉 = |3〉, (15.8.24)

where

r± = 1± ∆√
δ2 +∆2

. (15.8.25)

We then apply eqs. (15.1.43) and (15.1.44) with H ′0 and W ′, while being careful to note that

the matrix representation of W ′ in eq. (15.8.21) is in the original basis |1〉, |2〉, |3〉, so that

W ′ = ǫ|1〉〈3|+ ǫ|3〉〈1|. (15.8.26)
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The first-order contributions to the energies vanish because W ′ is also off-diagonal in the

basis |1′〉, |2′〉, |3′〉. The second-order energy corrections are

E
(2)
1′ = |〈3′|W ′|1′〉|2/(E1′ − E3′), (15.8.27)

E
(2)
2′ = |〈3′|W ′|2′〉|2/(E2′ − E3′), (15.8.28)

E
(2)
3′ = |〈1′|W ′|3′〉|2/(E3′ − E1′) + |〈2′|W ′|3′〉|2/(E3′ − E2′), (15.8.29)

resulting in the energy eigenvalues at second-order in almost-degenerate perturbation theory,

E1′ = a−
√
δ2 +∆2 +

ǫ2r+

2(a− b−
√
δ2 +∆2)

, (15.8.30)

E2′ = a+
√
δ2 +∆2 +

ǫ2r−

2(a− b+
√
δ2 +∆2)

, (15.8.31)

E3′ = b+
ǫ2(b− a−∆)

(b− a)2 − δ2 −∆2
, (15.8.32)

now with ǫ as the sole expansion parameter. Again one can check that the sum rule eq.(15.8.14)

is indeed satisfied.

The almost-degenerate perturbation theory expansion in ǫ will be a good one as long as

|ǫ/(E1′−E3′)| = |ǫ/(a−b−
√
δ2 +∆2)| and |ǫ/(E2′−E3′)| = |ǫ/(a−b+

√
δ2 +∆2)| are both small.

Conversely, if they are not, then even this expansion will break down, and almost-degenerate

perturbation theory would, unfortunately, consist of solving the original 3× 3 problem exactly.

15.9 Exercises

Exercise 15.1. Consider a harmonic oscillator supplemented by a quartic potential term, so

that the Hamiltonian is H = P 2

2m
+ 1

2
mω2X2+ λX4. Treat the last term as a small perturbation.

(a) Compute the correction to the energy of the state |n〉 at first order in λ. For fixed n, your

answer is good for sufficiently small λ. However, you should find that it grows quadratically

with n, so if λ is fixed, no matter how small it is, the perturbation expansion will break down

for sufficiently large n.

(b) Find the ground state in terms of the unperturbed energy eigenkets, at first order in λ.

Exercise 15.2. The Hamiltonian for a rigid rotator in a magnetic field perpendicular to the

y axis is H = aL2 + bLz + cLx, where a, b, and c are positive constants, and L is the angular

momentum operator.

(a) Write down the exact energy eigenvalues. (This should be quick. Start by writing bLz+cLx =

b′n̂ · L, where n̂ is a unit vector; what is b′?)

(b) Now take c ≪ a, b. Find the unperturbed energy eigenvalues with c = 0 for the eigenkets
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|l, m〉 of L2 and Lz , and use them to obtain the energy eigenvalues at second order in the

perturbation. Compare them to the exact answer from part (a). [Hint: the necessary matrix

elements 〈l′, m′|Lx|l, m〉 can be found in eq. (8.4.4).]

Exercise 15.3. A spinless particle of charge e and mass m is confined to a cubic box of side

L with center at the origin. A weak uniform electric field E = Eẑ is applied, with direction

parallel to one of the sides of the box, and the electrostatic potential for the field is taken to be

zero at the center of the cubic box.

(a) Write down the unperturbed energy eigenvalues and corresponding normalized wavefunc-

tions, in terms of appropriate quantum numbers. [Hint: for a particle confined to a 1-d box, the

wavefunctions were given in eq. (6.4.10) and (6.4.11), for odd and even n, respectively. However,

here you may find it more convenient to use the unified expression ϕn(x) =
√

2
L
sin
(
nπx
L

+ nπ
2

)
,

which is equivalent up to irrelevant signs.]

(b) Find the change in the ground state energy at second order in the electric field. You should

leave your answer in terms of an infinite sum of the form SUM =
∑

n=2,4,6,...
np

(n2−1)q , where p

and q are certain integers that you will find. Evaluate SUM to 3 significant digits. How does

the change in the ground state energy scale with the size of the box L?

Exercise 15.4. Consider the Stark effect for the n = 3 states of the Hydrogen atom:

(a) For the unperturbed states |n, l,m〉 with n = 3, find all of the non-zero matrix elements

〈3, l′, m′|Z|3, l, m〉. (Use selection rules, and the fact that Z is Hermitian, to reduce the labor.)

(b) Include an electric field E = Eẑ, treated as a perturbation. Obtain the energy eigenvalue

corrections at first order in degenerate perturbation theory. Give the corresponding energy

eigenstates to zeroth order in the perturbation, in terms of the unperturbed eigenstates |3, l, m〉.

Exercise 15.5. Starting from Brillouin–Wigner perturbation theory at second order in the

state eq. (15.4.5) and third order in the energy eq. (15.4.6), derive the corresponding results for

standard perturbation theory, given at the end of section 15.1.

Exercise 15.6. Consider a 3-state system with Hamiltonian H0 +W , where in a certain basis

H0 =



E1 0 0
0 E2 0
0 0 E2


 , W =



0 a b
a 0 c
b c 0


 , (15.9.1)

where E1 and E2 are distinct but of the same order, and a, b, c are much smaller and real.

(a) Assuming that c 6= 0, find the energy eigenvalues at second order in degenerate perturbation

theory. Recall that this requires going to a new unperturbed basis, chosen so thatW is diagonal

within the 2× 2 subspace corresponding to the degenerate H0 eigenvalues.
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(b) Now consider c = 0. Again compute the three energy eigenvalues at second order in de-

generate perturbation theory. Note that, as explained in the discussion leading to eq. (15.6.13),

since the degeneracy is not lifted at first order, it is necessary to choose a different unperturbed

basis, such that the matrix W (2) defined in eq. (15.6.9) is diagonal within the 2 × 2 subspace

corresponding to the degenerate H0 eigenvalues. (It is not diagonal, or even Hermitian, on the

whole 3 × 3 state space.) You should find that the two energy eigenvalues arising from E2 are

not the same as the c→ 0 limit of part (a).

(c) Check that the sum of the three energy eigenvalues in both cases is equal to E1 +2E2, which
is required because that is the trace of H . For the case c = 0, compute the exact eigenvalues of

H , and check that expanding them to second order in the perturbations reproduces the results

of part (b).
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16 The variational method

16.1 Estimate and upper bound on the ground state energy

In Chapter 15, we studied how to use perturbation theory to find approximate solutions to the

Hamiltonian eigenvalue problem. In this chapter, we will consider the variational method

(also known as the Rayleigh–Ritz method), which applies even in situations for which it is

not possible to make a sensible perturbation series expansion. Because the variational method is

not based on a perturbative expansion, there is no need to know the exact solution to a simpler

unperturbed problem.

The key idea comes from an inequality satisfied by the expectation value of the Hamiltonian

in any state |ψ〉 of our choice. Although the eigenstates |En, uEn〉 of H and the corresponding

energy eigenvalues En and degeneracy labels uEn are unknown, we can use completeness to write

〈ψ|H|ψ〉 =
∑

n

∑

uEn

〈ψ|H|En, uEn〉〈En, uEn|ψ〉 =
∑

n

∑

uEn

En 〈ψ|En, uEn〉 〈En, uEn|ψ〉 (16.1.1)

≥ E0

∑

n

∑

uEn

〈ψ|En, uEn〉〈En, uEn|ψ〉 , (16.1.2)

where we used En ≥ E0 to get the last line. Now we can again use completeness to rewrite∑

n

∑

uEn

〈ψ|En, uEn〉〈En, uEn|ψ〉 = 〈ψ|ψ〉, and obtain the bound

〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0. (16.1.3)

(We have not assumed the normalization condition 〈ψ|ψ〉 = 1, as this is sometimes not conve-

nient.) Equation (16.1.3) means that we can make a guess, or a class of guesses, for |ψ〉, and
then evaluate the left side of eq. (16.1.3) to obtain an estimate for E0 that is guaranteed not to

be lower than the true value. The guess is called a trial state or trial wavefunction.

In a typical application, we improve the quality of our guess by choosing a whole family of

trial states |ψ(a)〉, where a denotes a continuously variable parameter (or, more generally, a set

of parameters). Now we compute

E(a) =
〈ψ(a)|H|ψ(a)〉
〈ψ(a)|ψ(a)〉 , (16.1.4)

and minimize it with respect to a to obtain amin, typically by solving

∂E(a)

∂a
= 0. (16.1.5)

Then E(amin) is our corresponding best estimate and upper bound for E0, and |ψ(amin)〉 is our
best estimate for the ground state |E0〉.
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The variational method tends to forgive us if our guess is good, but not perfect. To see why,

suppose the result of our best guess can be written as

|ψ(amin)〉 = |E0〉+
∑

n 6=0

δn|En〉, (16.1.6)

where the δn are some unknown, but hopefully small, numbers representing the fact that our

guess was not perfect. (For simplicity, take the energy eigenvalues to be not degenerate for the

illustration; this is not a crucial assumption.) Then we compute

〈ψ|H|ψ〉 = E0 +
∑

n 6=0

En|δn|2, (16.1.7)

〈ψ|ψ〉 = 1 +
∑

n 6=0

|δn|2, (16.1.8)

which yields

〈ψ|H|ψ〉
〈ψ|ψ〉 = E0 +

∑

n 6=0

(En − E0)|δn|2

1 +
∑

n 6=0

|δn|2
. (16.1.9)

The error in our estimate for E0 is seen to be quadratic, involving |δn|2 rather than |δn|. The

lesson here is that the estimate for the energy is better than the estimate for the state, provided

only that the best-estimate errors are not too horrible, obeying |δn| < 1. A 10% error in the

state ket typically leads to only a ∼ 1% error in the energy.

Still, we do want to make a good guess for our parameterized family of states |ψ(a)〉, so that

the best of them has a chance to be as close as possible to the true ground state. We should

choose trial wavefunctions ψ(r) such that |ψ(r)| is larger where the potential V (r) is smaller.

Furthermore, the wavefunction should have as few wiggles and nodes as possible, consistent with

the given potential V (r), in order to minimize the kinetic contribution to the Hamiltonian. In

three-dimensional problems, if the Hamiltonian has rotational symmetry, minimizing the kinetic

contribution likewise implies that we should make guesses that have L2 eigenvalue l = 0.

16.2 Variational method for excited states

The variational method also can provide information about higher-energy states, by projecting

out lower-energy states from the trial state guesses. For example, suppose that we want to

obtain the energy eigenvalue for the first excited state(s) |E1〉. If we somehow already knew the

exact |E0〉, then we could define the projector

P = I − |E0〉〈E0|, (16.2.1)
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which satisfies P 2 = P and P |E0〉 = 0. Then, for all trial states P |χ〉, one can prove the bound

〈χ|PHP |χ〉
〈χ|P |χ〉 ≥ E1, (16.2.2)

where E1 is the first excited energy eigenvalue.

In practice, we may only have a variational estimate |ψest〉 for |E0〉, for example |ψest〉 =
|ψ(amin)〉 from a previous variational estimate of the ground state. In that case, it might be

that the best we can do is to instead define

P̃ = I − |ψest〉 〈ψest| , (16.2.3)

(assuming that |ψest〉 has been normalized to unity) and then minimize the expectation value of

the Hamiltonian in a parameterized family of states P̃ |χ(b)〉, where |χ(b)〉 is chosen based on a

prior understanding of the properties of the first excited state(s), and depends on a variational

parameter b. Unfortunately, the accuracy of the resulting estimate for E1 will be limited by the

goodness of the estimate |ψest〉 ≈ |E0〉. To the extent that this is not a good approximation,

there is some leakage from the ground state into the guess, and we do not have a strict bound

on the result of the minimization of the Hamiltonian expectation value. For this reason, it is

often computationally challenging to obtain good estimates for all but the lowest few energy

eigenvalues.

Fortunately, strict bounds and variational estimates for some of the higher energy states can

be obtained if the Hamiltonian is compatible with some other observable(s). Suppose that there

is an observable Ω that satisfies

[H,Ω] = 0. (16.2.4)

This implies that one can choose an orthobasis of common eigenstates of H and Ω, so that the

energy eigenstates can be sub-classified by their Ω eigenvalues, denoted ω. Common examples

for Ω are the total angular momentum operators J2, Jz and/or the parity operator Π. In such

cases, we can define a family of trial kets |ψω(a)〉 that are restricted to be eigenstates of Ω with

a fixed eigenvalue ω, so

Ω |ψω(a)〉 = ω |ψω(a)〉 . (16.2.5)

In most examples, it will be obvious how to do this, but if necessary we can define the projection

operator for each ω,

Pω =
∑

uω

|ω, uω〉〈ω, uω|, (16.2.6)
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where the uω are degeneracy labels for ω, and then take |ψω(a)〉 = Pω |ψ(a)〉. In any case, given

a family of trial states |ψω(a)〉, one finds

E(a, ω) =
〈ψω(a)|H|ψω(a)〉
〈ψω(a)|ψω(a)〉

≥ Emin(ω), (16.2.7)

where Emin(ω) is the true minimum energy eigenvalue within the subspace of states that have

Ω = ω. Thus, we obtain a separate variational estimate and bound on the lowest energy

eigenstate within each ω subspace.

For example, if the Hamiltonian for a spinless particle has rotational symmetry, then we

can take Ω = L2. Then, applying the variational principle in turn to the trial wavefunctions

ψ(r, θ, φ) = RA(r) and RB(r)Y
0
1 (θ, φ) and RC(r)Y

0
2 (θ, φ), we will obtain estimates for the mini-

mum energy eigenvalues and wavefunctions for the ground state with l = 0, and for the lowest

energy state that has l = 1, and for the lowest energy state that has l = 2, respectively. (Recall

that rotational invariance guarantees that the energy eigenvalues and the radial wavefunctions

are actually independent ofm, so we tookm = 0 in each case just to be specific. Any other value

of m would work just as well.) It is not necessary in this case to go to the trouble of defining

the projection operator in eq. (16.2.6), because the eigenstates of L2 are known in terms of the

spherical harmonics.

16.3 Examples of the variational method

As an easy example, consider a system for which we already know the exact answer: the harmonic

oscillator in one dimension, with

H =
P 2

2m
+

1

2
mω2X2. (16.3.1)

We now use a family of trial wavefunctions

ψ(a) = e−x
2/a2 . (16.3.2)

This is a very fortunate guess, as it just so happens to include the correct ground-state wave-

function as a special case. Now, calculate

〈ψ(a)|ψ(a)〉 =

∫ ∞

−∞
dx e−2x

2/a2 =

√
π

2
a, (16.3.3)

and

〈ψ(a)|H|ψ(a)〉 =

∫ ∞

−∞
dx e−x

2/a2
[
− ~

2

2m

d2

dx2
+

1

2
mω2x2

]
e−x

2/a2 (16.3.4)

=

∫ ∞

−∞
dx

[
~
2

2m

(
2

a2
− 4x2

a4

)
+

1

2
mω2x2

]
e−2x

2/a2 (16.3.5)

=

√
π

2

(
~
2

2ma
+

1

8
mω2a3

)
. (16.3.6)
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Using these in eq. (16.1.4) gives

E(a) =
~
2

2ma2
+
mω2a2

8
. (16.3.7)

The first term is the kinetic contribution, which wants a to be large, and the second term is the

potential contribution, which prefers a to be small. Minimizing E(a) with respect to a2 gives

a2min =
2~

mω
, (16.3.8)

and so the result of the variational method is

E0 ≤ E(amin) = ~ω/2, (16.3.9)

in agreement with the exact result. Of course, ψ(amin) is also the exact ground state wavefunction

(up to the normalization factor), as a result of our fortunate guess.

For a less trivial example, consider the Hamiltonian

H =
P 2

2m
+ λX4, (16.3.10)

which is a cousin of the harmonic oscillator but with a steeper, quartic, potential. Not feel-

ing very imaginative at the moment, and remembering the forgiving nature of the variational

principle, we again choose as the trial wavefunction

ψ(a) = e−x
2/a2 , (16.3.11)

which yields

E(a) =
~
2

2ma2
+

3

16
λa4. (16.3.12)

(The computation of the first term is identical to that for the previous example, as the trial

wavefunction and the P 2/2m part of the Hamiltonian have not changed.) Now minimizing E(a)

with respect to a2 gives

a2min =

(
4~2

3λm

)1/3

≈ 1.101

(
~
2

λm

)1/3

, (16.3.13)

and

Emin =
3

8

(
6~4λ

m2

)1/3

≈ 0.681

(
~
4λ

m2

)1/3

(16.3.14)

as the estimate of the ground state energy.
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To do better, we invent a three-parameter trial wavefunction

ψ(a, b, c) = (1 + bx2 + cx4)e−x
2/a2 . (16.3.15)

We do not bother including odd powers of x, because we expect that the parity of the ground

state is +1. Using a computer to minimize E(a, b, c) with respect to all three of a, b, c gives

E(amin, bmin, cmin) ≈ 0.668

(
~
4λ

m2

)1/3

(16.3.16)

as a better estimate. As always, the more general wavefunction gives an estimate that is lower,

and closer to the true ground-state energy eigenvalue.

The first excited state for H in eq. (16.3.10) will have one node, at x = 0, and odd parity.

To find it, we can therefore exploit eq. (16.2.7), by choosing a simple trial wavefunction

ψ(a) = xe−x
2/a2 . (16.3.17)

A straightforward calculation of the Hamiltonian’s expectation value and the norm gives

E(a) =
3~2

2ma2
+

15

16
λa4, (16.3.18)

with minimum at

a2min =

(
4~2

5λm

)1/3

, (16.3.19)

leading to the estimate and upper bound for E1 of

E(amin) =
9

4

(
5~4λ

4m2

)1/3

≈ 2.424

(
~
4λ

m2

)1/3

. (16.3.20)

A somewhat better result could follow from using a multi-parameter trial wavefunction of the

form ψ(a, b, c, . . .) = (x+ bx3+ cx5+ · · · )e−x2/a2 . Note that it is important to be careful to only

include odd-parity terms in this trial wavefunction, to avoid contamination from the even-parity

ground state. The actual first excited state energy eigenvalue E1 turns out to be

E1 ≈ 2.394

(
~
4λ

m2

)1/3

, (16.3.21)

as can be obtained from numerical minimization of, say, a 6-parameter trial wavefunction.

Next, consider as a three-dimensional example the hydrogen atom Hamiltonian, written in

the spherical coordinate position representation as

H = T + V, T = −~
2∇2

2me
, V = −e

2

r
. (16.3.22)
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Although we know the exact wavefunction, let us ignore the temptation to use it, and instead

try a Gaussian trial wavefunction with a variational parameter k,

ψ(k) = e−k
2r2. (16.3.23)

To find the expectation value of the Hamiltonian, we first compute the kinetic contribution,

〈ψ|T |ψ〉 = − ~
2

2me
4π

∫ ∞

0

dr r2 e−k
2r2
(
d2

dr2
+

2

r

d

dr

)
e−k

2r2 = 4π

(
~
2

mek

√
π

2

3

16

)
, (16.3.24)

then the potential contribution,

〈ψ|V |ψ〉 = 4π

(
− e2

4k2

)
, (16.3.25)

and finally the normalization factor,

〈ψ|ψ〉 = 4π

(√
π

2

1

8k3

)
. (16.3.26)

Putting these together, we have

E(k) =
3~2k2

2me

−
√

8

π
e2k. (16.3.27)

The minimum is found from ∂E(k)/∂k = 0 to be at

kmin =

√
8

π

e2me

3~2
=

√
8

π

1

3a0
. (16.3.28)

Plugging this in gives the estimate of the ground state energy

E(kmin) = −
(

8

3π

)
e2

2a0
≈ −0.849Rydberg. (16.3.29)

Of course, the exact answer is −1 Rydberg. Even though our choice of one-parameter trial

wavefunctions was not a very good one, because the harmonic oscillator is a poor approximation

to the Coulomb potential, the result was within about 15% of the correct answer.

16.4 Helium atom ground state from the variational method

We conclude this chapter with a more practical example in which the variational method shines:

the helium atom consisting of two electrons with charge −e and a nucleus with charge +2e. The

Hamiltonian for this system was already given in eqs. (15.3.1)–(15.3.3) of section 15.3, where

we treated it using first-order perturbation theory.

To use the variational method in the most simple way, let us choose a factorized trial wave-

function of the form

Ψ(Z̃, r1, r2) = ψ(Z̃, r1)ψ(Z̃, r2), (16.4.1)

361



where [compare eq. (11.1.42)]

ψ(Z̃, r) =

√
Z̃3

πa30
e−Z̃r/a0 (16.4.2)

is the normalized ground state wavefunction for a hydrogen-like atom with general atomic num-

ber Z̃. However, here we do not set Z̃ equal to Z = 2 in the trial wavefunction, but instead

treat it as a continuous variational parameter, adjusting it to find the minimum expectation

value of the total H . In contrast, Z in the Hamiltonian is fixed to be equal to the actual number

of protons in the nucleus. For helium, Z = 2, but we will leave it general for the following

discussion, so that our results apply to any ion with 2 electrons.

We therefore need to compute, and then minimize:

E(Z̃) = E1(Z̃) + E2(Z̃) + E12(Z̃), (16.4.3)

where E1(Z̃) = E2(Z̃) = 〈Ψ|H1|Ψ〉, and E12(Z̃) = 〈Ψ|H12|Ψ〉, since we have arranged for

〈Ψ|Ψ〉 = 1 in this example. Because each electron partly screens the charge +Ze nucleus from

the other electron, we anticipate that the value Z̃min that minimizes E(Z̃) will be in the range

Z − 1 < Z̃min < Z, so that for helium, 1 < Z̃min < 2.

To find the non-interaction contributions, we first compute

E1(Z̃) =

∫
d3r1 ψ(r1)

∗
(
− ~

2

2me
∇2

1 −
Ze2

r1

)
ψ(r1)

∫
d3r2 |ψ(r2)|2. (16.4.4)

Note that the potential energy contribution is −Ze2/r1, not −Z̃e2/r1, because Z̃ is our varia-

tional parameter, not the actual nuclear charge. In this expression,
∫
d3r2 |ψ(r2)|2 = 1, and the

remaining integral factor evaluates simply, to give

E1(Z̃) =
e2

2a0

(
Z̃2 − 2Z̃Z

)
. (16.4.5)

Of course, E2(Z̃) = E1(Z̃) follows from an identical calculation with the labels 1 and 2 inter-

changed. The more difficult part is the interaction contribution

E12(Z̃) = e2
∫
d3r1

∫
d3r2 |ψ(r1)|2 |ψ(r2)|2

1

|r1 − r2|
. (16.4.6)

Fortunately, we have already evaluated this integral in eqs. (15.3.8)–(15.3.18), with the result

E12(Z̃) =
5Z̃e2

8a0
. (16.4.7)

Plugging this into eq. (16.4.3), along with E1(Z̃) = E2(Z̃) from eq. (16.4.5), gives

E(Z̃) = Z̃(Z̃ − 2Z + 5/8)
e2

a0
. (16.4.8)
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Minimizing this with respect to our variational parameter Z̃ gives

Z̃min = Z − 5/16 = 27/16. (16.4.9)

Note that indeed Z − 1 < Z̃min < Z, as we had anticipated.

Our variational method estimate for the ground state energy of the helium atom is therefore

E(Z̃min) = −Z̃2
min

e2

a0
= −

(
27

16

)2
e2

a0
= −5.695 Rydberg = −77.49 eV. (16.4.10)

This can be compared to the experimental value (the minimum ionization energy needed to

completely remove both electrons from the He atom in its ground state), which is

Eexp = −5.807 Rydberg = −79.005 eV. (16.4.11)

As expected, our variational method estimate is higher than the true value, but by less than

2%. Recall that the first-order perturbation theory method in section 15.3 gave instead

Epert. = −5.5 Rydberg = −74.83 eV, (16.4.12)

which is about 5.3% higher than the experimental value. The variational method, even with the

simplest trial wavefunction, performs better than first-order perturbation theory. If one uses a

more sophisticated non-factorized trial wavefunction with more parameters, and asks a computer

to do the integrations and minimization numerically, then the variational method will win even

more convincingly for a given amount of human calculation effort expended. The variational

method also scales nicely to more complex problems in atomic and molecular physics, where

perturbation theory may have more difficulty.

16.5 Exercises

Exercise 16.1. Consider particle of mass m moving in 1 dimension in the very strongly attrac-

tive potential V (X) = λX6. Using a Gaussian trial wavefunction, estimate the ground state

energy and wavefunction. What is the corresponding estimate for 〈X2〉? Do the same for the

first excited state, using a trial wavefunction of the form x multiplied by a Gaussian.

Exercise 16.2. A particle of mass m moves in a spherically symmetric potential V (R). Denote

by El the lowest bound state energy with orbital angular momentum l [that is, with L2 eigenvalue

~
2l(l + 1)]. Use the variational principle to prove that El increases monotonically with l. (It

obviously follows that the ground state must have l = 0.) Compare to Figures 10.3.2 and 11.1.1.

Exercise 16.3. Consider a particle of mass m moving in the 3-dimensional potential V (R) =

λR, corresponding to a constant restoring force. Use two different trial wavefunctions, ψ = e−r/a

and ψ = e−r
2/b2 , to find the ground state energy. Which trial wavefunction does a better job?
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Exercise 16.4. Consider a particle of mass m moving in a Yukawa (also known as screened

Coulomb) potential

V (R) = − g
R
e−R/a, (16.5.1)

which behaves at short distances like a Coulomb potential and vanishes exponentially at large

distances. Consider a trial wavefunction ψ = e−βr/a, where β is the variational parameter.

(a) Show that the energy expectation value for the trial state is

E(β) =
~
2

ma2

(
1

2β2
− 4G

β(2 + β)2

)
, (16.5.2)

where G = gma/~2.

(b) Find the condition (cubic in β, and linear in G) that gives the minimum of E(β).

(c) The condition for a bound state is E < 0. This requires G > Gc, where Gc is a certain

critical value for the strength of the potential. Use the condition you found in the previous part

to eliminate G, and E(β) = 0, to show that the estimate from this trial wavefunction is Gc = 1.

(Note that this does not require solving a cubic equation.) To illustrate this, make a graph of

E(β) for 0 < β < 3, for the three cases G = 1/2, G = 1, and G = 2. What is βmin when

G = Gc = 1? (By using a more carefully chosen trial wavefunction, it is possible to show that

the condition for a bound state to exist is more accurately given by gma/~2 > 0.8399.)

Exercise 16.5. Consider a particle of mass µ moving in the 3-dimensional isotropic harmonic

oscillator potential V (R) = 1
2
µω2R2, where R is the radial coordinate operator. Instead of

solving exactly as we did in section 10.5, let us see how well the variational principle works with

a trial wavefunction ψl,m(n, k) = rne−kr Y m
l (θ, φ) in spherical coordinates. The quantities n and

k are the variational parameters. We could take n to vary continuously, but we will consider it

to only take on integer values in this problem.

(a) Compute the energy function for the trial wavefunction. Write your answer in the form

E(n, k) = (~2k2/2m)A + (mω2/k2)B, where A is a quadratic polynomial in l, n divided by a

quadratic polynomial in n, and B is another quadratic polynomial in n. [Hint: to obtain the

kinetic energy contribution, you will want to use eq. (8.6.12), and certainly not the explicit

forms of the spherical harmonics.]

(b) Minimize E(n, k) with respect to k, to obtain E(n, kmin). Work in terms of the symbols A

and B, and only plug in what they are in the next step.

(c) Estimate the ground state energy for l = 0. Which integer n does the best job? (Plug in

n = 0, 1, 2, 3, 4, 5, 6 to find out.) How does it compare to the exact answer?

(d) Repeat part (c) for the lowest state with l = 1, and for the lowest state with l = 2.
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17 Fine, hyperfine, and magnetic effects for the hydrogen

atom

17.1 Relativistic kinetic, spin-orbit, and Darwin corrections

The hydrogen atom Hamiltonian was treated in Chapter 11 in a nonrelativistic approximation.

There, it was argued that relativistic effects should affect the energy eigenvalues by a factor

suppressed by the square of the fine-structure constant α = 1/137.036 . . .. Now it is time to find

those corrections, using stationary-state perturbation theory.

An expansion of the Dirac equation, carried out in section 27.4, shows that a more accu-

rate approximation for the electron (with mass called me in this chapter) moving in a general

spherically symmetric electrostatic potential† Φ(R) is given by

H = H0 +Hrel +HSO +HDarwin, (17.1.1)

where

H0 =
P 2

2me
− eΦ(R) (17.1.2)

is the nonrelativistic approximation we have already used, with P 2 = P · P , and

Hrel = − (P 2)2

8m3
ec

2
, (17.1.3)

HSO = − e

2m2
ec

2

1

R

dΦ

dR
S · L, (17.1.4)

HDarwin = − ~
2e

8m2
ec

2
∇2Φ (17.1.5)

are called the relativistic kinematic, spin-orbit, and Darwin terms, respectively. (The last is

named for Charles G. Darwin, grandson of the Charles R. Darwin famous for evolutionary

biology.) These three terms give numerical contributions that are of the same order, and they

are collectively called the fine structure corrections to the hydrogen atom energies. Each of

them is a relativistic effect, as seen from the 1/c2 factors, which would make them formally

vanish if the speed of light were infinite. In this section, we will calculate their effects using

perturbation theory. Before doing so, we briefly comment on the physical reasons behind the

fine structure terms.

First, Hrel comes from the binomial expansion of the special relativistic expression for the

energy of a massive particle with classical momentum p,

E =
√
m2
ec

4 + p2c2 = mec
2 +

p2

2me

− (p2)2

8m3
ec

2
+ · · · . (17.1.6)

†For hydrogen-like atoms, Φ(R) = Ze/R, but in eqs. (17.1.2)–(17.1.5) we choose to be more general.
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The first term is just a constant, Einstein’s equivalence of rest mass and energy. We can ignore

it, since it causes all time-dependent states to be multiplied by the same phase. The second term

is the kinetic term in H0, and the third gives Hrel when p is promoted from classical momentum

to the quantum momentum operator.

TheHSO term can be understood as the energy due to the interaction of the intrinsic magnetic

moment of the electron with the magnetic field B that it experiences because it is moving.

Naively, this gives a contribution to the Hamiltonian −µe · B, where the magnetic field as seen

in the electron’s rest frame moving with velocity v is, in gaussian cgs units,

B = −v
c
× E. (17.1.7)

Here, we can use v = p/me and, for a spherically symmetric potential,

E = −∇Φ = −r
r

dΦ

dr
, (17.1.8)

so that, promoting r and p to quantum operators,

B =
1

mec

1

R

dΦ(R)

dR
(P × R) = − 1

mec

1

R

dΦ(R)

dR
L. (17.1.9)

There is no operator ordering issue in writing the cross-product L = R×P = −P ×R, because
different rectangular coordinate components of P and R commute. The magnetic moment of

the electron is opposite the direction of the spin, because the charge −e is negative,

µe = − e

mec
S, (17.1.10)

where we have used eqs. (4.3.18) and (4.3.19) with the (very good) approximation ge ≈ 2. So,

naively we would have

HSO, naive = −µe · B = − e

m2
ec

2

1

R

dΦ

dR
S · L. (17.1.11)

The extra factor of 1/2 in the true HSO in eq. (17.1.4) is known as the Thomas precession effect.

Llewellyn Thomas explained it in 1925 as a classical relativistic effect of the electron being at

rest in a rotating (not inertial) reference frame. Alternatively, the derivation from the Dirac

equation in section 27.4 gives the correct normalization more directly.

Finally, the physical origin of the Darwin term HDarwin is related to the fact that, as we noted

following eq. (11.1.71), the behavior of the electron is modified by relativistic effects on a small

distance scale comparable to its reduced Compton wavelength, λ̄e = ~/mec. This effectively

makes the replacement Φ(R) → Φ(R) − λ̄2e
8
∇2Φ, resulting in the correction of eq. (17.1.5). A

proper derivation from the Dirac equation is again found in section 27.4.
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Now we apply first-order perturbation theory to evaluate theHrel contribution to the energies

of the unperturbed states |n, l,m〉. These unperturbed states have degeneracies for n > 1, so we

are really doing degenerate perturbation theory, but W = Hrel is already diagonal in this basis,

so we can directly apply eq. (15.6.4). This gives

E
(1), rel
n,l,m = 〈Hrel〉n,l,m = − 1

8m3
ec

2
〈(P 2)2〉n,l,m, (17.1.12)

where here, and in the following, 〈· · · 〉n,l,m denotes the expectation value 〈n, l,m| · · · |n, l,m〉.
To evaluate this efficiently, we can use a trick, by rewriting it using P 2 = 2me(H0 + e2/R),

E
(1), rel
n,l,m = − 1

2mec2
〈(H0 + e2/R)2〉n,l,m (17.1.13)

= − 1

2mec2
(
E2n + 2Ene2〈1/R〉n,l,m + e4〈1/R2〉n,l,m

)
, (17.1.14)

where En = −e2/2a0n2 is the eigenvalue of H0 for the state |n, l,m〉. The expectation values of

1/R and 1/R2 were given in eqs. (11.1.64) and (11.1.67), respectively. Plugging those results

into eq. (17.1.14) gives

E
(1), rel
n,l,m = α2 e

2

2a0

1

n3

(
3

4n
− 1

l + 1/2

)
, (17.1.15)

where we have used a0 = ~
2/mee

2 to write the result in terms of the fine structure constant

α = e2/~c ≈ 1/137.036, and e2/2a0 = 1 Rydberg ≈ 13.606 eV.

By itself, eq. (17.1.15) is not very useful, because the spin-orbit and Darwin terms contribute

at the same order. To evaluate the spin-orbit contribution, we note that for the special case of

the hydrogen atom, the electrostatic potential is Φ = e/R, so that eq. (17.1.4) becomes

HSO =
e2

2m2
ec

2

1

R3
S · L. (17.1.16)

This vanishes for all l = 0 states, including the ground state n = 1, since they have no orbital

angular momentum. Because the n > 1 states have H0 eigenvalue degeneracies, we are really

doing degenerate perturbation theory, which means that we must use a basis in which HSO is

diagonal. We use the standard trick for dot products of angular momentum operators,

S · L =
1

2
(J2 − L2 − S2) =

~
2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] , (17.1.17)

which is diagonal in the total angular momentum orthobasis |n, l, s, j,mj〉. (In particular, we

do not want to use the product orthobasis |n, l, s,ml, ms〉 here, because then S · L would not

be diagonal, as required for degenerate perturbation theory.) Using s = 1/2, it follows that the

first-order correction is

E
(1), SO
n,l,j =

~
2e2

4m2
ec

2
[j(j + 1)− l(l + 1)− 3/4] 〈1/R3〉n,l,m, (l 6= 0). (17.1.18)
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The expectation value of 1/R3 was given in eq. (11.1.68), reproduced here for convenience,

〈1/R3〉n,l,m =
1

a30n
3l(l + 1)(l + 1/2)

. (17.1.19)

It follows that

E
(1), SO
n,l,j =

~
2e2

2m2
ec

2a30

j(j + 1)− l(l + 1)− 3/4

n3l(l + 1)(2l + 1)
, (l 6= 0). (17.1.20)

Now, using j = l ± 1/2, and writing the prefactor in terms of the fine structure constant and

the Rydberg energy,

E
(1), SO
n,l,j = α2

(
e2

2a0

) −1 ± (2l + 1)

2n3l(l + 1)(2l + 1)
, (l 6= 0, j = l ± 1/2), (17.1.21)

to go along with E
(1), SO
n,0,1/2 = 0.

Now we turn to the Darwin term of eq. (17.1.5), which for the hydrogen atom includes, in

the position representation, a factor ∇2Φ = e∇2(1/r) = −4πeδ(3)(r). It is left to Exercise 17.1

to compute the first-order energy correction

E(1),Darwin = δl0 α
2

(
e2

2a0

)
1

n3
, (17.1.22)

which only depends on n, l and is only non-zero for l = 0.

We are finally ready to combine the three fine-structure contributions, Efine = E(1),rel +

E(1),SO + E(1),Darwin, from eqs. (17.1.15), (17.1.21), and (17.1.22). This can be done in three

separate cases,

(l = 0, j = 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2 + 0 + 1

)
, (17.1.23)

(l 6= 0, j = l + 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2

2l + 1
+

1

(l + 1)(2l + 1)
+ 0

)
, (17.1.24)

(l 6= 0, j = l − 1/2): Efine =
α2

n3

(
e2

2a0

)(
3

4n
− 2

2l + 1
− 1

l(2l + 1)
+ 0

)
. (17.1.25)

All three cases are seen to be encompassed by the simple formula

Efine
n,j =

α2

n3

(
e2

2a0

)(
3

4n
− 1

j + 1/2

)
, (17.1.26)

which notably depends only on n and j, and not separately on l, as one perhaps might have

guessed. This result can also be obtained by expanding the exact solution of the Dirac equation;

this will be done in section 27.5.

For the lowest few energy levels, in terms of the quantity

Ef = α2e2/2a0 = 7.245× 10−4 eV, (17.1.27)
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one has fine structure shifts for spectroscopic states for n = 1:

1S1/2 (n = 1, l = 0, j = 1/2) Efine = −Ef/4, (17.1.28)

and for n = 2:

2S1/2 (n = 2, l = 0, j = 1/2)

2P1/2 (n = 2, l = 1, j = 1/2)

}
Efine = −5Ef/64, (17.1.29)

2P3/2 (n = 2, l = 1, j = 3/2) Efine = −Ef/64, (17.1.30)

where the 2S1/2 and 2P1/2 states stay degenerate, and for n = 3:

3S1/2 (n = 3, l = 0, j = 1/2)

3P1/2 (n = 3, l = 1, j = 1/2)

}
Efine = −Ef/36, (17.1.31)

3P3/2 (n = 3, l = 1, j = 3/2)

3D3/2 (n = 3, l = 2, j = 3/2)

}
Efine = −Ef/108, (17.1.32)

3D5/2 (n = 3, l = 2, j = 5/2) Efine = −Ef/324, (17.1.33)

where the 3S1/2 and 3P1/2 states stay degenerate, as do the 3P3/2 and 3D3/2 states. Including

electron spin, each principal quantum number level n has (2s+ 1)
n−1∑
l=0

(2l+ 1) = 2n2 states. The

fine structure splits each of those levels into n sub-levels, with j = 1/2, 3/2, . . . , n− 1/2. The

degeneracies are further enhanced by a factor of 2 for the proton spin, but then are further split

by the hyperfine structure to be discussed next.

17.2 Hyperfine structure of hydrogen

The hyperfine structure takes into account that an atomic nucleus also has a magnetic dipole

moment (along its spin direction) and an electric quadrupole moment (if the nuclear spin is at

least 1; see Exercise 13.5). For the 1H isotope of hydrogen with a nucleus consisting of one

proton and no neutrons, the magnetic moment of the proton is related to its spin-1/2 operator,

which we denote Sp, by

µp =
gpe

2mpc
Sp, (17.2.1)

(see section 4.3), where mp is the proton’s mass, and gp = 5.5856946893(16) is the proton’s

g-factor. The hyperfine contributions to the energy eigenvalues are numerically suppressed

compared to the fine structure contributions because of the fact that mp ≫ me.

The interaction between the magnetic field created by the proton’s magnetic moment and

the moving electron introduces a proton spin-orbit coupling term in the Hamiltonian,

Hproton
SO =

e

mecR3
µp · L =

gpe
2

2mempc2
1

R3
Sp · L. (17.2.2)
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In addition, there is the energy of the magnetostatic interaction of the dipole moments of the

proton and the electron,

Hdipole-dipole =
1

R3

[
µe · µp −

3

R2
(µe · R) (µp · R)

]
− 8π

3
µe · µp δ(3)(R), (17.2.3)

in which the final term is called a contact term. These two contributions are of the same

numerical order, and so, using

µe = −
gee

2mec
S (17.2.4)

with ge ≈ 2 and S the electron’s spin, the full hyperfine contribution to the Hamiltonian for

hydrogen is

Hhf = Hproton
SO +Hdipole-dipole (17.2.5)

=
gpe

2

2mempc2

[
1

R3
(L− S) · Sp +

3

R5
(R · S)(R · Sp) +

8π

3
S · Sp δ(3)(R)

]
. (17.2.6)

We now treat this as a perturbation of the fine-structure results found in the previous section.

Even after taking into account the fine structure, there were still energy degeneracies. There-

fore, we again need to do degenerate perturbation theory by choosing a good set of unperturbed

orthobasis states, so that Hhf is diagonal in that basis. The appropriate basis is again a total

angular momentum basis, but now taking into account the proton’s spin in addition to the

electron’s spin and orbital angular momentum. We define

J = L+ S, (17.2.7)

F = J + Sp = L+ S + Sp, (17.2.8)

so that F (J) is the total angular momentum including (excluding) the proton’s spin. The

eigenvalues for J2 and Jz are denoted ~
2j(j + 1) and ~mj , where the allowed values for j are

l−1/2 and l+1/2, and in each case mj takes on the 2j+1 values −j,−j+1, . . . , j−1, j. Because
F arises from adding the orbital angular momentum to two spin-1/2 angular momenta, the

eigenvalues for F 2 and Fz are ~
2f(f + 1) and ~mf , with integer values f = j−1/2 and j + 1/2,

and in each case mf = −f,−f+1, . . . , f−1, f . The total angular momentum orthobasis states

are constructed by first combining L and S eigenstates to obtain an orthobasis |l, s, j,mj〉, and
then taking the tensor product with the proton spin eigenstates |sp, msp〉 and going to the total

angular momentum basis to obtain states labeled |l, s, j, sp, f,mf〉. Here the s and sp spin labels

are trivial and can be omitted, as they are both fixed to be 1/2. So, including the principal

quantum number n, the CSCO = {H0, L
2, J2, F 2, Fz} eigenstate orthobasis states can be labeled

|n, l, j, f,mf〉. (17.2.9)
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We now want to show that Hhf is diagonal in this basis, and obtain its expectation values. It is

convenient to treat separately the case l = 0 (including the ground state) and the case l 6= 0.

For l = 0, the first two terms in eq. (17.2.6) do not contribute. To see this, note that the

spherical symmetry of l = 0 states guarantees that the expectation value of these two terms is

proportional to the angular integral of 3(r̂ · S)(r̂ · Sp) − S · Sp, where we have used L = 0 for

l = 0. Such an integral is a scalar, and is linear in each of the two spins, and depends on no

other vectors, so it can only be proportional to their dot product. That is, we must have
∫
dΩ

[
3(r̂ · S)(r̂ · Sp)− S · Sp

]
= aS · Sp (17.2.10)

for some constant number a. The value of a can now be discovered to be 0 by evaluating the

left side for S = Sp = ẑ, using r̂ · ẑ = cos θ.

The last term in eq. (17.2.6), proportional to δ(3)(R), does contribute for l = 0, and only in

that case. To see this, note that

〈n, l,ml|δ(3)(R)|n, l,ml〉 = |ψn,l,ml
(0, 0, 0)|2, (17.2.11)

the square of the wavefunction at the origin. Using the radial wavefunction at r = 0 from

eq. (11.1.41), this is non-zero only if l = 0, which of course implies ml = 0 also, and

〈n, l,ml|δ(3)(R)|n, l,ml〉 = δl0 δml0
1

πa30n
3
. (17.2.12)

Now, with l = 0, F = S + Sp, so

S · Sp =
1

2
(F 2 − S2 − S2

p). (17.2.13)

This is indeed diagonal in the total angular momentum basis |n, l, j, f,mf〉, with F 2−S2−S2
p =

~
2[f(f + 1)− 3/2], where the possible values of f are 0 and 1. Putting together the factors,

〈Hhf〉 =
gpe

2

2mempc2
8π

3

~
2

2
[f(f + 1)− 3/2]

1

πa30n
3

(l = 0), (17.2.14)

so we arrive at the hyperfine energy correction for l = 0, j = 1/2 states,

E
(l=0)
hf = 〈Hhf〉 =

gpme

mp

α2

n3

(
e2

2a0

)
×
{

2/3 for f = 1,

−2 for f = 0.
(17.2.15)

In particular, the hyperfine interaction splits the n = 1 ground state by an amount

Eγ = E
(f=1)
hf − E(f=0)

hf =
8gpme

3mp
α2

(
e2

2a0

)
= 5.878× 10−6 eV. (17.2.16)

We had already discussed this in eqs. (12.2.27)–(12.2.29); here we have shown how the numerical

prefactor arises. The actual experimental value 5.87433 × 10−6 eV is very slightly less than
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eq. (17.2.16), due to higher order effects. The f = 1 state is higher in energy than the f = 0

state, and when the former decays to the latter it emits a photon with this energy splitting,

whose frequency is ν = ω/2π = Eγ/2π~ = 1.42041× 109 Hz, corresponding to a wavelength

λ = c/ν = 21.106 cm. (17.2.17)

This is the “21 centimeter line” of radio astronomy, which comes from a photon emission or

absorption between states with different orientations of the electron and proton spins in the

hydrogen atom ground state.

Now take the case l 6= 0. We will use the Landé projection formula eq. (13.2.10) derived

in section 13.2 for a general vector operator, given in our present problem by the vector that

appears dotted into Sp in eq. (17.2.6),

V =
1

R3
(L− S) + 3

R5
(R · S)R, (17.2.18)

so that

H l 6=0
hf =

gpe
2

2mempc2
V · Sp. (17.2.19)

Here we have used the fact that the δ(3)(R) term does not contribute for l 6= 0, as noted in

the calculation of eq. (17.2.12). Because V itself does not involve Sp at all, for the purposes of

evaluating its matrix elements we can temporarily ignore the f and mf quantum numbers when

using eqs. (13.2.10) and (13.2.11), and so take the total angular momentum operator to be just

J = L+S, the generator of rotations for the orbital and electron spin degrees of freedom.† Also,

in our present problem, we are calculating an energy correction as an expectation value, so the

degeneracy labels α and β appearing in eq. (13.2.10) are the same, α = (n, l), and the Landé

projection formula eq. (13.2.10) gives

〈α, j,m′j|V |α, j,mj〉 = 〈j,m′j |J |j,mj〉
〈α, j‖J · V ‖α, j〉

~2j(j + 1)
, (17.2.20)

where the reduced matrix element is the scalar expectation value

〈α, j‖J · V ‖α, j〉 = 〈α, j,mj|J · V |α, j,mj〉 . (17.2.21)

Recall that, because of Theorem 13.2.1, since J · V is a scalar operator, 〈α, j‖J · V ‖α, j〉 does
not actually depend on mj at all, despite its appearance on the right side of eq. (17.2.21).

†If V had contained Sp, then the Landé projection formula eq. (13.2.10) would apply only if J were replaced

by F , the total angular momentum operator including the proton spin.
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To evaluate 〈α, j‖J · V ‖α, j〉 we therefore need the expectation values 〈J · (L− S)/R3〉 and
〈(R · J)(R · S)/R5〉 in a state |α, j,mj〉. For the first of these, we calculate:

J · (L− S) = (L+ S) · (L− S) = L2 − S2 = ~
2[l(l + 1)− 3/4]. (17.2.22)

For the second, we use R · L = R · (R× P ) = 0 to obtain R · J = R · S, and therefore

(R · J)(R · S) = (R · S)(R · S) =
~
2

4
(R · σ)(R · σ) = ~

2R2/4, (17.2.23)

where we have used the Pauli matrix representation of spin, and then the identity eq. (8.2.18).

Putting eqs. (17.2.22) and (17.2.23) into eq. (17.2.21) gives

〈α, j‖J · V ‖α, j〉 = ~
2l(l + 1) 〈n, l| 1

R3
|n, l〉 (17.2.24)

for the operator V defined in eq. (17.2.18). So, we can write for eq. (17.2.19), within matrix

elements with common n, l, j,

H l 6=0
hf =

gpe
2

2mempc2
l(l + 1)

j(j + 1)
J · Sp

1

R3
. (17.2.25)

In the orthobasis |n, l, j, f,mf〉, the angular momentum operator factor in eq. (17.2.25) is diag-

onal, and evaluates to

J · Sp =
1

2
(F 2 − J2 − S2

p) =
~
2

2
(f(f + 1)− j(j + 1)− 3/4). (17.2.26)

The radial part of the expectation value was found in eq. (11.1.68),

〈1/R3〉 =
1

a30n
3l(l + 1)(l + 1/2)

. (17.2.27)

Using eqs. (17.2.26) and (17.2.27) to find the expectation value of eq. (17.2.25), and eliminating

j in favor of f , gives

Ehf = 〈Hhf〉 =
gpme

mp

α2

n3

(
e2

2a0

) ±1
(l + 1/2)(2f + 1)

, (17.2.28)

where the + sign applies if f = j+1/2 and the − sign if f = j−1/2. Actually, this agrees with

the l = 0, j = 1/2 formula in eq. (17.2.15), so that eq. (17.2.28) is an all-purpose result, correct

for all states |n, l, j, f,mf〉 in the total angular momentum basis.

Note that the hyperfine energy contribution is independent of the quantum number mf . This

had to be true, because the energy eigenvalues for the hydrogen atom cannot possibly depend on

the orientation of the total angular momentum with respect to an arbitrarily chosen ẑ direction.

Therefore, each state with total angular momentum quantum number f has a remaining exact
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degeneracy of 2f+1. The only way to break this degeneracy is to introduce some external effect

that picks out a special direction in space, for example an external electric or magnetic field.

The average hyperfine energy contribution for any given n, l, j level is 0. Of the 2(2j + 1)

states before the hyperfine splitting is taken into account, the 2j+2 states with f = j+1/2 are

raised by an amount multiplied by 1/(2j + 2), while the 2j states with f = j − 1/2 are lowered

by the same amount multiplied by 1/2j.

In terms of the total n = 1 hyperfine splitting Eγ defined in eq. (17.2.16), the hyperfine

splittings of the n = 2 states are

2S1/2(l = 0, j = 1/2) : Ehf =

{
Eγ/32 (f = 1)

−3Eγ/32 (f = 0)
→ ∆E

2S1/2

hf = Eγ/8, (17.2.29)

2P1/2(l = 1, j = 1/2) : Ehf =

{
Eγ/96 (f = 1)

−Eγ/32 (f = 0)
→ ∆E

2P1/2

hf = Eγ/24, (17.2.30)

2P3/2(l = 1, j = 3/2) : Ehf =

{
Eγ/160 (f = 2)

−Eγ/96 (f = 1)
→ ∆E

2P3/2

hf = Eγ/60. (17.2.31)

So far, we have evaluated the fine and hyperfine contributions, by working at first order in

degenerate perturbation theory. However, there is a second-order effect, called the Lamb shift

after Willis E. Lamb Jr., which for l = 0 states is numerically larger than the hyperfine effect.

The Lamb shift arises due to the electron emitting and reabsorbing virtual photons, quanta of

the electromagnetic field. To calculate it in a systematic way requires the toolbox of quantum

electrodynamics, including renormalization of ultraviolet divergent contributions and a careful

treatment of infrared effects. Understanding these issues played a critical role in the development

of relativistic quantum field theory, but here we can only summarize the results numerically.

The Lamb shift for atomic hydrogen states |n, l, j〉 has been calculated to be, approximately,

∆ELamb =
α3

n3

(
e2

2a0

)
×
{

6.50 (for l = 0, j = 1/2),

0.026± 1

π(j + 1/2)(2l + 1)
(for l 6= 0, j = l ± 1/2),

(17.2.32)

where the decimal coefficients actually have a slight dependence on n. Note that the Lamb

shift is much larger for s-wave (l = 0) states than for l 6= 0 states. The extra factor of α here

(compared to the α2 factor for fine and hyperfine energy corrections) is indicative of an effect

of second order in perturbation theory. Effects that are even higher order in α = 1/137.036

slightly modify each of the fine, hyperfine, and Lamb shift contributions, so each of the energy

splittings that we have calculated here cannot be trusted beyond about the per cent level. More

heroic calculations, not reviewed here, have been done to improve beyond that accuracy.

The fine, hyperfine, and Lamb shift splitting effects on the n = 2 states of atomic hydrogen

are summarized and illustrated in Figure 17.2.1.
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2S1/2

0.735 µeV

hyperfine

f = 1

f = 0
4.375 µeV

Lamb shift
2P1/2

f = 1

f = 0

0.245 µeV
hyperfine

f = 2

f = 1

2P3/2

0.098 µeV
hyperfine

45.3 µeV fine +
0.1 µeV Lamb shift

Figure 17.2.1: The fine, hyperfine, and Lamb shift energy splittings in µeV for the n = 2
energy levels of the hydrogen atom, with nlj spectroscopic notation where l is the orbital
angular momentum replaced by its (capitalized) letter code as in eq. (11.1.20), j is the
total angular momentum quantum number excluding the proton spin, and f is the total
angular momentum quantum number including the proton spin. Relative energy spacings
are indicated qualitatively, but not to scale. The Lamb-shift splitting between the 2S1/2 and
2P1/2 levels is the experimental one, which differs slightly from the calculation quoted in
eq. (17.2.32) due to higher order effects. Each energy level shown has a degeneracy 2f +1.

17.3 Hydrogen atom in external magnetic field (Zeeman and Paschen–

Back effects)

Atomic and molecular state properties can be probed using an external magnetic field. In this

section, we consider the energy levels of the hydrogen atom in the presence of a uniform constant

magnetic field, which is taken without loss of generality to point in the ẑ direction,

B = Bẑ. (17.3.1)

This is associated with the Coulomb-gauge vector potential in spherical coordinates,

A =
1

2
Br sin θ φ̂. (17.3.2)
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We wish to apply this in the Hamiltonian for a charged particle moving in an electromagnetic

field, eq. (4.3.35), which includes A ·P . Working in the position representation with P = −i~∇,

A · P =
1

2
B
(
−i~ ∂

∂φ

)
=

1

2
BLz , (17.3.3)

where the last equality uses the representation of Lz of eq. (8.6.7). So, from eq. (4.3.35), the

external magnetic field contribution to the electron’s Hamiltonian in the hydrogen atom is

∆H =
eB

2mec
(Lz + geSz) +

e2B2

8mec2
r2 sin2 θ. (17.3.4)

Let us first get a rough idea of the order of magnitude of these contributions, for typical labo-

ratory magnetic fields. Putting in the numerical values of the constants gives

∆H = (5.8× 10−5 eV)
1

~
(Lz + geSz)

B

Tesla
+ (6.2× 10−11 eV)

r2

a20
sin2 θ

(
B

Tesla

)2

. (17.3.5)

From this, we estimate that the term linear in B will contribute comparably to the fine-structure

effects in atomic hydrogen if B is of order 1 Tesla. For fields typically accessible in laboratories

(of order 10 Tesla or less), the term quadratic in B is much smaller, so we will neglect it. Taking

ge = 2, the new Hamiltonian contribution to be considered in this section is therefore

HB = µBB (Lz + 2Sz) /~, (17.3.6)

where the Bohr magneton µB was defined in eq. (4.3.26). Our goal is to understand the energy

splitting of hydrogen atomic states due to this Hamiltonian perturbation, as a function of the

magnetic field strength.

Let us first consider the weak-field limit, in which µBB can be treated as a perturbation that

is small compared to the fine-structure contributions, but still large compared to the hyperfine

energy splittings, which we will neglect. This is called the Zeeman effect, after Pieter Zeeman.

We apply degenerate first-order perturbation theory to the fine-structure eigenstates |n, l, j,m〉
with unperturbed energies

E =
e2

2a0

[
− 1

n2
+
α2

n3

(
3

4n
− 1

j + 1/2

)]
. (17.3.7)

Following the general discussion of degenerate perturbation theory in section 15.6, the energy

shifts due to B will be the eigenvalues of the (2j + 1)× (2j + 1) perturbation matrix

(HB)m′,m =
µBB

~
〈n, l, j,m′|(Lz + 2Sz)|n, l, j,m〉 , (17.3.8)

for each energy level with fixed n, l, j. (There is no need to consider matrix elements between

different values of l, because the perturbation Lz + 2Sz cannot connect states with different l.

We will also suppress the common label n in the following.) Now we write

Lz + 2Sz = Jz + Sz, (17.3.9)
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and replace Jz by its eigenvalue, using 〈l, j,m′|Jz|l, j,m〉 = ~mδmm′ . To finish the calculation, we

need the matrix elements 〈l, j,m′|Sz|l, j,m〉. Here, the Landé projection formula of eqs. (13.2.10)

and (13.2.11) comes to our aid, with S in the role of V . It tells us that the matrix elements of

Sz are proportional to those of Jz, with

〈l, j,m′|Sz|l, j,m〉 = 〈l, j,m′|Jz|l, j,m〉
〈l, j,m|J · S|l, j,m〉

~2j(j + 1)
. (17.3.10)

Now, we again evaluate 〈l, j,m′|Jz|l, j,m〉 = ~mδmm′ , and are delighted to see that the whole HB

is proportional to δmm′ , and so is actually a diagonal matrix on the subspace of degenerate total

angular momentum basis states. It remains to calculate the matrix element 〈l, j,m|J · S|l, j,m〉.
This can be done using the standard trick for dot products of angular momenta,

J · S =
1

2

[
J2 + S2 − (J − S)2

]
=

1

2

[
J2 + S2 − L2

]
, (17.3.11)

which is replaced by its eigenvalue, ~2[j(j + 1) + s(s+ 1)− l(l + 1)]/2, when acting on |l, j,m〉.
Putting the ingredients of eq. (17.3.8) together, the energy shifts are

∆EB = gµBBm, (17.3.12)

where

g =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(17.3.13)

is called the Landé g-factor. These energy splittings are directly proportional to the magnetic

quantum number m for the total angular momentum. Using the facts that s = 1/2 and j =

l ± 1/2, we can rewrite the Landé g-factor for the hydrogen atom as

g =

{ 1 + 1
2j

(for j = l + 1/2),

1− 1
2j+2

(for j = l − 1/2).
(17.3.14)

The weak-field Zeeman energy shifts for the lowest few values of j are therefore

∆ES1/2
= 2µBBm, (m = ±1/2), (17.3.15)

∆EP1/2
=

2

3
µBBm, (m = ±1/2), (17.3.16)

∆EP3/2
=

4

3
µBBm, (m = ±3/2, ±1/2), (17.3.17)

∆ED3/2
=

4

5
µBBm, (m = ±3/2, ±1/2), (17.3.18)

∆ED5/2
=

6

5
µBBm, (m = ±5/2, ±3/2, ±1/2), (17.3.19)

etc. By applying a weak magnetic field, the energy degeneracies for each principal quantum

number n are eliminated, and the observed splittings can be used to count the (previously
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degenerate) states and deduce their angular momentum quantum numbers. This phenomenon

is the historical reason for calling m the “magnetic quantum number”.

Next, consider the opposite limit, called the Paschen–Back regime after Friedrich Paschen

and Ernst Back, in which the effect of the external magnetic field is taken to be much stronger

than the fine-structure effect, which will be treated as a perturbation. The Hamiltonian H0 =

P 2/2me − e2/R commutes with the magnetic field Hamiltonian HB in eq.( 17.3.6), so the exact

energy eigenstates of H0 + HB are the product angular momentum states |n, l,ml, ms〉, with
energy eigenvalues E = −e2/2a0n2 + ∆EB, where

∆EB = µBB(ml + 2ms). (17.3.20)

Now we must apply the fine-structure Hamiltonian to these states as a perturbation. A key

point is that when doing so, we cannot use the states |n, l, j,m〉 as the unperturbed states, as

we did in the previous treatment of the fine structure with a vanishing or weak external magnetic

field. This is because the strong magnetic field has eliminated the spherical symmetry and the

degeneracy associated with it. Instead, degenerate perturbation theory tells us that the fine-

structure energy shifts are obtained as the expectation values of the fine-structure Hamiltonian

in the product basis states |n, l,ml, ms〉, with their degeneracies for fixed ml + 2ms.

First, consider the easier case that l = 0. Then the spin-orbit Hamiltonian vanishes, and

the fine-structure contribution to the energies are the same as found in eq. (17.1.23) from the

Hrel and HDarwin terms. Since ml = 0 in this case, the combined energy shift due to the strong

external B field and the fine structure is

∆E l=0
B, fine = 2µBBms +

α2

n3

(
e2

2a0

)(
3

4n
− 1

)
. (17.3.21)

Now consider the case l 6= 0. From the spin-orbit Hamiltonian in eq. (17.1.16), the energy

correction from first-order perturbation theory is

〈n, l,ml, ms|HSO|n, l,ml, ms〉 =
e2

2m2
ec

2
〈1/R3〉 〈l, ml, ms|S · L|l, ml, ms〉 . (17.3.22)

The expectation value 〈1/R3〉 was already given in eq. (17.1.19). To evaluate the expectation

value of S · L, it is convenient to use

S · L =
1

2
(S+L− + S−L+) + SzLz, (17.3.23)

because in the product basis states the expectation value of SzLz evaluates to ~
2msml, and

the expectation values of S± and L± vanish. (Note the difference from the previously treated

spin-orbit case with a weak magnetic field, where one must instead evaluate the expectation

value of L · S in the total angular momentum basis states.) Combining the spin-orbit result

378



with the Hrel contribution from eq. (17.1.15), and recalling from eq. (17.1.22) that the Darwin

contribution vanishes for l 6= 0, we obtain the total first-order perturbation contribution

∆E l 6=0
B,fine = µBB(ml + 2ms) + α2 e

2

2a0

1

n3

(
mlms

l(l + 1/2)(l + 1)
+

3

4n
− 1

l + 1/2

)
(17.3.24)

from the strong external B field and the fine-structure effects.

Finally, let us consider the intermediate case in which the effects of the fine structure Hfine =

Hrel+HSO+HDarwin and external magnetic field HB Hamiltonians are comparable to each other,

so that Hfine+HB must be treated together as a single perturbation to H0. The preceding results

for weak B and for strong B can be obtained as special-case limits of the following analysis. As

before, we will ignore the smaller hyperfine effects. For the unperturbed states, it is not a bad

idea to choose† the total angular momentum basis elements |n, l, j,m〉, so that the matrix for

the fine-structure Hamiltonian Hfine is diagonal and we can make use of results already found

in section 17.1.

For l = 0 states, there is no distinction between Sz and Jz, so HB = 2µBBms is also diagonal

in the total angular momentum basis. This means that the energy shift for the l = 0 states is

the same as we already found in eq. (17.3.21),

For l 6= 0 states, things are more complicated. Let us consider only the n = 2 level with

l = 1, where the six unperturbed states are

|j,m〉 = |3
2
, 3
2
〉 , |3

2
, 1
2
〉 , |3

2
,−1

2
〉 , |3

2
,−3

2
〉 , (2P3/2), (17.3.25)

|1
2
, 1
2
〉 , |1

2
,−1

2
〉 , (2P1/2). (17.3.26)

The matrix elements of Lz+2Sz between any pair of these states can be quickly evaluated using

eqs. (12.3.16)–(12.3.21), which give these |j,m〉 states in terms of the product orthobasis states

|ml, ms〉, allowing the operator Lz + 2Sz to be replaced by ~(ml + 2ms). It is useful to note

that the only non-zero matrix elements in the |j,m〉 basis are between states with the same m,

because Lz + 2Sz commutes with Jz. Therefore, most of the elements of the 6 × 6 matrix of

perturbations for the 2P3/2 and 2P1/2 states vanish. For HB in eq. (17.3.6), the only relevant

non-zero matrix elements in the |j,m〉 basis with positive m are

〈3
2
, 3
2
|(Lz + 2Sz)/~|32 , 32〉 = 2, (17.3.27)

〈3
2
, 1
2
|(Lz + 2Sz)/~|32 , 12〉 = 2/3, (17.3.28)

〈3
2
, 1
2
|(Lz + 2Sz)/~|12 , 12〉 = 〈1

2
, 1
2
|(Lz + 2Sz)/~|32 , 12〉 = −

√
2/3, (17.3.29)

〈1
2
, 1
2
|(Lz + 2Sz)/~|12 , 12〉 = 1/3, (17.3.30)

†It is also possible to choose the product basis eigenstates of HB as the unperturbed states. Then the Hfine

matrix elements will be off-diagonal, but the final results for the energy corrections will be the same.
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while the corresponding matrix elements with negative m each have the opposite sign. From

eq. (17.1.26), Hfine is diagonal, with non-zero matrix elements

〈3
2
, m|Hfine|32 , m〉 = − 1

64
α2 e

2

2a0
, (m = ±3/2,±1/2), (17.3.31)

〈1
2
, m|Hfine|12 , m〉 = − 5

64
α2 e

2

2a0
. (m = ±1/2). (17.3.32)

We can now put together these results to find the matrix elements of W = Hfine +HB. Using

the notations

a =
α2

64

e2

2a0
, b = µBB (17.3.33)

for simplicity, and ordering the basis elements as |3
2
, 3
2
〉, |3

2
,−3

2
〉, |3

2
, 1
2
〉, |1

2
, 1
2
〉, |3

2
,−1

2
〉, |1

2
,−1

2
〉,

the matrix representation for the perturbation is

W =




−a+2b 0 0 0 0 0

0 −a−2b 0 0 0 0

0 0 −a+ 2
3
b −

√
2
3
b 0 0

0 0 −
√
2
3
b −5a+ 1

3
b 0 0

0 0 0 0 −a− 2
3
b

√
2
3
b

0 0 0 0
√
2
3
b −5a− 1

3
b




. (17.3.34)

This contains only 1× 1 and 2× 2 non-zero blocks, with eigenvalues

∆En=2, l=1
B, fine = −a± 2b, (17.3.35)

−3a + b/2±
√
4a2 + 2ab/3 + b2/4, (17.3.36)

−3a− b/2±
√

4a2 − 2ab/3 + b2/4. (17.3.37)

In the same notation, the l = 0 energy corrections from eq. (17.3.21) are

∆En=2, l=0
B, fine = −5a± b. (17.3.38)

These eight energy corrections to the n = 2 states are graphed in Figure 17.3.1 as a function of

the external magnetic field B, also including the small positive Lamb shift of 4.375 µeV for the

l = 0 eigenstates. It is left as an exercise to confirm that expanding eqs. (17.3.35)–(17.3.38) in

small b/a recovers the weak-field limit of eqs. (17.1.26) and (17.3.15)-(17.3.17), and expanding

in small a/b recovers the strong-field limit found in eqs. (17.3.21) and (17.3.24).

380



0 0.5 1 1.5 2
Magnetic field B   [Tesla]

-300

-200

-100

0

100

200

300

∆E
  

[µ
e

V
]

l = 1
l = 0

Figure 17.3.1: Energy corrections (in µeV) to the n = 2 states of atomic hydrogen, due
to the fine structure Hamiltonian and an external magnetic field B (in Tesla), as found
in eqs. (17.3.35)–(17.3.38). At small B, the weak-field Zeeman effect energy eigenstates
approach total angular momentum eigenstates |l, s, j,m〉; the group of upper four states
are 2P3/2, and the lower four states are 2P1/2 and 2S1/2. The small Lamb shift of 4.375
µeV has also been included for the 2S1/2 states, and is barely visible. At large B, the
strong-field (Paschen–Back regime) energy eigenstates approach product angular momen-
tum eigenstates |l, s,ml, ms〉, with ml + 2ms = 2, 1, 0, −1, and −2, from top to bottom.

17.4 Exercises

Exercise 17.1. Consider the normalized Hydrogen atom stationary state wavefunctions, which

are given by ψn,l,m(r) = Rn,l(r)Y
m
l (θ, φ). For general n, l,m, compute the probability density for

the electron to be at the origin, |ψn,l,m(0)|2. [Hint: use eq. (11.1.41).] Use the result to obtain

the Darwin term energy correction in eq. (17.1.22).

Exercise 17.2. Make a diagram of the relative energy for the n = 3 level of atomic hydrogen,

similar to Figure 17.2.1 for the n = 2 level. Don’t try to draw the energy splittings to scale,

but include numerical values in µeV for the fine structure, hyperfine structure, and Lamb shift

splittings. Use spectroscopic notation to label the states before the hyperfine effect, and label

the hyperfine-split states by their f (grand total angular momentum) quantum numbers.

Exercise 17.3. Deuterium, also known as heavy hydrogen, is an atom with one electron and

a nucleus consisting of a deuteron (a proton-neutron bound state) with spin 1. The magnetic

moment operator of the deuteron is

µd =
gde

2mdc
Sd, (17.4.1)
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where Sd is the spin-1 operator, md = 1875.6 MeV/c2 is the mass, and gd = 1.713. Work out

the hyperfine structure of the n = 1 state of deuterium. What are the energy, frequency, and

wavelength of the photon corresponding to the hyperfine transition of the ground state?

Exercise 17.4. An electron is moving in a spherically symmetric but otherwise generic (no

other special properties) potential V (r), with a perturbation Hamiltonian of the spin-orbit type,

W = aL · S, where a is a positive constant and L is the orbital angular momentum and S is

the spin operator. Consider a set of unperturbed states that are degenerate in energy (before

including W ), and have L2 eigenvalue 12~2.

(a) Work in the total angular momentum basis |j,mj〉 to answer the following questions. What

are the energy corrections due toW ? What are the remaining degeneracies of the corresponding

energy eigenstates?

(b) Repeat part (a), but this time do your work in terms of the matrix elements of W in the

product angular momentum basis |ml, ms〉. [Hint: you may want to use eq. (17.3.23).]

(c) Repeat part (a), but this time pretend that you live in a universe where the electron has

spin 3/2 (instead of spin 1/2, as in our universe).

Exercise 17.5. Consider a hydrogen atom in a constant uniform magnetic field. Repeat the

analysis leading to eqs. (17.3.35)–(17.3.35) to obtain the energy shifts, but this time for the

n = 3 states.
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Figure 18.1.1: In elastic scattering of indistinguishable particles (for example electrons)
1, 2 → 3, 4, each of the final-state particles labeled 3 and 4 have an equal claim to be the
same as each of the initial-state particles 1 and 2 of the same type. It is allowed and useful
to label the identical particles, but physical results cannot depend on our labeling choice.

18 Identical particles and multi-electron atoms

18.1 Intrinsic indistinguishability of identical particles

Particles are said to be identical if there is no way of distinguishing them, even in principle.

In particular, they must have the same mass, spin magnitude, charge, and any other intrinsic

properties. Classically, one can keep track of individual particles, even if they are identical,

by following their trajectories, which are determined by the equations of motion. However, in

quantum mechanics, this is impossible.

For example, if we scatter two electrons off of each other, as illustrated in Figure 18.1.1, we

may choose to label the electrons in the initial state by 1, 2, and the electrons in the final state

by 3, 4. However, it has no meaning to say that final-state electron 3 is uniquely the same as

the initial-state electron 1. Both of the outgoing electrons 3 and 4 have an equal claim to being

the same as the incoming electron 1 (or 2). Although we may choose a labeling scheme, and it

is generally quite useful to do so, the physics results cannot depend at all on that choice.

One way to describe a state with N identical particles is to take a tensor product of N

identical individual state spaces. Suppose that we have an orthobasis of single-particle kets

|αn〉, where each αn represents a whole set of CSCO labels for one particle. An orthobasis of

kets for the N -particle Hilbert space is, mathematically,†

|α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN〉. (18.1.1)

For example, we could take αn = (rn, mn), and the orthobasis elements would be

|r1, m1〉 ⊗ |r2, m2〉 ⊗ · · · ⊗ |rN , mN 〉, (18.1.2)

where the interpretation of |rn, mn〉 is that we are certain to find the particle at position rn

with spin component Sz = ~mn. Alternatively, αn could instead include the momentum pn

†We say “mathematically” here because the physical N -identical-particle Hilbert space is a proper subset of
the mathematical N -identical-particle Hilbert space, as we will soon see.
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rather than the position, or it could include the energy, L2, and Lz quantum numbers of the

nth particle, or some other choice of CSCO eigenvalues. In any case, we can dispense with the

tensor product notation and write eq. (18.1.1) as a single ket for a given orthobasis element,

|α1, α2, . . . αN〉. (18.1.3)

The fact that the particles are identical means that although we may choose to label them by

integers n = 1, 2, . . . , N , we cannot distinguish them, and so physical results cannot depend on

our arbitrary choice of labels. In particular, this means that any observable operator must be

unchanged if we exchange any pair of labels.

For example, the Hamiltonian for two identical particles of mass m can be of the form

H =
P 2
1

2m
+
P 2
2

2m
+ V (R1) + V (R2) + Vint(|R1 − R2|), (18.1.4)

since this is invariant under the exchange of labels 1↔ 2. It is important here that the potentials

V (r) for the individual identical particles 1 and 2 are the same function. The total momentum

operator for N identical particles,

P = P1 + P2 + · · ·+ PN , (18.1.5)

is likewise an observable, but the individual operators Pn appearing in it are not observables.

Similarly, we can define the observable operator for the density at a fixed position r as

ρ(r) =

N∑

n=1

δ(3)(r − Rn). (18.1.6)

Here r is an ordinary 3-vector that labels which operator we are talking about, and Rn are the

individual position operators for the identical particles.

Pair-exchange operators swap the labels of two identical particles, and are defined by

Pij | . . . , αi, . . . , αj, . . .〉 = | . . . , αj, . . . , αi, . . .〉. (18.1.7)

So, for example, P13|α1, α2, α3〉 = |α3, α2, α1〉 in the special case of a system of three identical

particles. Note that Pij is both unitary and Hermitian (like the parity operator), and Pij = Pji,

and (Pij)
2 = I. It follows from the last property that if Pij |ψ〉 = λ |ψ〉, then λ2 = 1 unless |ψ〉

is the null ket, so the only possible eigenvalues of Pij are λ = ±1. Despite being Hermitian, Pij

is not itself an observable, since, for example, P12 is not left unchanged if we exchange identical

particles 1 and 3.

Now, since observables must be symmetric under the pair exchange of labels, we have
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Theorem 18.1.1. For any observable A, and any pair-exchange operator Pij for identical par-

ticles,

[Pij, A] = 0. (18.1.8)

Proof: write A = A(a1, a2, . . . , aN), where the an are operators that act non-trivially only on

orthobasis kets |αn〉 for the nth particle. Since A must be symmetric under exchange of labels,

A(. . . , ai, . . . , aj, . . .) = A(. . . , aj, . . . , ai, . . .). (18.1.9)

It follows that

PijA| . . . , αi, . . . , αj, . . .〉 = A| . . . , αj, . . . , αi, . . .〉 = APij | . . . , αi, . . . , αj, . . .〉, (18.1.10)

where the first equality made used of eq. (18.1.9). Since the states | . . . , αi, . . . , αj, . . .〉 are an

orthobasis, the theorem follows by linearity since PijA must equal APij acting on every state. ���

In particular, the Hamiltonian must commute with every Pij ,

[H,Pij] = 0. (18.1.11)

Now suppose that |E〉 is an eigenket of H , with energy eigenvalue E. Then,

H (Pij|E〉) = PijH|E〉 = EPij |E〉, (18.1.12)

so Pij |E〉 is also an eigenket of H with the same energy eigenvalue E. This fact sometimes goes

by the name of exchange degeneracy.

However, while mathematically useful, the exchange degeneracy is really a fake physically,

because it only applies to mathematical kets, and not to physical states. The reason is the spin-

statistics principle: physical states are required to be eigenstates of all exchange operators

Pij for pairs of identical particles, with eigenvalue +1 if the identical particles being exchanged

are bosons (have integer spin), and eigenvalue −1 if they are fermions (have spin 1/2, 3/2, . . . ).

These are the only two possible eigenvalues, as noted after eq. (18.1.7). Fermions are said to

obey Fermi–Dirac statistics, and bosons obey Bose–Einstein statistics.

The spin-statistics principle is sometimes taken as a postulate, but it can be proved as a

theorem in 4-d relativistic quantum field theory, the fundamental quantum mechanical frame-

work that underlies our best understanding of the universe at small distance scales. Since it

can be proved in that context, rather than assumed, it was not listed among the postulates of

quantum mechanics in section 3.1. On the other hand, if a quantum system is not assumed to

obey special relativity, then the spin-statistics principle cannot be proved, but can be adopted
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(or not) as an assumption. Alternatively, one can view the spin-statistics principle simply as an

experimentally observed fact, subject at any time to potential falsification.

The spin-statistics principle applies not just for the particles that we currently believe to

be fundamental, including bosons (photons, gluons, W and Z bosons, and Higgs bosons) and

fermions (electrons, muons, tau leptons, neutrinos, quarks), but even for composite bosons (for

example, H atoms, deuterons, 4He nuclei, pions) and composite fermions (protons, neutrons, 3He

nuclei). Whether a composite particle is a boson or a fermion is determined simply by whether

its constituents include an even or odd number of fermions, respectively. For example, a 4He

nucleus consists of two protons and two neutrons. Doing a pair exchange of two 4He nuclei

therefore involves the simultaneous exchange of four fermions, resulting in a factor of (−1)4.
The proton can be viewed as consisting of 3 + n quarks and n antiquarks, where naively n = 0,

but the presence of virtual particles inside the proton means that n is actually indeterminate.

Nevertheless, n takes on integer values, so the pair exchange of two protons always results in

factor of (−1)3+n(−1)n = −1, making the proton a fermion.

The exchange degeneracy described by eq. (18.1.12) is completely eliminated from physical

states by the spin-statistics principle. For example, if there are two identical particles, then

|α1, α2〉 and |α2, α1〉 are not eigenstates of P12 unless α1 = α2. If α1 6= α2, then using

P12|α1, α2〉 = |α2, α1〉, P12|α2, α1〉 = |α1, α2〉, (18.1.13)

one finds that the linear combinations

|α1, α2〉S =
1√
2
(|α1, α2〉+ |α2, α1〉) , (18.1.14)

|α1, α2〉A =
1√
2
(|α1, α2〉 − |α2, α1〉) , (18.1.15)

are normalized eigenkets of P12, with eigenvalues +1 and −1, respectively. Therefore, according
to the spin-statistics principle, only the linear combination |α1, α2〉S is a physical state if the

two particles are identical bosons, and only |α1, α2〉A is a physical state if the two particles are

identical fermions. In either case, if |α1, α2〉 is an energy eigenstate, then exactly one linear

combination is physical, and there is no true energy degeneracy associated with the exchange of

identical particles. (However, there may be energy degeneracies for other reasons.)

If instead α1 = α2, then |α1, α1〉S = |α1, α1〉 is a physical state if the particles are bosons;

note that only the normalization has changed compared to eq. (18.1.14). But if the particles

are fermions, then |α1, α1〉A is the null ket, so there is no such physical state. This is the

Pauli exclusion principle; two identical fermions are not allowed to be in the same state. In

particular, they are not allowed to have the same eigenvalues for a CSCO.
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To construct physical states that satisfy the spin-statistics principle for N > 2 identical

particles, we first construct general permutation operators, which are arbitrary products of

pair-exchange operators, for example P = P12P13P45. (Note that the order of the Pij matters,

because they do not always commute.) There are many different ways of writing a given per-

mutation operator as a product in this way, because of identities like P12P23P12 = P13, but the

total number of distinct permutation operators is exactly N !. They can all be classified as odd

or even, according to whether the number of pair-exchange operators in the product is even or

odd. If P is an even permutation, we define (−1)P = +1, and if P is an odd permutation, we

write (−1)P = −1.
We can then define the symmetrization and antisymmetrization operators as sums

over all N ! distinct permutation operators for N identical particles,

S =
1

N !

∑

P

P, (18.1.16)

A =
1

N !

∑

P

(−1)PP. (18.1.17)

These are projection operators onto the subspaces of completely symmetric and antisymmetric

kets, respectively, and satisfy the properties S2 = S and A2 = A and SA = AS = 0. Further-

more, we have PijS = S and PijA = −A for all i, j, so that any ket acted on by S will be an

eigenstate of every Pij with eigenvalue 1, and any ket acted on by A will be an eigenstate of

every Pij with eigenvalue −1.
It follows that the physical orthobasis states for N identical fermions are proportional to

A|α1, α2, . . . , αN〉,

|α1, α2, . . . , αN〉A =
1√
N !

∑

P

(−1)PP |α1, α2, . . . , αN〉. (18.1.18)

These are the simultaneous eigenstates for every pair-exchange operator Pij with eigenvalue −1,
unique up to normalization, that one can build out of the 1-particle orthobasis states |αi〉. The
prefactor has been chosen to make the ket have unit norm if the |αi〉 are orthonormal and all

distinct from each other. An equivalent way to write this is the Slater determinant, named

after John C. Slater,

|α1, α2, . . . , αN〉A =
1√
N !

∣∣∣∣∣∣∣∣∣

|α1〉1 |α1〉2 . . . |α1〉N
|α2〉1 |α2〉2 . . . |α2〉N
...

...
. . .

...
|αN〉1 |αN〉2 . . . |αN〉N

∣∣∣∣∣∣∣∣∣

, (18.1.19)

where the products obtained from the determinant are to be understood as

|αi〉1 |αj〉2 . . . |αk〉N = |αi, αj, . . . , αk〉. (18.1.20)
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If any two of the αi are the same, then the determinant vanishes, and there is no corresponding

physical state at all. This is the more general version of the Pauli exclusion principle.

Similarly, the physical orthobasis states forN identical bosons are proportional to completely

symmetrized kets S|α1, α2, . . . , αN〉, because these are the simultaneous eigenstates for all of the

pair-exchange operators Pij with eigenvalue +1, unique up to normalization, that one can build

out of the 1-particle orthobasis states. Here, the normalization factor is complicated slightly by

the fact that for bosons the αi can be the same. If we write ni for the number of times each

distinct αi is repeated in the list, and take the |αi〉 to be orthonormal, then the normalized

physical orthobasis states are

|α1, α2, . . . , αN〉S =

√
N !

n1!n2! · · ·nN !
S|α1, α2, . . . , αN〉. (18.1.21)

This can also be written as

|α1, α2, . . . , αN〉S =

√
n1!n2! · · ·nN !

N !

∑′

P

P |α1, α2, . . . , αN〉, (18.1.22)

where
∑′

P means that the n1!n2! · · ·nN ! redundancies in the sum are eliminated, by including

each distinct ket P |α1, α2, . . . , αN〉 only once.

For example, consider N = 3 identical particles. Let us construct the physical states that

can be made using a finite number n of orthobasis states for the individual particles, |αi〉 with
i = 1, 2, . . . , n. If the three identical particles are bosons, then we have n(n+1)(n+2)/6 physical

orthobasis states, consisting of n(n− 1)(n− 2)/6 states with distinct i, j, k,

|αi, αj , αk〉S =
1√
6

(
|αi, αj, αk〉+ |αi, αk, αj〉+ |αj, αk, αi〉+ |αj, αi, αk〉

+|αk, αi, αj〉+ |αk, αj , αi〉
)
, (18.1.23)

and n(n− 1) orthobasis states with distinct i and j,

|αi, αi, αj〉S =
1√
3

(
|αi, αi, αj〉+ |αi, αj, αi〉+ |αj, αi, αi〉

)
, (18.1.24)

and n orthobasis states,

|αi, αi, αi〉S = |αi, αi, αi〉. (18.1.25)

Each of these is an eigenstate of each of P12, P13, and P23, with eigenvalue +1. For fermions,

there are only the n(n− 1)(n− 2)/6 orthobasis states,

|αi, αj, αk〉A =
1√
6

(
|αi, αj, αk〉 − |αi, αk, αj〉+ |αj, αk, αi〉 − |αj, αi, αk〉

+|αk, αi, αj〉 − |αk, αj , αi〉
)

(18.1.26)
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for distinct i, j, k.

An alternative way of specifying the orthobasis states forN identical particles is by giving the

occupation number for each of the 1-particle orthobasis states |αi〉. The occupation number

is simply the number of times ni that each αi appears in the symmetrized or antisymmetrized

state ket. For bosons, the occupation numbers are just the same as the numbers n1, n2, . . .

appearing in eq. (18.1.22). For fermions, each occupation number is always 0 or 1, due to the

Pauli exclusion principle. Then, in both cases, the orthobasis states can be written using the

occupation-number notation |n1, n2, n3, . . .〉, where some ordering has been chosen for the αi.

The individual occupation numbers can change with time, due to interactions. However, we will

usually treat the total of the occupation numbers as fixed at
∑

i

ni = N . (Quantum field theory

is what happens to you when you allow N to be variable.)

So far, we have considered orthobasis states for N identical particles, built out of the or-

thobasis states |αi〉 for the individual particles. It is crucial that the resulting states are indeed

an orthobasis for the full Hilbert state space of N identical particles, whether they are bosons

or fermions. This means that if we define any N linear combinations of 1-particle states

|φj〉 =
∑

i

cji|αi〉, (j = 1, . . . , N), (18.1.27)

which may be taken to have unit norm but are not necessarily the elements of an orthobasis,

then the allowed physical states for identical fermions can be written as

|φ1, φ2, . . . , φN〉A = A|φ1, φ2, . . . , φN〉, (18.1.28)

and the allowed physical states for identical bosons are

|φ1, φ2, . . . , φN〉S = S|φ1, φ2, . . . , φN〉, (18.1.29)

up to normalization. For fermions, a general Slater determinant ket

|φ1, φ2, . . . , φN〉A =

∣∣∣∣∣∣∣∣∣

|φ1〉1 |φ1〉2 · · · |φ1〉N
|φ2〉1 |φ2〉2 · · · |φ2〉N
...

...
. . .

...
|φN〉1 |φN〉2 · · · |φN〉N

∣∣∣∣∣∣∣∣∣

(18.1.30)

is physical (provided that it is not null), and can be shown to be a unique linear combination

of the orthobasis states |α1, α2, . . . , αN〉A defined by eq. (18.1.19). Here, the states |φi〉 must

be linearly independent, because otherwise the Slater determinant will vanish. Similarly, if the

identical particles are bosons, then the state

|φ1, φ2, . . . , φN〉S =
∑

P

P |φ1, φ2, . . . , φN〉, (18.1.31)
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is an allowed physical state, even if the |φi〉 are not orthobasis states or even linearly independent,

and any state of this form can be written in a unique way as a linear combination of the orthobasis

states |α1, α2, . . . , αN〉S defined by eq. (18.1.22).

Consider N identical particles, each of which has a single-particle Hamiltonian of the form

Hi =
P 2
i

2m
+ V (Ri). (18.1.32)

For now, we are neglecting any kind of Hamiltonian interaction between the particles [like

Vint in eq. (18.1.4)]. Suppose that the single-particle energy eigenstate position wavefunctions

(neglecting spin) are

φ0(r), φ1(r), φ2(r), φ3(r), . . . , (18.1.33)

with individual Hi energy eigenvalues

E0 < E1 ≤ E2 ≤ E3 ≤ · · · . (18.1.34)

We would like to now consider the eigenstates of the total unperturbed HamiltonianH0 =
∑

iHi.

Interactions between the particles can be treated later as a perturbation.

If N = 2, then the ground state has E = 2E0, with wavefunction

ψ(r1, r2) = φ0(r1)φ0(r2). (18.1.35)

Since this position-wavefunction part of the state is symmetric under exchange of the labels

1, 2, the spin state must also be symmetric if the particles are bosons, and the spin state must

be antisymmetric if the particles are fermions. Call the spins S1 and S2, so that the total spin

operator is S = S1 + S2, and denote the eigenvalue of the operator S2 as ~2s(s + 1) where s is

the total-spin quantum number. For spin-0 bosons, the total-spin quantum number is of course

s = 0, and for spin-1 bosons it must be either s = 0 or s = 2, because of the addition of angular

momentum rule

1⊗ 1 = 0S ⊕ 1A ⊕ 2S. (18.1.36)

For spin-1/2 fermions, the spin state must be s = 0, the antisymmetric combination in

1

2
⊗ 1

2
= 0A ⊕ 1S. (18.1.37)

We will explore this in more detail in the next two sections.

For any number N ≥ 2 bosons, one can have a completely symmetric position wavefunction

ψ(r1, r2, . . . , rN) = φ0(r1)φ0(r2)φ0(r3) · · ·φ0(rN ), (18.1.38)
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together with a symmetric spin state, with a total spin quantum number that is an even integer,

due to eq. (12.4.44). To minimize the energy, it is therefore favorable to simply maximize the

occupation number of the single-particle ground state, forming a Bose–Einstein condensate

with ground-state energy eigenvalue

E = NE0. (18.1.39)

The ground state in the occupation number notation is |N, 0, 0, . . .〉, where the ordering of

1-particle state labels is the same as for the energy eigenvalues.

However, forN ≥ 2 spin-1/2 fermions, at most two can be put into each spatial wavefunction,

due to the Pauli exclusion principle. So, one can assign two fermions to φ0 (with s = 0 for their

antisymmetric combined spin state), two more to φ1 (again with s = 0 for their spin state)

and so on. If N is even, then the last two fermions in an s = 0 state will occupy the φN
2
−1

wavefunction, while if N is odd then the last electron will have wavefunction φN−1

2

. The total

unperturbed energy for N fermions is therefore

E =

{
2E0 + 2E1 + · · ·+ 2EN

2
−1 (even N),

2E0 + 2E1 + · · ·+ 2EN−3

2

+ EN−1

2

(odd N).
(18.1.40)

One application of this counting is to the shell model for electrons in atoms. If one ignores

the electron-electron Coulomb repulsion, fine, and hyperfine interactions, and just considers

electrons as moving in a central potential, then each single particle state with eigenvalue En,l,m

for m = −l, . . . , l can be occupied by 2 electrons in an s = 0 state. So, in the ground state of

the multi-electron atom, the unperturbed energy level En,l can contain up to 2(2l+1) electrons.

We will explore this in more detail in section 18.4.

18.2 Wavefunctions and spin for two identical particles

In practice, the spin degrees of freedom often play a special role in specifying the orthobasis of

states for identical particles. As an example, consider a system of two electrons. We can write

the orthobasis kets as

|α1, α2〉 = |r1, m1, r2, m2〉, (18.2.1)

with possible values ±1/2 for each of the spin magnetic quantum numbers m1 and m2. The

total spin is S = S1 + S2, and the operator S2 has eigenvalues ~2s(s + 1) where s = 0, 1, while

the Sz eigenvalue ~mS can have mS = 0 (if s = 0) and mS = 1, 0,−1 (if s = 1). The state can

be specified in a hybrid form, with wavefunctions for the spatial degrees of freedom and kets for

the spin degrees of freedom, as

ψ0,0(r1, r2)χ0,0 +

1∑

mS=−1

ψ1,mS
(r1, r2)χ1,mS

. (18.2.2)
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Here χs,mS
is the orthobasis ket for a state with total spin quantum numbers (s,mS), so that in

terms of the product orthobasis kets,

χ0,0 =
1√
2
(|↑↓〉 − |↓↑〉) , (18.2.3)

χ1,1 = |↑↑〉, (18.2.4)

χ1,0 =
1√
2
(|↑↓〉+ |↓↑〉) , (18.2.5)

χ1,−1 = |↓↓〉. (18.2.6)

The pair-exchange operator separates into spatial and spin parts, as

P12 = P spatial
12 P spin

12 . (18.2.7)

The total spin singlet (s = 0) state is antisymmetric (eigenvalue −1 for P spin
12 ), while the total

spin triplet (s = 1) states are each symmetric (eigenvalue +1 for P spin
12 ). Since the total state

must be antisymmetric to describe identical fermions, we must have

ψ0,0(r1, r2) = ψ0,0(r2, r1), (18.2.8)

ψ1,mS
(r1, r2) = −ψ1,mS

(r2, r1). (18.2.9)

Thus ψ0,0 is a symmetric spatial wavefunction for the total spin singlet, and ψ1,mS
are three dis-

tinct antisymmetric spatial wavefunctions for the total spin triplets. In the context of the spatial

wavefunctions, “symmetric” (or “antisymmetric”) means eigenvalue +1 (or −1) for P spatial
12 . If

the operator S2 commutes with the Hamiltonian H , then they have common eigenstates, so one

can label the energy levels as either s = 1 or s = 0.

Suppose the two electrons are in a potential V (r) that is large in magnitude compared to

their Coulomb interaction with each other and any spin interactions, which we therefore neglect.

Then, in that approximation,

H =
1

2me
(P 2

1 + P 2
2 ) + V (R1) + V (R2), (18.2.10)

which could be the unperturbed Hamiltonian in a perturbative approach, and the Schrödinger

equation for the wavefunction ψ(r1, r2) is

[
− ~

2

2me
(∇2

1 +∇2
2) + V (r1) + V (r2)− E

]
ψ = 0. (18.2.11)

Let φa(r) be the wavefunction solutions to the single-particle eigenvalue differential equation

[
− ~

2

2me
∇2 + V (r)− Ea

]
φa(r) = 0. (18.2.12)
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Then, there are spin singlets (but not spin triplets) with energies E = 2Ea, and total spatial

wavefunctions

ψ0,0(r1, r2) = φa(r1)φa(r2). (18.2.13)

This will apply, for example, if Ea is the non-degenerate lowest eigenvalue for eq. (18.2.12), so

that, as already noted in the previous section, the ground state of the two-electron system is a

spin singlet state. Also, for each pair of distinct eigenfunctions φa(r) and φb(r) with eigenvalues

Ea and Eb, we have four energy eigenstates with E = Ea + Eb, with spatial wavefunctions

ψ0,0(r1, r2) =
1√
2
[φa(r1)φb(r2) + φb(r1)φa(r2)] , (s = 0), (18.2.14)

ψ1,mS
(r1, r2) =

1√
2
[φa(r1)φb(r2)− φb(r1)φa(r2)] , (s = 1, mS = 1, 0, −1), (18.2.15)

which are total spin singlets and triplets, respectively. The eigenvalues Ea may have degeneracies,

so that in the notation we are using here, Ea and Eb could be equal even if φa(r) and φb(r) are

distinct eigenfunctions.

For each of these possibilities, consider the probability to find one electron within a volume

d3r1 near r1 and the other within a volume d3r2 near r2. From Postulate 4 in section 3.1,

dP(r1, r2) = d3r1 d
3r2 |ψ(r1, r2)|2, (18.2.16)

where

|ψ(r1, r2)|2 =
1

2

(
|φa(r1)|2|φb(r2)|2 + |φb(r1)|2|φa(r2)|2 ± 2Re [φa(r1)φ

∗
b(r1)φb(r2)φ

∗
a(r2)]

)
,

(18.2.17)

with the + sign for spin-singlet states and the − sign for spin-triplet states. Note that for either

sign, eq. (18.2.17) is invariant under the exchange r1 ↔ r2.

The ± term in eq. (18.2.17) is known as the exchange density. As a consequence of it,

when the electrons are in the spin-triplet state, they avoid each other. To see this, note that the

probability density vanishes when r1 = r2, and therefore is small (by continuity) when r1 ≈ r2.

Conversely, in the spin-singlet state, the two electrons “attract”; there is an enhanced probability

density for r1 ≈ r2 due to constructive interference. This attraction and repulsion is not due to

any electromagnetic interaction or other Hamiltonian interaction between the identical fermions,

but rather due to the Fermi–Dirac statistics.

Electrons in Argonne are identical to those in Batavia. So, it is natural to wonder why do

we not need to worry about significant effects due to correlation effects from antisymmetrization

of wavefunctions belonging to very distant electrons. Suppose that we define normalized single-

particle stationary-state wavefunctions that are peaked in Argonne and Batavia, with very little
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overlap, so that φA(r) is insignificant outside of a small volume somewhere in Argonne, and

φB(r) is insignificant outside of a small volume in Batavia, and therefore

φA(r)φB(r) ≈ 0 (18.2.18)

everywhere. The total wavefunction is

ψ(r1, r2) =
1√
2

[
φA(r1)φB(r2)± φB(r1)φA(r2)

]
, (18.2.19)

where the + sign applies for spin singlets and the − sign for spin triplet states. Note that there

is no sense in which the electron labeled 1 is nearer to Argonne, or nearer to Batavia; it is always

equally likely to be found in either place.

Now we can ask: what is the probability of seeing an electron within an infinitesimal volume

d3r near r? The answer is

dP(r) = d3r

∫
d3r2 |ψ(r, r2)|2 + d3r

∫
d3r1 |ψ(r1, r)|2. (18.2.20)

The first term is the probability that the electron labeled 1 is near r, summed over all possible

electron 2 positions, and the second term is the same with 1↔ 2. This can be rewritten as

dP(r) = d3r

(
|φA(r)|2

∫
d3x |φB(x)|2 + |φB(r)|2

∫
d3x |φA(x)|2

± 2Re

[
φA(r)φB(r)

∗
∫
d3xφA(x)

∗φB(x)

])
. (18.2.21)

The important point is that the last term with ± is (doubly!) negligible, because of eq. (18.2.18).

In each of the first two terms, the integral is 1 by the assumed normalization, so

dP(r) = d3r
(
|φA(r)|2 + |φB(r)|2

)
(18.2.22)

to a very good approximation. This shows that, despite the form of the wavefunction in

eq. (18.2.19), and despite the fact that our labeling 1, 2 of the electrons did not distinguish ei-

ther one as being “the electron in Batavia”, the probability density decouples into two separate

contributions with negligible interference, for sufficiently separated identical particle wavefunc-

tions. It is the lack of wavefunction overlap for single-particle (approximate) stationary states

that enforces the decoupling, not the electron labels. The same type of argument applies to the

decoupling of expectation values of observables, including the Hamiltonian. When in Batavia,

we can usually ignore electrons in Argonne, and vice versa.

Suppose that two identical particles are bosons; let us consider the cases of spin 0 and spin

1. For spin 0, the spin degrees of freedom are trivial, and in place of eq. (18.2.2) we have simply

a symmetric wavefunction

ψ0,0(r1, r2) = ψ0,0(r2, r1). (18.2.23)
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The case of spin 1 bosons is more interesting, because the two individual spins can combine to

form nine different total spin states χs,mS
, with s = 0, mS = 0 and s = 1, mS = 1, 0,−1 and s =

2, mS = 2, 1, 0,−1,−2. By the addition of angular momentum method discussed in section 12.4,

one can write these in terms of the product orthobasis kets |ms1 : ms2〉, where the eigenvalues

of the individual spin operators S1z and S2z are ~ms1 and ~ms2, with ms1 , ms2 = −1, 0, 1. The
total spin S2, Sz eigenstates are, from eqs. (12.4.34)–(12.4.42),

χ2,±2 = |±1 : ±1〉, (18.2.24)

χ2,±1 =
1√
2

(
|±1 : 0〉+ |0 : ±1〉

)
, (18.2.25)

χ2,0 =
1√
6

(
|1 : −1〉+ 2|0 : 0〉+ |−1 : 1〉

)
, (18.2.26)

χ1,±1 =
1√
2

(
|±1 : 0〉 − |0 : ±1〉

)
, (18.2.27)

χ1,0 =
1√
2

(
|1 : −1〉 − |−1 : 1〉

)
, (18.2.28)

χ0,0 =
1√
3

(
|1 : −1〉 − |0 : 0〉+ |−1 : 1〉

)
. (18.2.29)

These expressions show that χs,mS
has P spin

12 eigenvalue equal to (−1)s. This same fact can be

expressed in the shorthand form for addition of angular momentum

1⊗ 1 = 2S ⊕ 1A ⊕ 0S. (18.2.30)

where the subscripts S,A indicate symmetry or antisymmetry under exchange of the two spins.

Therefore, the total state for two identical spin-1 bosons is, again in a hybrid notation with

wavefunctions for spatial degrees of freedom and kets for spin degrees of freedom,

Ψ = ψ0,0(r1, r2)χ0,0 +
1∑

mS=−1

ψ1,mS
(r1, r2)χ1,mS

+
2∑

mS=−2

ψ2,mS
(r1, r2)χ2,mS

. (18.2.31)

This contains nine component wavefunctions satisfying

ψs,mS
(r1, r2) = (−1)sψs,mS

(r2, r1). (18.2.32)

The position wavefunction for the total spin 0 and 2 states are symmetric, and the position

wavefunctions for total spin 1 are antisymmetric, under exchange of the boson labels.

18.3 Excited states of the helium atom

The binding energy of the ground state of the two-electron helium atom was studied in sections

15.3 and 16.4. In doing so, we ignored the spin degrees of freedom, as well as the fact that the
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electrons are identical particles. This is now seen to be justified by the fact that the electrons

can arrange themselves into a total spin s = 0 state. Then the total spatial wavefunction is the

symmetric ψ0,0(r1, r2) = ψ0,0(r2, r1) appearing in eqs. (18.2.2), (18.2.8), and (18.2.13), just as we

had assumed (without bothering to justify it in detail) in sections 15.3 and 16.4. As we found

in section 16.4, the helium ground state spatial wavefunction is approximately just that of the

product of two identical 1s hydrogen-like states with Zeff ≈ 1.7. The ground state of helium does

not have a counterpart with total spin s = 1, because that would force the spatial wavefunction

to be antisymmetric under exchange of the two electron levels, which is inconsistent with it

being the product of two identical lowest-energy single particle states.

However, for the excited states of helium, we must explicitly take into account both spin and

the Fermi–Dirac statistics of the electrons. The Hamiltonian is once again given by eqs. (15.3.1)–

(15.3.3). We can start by neglecting the H12 = e2/|r1 − r2| interaction Hamiltonian, and later

include it as a perturbation. Consider the spatial wavefunctions that can be formed from the

individual Z = 2 hydrogen-like states, with one electron in the ground state (1s) and the other

in a higher level, 2s or 2p or 3s or 3p or 3d or 4s, etc.:

ψ(r1, r2) =
1√
2
[φ1,0,0(r1)φn,l,m(r2)± φ1,0,0(r2)φn,l,m(r1)] . (18.3.1)

Here, if the + sign applies, then the spatial wavefunction is symmetric, and so the total-spin

state must have s = 0; these are called para-helium states. (The ground state is also a para-

helium state.) Conversely, if the − sign applies, then the spatial wavefunction is antisymmetric,

and so the total-spin state must be symmetric with s = 1; these are called ortho-helium states.

For both of these, the unperturbed energy eigenvalues of H0 = H1 +H2 are

En,l,m = −Z
2e2

2a0

(
1 + 1/n2

)
. (18.3.2)

Now, treating H12 as a perturbation, we obtain the first-order energy correction

E
(1)
n,l,m = 〈ψ|H12 |ψ〉 = e2 (In,l,m ± Jn,l,m) , (18.3.3)

where the + sign applies to para-helium (s = 0) and the − sign to ortho-helium (s = 1), and

In,l,m =

∫
d3r1

∫
d3r2 |φ1,0,0(r1)|2 |φn,l,m(r2)|2

1

|r1 − r2|
, (18.3.4)

Jn,l,m =

∫
d3r1

∫
d3r2 φ1,0,0(r1)φ1,0,0(r2)φn,l,m(r1)φn,l,m(r2)

∗ 1

|r1 − r2|
. (18.3.5)

Here In,l,m, which is manifestly real and positive, is called the “direct integral”, while Jn,l,m is

called the “exchange integral”. We will not evaluate them explicitly, but it is worth knowing

that Jn,l,m is also real and positive, but smaller in magnitude than In,l,m. (The example of
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n, l,m = 2, 0, 0 is left to Exercise 18.4.) This shows that each ortho-helium (s = 1) state is always

lower in energy than the corresponding para-helium (s = 0) state. A way of understanding this

qualitatively is to note that in the s = 0 combination with antisymmetric spins, the symmetric

spatial wavefunction results in a higher electrostatic repulsion between the two electrons, due to

their greater wavefunction overlap, than for the s = 1 combination with antisymmetric spatial

wavefunction.

For s = 0, the total angular momentum quantum number j is the same as the orbital

angular momentum of the excited electron state, l. For l = 0, j is the same as s. For s = 1

and l ≥ 1, one can instead have j values l − 1, l, or l + 1. A sketch of the observed energy

levels for the lowest few states of the neutral helium atom is shown in Figure 18.3.1, classified by

their unperturbed quantum numbers on the left, and by their 2s+1lj angular momentum labels

on the right. The excited states are each split into s = 0, para-helium (upper) and s = 1,

ortho-helium (lower) levels. Transitions between para-helium states and ortho-helium states are

highly suppressed, because they require spin flips, so to a good approximation they form two

distinct sets of spectral lines. For this reason it was thought by early investigators that they

might actually be two separate kinds of helium.

Each of the ortho-helium levels with l > 1 is split by small fine-structure effects into its

separate j = l− 1, l and l+1 states. These splittings are not shown in Figure 18.3.1, but move

the states with larger j slightly lower in energy. We will discuss this in the next section in the

more general context of multi-electron atoms.

Regarding hyperfine effects, the helium nucleus exists in two stable isotopes. Almost all

naturally occurring helium nuclei are 4He, a boson with spin 0. A spin-0 particle has no special

direction in its rest frame, and therefore cannot have a magnetic moment or electric quadrupole

moment, so 4He atoms have no hyperfine splitting. A small fraction of naturally occurring

helium nuclei are 3He, a fermion with spin 1/2. The 3He atomic states with a given j are

therefore further split by the hyperfine contribution.
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He+ ion, 1s, −54.42 eV

(1s)(1s) 1S0, −79.01

(1s)(2s)
3S1, −59.19

1S0, −58.39

(1s)(3s)
3S1, −56.29

1S0, −56.09

(1s)(2p)
3P0,1,2, −58.05

1P1, −57.79

(1s)(3p)
3P0,1,2, −56.00
1P1, −55.92 (1s)(3d)

3D1,2,3, −55.94
1D2, −55.94

Figure 18.3.1: The lowest few energy levels of the neutral helium atom, with electron con-
figurations, 2s+1lj spectroscopic notations, and energies in eV. Relative energies spacings are
indicated qualitatively, but not to scale. The ground state has both electrons in the lowest
energy level n = 1 and opposite spins (s = 0, para-helium). The remaining states have one
electron in the lowest level 1s and one in an excited energy level n > 1, and are split into
para-helium (upper, blue lines, s = 0) and ortho-helium (lower, red lines, s = 1) states.
Would-be states with both electrons in an excited level are above the ground-state energy
of the He+ ion, shown as the dashed line, for which one electron is in the ground state and
the other has been completely ionized away. Not shown are other states with (1s)(4s) and
(1s)(4p) etc., which fall below the dashed line and asymptotically approach it for large n
for one electron. Small fine structure effects, also not shown, split the ortho-helium levels
3P0,1,2,

3D1,2,3, etc., into their different j components, with larger j slightly lower in energy.

18.4 Multi-electron atoms

Consider the problem of finding the energy eigenstates for multi-electron atoms. To a good

approximation, the Hamiltonian depends on the nonrelativistic kinetic energy of the electrons,

their electrostatic attraction to the nucleus, their pairwise electrostatic repulsion, and the cou-

plings between the electron spins and their angular momenta. These effects alone are enough

to provide a challenge that we cannot hope to solve exactly, and approximation methods must

be used. In the following, we will not consider other, usually smaller, effects, including the

contributions due to the relativistic correction to the electron kinetic energies, Darwin terms,
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and hyperfine contributions due to the magnetic dipole and electric quadrupole moments of the

nucleus. These can be added as further perturbations.

One way to make progress is the central-field method. We invent a central potential U(r),

a rotationally invariant function (of the radial coordinate only) that is chosen to approximate the

electrostatic potential seen by an electron at a given point due to the nucleus and the suitably

averaged effects of the other electrons. Although it is not easy to make a rigorous definition of

“suitably averaged”, there are motivated techniques for estimating U(r) by iteration (notably the

Hartree and Hartree–Fock approximations, due to Douglas Hartree and improved by Vladimir

Fock) that will not be discussed here. In any case, the choice of U(r) is arbitrary, in principle,

because we can add it to one part of the Hamiltonian (the unperturbed part, or the part used

to define trial states for use with the variational principle) and subtract it from another (the

perturbation part), so that the total Hamiltonian does not depend on it.

More specifically, we can write the approximate Hamiltonian as

H = H0 +W +HSO, (18.4.1)

H0 =

Ne∑

i=1

(
P 2
i

2me
+ U(Ri)

)
, (18.4.2)

W =
Ne∑

i=1

(
−U(Ri)−

Ze2

Ri

+
i−1∑

j=1

e2

|Ri − Rj |

)
, (18.4.3)

HSO =

Ne∑

i=1

Si · Λi. (18.4.4)

This Hamiltonian is invariant under the exchange of any two electrons, as it must be. In the

spin-orbit term eq. (18.4.4),

Λi = − e

2m2
ec

2

(
∇Φi

)
× Pi (18.4.5)

where the electric potential seen by the ith electron is

Φi(Ri) =
Ze

Ri
−
∑

j 6=i

e

|Ri −Rj |
. (18.4.6)

The contribution to the spin-orbit interaction HSO from each electron generalizes the case of a

spherically symmetric potential in eq. (17.1.4), and for hydrogen in eq. (17.1.16), which would

be recovered for Φ = e/R. Note that there is no operator ordering problem associated with the

placement of Pi in eq. (18.4.5), because of the vector calculus identity ∇× (∇Φ) = 0. We have

distinguished the number of protons in the nucleus Z from the number of electrons Ne, so that

the formulas apply to charged ions as well as neutral atoms.
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U(r)

r

Figure 18.4.1: The solid line shows the qualita-
tive shape of a choice for the central-field potential
energy function U(r) for the electrons in a neu-
tral atom with Ne = Z = 10. The upper dashed
and lower dashed lines show the potentials −e2/r
(maximally screened by 9 electrons closer to the
nucleus) and −10e2/r (no screening, all electrons
farther from the nucleus), respectively.

One should aim to choose U(R) in such a way that the eigenstates of H0 are as close as

possible to those of the full Hamiltonian. A reasonable choice might interpolate between

U(r) ≈
{ −Ze2/r (small r),

−(Z −Ne + 1)e2/r (large r).
(18.4.7)

The idea behind this choice is the principle from classical electrostatics, following from Gauss’

Law, that the electric field and electric potential at a point r in a spherically symmetric charge

distribution are both determined only by the total charge contained within r. Thus, at small r

there is no screening of the charge +Ze nuclear potential due to other electrons, because they

are likely to be found farther from the nucleus, while at large r the other Ne − 1 electrons are

all likely to be closer to the nucleus and so the effective number of charges seen by an outermost

very distant electron is only Z−Ne+1. A sketch of a plausible choice of U(r) is shown in Figure

18.4.1, compared to the asymptotic limits of no screening at small r and maximum screening

at large r. A choice of U(r) should be justified a posteriori by the successful convergence of

perturbation theory or the variational method.

The single-electron eigenstates of the central-field Hamiltonian H0, called orbital states or

orbitals, will have wavefunctions of the form

φn,l,ml,ms(r, θ, φ) = RU
n,l(r)Y

ml
l (θ, φ)χms, (18.4.8)

where χms = |↑〉 or |↓〉 for the spin states. The radial wavefunctions RU
n,l(r) will not be the same

as for a hydrogen-like atom, because U(r) is not proportional to 1/r. However, they will be

qualitatively similar. In particular, the label n is a positive integer, and then 0 ≤ l ≤ n−1, with

n−l−1 equal to the number of radial zeros for r > 0. In general, the orbital energy eigenvalues of

H0 will increase with n, but will also depend on l, unlike hydrogen-like atom energy eigenstates.

The unperturbed eigenstates of H0 will be Slater determinants formed out of Ne states of the

form of eq. (18.4.8). Then the effects of W and HSO can be added as perturbations.
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The set of orbitals with the same values of n are called a shell, and those with the same

values of both n and l are called a subshell. Each subshell consists of

gsubshelln,l = 2(2l + 1) (18.4.9)

states, due to the ms and ml quantum numbers. (This neglects any further degeneracy due to

nuclear spins, which are different for distinct isotopes of the same element.) The orbital states

and subshells are labeled nl, but with l = 0, 1, 2, 3, . . . replaced by the spectroscopic code letter

s, p, d, f, . . ., just as for the hydrogen atom states. The state of a given atom can be specified

by giving the occupation numbers of each subshell, called the electron configuration, subject

to the Pauli exclusion principle, enforced by the Slater determinant, that we cannot put two

electrons in the same state due to their Fermi–Dirac statistics. Using eq. (18.4.9), the maximum

number of electrons in an s, p, d, f subshell is 2, 6, 10, 14, respectively. For a given l, smaller n

tends to have lower energy, but this does not always mean that the subshells fill up from smaller

to larger n, as we will soon see. For a given n, the states with smaller l tend to have lower

energies. The reason is that wavefunctions with smaller l have support closer to the nucleus,

where the attractive force of the nucleus is less screened by the other electrons in the complete

subshells.

The 1s shell can fit up to 2 electrons, and so is the only shell necessary for H and He, but is

insufficient to accommodate larger Z atoms. The next to fill is the 2s subshell, which again fits

up to 2 electrons, and so is the last subshell needed for Li and Be. The 2p subshell fills next,

and can fit up to 6 electrons, so it is enough to accommodate the neutral atoms with Z up to

10, namely B, C, N, O, Fe, and Ne. Likewise, the 3s subshell accommodates the last electron

for Na and Mg, while the 3p subshell is used for Al, Si, P, S, Cl, Ar. However, the 4s subshell

tends to fill before the 3d subshell, in K, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, and Zn. This tendency

has two exceptions; within this sequence from Z = 19 to Z = 30, Cr and Cu break the trend,

by having only one electron in the 4s subshell, with the 3d subshell containing the other five

and ten electrons, respectively.

The subshell filling order for multi-electron atoms is, empirically,

1s, 2s, 2p, 3s, 3p,

(
4s
3d

)
, 4p,

(
5s
4d

)
, 5p,




6s
4f
5d



 , 6p,




7s
5f
6d



 , (18.4.10)

where the cases in parentheses correspond to ambiguities due to close energies, with the most

common (but not universally followed) filling order from top to bottom. The fact noted earlier

that smaller l tends to give lower energy for a given n explains why 2s fills before 2p, and why

the 4s can compete with the 3d, and the 5s can compete with the 4d, etc.
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Some example electron configurations are

H: 1s1, He: 1s2, Li: 1s2 2s1, C: 1s2 2s2 2p2,

N: 1s2 2s2 2p3, Na: 1s2 2s2 2p6 3s1,

Hg: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10.

The chemical properties of a given element are mostly dependent on the electron configuration,

and the similarities between elements in a given column of the periodic table are due to having

similar configurations of electrons in the outermost (partially filled) subshells.

The inert (noble) gases He, Ne, Ar, Kr, Xe, Rn are those that have a full p subshell, and all

previous subshells filled, leading to a very low tendency to form chemical bonds. (The p subshells

are special, because the next higher energy subshell is always s. This means a big energy gap

to excite an electron out of a p subshell.) It is common to give the electron configuration for

any element by just listing the filled orbitals in excess of that for the previous inert gas. For

example, for the inert gases themselves, one can write the electron configurations as

He: 1s2, Ne: [He]2s2 2p6, Ar: [Ne]3s2 3p6, Kr: [Ar]4s2 3d10 4p6,

Xe: [Kr]5s2 4d10 5p6, Rn: [Xe]6s2 4f 14 5d10 6p6.

For the alkali metals, there is an s subshell with only one electron,

Li: [He]2s1, Na: [Ne]3s1, K: [Ar]4s1,

Rb: [Kr]5s1, Cs: [Xe]6s1, Fr: [Rn]7s1,

while the halogens are all missing 1 electron in a p subshell,

F: [He]2s2 2p5, Cl: [Ne]3s2 3p5, Br: [Ar]3d10 4s2 4p5,

I: [Kr]4d10 5s2 5p5, At: [Xe]4f 14 5d10 6s2 6p5.

A good periodic table of the elements will give the electron configuration for the atomic ground

state of each element.

The energy needed to remove a single electron from the ground state of a neutral atom is

called the first-ionization energy. Experimental results for the first-ionization energy as a

function of the atomic number Z are shown in Figure 18.4.2, including as the first two data

points 13.6 eV for H and 24.6 eV for He. (Note that the result for He can be obtained from

numbers given in Figure 18.3.1.) Because of the shielding of the nuclear charge by the innermost

electrons, the results do not depend very strongly on Z; the outermost electrons are attracted

to the nucleus as if they “see” a reduced net charge of order e rather than the full nuclear charge
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Figure 18.4.2: The energy (in eV) needed to remove a single electron from the ground state
of a neutral atom, as a function of the atomic number Z. Atoms with the same highest-
energy subshells (1s, 2s, 2p, 3s, . . . ) are connected by lines to guide the eye, as labeled. The
inert gas elements (He, Ne, Ar, Kr, Xe, Rn) each have completely filled s- and p-subshells
and thus a large first-ionization energy, while the alkali metal atoms (Li, Na, K, Rb, Cs, Fr)
each have a lone s-subshell electron and a small first ionization energy.

Ze. The first-ionization energies are largest for the inert gases, and are smallest for alkali metals,

which each have a single, relatively weakly bound, s-subshell electron available for ionization.

A more complete specification of the structure of the atoms will include information about the

angular momentum quantum numbers. Suppose that we can treat the spin-orbit contribution

to the Hamiltonian HSO as small compared to H0 +W in eqs. (18.4.1)–(18.4.4). In practice,

this is especially likely to be a good approximation if Z is not too large. Now, all three of the

summed orbital, summed spin, and total angular momentum operators

L =

Ne∑

i=1

Li, S =

Ne∑

i=1

Si, J = L+ S (18.4.11)

commute with H0 (as well as W ). One can therefore choose unperturbed orthobasis states

that are not only eigenstates of H0, but also eigenstates of the operators L2, S2, Lz and Sz

with eigenvalues ~
2L(L + 1), ~2S(S + 1), ~mL, and ~mS respectively. These states also carry

other quantum number labels (including the unperturbed H0 energy eigenvalue) which we will

symbolically denote as N , so that the states are labeled

|NLSmLmS〉 . (18.4.12)
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The H0 energy eigenvalues have energy degeneracy gN = (2S +1)(2L+1), due to the magnetic

quantum numbers mL, mS. Alternatively, one can choose as an orthobasis the linear combina-

tions of the same unperturbed states that are eigenstates of H0, S
2, L2, and J2 [with eigenvalue

~
2J(J + 1)], and Jz (with eigenvalue ~mJ),

|NLSJmJ〉 =
∑

mL,mS

CLSJ
mLmSmJ

|NLSmLmS〉 , (18.4.13)

where CLSJ
mLmSmJ

are the Clebsch–Gordan coefficients. The total number of such states for

fixed N,L, S is again (2S + 1)(2L + 1). The approximation in which the states constructed

in this way from eigenstates of H0 (or perhaps H0 +W ) are close to being eigenstates of the

full Hamiltonian is called the LS coupling (or Russell–Saunders coupling, after Henry

N. Russell and Frederick Saunders) approximation. Note that this approximation is only good

to the extent that HSO can be treated as small, since it does not commute with S2 or L2 if there

is more than one electron.

We now investigate the spin-orbit fine-structure energy corrections, using degenerate pertur-

bation theory. To do so, we must find the matrix elements of HSO on the degenerate subspaces of

H0, and diagonalize it. We start by working with the product orthobasis kets, which decompose

into linear combinations of tensor products of orbital and spin angular momentum eigenkets,

|NLSmLmS〉 =
∑

α,β

cα,β |αNLmL〉 ⊗ |βSmS〉 . (18.4.14)

Here α is a degeneracy label whose presence reflects the fact that there can be more than one

state with eigenvalues L,mL, and similarly β labels the different spin states with eigenvalues

S,mS. The whole state |NLSmLmS〉 is a Slater determinant incorporating the antisymmetry

under interchange of any two electrons. This puts constraints, which we will not explicitly

identify or make use of, on the coefficients cα,β.

The matrix elements of HSO from eq. (18.4.4) on the degenerate subspace of states are

〈NLSm′Lm′S|HSO|NLSmLmS〉 =

∑

α,β

∑

α′,β′

cα,βc
∗
α′,β′

Ne∑

i=1

〈α′NLm′L|Λi|αNLmL〉 · 〈β ′Sm′S|Si|βSmS〉 . (18.4.15)

Electrons in complete subshells can be omitted, because pairs of opposite spin expectation

values with the same orbital quantum numbers will always cancel in the sum over i. Now we

will invoke the Landé projection formula, eq. (13.2.10), twice. First, note that each Λi is a vector

operator with respect to the total orbital angular momentum operator L, without involving spin.

Therefore, for L 6= 0, we have

〈α′NLm′L|Λi|αNLmL〉 = 〈Lm′L|L|LmL〉
〈α′NL‖L · Λi‖αNL〉

~2L(L+ 1)
. (18.4.16)
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As noted in Theorem 13.2.2, for the case L = 0, the matrix element simply vanishes, and there

is no spin-orbit splitting. Similarly, each of the individual electron spin operators Si is a vector

with respect to rotations generated by the total spin angular momentum operator S, without

involving orbital angular momentum, so we can write, for S 6= 0,

〈β ′Sm′S|Si|βSmS〉 = 〈Sm′S|S|SmS〉
〈β ′S‖S · Si‖βS〉

~2S(S + 1)
. (18.4.17)

while for S = 0 the matrix element again vanishes. Therefore, putting things together,

〈NLSm′Lm′S|HSO|NLSmLmS〉 = ζ(N,L, S) 〈LSm′Lm′S|S · L|LSmLmS〉 , (18.4.18)

where the factor

ζ(N,L, S) =
∑

α,β

∑

α′,β′

cα,βc
∗
α′,β′

Ne∑

i=1

〈α′NL‖L · Λi‖αNL〉
~2L(L+ 1)

〈β ′S‖S · Si‖βS〉
~2S(S + 1)

(18.4.19)

may be quite difficult to evaluate exactly, but has the important property that it does not

depend on the magnetic quantum numbers mL, mS, m
′
L, m

′
S at all, because the reduced matrix

elements 〈α′NL‖L · Λi‖αNL〉 and 〈β ′S‖S · Si‖βS〉 do not. For a given atom, ζ(N,L, S) can,

in principle, be evaluated, perhaps in approximations such as replacing the electric potential

Φi(Ri) in eq. (18.4.5) by a spherically symmetric approximation. This is beyond our scope here;

we will merely consider it to be an empirical function of N,L, S.

Equation (18.4.18) shows that the matrix elements of HSO are proportional to those of

S · L = ~
2(J2 − L2 − S2)/2, where J2, L2 and S2 are understood to be operators. To properly

conduct degenerate perturbation theory, we should switch to the orthobasis |NLSJmJ〉, in

which this operator is diagonal. We therefore arrive at a formula for the spin-orbit correction

to the energies, at first order in degenerate perturbation theory,

∆E(N,L, S, J) = ζ(N,L, S)~2
[
J(J + 1)− L(L+ 1)− S(S + 1)

]
/2, (18.4.20)

where J , L, and S are now numbers. This vanishes in the special cases L = 0 (which then

implies J = S) and S = 0 (which then implies J = L), consistent with observations already

made in the previous paragraph. Equation (18.4.20) shows that the degeneracy (2S+1)(2L+1)

is partially broken by HSO, but states with a given J are not split, with remaining degeneracies

gJ = 2J + 1, since ∆E(N,L, S, J) does not depend on mJ .

We can now use eq. (18.4.20) to obtain a simple formula for the energy differences between

successive eigenvalues J−1 and J , for fixed N , L, and S,

∆E(N,L, S, J) − ∆E(N,L, S, J−1) = ~
2ζ(N,L, S)J. (18.4.21)
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This result, that the spin-orbit fine-structure energy splitting between states J and J−1 with

fixed N,L, S is proportional to J , is called the Landé interval rule, as observed in spectral

lines from transitions between atomic states. It can be used as a check of the validity of the LS

coupling scheme approximation.

The preceding discussion shows how, within the LS coupling approximation, energy eigen-

states can be built by first adding all of the spins, then adding all of the orbital angular momenta,

and then adding the two to get the total angular momentum. The angular momentum quantum

numbers of these states are then traditionally specified with the term symbol

2S+1LJ = Russell–Saunders (LS) spectroscopic notation, (18.4.22)

where the eigenvalues of operators J2, S2, and L2 are numbers ~
2J(J + 1), ~2S(S + 1), and

~
2L(L + 1), respectively, and then the value of L is replaced by its spectroscopic code S, P,D,

F,G,H, . . . for L = 0, 1, 2, 3, 4, 5, . . .. Thus, for example, the hydrogen and helium atom ground

states are given as 2S1/2 and
1S0, respectively. Many editions of the periodic table of elements list

the Russell–Saunders notation for the atomic ground states along with the electron configuration.

The list of possible term symbols 2S+1LJ of an atom can be obtained from looking only at the

valence electrons, the ones in the incompletely filled subshells. This is because each electron

in a filled subshell with a given ms, ml, and mj always has a partner with the opposite values

of those quantum numbers, giving no net contribution to S, L, and J . The parity of the state

is useful for selection rules for transitions. From eq. (8.7.7), it is π = (−1)
∑

i li, where li are

the individual orbital angular momenta, specified by the electronic configuration. [Note that for

orbitals the parity is defined with respect to the fixed nucleus as the origin, not the center of

mass of the valence electrons, so even for two electrons π is not necessarily equal to (−1)L.]
For an atom with a partly filled subshell, there may be several candidates for the ground

state term symbol. Three empirical rules, known as Hund’s Rules after Friedrich Hund, can

be used to predict which the ground state will be, given the electron configuration. They are:

Hund’s Rule 1: The L, S, J multiplet with the lowest energy will have the largest S from

among the candidates.

(Qualitative justification: for larger S, the spin wavefunction is more symmetric, which

means the spatial wavefunction is more antisymmetric, which means the electrons are less

often near each other, which gives less repulsive forces between them, and so lower energy.

We have already seen this effect in action; it is why each ortho-helium S = 1 state is lower

in energy than its para-helium S = 0 counterpart.)

Hund’s Rule 2: If there are two or more candidates selected by the first rule that have the

same largest S, then the lowest energy will have the largest L among them.
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(Qualitative justification: larger L means that the orbital wavefunctions can be arranged

to have less overlap, again leading to smaller repulsive forces and thus lower energy.)

Hund’s Rule 3: If there are two or more candidates selected by the first two rules with

the same S and L, then the spin-orbit coupling splits apart the different levels of J =

|L−S|, . . . , L+S. If an incomplete subshell is not more than half-filled, then the ground

state has J = |L−S|, otherwise the ground state has J = L+S.

(Qualitative justification: the form of eq. (18.4.20) immediately tells us that for fixed L, S,

the minimum energy will occur for one of the two extremes for J , either |L−S| or L+S.
Hund’s Rule 3 is equivalent to the empirical fact that ζ(N,L, S) in eq. (18.4.20) turns out

to be positive if the subshell is not more than half-filled, and negative otherwise.)

We now illustrate the prediction of term symbols and ground states, using Hund’s rules where

necessary, with examples from the beginning of the periodic table. For the first four elements,

Hund’s rules are not needed.

Hydrogen (H, Z = 1) has electron configuration 1s1. Because there is one electron with

S = 1/2 and L = 0, the only possibility is J = 1/2, and the term symbol is 2S1/2.

Helium (He, Z = 2) has electron configuration 1s2. As always when there are no partially

filled subshells, the ground state is 1S0. The same result is obtained for all inert (noble) gases.

Lithium (Li, Z = 3) has electron configuration 1s2 2s1. Just as for hydrogen, there is one

electron that is not in a filled subshell, with S = 1/2 and L = 0, so the term symbol is 2S1/2.

The same applies for all alkali metals, the elements in the same periodic table column as Li,

which have a single s subshell electron.

Beryllium (Be, Z = 4) has electron configuration 1s22s2, with only completely filled subshells,

so the ground state is 1S0. The same applies for all elements in the Be periodic table column.

Boron (B, Z = 5) has electron configuration 1s2 2s2 2p1. Here, the 1s and 2s subshells are

irrelevant, since they are completely filled. In the incomplete 2p subshell, we have one electron

with L = 1 and S = 1/2. Since this is the only choice, we do not need Hund’s rules 1 or 2. The

possible candidates have J = 1/2 and J = 3/2, with term symbols 2P1/2 and 2P3/2. Because

the last incomplete subshell is less than half filled (1 out of 6), Hund’s rule 3 tells us that the

ground state has J = |L− S| = 1/2 and is 2P1/2. The same result is obtained for all elements

in the B column of the periodic table, which have a single p electron.

Carbon (C, Z = 6) has electron configuration 1s2 2s2 2p2. We start by computing the total

number of allowed states associated with the incomplete 2p subshell. The 2 electrons have 6

orbital states from which to choose. In general, the number of ways of choosing k things from
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n possibilities, without regard to order, is equal to the binomial coefficient

(
n
k

)
=

n!

k! (n− k)! . (18.4.23)

So in our present case there are (6 · 5)/(2 · 1) = 15 completely antisymmetric states. Now,

let us see how these 15 states are divided into 2S+1LJ multiplets. Combining the two spin-

1/2’s gives S = 0 (the antisymmetric combination) and S = 1 (the symmetric combination).

Combining the two orbital angular momenta, each with l = 1, gives L = 0 (symmetric), and

L = 1 (antisymmetric), and L = 2 (symmetric). Therefore, requiring that the full state be

antisymmetric under exchange of the two electrons, we have the following allowed combinations.

First, there is L = 2, S = 0, which implies J = 2. This possibility 1D2 consists of 2J + 1 = 5

states. Second, there is L = 1, S = 1, which allows J = 0, 1, 2, so the terms are 3P0,
3P1, and

3P2, with 1, 3, and 5 states respectively. Third, there is L = 0, S = 0, which of course allows

only one state, 1S0 with J = 0. As a check, the total of these possibilities is indeed 15. Now

we are ready to use Hund’s rules. Hund’s rule 1 selects the largest possible value of S, which

is S = 1. Hund’s rule 2 tells us nothing, because the remaining competitors all have L = 1.

Finally, for Hund’s rule 3, we note that the 2p subshell is not more than half-filled (2 out of 6),

so that J = |L− S| = 0 in the ground state. We therefore have S = 1, L = 1, J = 0, and the

ground state of carbon is 3P0. The same logic and result applies to all elements in the C column

of the periodic table, which have two p electrons.

Nitrogen (N, Z = 7)has electron configuration 1s2 2s2 2p3. The total number of possible

electron states associated with the three electrons in the 2p subshell is (6 · 5 · 4)/(3 · 2 · 1) = 20

antisymmetric states. To see which L, S, J combinations these correspond to, first consider the

combination of the orbital angular momenta, which gives 1⊗ 1⊗ 1 = 0⊕ 1⊕ 1⊕ 1⊕ 2⊕ 2⊕ 3

for the possible values of L. If L = 3, one can check that the spatial wavefunction constructed

by addition of angular momentum would be totally symmetric under exchange of the electron

labels, but there is no totally antisymmetric spin state for ≥ 3 electrons; we conclude from this

that L cannot be 3. If L = 0, then the spatial wavefunction is instead totally antisymmetric,

from which we conclude that the spin state must be totally symmetric, so S = 3/2. Conversely,

if S = 3/2, then only the totally antisymmetric L = 0 combination is allowed. We conclude

that the only (L, S) combinations that are allowed are L = 0, S = 3/2 with J = 3/2 (term
4S3/2, 4 states), and L = 1, S = 1/2 with J = 1/2 and 3/2 (terms 2P1/2 and

2P3/2, 6 states), and

L = 2, S = 1/2 with J = 3/2 and J = 5/2 (terms 2D3/2 and
2D5/2, 10 states). As a check, these

indeed add up to 20 states. Hund’s rule 1 tells us that the ground state should have maximal

S, which selects the L = 0, S = 3/2, J = 3/2 combination. This is the only one that realizes

that maximal value of S, so the other two Hund’s rules are not needed, and the ground state
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term is 4S3/2. The same logic and result applies to all elements in the N column of the periodic

table, which have three p electrons.

Oxygen (O, Z = 8)has electron configuration 1s2 2s2 2p4. As in the previous examples,

we start by doing the counting of the total number of physical antisymmetric electron states

for the incomplete subshell. Since there are 4 electrons and 6 available states, that number is

(6 · 5 · 4 · 3)/(4 · 3 · 2 · 1) = 15. However, as a useful trick it is better to consider the 2 “holes”,

by which we mean the electrons omitted from the completely filled 2p subshell. Treating the

holes as equivalent spin-1/2 particles, we again obtain (6 · 5)/(2 · 1) = 15 states. A complete

2p subshell would have L = S = 0, so we treat the 2 holes as carrying the same S and L as

the 4 electrons. So, the allowed candidate multiplets are the same as we found for carbon with

2p2, namely (L, S, J) = (2, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), and (0, 0, 0), with term symbols 1D2,
3P0,

3P1,
3P2, and

1S0. Hund’s rule 1 says the ground state has S = 1, and Hund’s rule 2 does

not differentiate between the remaining candidates which all have L = 1. To apply Hund’s

rule 3, we note that the 2p subshell is now more than half-filled with electrons (4 out of 6),

so J = L + S = 2 for the ground state. (Note that this is the difference between carbon and

oxygen; although the enumeration of the candidate terms is easier in terms of the holes, Hund’s

rule 3 for the selection of the ground state still applies to the actual electrons, not the holes.)

So, the ground state term for oxygen is 3P2. The same logic and result applies to all elements

in the O column of the periodic table, with four p electrons.

Fluorine (F, Z = 9) has electron configuration 1s2 2s2 2p5. Using the trick introduced in

the oxygen example, we get the allowed (L, S, J) multiplets by considering the 2p subshell to

consist of just one hole, rather than 5 electrons. This means that, just as for boron, the only

combinations are L = 1, S = 1/2 with J = 1/2 or 3/2. Since these have the same L and S,

Hund’s rules 1 and 2 provide no information. To apply Hund’s rule 3, we note that the 2p

subshell is more than half full (5 out of 6), and so the ground state has J = L + S = 3/2,

with term symbol 2P3/2. The same applies to all halogens, the elements in the F column of the

periodic table, with five p electrons.

Hund’s rules correctly predict the ground state of all neutral atoms for which the ground state

term symbol is unambiguously measured. They also often give the correct result for charged

ions, and for neutral atoms with an electron configuration different from the ground state. For

example, the singly ionized carbon ion C+ has electron configuration 1s2 2s2 2p, which is the

same as boron, and has the same term symbol 2P1/2, as correctly predicted by Hund’s rules.

Also, the neutral carbon atom has excited states with electron configuration 1s2 2s 2p3. Among

those excited states, Hund’s rules correctly predict that the lowest energy term is 5S2.

An important experimental tool for exposing the properties of atomic states is to observe
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the behavior of energy levels and transition spectra as a function of an applied magnetic field,

called the Zeeman effect. In section 17.3, we studied the Zeeman effect for atomic hydrogen, and

much of that discussion can be adapted to the multi-electron case. Adding the contributions to

the Hamiltonian linear in a constant, uniform magnetic field B = Bẑ, one obtains a result of

the same form as eq. (17.3.6),

HB = µBB(Lz + 2Sz)/~, (18.4.24)

but now with Lz and Sz respectively equal to the total orbital and spin angular momentum

operators, obtained as the sums of the operators for the individual electrons. Within the LS

coupling scheme approximation, the analysis for the weak-field (small-B) Zeeman effect in multi-

electron atoms just mimics what we already did for hydrogen from eqs. (17.3.8)–(17.3.13). So,

one finds that atomic states characterized by N,L, S, J obtain energy splittings proportional to

the total angular momentum quantum number mJ ,

∆EB = g µBBmJ , (mJ = −J, −J+1, . . . , J−1, J), (18.4.25)

where the Landé g-factor is

g =
3

2
+
S(S+1)− L(L+1)

2J(J+1)
. (18.4.26)

(Of course, unlike the atomic hydrogen case, in general S need not be equal to 1/2, and J need

not be equal to L± 1/2.) For weak external magnetic fields, the magnetic moment of the atom

is therefore related to its total angular momentum by −gµBJ/~, and the splitting exposes the

degeneracies and angular momentum quantum numbers for the multi-electron atomic states.

The strong magnetic field (Paschen–Back) limit for multi-electron atoms is also quite similar

to the example of the hydrogen atom, as given in eqs. (17.3.20)–(17.3.24). This includes the use

of |NLSmLmS〉, in which HB is diagonal, as the degenerate unperturbed states to which HSO

is applied as a perturbation. For multi-electron atoms, the counterpart of eq. (17.3.22) is

〈NLSmLmS|HSO|NLSmLmS〉 = ζ(N,L, S) 〈NLSmLmS|S · L|NLSmLmS〉 , (18.4.27)

where ζ(N,L, S) is the quantity appearing in eqs. (18.4.19)–(18.4.21) and S · L = 1
2
(S+L− +

S−L+) + SzLz evaluates to ~
2mSmL. Therefore, we have in the strong-field limit

∆EB, fine = µBB(mS + 2mL) + ~
2ζ(N,L, S)mSmL, (18.4.28)

where we have kept only the spin-orbit part of the fine-structure effect, which contains the

dependence on mS and mL. For the intermediate case that the fine-structure and external
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magnetic fields are comparable, things are more complicated and one should find the energy

shift by treating HB + HSO together as a single perturbation, to be diagonalized using either

the basis of states |NLSJmJ〉 or the basis |NLSmLmS〉.
It is important to keep in mind that the LS coupling scheme is just an approximation. The

assumption that HSO can be treated as a small effect becomes less appropriate for atoms with

larger Z, and so the LS coupling scheme approximation is not as good for heavier atoms. To

understand this, consider an approximation in which the potential in the spin-orbit interaction

is spherically symmetric, so that we have a sum of terms like eq. (17.1.4) for each electron,

HSO =
Ne∑

i=1

ξ(Ri)Si · Li, ξ(r) = − e

2m2
ec

2

1

r

∂Φ

∂r
. (18.4.29)

Now, as a qualitative approximation, suppose that the electrons are in hydrogen-like orbitals

arising from a potential Φ(r) = −Zeffe
2/r, where Zeff < Z roughly takes into account the effects

of partial screening of the nuclear charge by the other electrons. Then HSO scales like Zeff/R
3,

and the characteristic size of orbitals scales like 1/Zeff , as can be seen from eq. (11.1.65), for

example. This implies that the effects of HSO scale like Z4
eff .

In the limit that the effects of HSO are too large to be treated as a perturbation, one can

instead use the jj coupling approximation. Since eq. (18.4.29) involves the individual Si ·Li,
it is useful to first perform addition of angular momentum on each electron, Ji = Li + Si, and

then construct J =

Ne∑

i=1

Ji. Then H0 +HSO is diagonal in an orthobasis labeled by the quantum

numbers li, si, and ji associated with the operators L2
i , S

2
i , and J

2
i . In particular, the dominant

spin-orbit coupling term is diagonal in that basis and can be evaluated according to

HSO =
~
2

2

Ne∑

i=1

ξ(Ri)[ji(ji + 1)− li(li + 1)− si(si + 1)], (18.4.30)

where si = 1/2, and li is specified by the electron configuration. The W part of the Hamiltonian

in eq. (18.4.3) does not commute with the operators L2
i and J2

i , so it is treated as a perturba-

tion, which then splits the states into different values of the total angular momentum quantum

number J , with a remaining degeneracy 2J + 1 (neglecting small hyperfine effects associated

with electronic interactions with the nucleus) due to mJ . In the jj coupling scheme, the term

symbols specifying the angular momentum are thus written as

(j1, j2, . . . , jn)J , (18.4.31)

where n is the number of electrons in the incomplete subshell.

The standard example of the jj coupling scheme is provided by the lead atom (Pb, Z = 82).

The electron configuration is [Xe]4f 14 5d10 6s2 6p2, so what matters is the two l = 1 electrons in
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the unfilled 6p subshell. Just as for carbon, the number of antisymmetric states that we can

form from two p electrons in the same subshell is 6 · 5/2 = 15. Each electron has total angular

momentum j = 1/2 or 3/2. Now we can use

1

2
⊗ 1

2
= 0A ⊕ 1S (18.4.32)

3

2
⊗ 3

2
= 0A ⊕ 1S ⊕ 2A ⊕ 3S, (18.4.33)

1

2
⊗ 3

2
= 1⊕ 2 (18.4.34)

to find that the possible jj coupling terms for two p electrons are

(j1, j2)J = (12 ,
1
2)0, (12 ,

3
2)1, (12 ,

3
2)2, (32 ,

3
2)2, (32 ,

3
2)0, (18.4.35)

with degeneracies 1, 3, 5, 5, 1, respectively (which indeed add up to 15 as a check). Experi-

mentally, it turns out that the order given in eq. (18.4.35) is in increasing energy, so the ground

state has J = 0. By way of comparison, the Hund’s rules prediction for the LS-coupling term

for Pb is 3P0 (by an argument identical to the one for carbon), which also has J = 0, so the two

schemes agree in that respect. However, the jj coupling scheme provides a somewhat better

numerical approximation to the energy levels and other properties of the lowest few eigenstates

of Pb than the LS coupling scheme does. For atoms with high Z, neither the LS scheme nor

the jj scheme is very accurate, and more complicated descriptions are appropriate.

18.5 Exercises

Exercise 18.1. Two identical particles are moving in a 3-dimensional isotropic harmonic os-

cillator potential with natural frequency ω. The only Hamiltonian interaction between the two

particles is the spin-spin W = aS1 · S2, where a is a constant.

(a) If the particles are bosons with spin 1, find the energy, the spectroscopic term notation, and

the degeneracy of the ground state. Give separate answers for positive and negative a.

(b) Repeat part (a) if the particles have spin 0.

(c) Repeat part (a) if the particles have spin 2.

(d) Repeat part (a) if the particles are fermions with spin 1/2.

Exercise 18.2. Two identical spin-1/2 fermions are free to move inside a cubic box of side a

with one corner at the origin. The potential is infinite outside of the box. The fermions do not

have any Hamiltonian interaction with each other.

(a) The one-particle energy eigenstate wavefunctions are

ψnx,ny,nz(x, y, z) =

(
2

a

)3/2

sin
(nxπx

a

)
sin
(nyπy

a

)
sin
(nzπz

a

)
. (18.5.1)
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What are the corresponding one-particle energies?

(b) In the remainder of this problem, we will consider two-particle energy eigenstates, organized

in terms of the total spin, S = 0 or S = 1. But notice that in this problem we do not have

spherical symmetry, and the Hamiltonian does not commute with L2 or Lz. Therefore, we

cannot organize energy eigenstates in terms of orbital angular momentum. Instead, consider

states that are either of the form

χS,mS
ψN (x1, y1, z1)ψN (x2, y2, z2), (18.5.2)

when the two particles have the same spatial wavefunction ψN , and

χS,mS

1√
2
[ψN (x1, y1, z1)ψM(x2, y2, z2)± ψM(x1, y1, z1)ψN (x2, y2, z2)] , (18.5.3)

if they have different spatial wavefunctions, where χS,mS
is the spin ket for S = 0 or S = 1, and

N or M represents (nx, ny, nz) for a given 1-particle wavefunction. Find the energy eigenvalues

and the corresponding degeneracies for the lowest three energy levels of the two-fermion system.

[Hints: the one-particle energies simply add to give the two-particle energies, since we are

not including any interactions between the particles. Also, recall that for S = 0, the spatial

wavefunction is symmetric under interchange of the labels 1 and 2, while for S = 1, the spatial

wavefunction must be anti-symmetric under interchange of the labels 1 and 2. You should find

that the total number of states in the lowest three energy levels is a number greater than 35.]

Exercise 18.3. Consider three identical spin-1/2 fermions bound in a 3-d isotropic harmonic

oscillator potential characterized by frequency ω. The fermions do not interact with each other.

(a) Use the Pauli exclusion principle to find the energies and the degeneracies of the ground

state energy level and the first excited energy level. Give the spectroscopic term notation 2S+1LJ

for the allowed states in each case. [Hint: combine two of the fermions, then add the third. For

the ground state energy level, you should find two distinct spectroscopic terms. For the first

excited state energy level, there are 11 spectroscopic terms, some of which are the same.]

(b) A spin-orbit perturbation Hamiltonian is added, W = aL · S, where L and S are the total

orbital and spin angular momenta of the fermions. What are the energies and spectroscopic term

notations of the lowest three energy eigenstates states if a is positive? What if a is negative?

(c) Now suppose that in addition to the perturbation W , there is a much weaker perturbation

W ′ = bLz . Use degenerate perturbation theory to find the energy splitting of the lowest level you

found in part (b), by finding the the matrix representation for W ′ and finding its eigenvalues.

The cases of positive a and negative a are different, so treat them separately. [Hint: you may

find eqs. (12.3.16)-(12.3.21) useful.]
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Exercise 18.4. Compute the direct and exchange integrals I2,0,0 and J2,0,0, as defined in

eqs. (18.3.4) and (18.3.5), for the (1s)(2s) excited states of the helium atom. Note that

from eqs. (11.1.42) and (11.1.43), the one-electron wavefunctions with Z = 2 are φ1,0,0(r) =

e−2r/a0
√
8/πa30 and φ2,0,0(r) = e−r/a0(1 − r/a0)/

√
πa30. Check that 0 < J2,0,0 < I2,0,0. Use

these results to estimate the energies of the 1S0 and 3S1 states, and their energy splitting

∆E = 2e2J2,0,0, at first order in perturbation theory. Compare to the results quoted in Figure

18.3.1. [Hints: to set up the integrals, follow the example of the method used in eqs. (15.3.8)-

(15.3.17). Before integrating, you are encouraged to change to dimensionless variables u = r1/a0

and v = r2/a0. The perturbation theory result for ∆E is far from a triumph, as you should find

that it is numerically about a factor of 3 larger than the experimental value. However, it does

have two important qualitative features: the correct sign, and a magnitude much smaller than

the energy shift from the direct integral.]

Exercise 18.5. For each of calcium (Z = 20), scandium (Z = 21), titanium (Z = 22), nickel

(Z = 28), germanium (Z = 32) and selenium (Z = 34), use the shell model to find the electronic

configuration. Assume that the 4s shell fills before the 3d shell; although this is not always the

case, it is true for these examples. In Russell-Saunders approximation, find the spectroscopic

term notation for the electronic configurations you found, and apply Hund’s rules to select the

ground state in each case.

Exercise 18.6. In the Bizarro Universe, long ago and very far away, everything is just like

in our universe except that electrons are fermions with spin 3/2 instead of spin 1/2. Consider

atomic states in the Bizarro Universe.

(a) How many Bizarro electrons fit into each s, p, and d orbital (l = 0, 1, 2, respectively)?

(b) What are the atomic numbers of the lightest two Bizarro noble gases (the lightest has a

filled 1s orbital, the next has a filled 2p orbital)? What about the lightest two Bizarro alkali

metals (one s-subshell electron) and Bizarro halogens (one missing p-subshell electron)?

(c) Consider Bizarro neon, a neutral atom with Z = 10. What is the electron configuration,

instead of (1s)2(2s)2(2p)6 as in our universe? What are all of the 2S+1LJ spectroscopic terms

for the electron configuration you found, and which of them is the ground state?
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19 Simple molecules

19.1 Hierarchies of scales and the Born-Oppenheimer approximation

Molecules are bound states consisting of multiple atoms, or more fundamentally electrons and

nuclei. Understanding the quantum energy levels and structure of molecules is a complicated

problem requiring strategic thinking, as there are many degrees of freedom.

One way of simplifying the problem is to make use of the hierarchies of energy and distance

scales caused by the large ratio (more than 3 orders of magnitude) of the nuclear masses to the

electron masses. In a first approximation, the slowly moving nuclei can be treated as essentially

at rest on the time scales relevant for the motion of electrons. The nuclear displacements from

their equilibrium positions are small compared to the size of the molecule. One can therefore

solve first for the electronic states while treating the nuclei as fixed. The dynamics of the nuclear

states can then be treated separately, by recognizing that the electrons will adjust themselves

relatively quickly to changes in the nuclear positions. To determine the state describing the

nuclear relative position degrees of freedom, one uses a potential that can be thought of as the

result of averaging over the electronic positions, using the electronic wavefunction. This way of

organizing the calculation in terms of a separation between light, fast degrees of freedom (the

electrons) and heavy, slow degrees of freedom (the nuclei) is called the Born-Oppenheimer

approximation, after the work of Max Born and J. Robert Oppenheimer in 1927. It is an

example of a more general strategy called the adiabatic approximation, in which slow degrees

of freedom are treated as nearly constant.

Let us start by making parametric estimates of the distance and energy scales involved. For

fixed nuclear positions, dimensional analysis tells us that the characteristic size ∆xe of electronic

states is comparable to the Bohr radius, since it is the only length scale that we can construct

out of ~, the electron mass m, and the electronic charge e. The corresponding electronic energies

Ee should be of order a Rydberg. So:

∆xe ∼ a0 =
~
2

e2m
, Ee ∼

e2

2a0
=
e4m

2~2
=

~
2

2ma20
. (19.1.1)

The vibrations of the nuclei about their equilibrium positions can be considered as determined

by an effective harmonic oscillator with natural frequency that we can call ωN . To estimate it

crudely, we note that if we were to displace the position of a nucleus by a distance of order a0,

the change in energy should be of order a Rydberg. Using M to denote the nuclear mass, we

therefore estimate the energy of the oscillator as e4m/2~2 ∼ Mω2
Na

2
0/2, which implies

ωN ∼
(m
M

)1/2 e2

~a0
. (19.1.2)
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The corresponding length and minimum energy scales associated with nuclear vibrations can

therefore be estimated, using the harmonic oscillator results of eqs. (7.2.4) and (7.2.17), as

∆xN ∼
√

~

MωN
∼
(m
M

)1/4
a0, Evib ∼ ~ωN ∼

(m
M

)1/2 e2
a0
. (19.1.3)

Molecules also have rotational degrees of freedom, whose minimum energy scale can be estimated

by noting that the largest moment of inertia should be of order I ∼ Ma20, and the smallest

angular momentum difference is of order L ∼ ~. Therefore, we estimate

Erot ∼
L2

2I
∼ ~

2

Ma20
∼ m

M

e2

a0
. (19.1.4)

The hierarchy of nuclear and electron masses therefore leads to a hierarchy of electronic, vibra-

tional, and rotational energies, with very roughly

Ee : Evib : Erot = 1 :
(m
M

)1/2
:
m

M
. (19.1.5)

Putting in the numbers, transitions between electronic states will result in emission of light that

is typically in the UV or visible ranges, while transitions between nuclear vibrational modes are

associated with the IR, and rotational modes with microwave radiation.

Consider a molecule consisting of Ne electrons and Nn nuclei. Let us work in position

space, neglecting spin degrees of freedom for simplicity. The electrons have coordinates ri with

i = 1, . . . , Ne, and the nuclei have coordinates RI where I = 1, . . . , Nn, with masses MI and

integer charges ZI . To realize the Born-Oppenheimer strategy, the Hamiltonian can be divided

into parts that do and do not involve the nuclear masses:

H = He +HN , (19.1.6)

He = −
∑

i

~
2∇2

i

2m
+
e2

2

(
∑

i 6=j

1

|ri − rj|
− 2

∑

i

∑

I

ZI

|ri − RI |
+
∑

I 6=J

ZIZJ

|RI − RJ |

)
, (19.1.7)

HN = −
∑

I

~
2∇2

I

2MI
. (19.1.8)

The first step in carrying out the Born-Oppenheimer approach is to find solutions for the elec-

tronic eigenvalue equation

He φn, ~R(ri) = En, ~R φn, ~R(ri), (19.1.9)

in which the nuclear coordinates RI are treated as fixed, and the labels n distinguish different

bound eigenstates. The presence of the subscript R on the energy eigenvalues En, ~R and the multi-

electron wavefunctions φn, ~R(ri) is to remind us that they depend on the choice of fixed RI . The
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wavefunctions also depend simultaneously on all of the electronic coordinates ri. As noted above,

since the nuclear masses are not involved in eq. (19.1.9), the eigenvalues En, ~R should have values

roughly of the order of magnitude of a Rydberg, and the wavefunctions φn, ~R(ri) should vary

appreciably over length scales comparable to the Bohr radius. Finding these solutions may be

quite difficult, but with sufficient computing power they can be obtained using the variational

principle. Note that the last term in eq. (19.1.7) proportional to ZIZJ is simply a constant in

this part of the calculation.

Since φn, ~R(ri) are the eigenstates of the Hermitian operator He, they can be chosen as an

orthonormal basis for the electronic bound state part of the Hilbert space. This means that we

can always write the full (multi-electron, multi-nucleus) wavefunction as

Ψ(ri, RI) =
∑

n

ψn(RI)φn, ~R(ri), (19.1.10)

for some coefficients ψn(RI) that will serve as the wavefunctions for the nuclear position degrees

of freedom. The next step is to look for eigenstates of this form for the full Hamiltonian H with

eigenvalue E. Using eqs. (19.1.9) and (19.1.8) in (19.1.6), we have

∑

n

(
−
∑

I

~
2∇2

I

2MI
+ En, ~R −E

) [
ψn(RI)φn, ~R(ri)

]
= 0. (19.1.11)

Now using the product rule for Laplacians, ∇2(fg) = f∇2g+ g∇2f +2(∇f)·(∇g), this becomes

∑

n

φn, ~R(ri)
(
−
∑

I

~
2∇2

I

2MI

+ En, ~R − E
)
ψn(RI) =

∑

n

∑

I

~
2

MI

[
(∇Iψn)·(∇Iφn, ~R) +

1

2
ψn∇2

Iφn, ~R

]
. (19.1.12)

The Born-Oppenheimer approximation entails neglecting the right-hand side of this equation,

with the partial justification that the amplitude of nuclear vibrations is smaller than the dis-

tances between nuclei by a factor of order (m/M)1/4, as noted in eq. (19.1.3). To see how this

works, recall that the wavefunction for an electronic state in a hydrogen atom, for example, in-

volves a factor e−r/a0 , where r is the separation between the nucleus and an electron. Therefore,

considering the effect of changing a nuclear position slightly, we expect

|∇Iφn, ~R|
φn, ~R

∼ 1

a0
. (19.1.13)

In comparison, we can approximate the wavefunction for each nucleus I by that of a harmonic

oscillator with angular frequency ωI = (m/MI)
1/2e2/~a0 as in eq. (19.1.2), so that ψn is pro-

portional to e−MIωI |~RI−~RI0|2/2~, where ~RI0 is the equilibrium position of the nucleus. We then
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estimate |∇Iψn|/ψn ∼ |~RI − ~RI0|MIωI/~. Inserting the estimates for ωI and ∆xN = |~RI − ~RI0|
from eqs. (19.1.2) and (19.1.3), we obtain

|∇Iψn|
ψn

∼
(
MI

m

)1/4
1

a0
(19.1.14)

Thus, each transfer of a derivative ∇I from the nuclear wavefunction ψn to the electronic wave-

function φn costs a relative suppression factor of (m/MI)
1/4, in accord with the intuition that

the heavy nuclei are more sharply localized.

Replacing the right side of eq. (19.1.12) by 0, we realize the added benefit that since the

wavefunctions φn, ~R(ri) form an orthonormal basis, each term in the sum over n must vanish

separately, and so we can write

(
−
∑

I

~
2∇2

I

2MI

+ En, ~R − E
)
ψn(RI) = 0 (19.1.15)

as the energy eigenstate equation for the nuclear excitations. For each electronic state labeled

by n, there is a family of nuclear vibrational and rotational states and energies associated with

the solutions to eq. (19.1.15). In this Schrödinger-like equation, the En, ~R, obtained by solving

for the electronic state energies, serve as the potential for the nuclear wavefunction.

To recap, the Born-Oppenheimer approximation separates the molecular problem into solving

eq. (19.1.9) for the electronic states with fixed nuclei, and eq. (19.1.15) for the nuclear degrees

of freedom with the electronic states providing the potential. While it is tempting to say that

we have treated the nuclear kinetic term HN in eq. (19.1.8) as a perturbation, it should be

recognized that this is not the same sort of perturbation theory as in Chapter 15. As we have

seen, the Born-Oppenheimer approach is an expansion in (m/M)1/4, while standard perturbation

theory would instead imply an expansion in powers of m/M . (The latter type of perturbative

expansion does not work here, because the dynamics of the nuclear degrees of freedom cannot

be well-approximated by an unperturbed Hamiltonian without any kinetic energy term.)

In the remaining sections of this chapter, we will discuss only a few minimal aspects of

molecular physics, restricted to simple cases. First, in section 19.2, we will find an approximation

for the solution of eq. (19.1.9) for the electronic state of the minimal example of a molecule,

the H+
2 ion. In section 19.3, we will then treat the vibrational nuclear state determination

of eq. (19.1.15) for more general diatomic molecules, based on a widely used and empirically

successful potential. The general subject of quantized rigid body rotations, and the application

to the rotational energy levels of molecules, is given in section 19.4. Section 19.5 discusses the

vibrational and rotational spectra for diatomic molecules, including numerical parameters for

some common ones. Section 19.6 contains a brief account of the rotational and vibrational

excitations for the water molecule H2O.
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19.2 The simplest molecule: the H+
2 ion

The H+
2 ion is the simplest molecule, consisting of one electron and two protons. In the Born-

Oppenheimer approximation, we first fix the positions of the protons at RA and RB, with the

distance between them denoted by

R = |RA − RB|, (19.2.1)

and describe the electron’s position with a vector r with corresponding Laplacian ∇2. The

Hamiltonian for the electron’s state is, in the position representation,

He = −~
2∇2

2m
+ e2

(
− 1

|r − RA|
− 1

|r − RB|
+

1

R

)
, (19.2.2)

with the corresponding geometry shown in Figure 19.2.1. Our first goal is to estimate the

ground-state energy ER and wavefunction φR(r), using a variational principle. The resulting ER
then serves as the potential energy for the nuclear separation, as we discussed in eq. (19.1.15),

the second part of the Born-Oppenheimer approximation. From this, we will determine the

binding energy and the nuclear separation of the H+
2 ion.

−e

+e +e
R

|r − RA| |r − RB|

Figure 19.2.1: The H+
2 ion molecule consists of two

protons with charges +e at positions RA and RB, and
an electron with charge −e at position r. In the Born-
Oppenheimer approximation, we first treat the proton
positions RA and RB as fixed, to find the binding po-
tential energy as a function of R = |RA − RB|.

To construct a trial state, let us start with unit-norm atomic orbital wavefunctions

ϕA(r) =

(
Z

a0

)3/2
1√
π
e−Z|~r−

~RA|/a0 , ϕB(r) =

(
Z

a0

)3/2
1√
π
e−Z|~r−

~RB|/a0 . (19.2.3)

These have the same form as the ground state of a hydrogen atom centered at each of the two

proton positions, except that we have included a variational parameter Z, which governs the

size of the orbitals. Our trial wavefunction φ(r) will be a linear combination of ϕA and ϕB.

Without loss of generality, we can take

RB = −RA = (R/2)ẑ, (19.2.4)

so that the Hamiltonian has even parity, [Π, H ] = 0. This ensures that the energy eigenstates

can be chosen to have well-defined parity = ±1, so we try un-normalized variational states

|φ±〉 = |ϕA〉 ± |ϕB〉 , (19.2.5)
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with Π |φ±〉 = ± |φ±〉. From here on, the trial state and energy will be denoted just |φ〉 and
EZ,R (without the subscript ±) to avoid clutter, with the understanding that we are trying both

parity possibilities simultaneously.

Applying the variational principle of Chapter 16, the ground-state energy estimate is

EZ,R =
〈φ|He|φ〉
〈φ|φ〉 =

〈ϕA|He|ϕA〉 ± 〈ϕB|He|ϕA〉
1± 〈ϕB|ϕA〉

. (19.2.6)

In writing the last expression, we have used the facts that 〈ϕA|ϕA〉 = 〈ϕB|ϕB〉 = 1, and

〈ϕA|ϕB〉 = 〈ϕB|ϕA〉, since the atomic orbital wavefunctions are normalized and real, and

〈ϕA|He|ϕB〉 = 〈ϕB|He|ϕA〉, since He is Hermitian, and 〈ϕB|He|ϕB〉 = 〈ϕA|He|ϕA〉 by symmetry,

since the orbitals have the same form up to a displacement by distance R.

The electronic state depends on two parameters: R (the distance between the protons, which

is temporarily fixed as part of the Born-Oppenheimer approximation) and Z (the variational

parameter). Before doing the detailed calculations, let us consider two extreme special cases

of R in which the problem simplifies and we know what to expect. First, if R is very large

compared to a0, then the electron will essentially be forced to choose between the two protons,

and the ground state can be thought of as a symmetrized tensor product between a hydrogen

atom and a lonely distant proton. In that limit, we expect that Z will be very close to 1, and

the eigenvalue of He will be almost exactly −1 Rydberg = −e2/2a0. In the opposite extreme

case that R is very small compared to a0, the situation is the same as if there were only a

single nucleus with charge +2e, so we expect that Z will approach 2 in that limit. This will

be accompanied by a diverging positive contribution to the He eigenvalue, due to the repulsive

energy between the two protons (the last term in eq. (19.2.2)).

For intermediate R, the minimum ER should be achieved for 1 < Z < 2. To minimize

the energy, the preferred position for the electron is between the two protons, where it can

benefit from its attraction to them both. However, for the odd-parity case, the wavefunction

φ(r) vanishes at the midpoint r = 0, and therefore it must be small everywhere nearby, by

continuity. In the even-parity case, the wavefunction is enhanced in the good region between

the protons due to constructive interference. We therefore expect the ground state with strongest

binding to have even parity. The essential reason for the bond is that the electron can be shared

by the two nuclei to which it is attracted, lowering the potential energy.

To proceed, we need to find the matrix elements 〈ϕB|ϕA〉, 〈ϕA|He|ϕA〉, and 〈ϕB|He|ϕA〉 in
eq. (19.2.6). In each case, the evaluation in the position representation involves integrals with

integrands that depend on |r − RA| and |r − RB|, which at first might appear severely daunt-

ing. Fortunately, things simplify if we carry out the integrations using elliptical coordinates

(µ, ν, φ), of which the last is the usual spherical coordinate angle measured around the z-axis,
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and the first two are defined by

|r − RA| = (µ+ ν)R/2, |r − RB| = (µ− ν)R/2. (19.2.7)

This is convenient because the integrands for the needed matrix elements are simple functions

of µ and ν. Using RB = −RA = (R/2)ẑ one finds the ranges 1 ≤ µ <∞ and −1 ≤ ν ≤ 1, and

r =
√
µ2 + ν2 − 1R/2, cos θ = µν/

√
µ2 + ν2 − 1, (19.2.8)

from which the volume element can be found, by computing the Jacobian determinant, to be

d3r = r2dr d(cos θ) dφ =
R3

8
(µ2 − ν2)dµ dν dφ. (19.2.9)

It is also convenient to define a rescaled constant distance between the protons,

ρ = ZR/a0. (19.2.10)

With these variable changes, the needed matrix elements are expressed as the integrals

〈ϕB|ϕA〉 =
ρ3

4

∫ ∞

1

dµ

∫ 1

−1
dν (µ2 − ν2)e−ρµ, (19.2.11)

〈ϕA|He|ϕA〉 =
e2

2a0
Zρ2

∫ ∞

1

dµ

∫ 1

−1
dν f(µ, ν)e−ρ(µ+ν), (19.2.12)

〈ϕB|He|ϕA〉 =
e2

2a0
Zρ2

∫ ∞

1

dµ

∫ 1

−1
dν f(µ, ν)e−ρµ, (19.2.13)

with the last two involving a common polynomial factor

f(µ, ν) =

(
1

2
− Zρ

4

)
(µ2 − ν2) + (Z − 2)µ− Zν (19.2.14)

coming from evaluating HeϕA(r) in the position representation. Doing the integrations gives

〈ϕB|ϕA〉 =
(
1 + ρ+ ρ2/3

)
e−ρ, (19.2.15)

〈ϕA|He|ϕA〉 =
e2

2a0
Z
[
Z − 2 + 2(1 + 1/ρ)e−2ρ

]
, (19.2.16)

〈ϕB|He|ϕA〉 =
e2

2a0
Z
[
2/ρ− 2− 10ρ/3 + Z(1 + ρ− ρ2/3)

]
e−ρ. (19.2.17)

The resulting energy as a function of the variational parameter Z is therefore

EZ,R =
e2

2a0

Z {Z − 2 + 2(1 + 1/ρ)e−2ρ ± [2/ρ− 2− 10ρ/3 + Z(1 + ρ− ρ2/3)]e−ρ}
1± (1 + ρ+ ρ2/3)e−ρ

.(19.2.18)

Now, for each R, one can minimize EZ,R with respect to Z to obtain the energy ER, which
according to eq. (19.1.15) serves as the Schrödinger equation potential for determining the

nuclear separation and vibrational states.
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Figure 19.2.2: The energy potential of the
H+

2 ion ground state, ER+ e2/2a0, as a func-
tion of the nuclear separation R in units of
the Bohr radius, as estimated by the vari-
ational principle for the even-parity bind-
ing (solid curve) and odd-parity anti-binding
(dashed curve) solutions. For each R, the en-
ergy is obtained by minimizing eq. (19.2.18)
with respect to the variational parameter Z.
The minimum is ER,min+e

2/2a0 = −2.35 eV,
obtained for R/a0 = 2.003 and Z = 1.238.
The actual experimental binding energy of
the H+

2 ion is E = −2.79 eV.

The minimization is best done by computer; note that there is a dependence on Z hidden

in the definition of ρ. The resulting ER + e2/2a0 for each of the two parity choices is shown

in Figure 19.2.2. The odd-parity state has its minimum at R = ∞, and so is rejected, as an

anti-binding solution. For the even-parity binding state, for very large R one finds Z = 1 and

ER = −e2/2a0, and for very small R one finds Z → 2 and a large positive energy from the

proton-proton repulsion term, as expected. The minimum occurs for

R/a0 = 2.003, Z = 1.238, ER,min + e2/2a0 = −2.35 eV. (19.2.19)

This is about 16% higher than the experimental binding energy of the H+
2 ion, E = −2.79

eV. As usual, the variational method gives an upper bound on the energy, and using a trial

wavefunction with more parameters and a more general shape would get us even closer to the

true value. However, our simple try is already sufficient to get a reasonable approximation with

the correct features of the exact answer.

A similar approach can be used to find the binding energy and the nuclear separation poten-

tial for the neutral H2 molecule with two electrons and two protons, which proceeds similarly

but with slightly more involved integrals. This also holds for more complicated molecules with

more complicated wavefunctions. Discussions can be found in more specialized books.

19.3 Diatomic bonds and vibrations from the Morse potential

The example in the preceding section illustrates the calculation of the potential energy that de-

termines the properties of the wavefunctions associated with the nuclear-position wavefunction,

in the Born-Oppenheimer approximation. In principle, we can now use this sort of potential to

find the expectation value of the nuclear separation R, and the excitation energies associated
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with nuclear vibrations and rotations. However, in practice the potential we found in Figure

19.2.2 is only known approximately and numerically after minimizing with respect to the varia-

tional parameter Z, even in the relatively easy case of H+
2 . It is useful to have a simpler analytic

potential V (R) with the same qualitative features, containing parameters that can either be

estimated from the variational principle applied to the electronic wavefunction, or determined

empirically by experiment, for general diatomic molecules. The appropriate qualitative features

are that the potential should:

• diverge positively for R→ 0, due to the electrostatic repulsion of the nuclei,

• have a stable minimum for some R comparable to the Bohr radius,

• approach a constant for R→∞, where the molecule separates into two atoms,

• have a large, but finite, number of vibrational states with nearly equal energy differences,

in accord with experimental observations.

The last two points are consistent with the intuition that if we try to put too much energy into

the molecule, we will break it into its atomic constituents. All of these qualitative features are

realized by the approximate potential that we found for the H+
2 ion in Figure 19.2.2.

For general diatomic molecules, there is a simple three-parameter form, called the Morse

potential after its invention by Philip M. Morse in 1929, which is both tractable for calculations

and empirically successful. It is, using r from here on to denote the nuclear separation distance,

V (r) = V0
[
1− e−β(r−a)

]2
. (19.3.1)

Here V0 is the depth of the potential, a is the position of its minimum where V (r) = 0, and β

is the parameter governing the restoring force for small oscillations about the minimum. For

large r the potential approaches V0, which is therefore the classical approximation to the energy

needed to break up the molecule. For small r, the potential approaches V0(e
βa − 1)2, which is

positive, but not infinite. However, this slight deviation from the first of our desired features is

of little practical consequence, because experience shows that eβa ≫ 1 for molecules, and thus

the potential is so large at r = 0 that it does not matter exactly how large it is; the probability

density for small r is tiny in any case.

For small deviations about the minimum position, the Morse potential is close to that of a

harmonic oscillator,

V (r) ≈ V0β
2(r − a)2. (19.3.2)
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If we denote the two nuclear masses as M1 and M2, then the reduced mass for the relative

two-body problem (as discussed in section 4.2) can be defined as

M =M1M2/(M1 +M2). (19.3.3)

Then, by setting eq. (19.3.2) equal to 1
2
Mω2(r−a)2, we see that low-level vibrational excitations

should be associated with a harmonic oscillator angular frequency

ω =

√
2V0
M

β. (19.3.4)

However, because of the requirement that the molecule can be broken up into its constituent

atoms by adding finite energy V0, the potential necessarily includes an anharmonicity which will

become increasingly important for higher energy vibrational states.

Let us now solve for the energy eigenvalues and wavefunctions of the Morse potential, taking

the orbital angular momentum to be 0 so that the wavefunction depends only on r. (Rotational

excitations have relatively small energies, suppressed by a factor (m/M)1/2 as noted in section

19.1, and will be discussed in the next section.) Writing ψ(r) = U(r)/r as in section 10.1, the

time-independent Schrödinger equation becomes
(
− ~

2

2M

d2

dr2
+ V0

[
1− e−β(r−a)

]2
)
U = EU, (19.3.5)

for energy eigenvalues E. We now define dimensionless quantities

x = β(r − a), κ =
√

2MV0/~β, E = E/V0, (19.3.6)

which transforms the eigenvalue equation into

d2U

dx2
+ κ2

[
E −

(
1− e−x

)2]
U = 0, (19.3.7)

to be solved in the domain −βa < x <∞. The boundary conditions are that U = 0 for x = −βa
(so that ψ is finite at r = 0) and at x =∞ (so that we have a bound state). However, in order

to find exact solutions, we cheat slightly by extending the domain to −∞ < x <∞, and impose

boundary conditions U(−∞) = U(∞) = 0, the same as for a 1-dimensional bound state. As

mentioned above, this modification makes no practical difference for eβa ≫ 1, and it will allow

us to solve the problem exactly.

To get rid of the pesky exponential, now make the further change of variable

z = κe−x,
d

dx
= −z d

dz
, (19.3.8)

so that the differential equation becomes

d2U

dz2
+

1

z

dU

dz
+

[
κ2E
z2
−
(
1− κ

z

)2]
U = 0. (19.3.9)
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The domain boundaries, where we require that U vanishes, are at z = 0 (corresponding to

r →∞) and z =∞ (corresponding, approximately, to r = 0).

The remaining process of finding the exact eigensolutions U and E is quite reminiscent of

the methods we used to find the bound states of the 1-d harmonic oscillator in section 7.2, the

isotropic 3-d harmonic oscillator in section 10.5, so we will be brief. First, we note that for

large z, the differential equation (19.3.9) becomes just U ′′ ≈ U , with solutions proportional to

e±z. Choosing the negative exponent in order to have a normalizable bound state with good

behavior at large z, we therefore write

U(z) = e−zS(z), (19.3.10)

where S(z) must not grow exponentially at large z and must satisfy the differential equation

d2S

dz2
+

(
1

z
− 2

)
dS

dz
+

(
κ2(E − 1)

z2
+

2κ− 1

z

)
S = 0. (19.3.11)

For small z, trying a power law S ≈ c0z
p gives p2 = κ2(1− E). The positive root for p must be

the correct one, in order to satisfy the boundary condition S = 0 at z = 0, so

p = κ
√
1− E , (19.3.12)

which is consistent with the requirement that E = E/V0 < 1 in order to have a bound state.

Therefore, let us try a power series solution

S(z) = zp
∞∑

n=0

cnz
n. (19.3.13)

Substituting this into eq. (19.3.11), we find the recurrence relation

cn+1/cn =
1 + 2n+ 2p− 2κ

(1 + n+ p)2 − p2 . (19.3.14)

Now we can make the standard argument that the series must terminate so that S(z) is a

polynomial; otherwise cn+1/cn ≈ 2/n for large n, and we would find S(z) ∼ e2z. Therefore, the

allowed energy eigenvalues En correspond to the vanishing of the numerator of eq. (19.3.14) for

some nonnegative integer n = 0, 1, 2, 3 . . .. Plugging in eq. (19.3.12) gives

√
1− En = 1− n+ 1/2

κ
. (19.3.15)

Since the left side is positive, there can be only a finite number of bound state energy levels,

with

n < κ− 1/2. (19.3.16)
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Solving eq. (19.3.15) for En and multiplying by V0, we finally obtain the remarkably simple result

for the vibrational energy levels of the Morse potential,

En = ~ω(n+ 1/2)− ~ωχ(n+ 1/2)2, (19.3.17)

where ω was defined in eq. (19.3.4), and the dimensionless number

χ =
1

2κ
=

~β

2
√
2MV0

(19.3.18)

is called the anharmonicity parameter. For molecules, χ is generally quite small. Thus, for

small n so that the χ term can be neglected, the energy levels En are nearly equally spaced,

with behavior close to that of a 1-d harmonic oscillator corresponding to vibrations of the nuclei

along their common axis. The effect of the anharmonicity is to decrease the energy spacings

as n increases to its maximum allowed value, with En approaching V0 from below. The total

number of vibrational states is the largest integer less than κ + 1/2. Data from fits to ~ω and

χ for a few common molecules will be shown in section 19.5, after we discuss the much smaller

rotational contributions to the molecular energy, in the next section.

19.4 Rigid bodies and molecular rotational states

In the preceding section, we considered molecular vibrations of diatomic molecules correspond-

ing to nuclear oscillations along their common axis. We now turn to rotational excitations of

molecules. This could be done by adding an angular momentum term ~
2l(l + 1)/2Mr2 to the

Morse potential Schrödinger equation (19.3.5), and then finding solutions with non-zero total

angular momentum quantum number l. However, in keeping with the Born-Oppenheimer phi-

losophy, we will instead follow the somewhat simpler path of treating the molecule as a rigid

body with fixed electronic state and nuclear separation, and moments of inertia of order Ma20.

We start with a general discussion of the quantum mechanics of the rotations of rigid bodies.

Consider a rigid body with moments of inertia IA, IB, and IC along three principal axes

with Â, B̂, and Ĉ, as in Figure 19.4.1. These are orthogonal unit vectors that are body-fixed

(constant in the rotating frame of the body), and satisfy Â · Â = B̂ · B̂ = Ĉ · Ĉ = 1, and

Â · B̂ = Â · Ĉ = B̂ · Ĉ = 0, and Â × B̂ = Ĉ, etc. In quantum mechanics, we treat Â, B̂, Ĉ

Ĉ

Â

B̂

x̂

ŷ

ẑ

Figure 19.4.1: The orientation of a rigid body with respect
to a space-fixed coordinate system frame (x̂, ŷ, ẑ) can be
specified by two orthogonal unit body-fixed vectors Â, B̂,
and a third Ĉ = Â× B̂. We choose them to be the princi-
pal axis directions, which means that the moment-of-inertia
tensor is diagonal with components IA, IB, and IC .
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as operators. Since they are each vectors, we know that their commutation relations with the

components of the angular momentum operator L are, as in eq. (13.1.12),

[La, Âb] = i~ǫabcÂc, [La, B̂b] = i~ǫabcB̂c, [La, Ĉb] = i~ǫabcĈc, (19.4.1)

for a, b, c = x, y, z. In terms of the total angular momentum operator L for the body, we define

the principal-axis angular momentum components

LA = Â · L, LB = B̂ · L, LC = Ĉ · L. (19.4.2)

Referring to any good classical mechanics textbook, one finds that the rotational kinetic energy

of the rigid body is then

H =
L2
A

2IA
+
L2
B

2IB
+
L2
C

2IC
, (19.4.3)

whose quantum mechanical eigenvalues we wish to find.

It is important to note that LA,B,C are not the components of a vector operator, but are

instead three separate scalar operators, because they satisfy

[L, LA] = [L, LB] = [L, LC ] = 0. (19.4.4)

It is left to Exercise 19.2 to verify this, using eq. (19.4.1) and [La, Lb] = i~ǫabcLc, and to check

that

[LA, LB] = −i~LC , [LB, LC] = −i~LA, [LC , LA] = −i~LB, (19.4.5)

where the minus signs are notable, and not errors. Thus, the principal-axis components −LA,
−LB and −LC satisfy the same commutation algebra as the ordinary fixed-frame rectangular

components Lx, Ly, Lz, and therefore, together with

L2 = L2
A + L2

B + L2
C = L2, (19.4.6)

have the same solutions for their eigenvalue problem. In particular, if L2 has eigenvalue ~2l(l+1),

then the allowed eigenvalues of −LC are −~k, where k is an integer with magnitude less than

or equal to l. We can choose as a CSCO for the rigid body the mutually commuting operators

L2, Lz, LC , (19.4.7)

with simultaneous eigenvalues, respectively,

~
2l(l + 1), ~m, ~k, (19.4.8)
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where l, m, and k are integers, with −l ≤ m, k ≤ l. Since L2 and Lz both commute with the

Hamiltonian H in eq. (19.4.3), each energy level can be assigned one or more quantum numbers

l, and there is always a degeneracy of at least 2l + 1 associated with the quantum number m.

As a particularly simple example, consider the spherical top with all three moments of

inertia the same, IA = IB = IC = I. In that case, the Hamiltonian is proportional to L2 and

so commutes with all three CSCO operators, and the energy eigenvalues of the Hamiltonian in

eq. (19.4.3) for a given l are simply

El =
~
2l(l + 1)

2I
. (19.4.9)

There is a degeneracy 2l + 1 due to the m quantum number (the orientation of the angular

momentum with respect to fixed space) and another degeneracy 2l + 1 due to the k quantum

number (the orientation of the angular momentum with respect to the body-fixed axes), giving a

total degeneracy of (2l+1)2 for the energy level El. The molecule CH4 (methane) is an example

of a spherical top; although it is of course not spherical in shape, its tetrahedral symmetry

dictates that its three moments of inertia are identical.

In the opposite extreme, suppose that none of the moments of inertia IA,B,C coincide, an

asymmetric top. A typical example is the H2O molecule to be considered in section 19.6. In

that case, H commutes with L2 and Lz but not with LC . There is no simple way of writing the

energy eigenvalues for general l, m, but for any specific l one can diagonalize the Hamiltonian as

a (2l+ 1)× (2l+ 1) matrix. For example, if l = 1, then with the help of eqs. (8.3.2) and (8.3.4)

with Jx,y,z → LA,B,C, one finds the matrix representation in the basis of eigenstates of LC ,

H =
~
2

4IA



1 0 1
0 2 0
1 0 1


 +

~
2

4IB




1 0 −1
0 2 0
−1 0 1


+

~
2

2IC



1 0 0
0 0 0
0 0 1


 , (19.4.10)

with the energy eigenvalues

E1 =
~
2

2

(
1

IA
+

1

IB

)
, E2 =

~
2

2

(
1

IA
+

1

IC

)
, E3 =

~
2

2

(
1

IB
+

1

IC

)
. (19.4.11)

Each of these three energies has degeneracy 2l+1 = 3, associated with the m quantum number.

For larger l, the non-linear nature of the energy eigenvalue equation leads to irregular spacings

between energies. The l = 2 case is left to Exercise 19.3.

Now consider the case of a symmetric top, with IA = IB 6= IC . This allows us to rewrite

the Hamiltonian eq. (19.4.3) as

H =
L2

2IA
+

(
1

2IC
− 1

2IA

)
L2
C, (19.4.12)
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which is diagonal in our CSCO of eq. (19.4.7). So, in this case the energy levels are

El,k =
~
2

2IA
l(l + 1) +

(
1

2IC
− 1

2IA

)
~
2k2, (19.4.13)

each with degeneracy 2l + 1, again due to the m quantum number. However, there is an

additional degeneracy factor of 2 for k 6= 0, due to the symmetry under k → −k.
Finally we consider the case of a diatomic molecule, with the axis of symmetry containing

both nuclei along Ĉ. This is a special case of the symmetric top, with IC ≪ IA = IB. This

means that the contribution to the energy in eq. (19.4.13) proportional to k2 is very large, and

one often only needs to consider the states with k = 0 and degeneracy 2l+1, because the energy

cost to excite states with k 6= 0 is too great. In the idealized limit IC = 0, this is a linear rigid

rotor (epitomized by two point masses attached with a thin rod), and k = 0 is forced in order

to have finite energy, so that

El =
~
2

2IA
l(l + 1). (19.4.14)

Despite the similarity to the formula for the spherical top in eq. (19.4.9), this case is quite

different, as the degeneracy of El is only 2l + 1. For a diatomic molecule with reduced mass M

and expectation value R for the nuclear separation, it is traditional to define

B =
~
2

2IA
=

~
2

2MR2
, (19.4.15)

so that the rotational contribution to the molecular energy is Bl(l+1). In a first approximation,

we may treat the electronic state as fixed when computing the rotational excitations. However,

if the molecule is in an excited vibrational state like the Morse potential states labeled by n

in section 19.3, then it will have a slightly increased moment of inertia. To parameterize this

effect, one may subtract a contribution proportional to n+ 1/2 from 1/IA. Thus

Erot = l(l + 1) [B − α(n+ 1/2)] , (19.4.16)

where α is a very small positive constant (not to be confused with the fine structure constant),

which can be calculated with some effort, or obtained empirically, for each diatomic molecule.

19.5 Vibrational and rotational spectra for diatomic molecules

Combining the rotational contributions of the previous section with the larger vibrational con-

tributions found in eq. (19.3.17), we obtain the energy eigenvalues for diatomic molecules,

En,l = ~ω(n+ 1/2)− ~ωχ(n+ 1/2)2 + l(l + 1) [B − α(n+ 1/2)] , (19.5.1)
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molecule M/mp ~ω ~ωχ B α

H2 0.50 0.546 0.0151 0.00755 3.80×10−4
D2 1.00 0.387 0.00767 0.00378 1.34×10−4
HCl 0.97 0.371 0.00655 0.00131 3.81×10−5
N2 7.00 0.293 0.00178 2.48×10−4 2.13×10−6
CO 6.86 0.269 0.00165 2.40×10−4 2.17×10−6
O2 8.00 0.196 0.00148 1.79×10−4 1.98×10−6
Cl2 17.7 0.0694 3.34×10−4 3.03×10−5 1.88×10−7
NaCl 13.9 0.0452 2.20×10−4 2.71×10−5 2.02×10−7

Table 19.5.4: Empirical values for vibrational (~ω and ~ωχ) and rotational (B and α) energy
parameters for some common diatomic molecules, in units of eV. Here D is the deuterium
isotope of hydrogen. In the specialized literature, these energy parameters are usually given as
equivalent photon wavenumbers with units cm−1, obtained by dividing the numbers above by
2π~c = 1.2407 × 10−4 eV·cm. Also shown in the second column is the reduced nuclear mass
M =M1M2/(M1 +M2) in units of the proton mass.

with degeneracy 2l + 1. This parameterization has proven empirically successful, and fits to

data quite generally obey

~ω ≫ ~ωχ ≫ B ≫ α > 0. (19.5.2)

For illustration, the observed numerical parameters for some common diatomic molecules are

shown in Table 19.5.4. This confirms the argument in section 19.1 that the vibrational energy

scales are larger than the rotational energies, and both tend to be smaller for larger M , but not

absolutely so because of differences in electronic wavefunctions. Comparing ordinary hydrogen

and deuterium, which have similar electronic states but different nuclear masses, the ratios are

close to the predictions of eq. (19.1.5), ~ωH2
/~ωD2

≈ (MD2
/MH2

)1/2 =
√
2 for vibrations, and

BH2
/BD2

≈MD2
/MH2

= 2 for rotational excitations.

Molecules can absorb and emit photons by jumping from one energy level to another. For

heteronuclear diatomic molecules (those with different nuclei), there is always an asymmetry

in the electronic state wavefunction, which gives rise to a permanent electric dipole moment

pointing along the axis common to the nuclei. This electric dipole moment couples to the

electromagnetic field. Such molecules therefore are infrared active, with efficient transitions

between adjacent vibrational levels, n → n + 1 for absorption of a photon and n → n − 1

for emission. In a first approximation relevant for low resolution experiments, one can neglect

the anharmonicity of the vibrational modes and the rotational contributions, implying a single

spectral line corresponding to photons with energies near ~ω, which is usually in the infrared.

At a higher level of resolution, it is necessary to take into account not only the anharmonicity

χ but also the fact that there is a selection rule ∆l = ±1 for electric dipole transitions, similar

430



Ephotonh̄ωn

6→ 75→ 64→ 53→ 42→ 31→ 20→ 11→ 02→ 13→ 24→ 35→ 46→ 5

4B 2B2B

Figure 19.5.1: Infrared vibrational-rotational absorption spectrum for a heteronuclear di-
atomic molecule undergoing transitions n→ n+ 1, with either l → l + 1 (right) or l + 1→ l
(left) as labeled. The central energy is at ~ωn = ~ω(1− 2(n+ 1)χ), where ω is the harmonic
angular frequency and χ is the anharmonicity. However, the would-be line with Ephoton = ~ωn
is absent, due to the selection rule ∆l = ±1. The energy differences between lines are 2B
and 4B as shown, with B the rotational energy parameter. The relative occupancies of initial
states depend on temperature, and as shown here assume kBT = 10B. Due to Boltzmann
suppression of higher vibrational modes, the most prominent absorption lines have n = 0,
with ω0 = ω(1− 2χ) called the fundamental angular frequency. At low resolution, the rota-
tional lines shown and the lines for different n coalesce into a single one with energy E ≈ ~ω0.

to the one we will derive for single-electron transitions in atoms in section 22.4. The absorbed

or emitted photon energies can therefore be obtained by taking differences between the levels in

eq. (19.5.1), with the results (neglecting the small correction α for simplicity)

∆El→l+1
n→n+1 = ~ω(1− 2(n+ 1)χ) + 2(l + 1)B, (19.5.3)

∆El+1→l
n→n+1 = ~ω(1− 2(n+ 1)χ)− 2(l + 1)B. (19.5.4)

This shows that there is actually no photon absorption or emission line at ~ωn, where ωn =

ω(1 − 2(n + 1)χ) is the angular frequency difference corrected for the anharmonicity. Instead,

the spectrum for each n is as shown in Figure 19.5.1, and features a series of lines equally spaced

by 2B above ~ωn for l → l + 1, and another series of lines equally spaced by 2B below ~ωn for

l + 1 → l, with a gap of 4B between them due to the selection rule that l must change by 1

unit. Measuring the energy gaps reveals the moment of inertia of the molecule. The relative

occupancies of the initial states with eigenvalues l are governed by the statistical factor

(2l + 1)e−l(l+1)B/kBT . (19.5.5)

For small l, this factor rises with l due to the rotational degeneracy factor 2l + 1, and for large

l it is suppressed by the exponential Boltzmann factor. The relative initial-state occupancies

shown in Figure 19.5.1 correspond to kBT = 10B. The number of prominent lines on either side

of the central value ~ωn increases with the temperature.
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For homonuclear molecules (those with identical nuclei), there are two special considera-

tions. First, according to the spin-statistics principle, the interchange of the two nuclei must

multiply the state ket by a minus sign if they are fermions, or a plus sign if they are bosons.

For a nucleus with spin s, this sign equals (−1)2s. To match this, recall that the interchange

of nuclei in the relative coordinates just coincides with a parity transformation (replacing each

nuclear coordinate vector by minus itself), and therefore is associated with a factor of (−1)l for
orbital angular momentum l, as in eq. (8.7.5). Also, if the two spins s combine to form a total

spin S, then the exchange of the two nuclear spin states results in a factor of (−1)2s−S, as can
be seen from eq. (12.4.25), or from the symmetric and antisymmetric labels in eq. (12.4.44).

Therefore, combining the wavefunction and spin-state exchange factors, we must have

(−1)2s = (−1)l(−1)2s−S. (19.5.6)

It follows that l must be even if the total nuclear spin state has even S, and l must be odd if S

is odd. The molecular states with symmetric nuclear spins and (−1)2s−S = 1 are referred to as

“ortho-”, while those with antisymmetric nuclear spin states are called “para-”.†

Counting states using eq. (12.4.44) for spin s, the total number of ortho- states with S =

2s, 2s−2, . . . is (s+1)(2s+1), while the total number of para- states with S = 2s−1, 2s−3, . . .

is s(2s + 1). To get this counting correct, one includes 2S + 1 states for each S; the grand

total number of nuclear spin states is (2s + 1)2. For molecules in thermal equilibrium at lab

temperatures, kBT = 0.0255 eV is larger than the rotational energy differences, so each nuclear

spin state has close to the same occupancy. Therefore, for diatomic molecules with identical

nuclei, the ratio of the total number of para- states to the total number of ortho- states is

Npara

Northo
=

s

s + 1
. (19.5.7)

This can be used to experimentally determine the spins of nuclei that form diatomic molecules.

For example, for H2 gas at lab temperature with s = 1/2, the abundance of ortho-H2 with S = 1

and therefore odd l is about 3 times that of para-H2 with S = 0 and even l. In contrast, for

deuterium with s = 1, the abundance at lab temperature of ortho-D2 with S = 2 or S = 0 and

even l is about 2 times that of of para-D2 with S = 1 and odd l. For lower temperatures, the

right side of eq. (19.5.7) must be corrected by a degeneracy-and-Boltzmann statistics factor

∑
l=1,3,5,...(2l + 1)e−l(l+1)B/kBT

∑
l=0,2,4,...(2l + 1)e−l(l+1)B/kBT

(19.5.8)

†The terminology is similar to that for atomic helium as discussed in section 18.3, in the sense that symmetric
spin states are ortho- and antisymmetric spin states are para-. However, for atomic helium this refers to the
electronic spins, while here the spins referred to are the nuclear ones.
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when 2s is even, or its reciprocal when 2s is odd. This factor is close to 1 at high temperatures,

and decreases from more than 0.99 when kBT/B > 3 (which includes lab temperature for all

molecules) to 0 at lower temperatures. For example, at very low temperatures, so that most of

the molecules are in the l = 0 level, H2 is almost all para-, while D2 is mostly ortho-. For nuclei

with s = 0, like the main oxygen isotope, the para- states with odd l do not exist at all.

The second special consideration for homonuclear diatomic molecules is that they cannot

have an electric dipole moment, since by symmetry there is no special direction along which it

could point. Such molecules therefore have a much smaller coupling to electromagnetic fields,

and are called “inactive” in the infrared and microwave ranges.

However, the vibrational and rotational energy levels of homonuclear molecules can still be

observed by inelastic scattering of photons, called the Raman effect. In Raman scattering,

a photon with known energy ~Ω impacts the molecule, sometimes changing its vibrational or

rotational state. The molecule’s change in energy is then seen as an opposite change in energy

of the scattered photon. The Raman effect also occurs in heteronuclear molecules.

When the molecular state does not change, the final state photon energy is also ~Ω; this

is called Rayleigh scattering. In a first approximation in which anharmonicity and rotational

excitations are neglected, if the molecule absorbs some energy by transitioning to the next

higher vibrational state n → n + 1, the scattered photon will have energy ~(Ω − ω), called

Raman–Stokes scattering, and if the molecule gives up energy by transitioning to the next lower

vibrational state by n + 1 → n, then the scattered photon will have energy ~(Ω + ω), called

Raman–anti-Stokes scattering. The main Rayleigh scattering line is therefore accompanied by

two equally spaced lines, as shown in Figure 19.5.2. Except at very high temperatures, the

n = 0 state has the highest initial occupancy, and the anti-Stokes line is much less intense than

the Stokes line for vibrational Raman scattering, because the initial states for anti-Stokes have

higher energies and thus a relative Boltzmann suppression e−~ω/kBT .

The Raman effect can also result from inelastic scattering with transitions between states

with different rotational energies. Here, it is important that there is a selection rule (which

we will not attempt to derive) for Raman scattering, ∆l = 0 or ±2. Using the approximation

El = Bl(l + 1), one therefore finds for the allowed scattered photon energies

El→l+2
scattered = ~Ω− (4l + 6)B, (Stokes), (19.5.9)

El+2→l
scattered = ~Ω+ (4l + 6)B, (anti-Stokes), (19.5.10)

along with the Rayleigh line El→l
scattered = ~Ω. The positions of the spectral lines for the rotational

Raman effect are shown in Figure 19.5.3. There is an energy gap 6B on either side of the Rayleigh

line to the nearest rotational Raman lines, and gaps 4B between different rotational Raman–

Stokes and Raman–anti-Stokes lines. The relative intensities depend on the occupancies of the
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Escattered

Rayleigh

Raman-Stokes

Raman-anti-Stokes

n+1→nn→ nn→ n+1

h̄Ωh̄(Ω− ω) h̄(Ω + ω)

Figure 19.5.2: The vibrational Raman effect spectrum of scattered photon energies for di-
atomic molecules. The incident photon has energy ~Ω. If the molecule remains in the same
state after the scattering, the scattered photon energy is also ~Ω, giving the Rayleigh scatter-
ing line at center. The Stokes line results from the molecule transitioning to the next-higher
energy vibrational state by n→ n+1, and the anti-Stokes line is due to the molecule moving
to the next-lower vibrational state by n + 1 → n. The anti-Stokes line is less intense than
the Stokes line, as its initial occupancies have a relative Boltzmann suppression e−~ω/kBT .

Escattered

Rayleigh

Raman-Stokes Raman-anti-Stokes

6→ 45→ 34→ 23→ 12→ 0l→ l0→ 21→ 32→ 43→ 54→ 6

6B 6B 4B4B 4B4B

Figure 19.5.3: The rotational Raman effect spectrum of scattered photon energies for diatomic
molecules. The incident photon has energy ~Ω. When the molecule remains in the same state,
the scattered photon energy is also ~Ω, giving the Rayleigh scattering line in the center. The
left series of Stokes lines result when the molecule transitions to a higher energy rotational
state via l → l + 2 as labeled for various l, and the right series of anti-Stokes lines are due
to the molecule transitioning to lower energy states by l + 2 → l. The energy separations
between lines are 4B or 6B as shown, where B is the rotational energy parameter, inversely
proportional to the moment of inertia. The relative intensities of the lines are not shown,
and depend on the temperature and whether the molecule is homonuclear or heteronuclear.

initial states l, which for homonuclear molecules are proportional to

(s+ 1)(2l + 1)e−l(l+1)B/kBT (homonuclear ortho- states), (19.5.11)

s (2l + 1)e−l(l+1)B/kBT (homonuclear para- states), (19.5.12)

alternating between odd and even l. For heteronuclear molecules, the initial-state occupancies

are simply proportional to the factor already given in eq. (19.5.5).
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19.6 The most important molecule: H2O

Polyatomic molecules are obviously more complicated than diatomic ones, and mostly beyond

our scope. However, given the importance of water to life and happiness on Earth, it seems

worthwhile to give a brief phenomenological account of its vibrational and rotational quantum

excitations.

The H2O molecule has a bent (non-linear) shape, with the geometry of the three nuclei shown

in Figure 19.6.1. The bond angle measured from the oxygen nucleus is famously about 104.5◦.

The electrons on the hydrogen atoms are attracted to the oxygen nucleus, leaving them with a

net positive charge and ensuring that the molecule has a permanent electric dipole moment in

its ground state, pointing in the direction of the principal axis labeled B̂. The reasons for this

odd geometry and the nature of the bonding are discussed in more specialized books.

Â

B̂

O

H H (b) (s) (a)

Figure 19.6.1: The equilibrium geometry of the nuclei in the H2O molecule is shown on the left.
The rectangular coordinates of the nuclear positions, with respect to the center of mass, are O
at (0, −0.6563) and H at (7.572, 5.209) and (−7.572, 5.209), in units of 10−11 meters. The angle
between the OH bonds is 104.5◦. The principal axes in which the moment-of-inertia tensor is
diagonal are shown from the center of mass position as Â and B̂, with Ĉ out of the plane of
this page. The three diagrams on the right illustrate the three vibrational modes: bending (b),
symmetric stretching (s), and asymmetric stretching (a).

There are three† vibrational modes, called bending (b), symmetric stretching (s), and asym-

metric stretching (a). The classical depictions of these modes are also shown in Figure 19.6.1.

The bending mode can be thought of as an oscillation of the bond angle about its equilibrium

value. In the symmetric stretching mode, the two hydrogen nuclei (protons) move farther and

closer to the center of mass in unison, while in the asymmetric stretching mode one moves closer

as the other moves farther. Considering each vibrational mode separately, for simplicity, one

can parameterize the energies in terms of a Morse-potential-inspired spectrum,

E(m)
n = ~ωm(n+ 1/2)− ~ωmχm(n + 1/2)2, (m = b, s, a). (19.6.1)

For each mode, ωm is often called the harmonic angular frequency, and the slightly smaller

†In general, a molecule has 3N degrees of freedom associated with the position coordinates of the N nuclei.
Of these, 3 degrees of freedom correspond to translations of the molecule as a whole, and 3 more are associated
with the rotations of the molecule if it is non-linear, or 2 more if it is linear with IC = 0. Therefore, in the
approximation of harmonic oscillations about equilibrium, there are 3N − 6 vibrational modes for a non-linear
molecule like H2O, and 3N − 5 vibrational modes for a linear molecule like CO2 or any diatomic molecule.

435



difference in angular frequencies between the n = 0 and n = 1 energies, ωm(1−2χm), is referred

to as the fundamental angular frequency. The experimental values in this parameterization are

~ωb = 0.2046 eV, ~ωbχb = 0.00335 eV, (19.6.2)

~ωs = 0.4754 eV, ~ωsχs = 0.0109 eV, (19.6.3)

~ωa = 0.4892 eV, ~ωaχa = 0.0116 eV. (19.6.4)

These are all in the IR spectrum, as argued on general grounds for molecular vibrations in

section 19.1. The fundamental frequencies are ν = ω(1− 2χ)/2π = 4.785× 1013, 1.097 × 1014,

and 1.127× 1014 Hz, with vacuum wavelengths 6.27, 2.73, and 2.66 microns. These modes are

easily excited by electromagnetic radiation due to the polar nature of the molecule, leading to

strong IR absorption features. The anharmonicities help to effectively broaden the absorption

spectrum to longer wavelengths, with an even stronger broadening effect in both directions from

interactions between neighboring molecules in liquid water. Fortunately for us, water remains

mostly transparent to the higher energy photons in the visible range. This is because the lowest

electronic state excitations have much larger energies corresponding to UV photons, leaving a

window in the absorption spectrum for liquid water for frequencies from roughly ν = 3.75×1014

to 1.5 ×1015 Hz, corresponding to the visible and the very near IR and UV.

At lower energies, rotational modes are important. Since H2O is not a linear molecule, it

behaves as a quantum asymmetric top for rotational excitations. Given the geometry in Figure

19.6.1 and its caption, it is a short exercise in arithmetic to compute the moments of inertia for

the principal axes Â and B̂ in the plane common to the nuclei, and Ĉ perpendicular to that

plane, using oxygen’s nuclear mass MO = 15.875mp. This successfully predicts results within a

few per cent of the empirical rotational energy parameters for H2O,

eA =
~
2

2IA
= 0.003459 eV, eB =

~
2

2IB
= 0.001801 eV, eC =

~
2

2IC
= 0.001152 eV, (19.6.5)

in terms of which the asymmetric top Hamiltonian is

H = eA(LA/~)2 + eB(LB/~)2 + eC(LC/~)2. (19.6.6)

As discussed in section 19.4, there is no simple formula for the energies of an asymmetric top

that works for all l, but for the l = 1 states the three energy eigenvalues are, from eq. (19.4.11),

E
(1)
1 = eA + eB = 0.00526 eV, E

(1)
2 = eA + eC = 0.00461 eV, (19.6.7)

E
(1)
3 = eB + eC = 0.00295 eV, (19.6.8)

each with degeneracy 3. For the l = 2 states, the five energy eigenvalues are, numerically,

E
(2)
1 = 0.00987 eV, E

(2)
2 = 0.01181 eV, E

(2)
3 = 0.01679 eV, (19.6.9)

E
(2)
4 = 0.01694 eV, E

(2)
5 = 0.00870 eV, (19.6.10)
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each with degeneracy 5. It is left to Exercise 19.3 to derive the symbolic versions of these l = 2

energy eigenvalues in terms of the moments of inertia for a general asymmetric top.

Transitions between the above rotational states, and many others with higher l relevant

for lab temperature kBT = 0.0255 eV, correspond to photons with wavelengths in the near

microwave spectrum. However, they are all much shorter than the 12.2 cm wavelength used

by modern consumer microwave ovens to heat food. Microwave ovens efficiently heat liquid

water, but do not operate by resonantly exciting rotational states (or the vibrational states

described above, which have even higher energies). Instead, they produce time dependence in

the superpositions of the rotational states, corresponding semi-classically to oscillatory changes

in orientation rather than complete rotations. Microwave ovens are much less efficient at heating

ice, which has nearly locked-in molecular orientations.

19.7 Exercises

Exercise 19.1. The radial wavefunctions of the Morse potential discussed in section 19.3 can

be written exactly in terms of the associated Laguerre polynomials LαN defined in eq. (10.5.36).

Prove this, by using eq. (19.3.15) and the associated Laguerre differential equation (10.5.37)

to show that Sn(z) = zκ−n−1/2L2κ−2n−1
n (2z) solves the differential equation (19.3.11) for the

rescaled energy eigenvalue En = 1− (1− (n+ 1/2)/κ)2.

Exercise 19.2. Prove that the principal-axis angular momentum components of a rigid body,

defined in eq. (19.4.2), commute with the ordinary angular momentum components, as in

eq. (19.4.4). Also show that they obey the commutation relations in eq. (19.4.5), with the

notable minus signs.

Exercise 19.3. In this problem, we will find the five l = 2 rotational energy levels, each with

degeneracy 5, for a general asymmetric top.

(a) Start by writing the 5×5 matrix representations for generic angular momentum components

Jx, Jy, and Jz, making use of eqs. (8.4.4) and (8.4.5). Then substitute Jx,y,z → LA,B,C, and use

them in eq. (19.4.3) to find the 5× 5 Hamiltonian matrix for l = 2. For convenience, write it in

terms of eA = ~
2/2IA and eB = ~

2/2IB and eC = ~
2/2IC.

(b) Find the energy eigenvalues of the l = 2 Hamiltonian matrix obtained in part (a). This

should involve three linear equations with solutions

E1 = eA + eB + 4eC , E2 = eA + eC + 4eB, E3 = eB + eC + 4eA, (19.7.1)

and one quadratic equation with solutions

E4,5 = 2

(
eA + eB + eC ±

√
e2A + e2B + e2C − eAeB − eAeC − eBeC

)
. (19.7.2)
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20 Heisenberg and interaction representations

20.1 The Heisenberg picture and equations of motion

Everything we have done so far uses a formulation that is sometimes called the Schrödinger

picture of quantum mechanics. This just means that the state of the system evolves according

to Postulate 6 of section 3.1,

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (20.1.1)

However, there are other, equivalent, formulations of quantum mechanics, called “pictures”,

which are related to the Schrödinger picture by doing a time-dependent unitary transforma-

tion on the state of the system and a corresponding transformation to all operators. Done

consistently, this cannot affect the predictions for physically measurable quantities, but the in-

termediate steps for solving problems will differ. The main reason for considering other pictures

is to make some calculations easier to do and/or understand.

Recall from the discussion in section 3.4 that the solution to eq. (20.1.1), starting from an

initial state |ψ(t0)〉, is

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (20.1.2)

where U(t, t0) is a unitary operator satisfying the differential equation

i~
d

dt
U(t, t0) = HU(t, t0), (20.1.3)

with U(t, t0)
−1 = U(t, t0)

† = U(t0, t). If H has no explicit time dependence, then the solution

to eq. (20.1.3) is relatively easy, just U(t, t0) = e−i(t−t0)H/~. In that case, there is no particular

advantage to the Heisenberg or interaction pictures described in the following.

In the Heisenberg picture, all time dependence is transferred from the state of the system

to the operators. To accomplish this, define

|ψH〉 = U(t, t0)
†|ψ(t)〉, (20.1.4)

AH(t) = U(t, t0)
†A(t)U(t, t0), (20.1.5)

where |ψH〉 is the state ket in the Heisenberg picture, and for each Schrödinger picture operator

A(t), the corresponding Heisenberg picture operator is denoted AH(t). Combining eqs. (20.1.2)

and (20.1.4) gives

|ψH〉 = |ψ(t0)〉. (20.1.6)

Thus the Heisenberg picture state ket |ψH〉 is independent of the time t; it only depends on the

initial condition at t0. Note that there are really infinitely many Heisenberg pictures, one for
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each choice of the reference initial time t0. We include a subscript H to denote the state of the

system or an operator as being in the Heisenberg picture. If an object is not written with the H

subscript, it can be assumed to be in the Schrödinger picture. For convenience and simplicity,

we will often write U = U(t, t0) in the rest of this section.

A possible point of confusion is that it is only the state of the system that we are defin-

ing differently in the Heisenberg and Schrödinger pictures via the unitary transformation in

eq. (20.1.4). Both the Schrödinger picture state ket |ψ(t)〉 and the Heisenberg picture state ket

|ψH〉 can be expressed as (different!) linear combinations of a set of fixed orthobasis kets, which

are defined independently of the choice of picture. A convenient way to choose the fixed or-

thobasis kets is as time-independent eigenstates of some appropriate time-independent CSCO in

the Schrödinger picture. Once so chosen, the orthobasis kets do not depend on t, by definition.

Inner products and matrix elements are the same in both pictures, since they are related by

a unitary transformation. To see this, consider a matrix element of an arbitrary observable A

between two possible states of the system |ψ〉 and |χ〉 that both obey Schrödinger’s equation in

the Schrödinger picture. We have

〈χ(t)|A(t)|ψ(t)〉 = 〈χ(t)|UU †A(t)UU †|ψ(t)〉 = 〈χH |AH(t)|ψH〉. (20.1.7)

This shows the physical equivalence of the two pictures.

Even though many important observable operators (for example, A = position, momentum,

or spin) are time-independent in the Schrödinger picture, the corresponding Heisenberg picture

operators AH(t) will generally depend on t, and often in a complicated way, depending on the

Hamiltonian. This is the price to be paid in the Heisenberg picture for the convenience that the

state of the system has no t dependence.

However, there is an important special case in which AH(t) does not depend on t. Suppose

that in the Schrödinger picture, H and A do not depend on t, and [A,H ] = 0. Then A commutes

with U(t, t0) as well, since the latter is built out of H . In that case,

AH = U †AU = U †UA = A, (20.1.8)

and we say that A is a constant of motion, following classical physics terminology. Note that

this corresponds to a conserved quantity, as defined in section 5.1 in the Schrödinger picture.

In particular, if H does not depend explicitly on t, then HH = H , and the Schrödinger and

Heisenberg picture Hamiltonians are equal.

More generally, we can ask how AH(t) evolves in time. To find out, we calculate, using the

product rule for derivatives,

dAH
dt

=

[
d

dt
U(t, t0)

†
]
AU + U †A

[
d

dt
U(t, t0)

]
+ U †

∂A

∂t
U. (20.1.9)
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Evaluating the derivatives in square brackets using the differential equation (20.1.3) gives

dAH
dt

=
i

~
U †HAU − i

~
U †AHU + U †

∂A

∂t
U, (20.1.10)

which can be rewritten as

dAH
dt

=
i

~
[HH , AH ] +

(
∂A

∂t

)

H

. (20.1.11)

The meaning of the last term is that we take the derivative of A with respect to its explicit

dependence on t in the Schrödinger picture, and then convert the result to the Heisenberg

picture. Equation (20.1.11) is called the Heisenberg equation of motion for the operator

AH . Since the state of the system does not change in the Heisenberg picture in the absence of a

measurement, this equation captures all physical effects of unitary time evolution. It is a direct

analog in quantum mechanics of the classical equations of motion.

The form of equal-time commutation relations does not change if one switches pictures.

If one has a commutation relation

[A, B] = C, (20.1.12)

in the Schrödinger picture, then

[AH(t), BH(t)] = [U †AU, U †BU ] = U †[A,B]U = U †CU = CH(t). (20.1.13)

So, for example,

[XH(t), PH(t)] = [X,P ] = i~, (20.1.14)

and if J is an angular momentum operator, then

[JHa(t), JHb(t)] = i~ǫabcJHc(t), (a, b, c = x, y, z). (20.1.15)

It is crucial that we specified equal-time commutation relations, because in general the commu-

tator [AH(t), BH(t
′)] does not have a simple relationship to [A,B] unless t′ = t. For example,

[XH(t), PH(t
′)] 6= i~ (20.1.16)

in general, unless t′ = t.

To illustrate how the Heisenberg picture works in the simple case that the Hamiltonian

does not explicitly depend on time, suppose that in the Schrödinger picture we have the usual

Hamiltonian for a spinless particle of mass m moving in a potential,

H =
P 2

2m
+ V (X), (20.1.17)
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where V (x) =
∑

n vnx
n, with vn a set of fixed real numbers. Then

P 2
H = U †PUU †PU = U †P 2U, (20.1.18)

and similarly

(XH)
n = U †XnU. (20.1.19)

Therefore, the Heisenberg picture Hamiltonian is

HH = U †HU =
P 2
H

2m
+ V (XH). (20.1.20)

The Schrödinger picture position and momentum operators have no explicit time dependence,

∂X

∂t
= 0,

∂P

∂t
= 0, (20.1.21)

and so we obtain from eq. (20.1.11), by using eq. (20.1.14),

dXH

dt
=

i

~
[HH , XH ] =

PH
m
, (20.1.22)

dPH
dt

=
i

~
[HH , PH ] = −V ′(XH). (20.1.23)

The Heisenberg equations of motion (20.1.22) and (20.1.23) have the same form as the classical

equations of motion, but with the classical position and momentum promoted to the correspond-

ing Heisenberg-picture operators. Using them, one can check that

d

dt
HH = 0, (20.1.24)

which verifies that HH = H is indeed a constant of motion.

20.2 The interaction picture and transition amplitudes

Suppose that we have a Hamiltonian (in the Schrödinger picture) of the form

H(t) = H0 +W (t), (20.2.1)

where W (t) may depend explicitly on time, but H0 does not. Then one can define another

picture called the interaction picture, also known as the Dirac picture.

The idea of the interaction picture is to transfer from the state ket to the operators only the

part of the time dependence that H0 is responsible for. This is done by defining, for the ket

describing the Schrödinger picture state of the system |ψ(t)〉 and for all observables A,

|ψI(t)〉 = eitH0/~ |ψ(t)〉, (20.2.2)

AI(t) = eitH0/~Ae−itH0/~ . (20.2.3)
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The subscript I is used to denote the interaction picture state and operators; when it is not

present, the state or operator should be assumed to be in the Schrödinger picture. The interac-

tion picture states and operators coincide with their Schrödinger picture counterparts at time

t = 0. (One could instead choose some other time to do the matching, but there is no particular

advantage to doing so.) Note that (H0)I = eitH0/~H0e
−itH0/~ = H0, so a distinguishing subcript

for H0 is not needed. However, in general, WI(t) 6= W (t), so we must be careful to distinguish

them from now on. Note that eqs. (20.2.2) and (20.2.3) can be considered a change of basis,

since e−itH0/~ is a unitary operator.

Clearly, if W (t) = 0, then the interaction and Heisenberg pictures are the same, while

if H0 = 0, then the interaction and Schrödinger pictures are the same. More generally, the

interaction picture is intermediate between the Schrödinger and Heisenberg pictures. At first,

it might seem that the interaction picture combines the worst features of both, since both the

state and observable operators evolve non-trivially in time. However, it turns out to be useful

for an elegant formulation of time-dependent perturbation theory, when the effects of H0 are

large but easily calculable, and the effects of W (t) can be treated as the perturbation.

By an argument exactly analogous to the derivation of eq. (20.1.11), one can find the equation

giving the time evolution of operators in the interaction picture,

dAI
dt

=
i

~
[H0, AI ] +

(
∂A

∂t

)

I

. (20.2.4)

Here, the meaning of the last term is that one should take the derivative of A with respect

to its explicit time dependence in the Schrödinger picture, and then convert the result to the

interaction picture using eq. (20.2.3).

Let us now define the unitary operator UI(t, t0) which gives the time evolution of |ψI(t)〉 in
terms of its initial condition at an arbitrary time t = t0, according to

|ψI(t)〉 = UI(t, t0)|ψI(t0)〉. (20.2.5)

To avoid confusion, it is important to note that UI(t, t0) is not the same as UI(t, t0), which is

defined to be the interaction-picture version of the Schrödinger picture unitary time-evolution

operator U(t, t0). In fact, the relation between these three unitary operators is

UI(t, t0) = eitH0/~U(t, t0)e
−it0H0/~ = UI(t, t0)e

i(t−t0)H0/~. (20.2.6)

The first equality follows from eqs. (20.1.2), (20.2.2), and (20.2.5), and the last equality then

follows directly from the definition eq. (20.2.3). In the special case that H has no explicit time

dependence, we can now apply the known solution for U(t, t0) in eq. (3.4.3) to learn that

UI(t, t0) = eitH0/~ei(t0−t)H/~e−it0H0/~, (for time-independent H). (20.2.7)

442



Our goal now is to solve for UI(t, t0) more generally. To accomplish this, we calculate

i~
d

dt
|ψI(t)〉 = i~

d

dt

(
eitH0/~|ψ(t)〉

)
= −eitH0/~H0|ψ(t)〉+ i~eitH0/~

d

dt
|ψ(t)〉. (20.2.8)

Using the Schrödinger equation i~ d
dt
|ψ〉 = (H0 +W ) |ψ〉, this becomes

i~
d

dt
|ψI(t)〉 = eitH0/~W |ψ〉 , (20.2.9)

which we can rewrite in a form involving only interaction picture objects, as

i~
d

dt
|ψI(t)〉 = WI(t)|ψI(t)〉. (20.2.10)

Plugging the definition eq. (20.2.5) into eq. (20.2.10), we get the operator equation

i~
d

dt
UI(t, t0) = WI(t)UI(t, t0). (20.2.11)

Integrating both sides gives

i~
[
UI(t, t0)− UI(t0, t0)

]
=

∫ t

t0

dt′WI(t
′)UI(t′, t0). (20.2.12)

Rewriting this using UI(t0, t0) = I, we find the useful integral equation

UI(t, t0) = I − i

~

∫ t

t0

dt′WI(t
′)UI(t′, t0). (20.2.13)

Taking the Hermitian adjoint of this, and using the unitarity relation UI(t, t0)† = UI(t, t0)−1 =
UI(t0, t) and the Hermiticity of WI(t

′), one finds UI(t0, t) = I + i
~

∫ t
t0
dt′ UI(t0, t′)WI(t

′). Then,

interchanging the roles of t and t0 gives an alternative version of the integral equation,

UI(t, t0) = I − i

~

∫ t

t0

dt′ UI(t, t′)WI(t
′). (20.2.14)

Although eqs. (20.2.13) and (20.2.14) contain the same information, the latter will be the more

useful form in the context of scattering, as we will see in section 23.2.

Solving the integral equation (20.2.13) by iteration gives

UI(t, t0) = I − i

~

∫ t

t0

dt′WI(t
′) +

(
− i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′WI(t
′)WI(t

′′) + · · · . (20.2.15)

or, rewriting more systematically,

UI(t, t0) =

∞∑

N=0

(
− i
~

)N ∫ t

t0

dtN

∫ tN

t0

dtN−1 · · ·
∫ t2

t0

dt1WI(tN)WI(tN−1) · · ·WI(t1).

(20.2.16)
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Equation (20.2.16) is the Dyson series for the time evolution of the state in the interaction

picture; compare to the similar structure of eq. (3.4.32). This solution can be checked by

plugging it directly into eq. (20.2.11). In general, WI(t) may not commute with WI(t
′) when

t 6= t′. Therefore, we are careful to put the operators in increasing time order, from right to left,

as specified by the nested integrations with t0 < t1 < t2 < · · · < tN−1 < tN < t. In practice,

eq. (20.2.16) is usually approximated by truncating it to the first few terms, treating WI as

small. A more compact (but less directly useful) way of writing eq. (20.2.16) is

UI(t, t0) = T exp

[
− i
~

∫ t

t0

dt′WI(t
′)

]
, (20.2.17)

where T is the time-ordering symbol introduced in the discussion surrounding eq. (3.4.31), to

which eq. (20.2.17) can be compared. The symbol T is an instruction to re-order the operators

following it, so that after expanding the exponential, WI(tj) appears to the right of WI(tk)

whenever tj < tk. The time-ordering rule is that earlier operators act first on kets.

Given our solution for UI(t, t0) in eq. (20.2.16), one can express the time dependence of the

state back in the Schrödinger picture. Using eqs. (20.1.2) and (20.2.6),

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 = e−itH0/~ UI(t, t0)eit0H0/~|ψ(t0)〉. (20.2.18)

It is convenient to express this in terms of an orthobasis of eigenstates |n〉 of H0 with eigenvalues

En. Using completeness twice, we have

|ψ(t)〉 =
∑

m

∑

n

e−iEmt/~eiEnt0/~ |m〉 〈m|UI(t, t0)|n〉 〈n|ψ(t0)〉. (20.2.19)

Now, define the transition amplitudes for the eigenstates of H0 as

an→m(t, t0) ≡ 〈m|UI(t, t0)|n〉. (20.2.20)

Then, given the initial state coefficients

cn(t0) = 〈n|ψ(t0)〉, (20.2.21)

it follows that the Schrödinger picture state of the system at time t is

|ψ(t)〉 =
∑

m

cm(t)|m〉, (20.2.22)

where, from eq. (20.2.19),

cm(t) =
∑

n

ei(Ent0−Emt)/~ an→m(t, t0) cn(t0). (20.2.23)
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Note that an→m(t0, t0) = 〈m|n〉 = δnm, so that eq. (20.2.23) is consistent for t = t0. The

non-trivial part of the time evolution of the system due to W (t) is encoded in the transition

amplitudes an→m(t, t0), which in turn rely on our solution for UI(t, t0) in eq. (20.2.16).

As a special case, suppose we are only interested in transitions between eigenstates of H0,

but with time evolution governed by the full Hamiltonian H = H0 +W (t). The probability to

start at time t0 in one of the H0 eigenstates |n〉 and find the system at time t in another H0

eigenstate |m〉 is

Pn→m = |an→m|2. (20.2.24)

More generally, the transition amplitudes an→m defined in eq. (20.2.20) can be used to find the

time evolution of an arbitrary state |ψ(t)〉, through eqs. (20.2.22) and (20.2.23).

20.3 Exercises

Exercise 20.1. Consider the 1-d harmonic oscillator for a particle of mass m and frequency ω.

(a) Use Theorem 2.4.3 to find the Heisenberg-picture operators aH(t) and a
†
H(t) in terms of the

corresponding Schrödinger picture operators, taking them to coincide at t = t0 = 0. Use the

results to find XH(t) and PH(t). Check that your results satisfy the differential equations from

eq. (20.1.11).

(b) Find the commutators [XH(t), PH(t
′)] and [XH(t), XH(t

′)] and [PH(t), PH(t
′)].

(c) Find the ground state correlation functions, 〈0|XH(t)XH(t
′)|0〉 and 〈0|PH(t)PH(t′)|0〉.

Exercise 20.2. A particle of mass m has a Hamiltonian H = H0+W , where H0 = P 2/2m and

W = V (X) does not depend on time.

(a) Find the interaction picture operatorsXI(t) and PI(t) in terms of the corresponding Schrödinger

picture operators, with which they coincide at t = 0.

(b) Find the commutators [XI(t), PI(t
′)] and [PI(t), PI(t

′)] and [XI(t), XI(t
′)]. In particular,

show that the last one does not vanish except when t′ = t.

(c) Repeat parts (a) and (b) with the roles of H0 and W reversed, so that H0 = V (X) and

W = P 2/2m.
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21 Time-dependent perturbation theory

21.1 The short-time and sudden approximations

As a warm-up for a more general treatment of time-dependent perturbation theory, suppose

that the Hamiltonian for a system is

H(t) =





H0 (t < 0),

Hint (0 < t < δ),

H ′0 (t > δ).

(21.1.1)

The starting and ending Hamiltonians are assumed to have no time dependence, and to have

known eigenstates and eigenvalues, |n〉 and En for H0, and |m′〉 and Em′ for H ′0. In the interreg-

num 0 < t < δ, the Hamiltonian is Hint. Consider the short-time approximation, in which δ

is small compared to the time scales set by ~ divided by characteristic energy differences. The

idea is to take advantage of the smallness of δ to develop an approximation for the state of the

system at late times, despite the possibly complicated form of Hint, and in particular even if we

do not know its eigenstates and eigenvalues. We assume that δ is so small that any explicit time

dependence of Hint over that time interval can be ignored.

For each of t ≤ 0 and t ≥ δ, we can use the Schrödinger equation to write the form of the

state as

|ψ(t)〉 =
∑

n

bne
−itEn/~|n〉 (t ≤ 0), (21.1.2)

|ψ(t)〉 =
∑

m′

cm′ e−i(t−δ)Em′ /~|m′〉 (t ≥ δ), (21.1.3)

for some constants bn and cm′ . For later convenience, a constant phase eiEm′δ/~ has been included

in eq. (21.1.3), by choice of the definition of cm′ . For 0 < t < δ, the Schrödinger equation is

i~
d

dt
|ψ(t)〉 = Hint|ψ(t)〉. (21.1.4)

So, to first order in δ,

|ψ(δ)〉 =

(
I − i δ

~
Hint

)
|ψ(0)〉. (21.1.5)

Comparing this to eq. (21.1.2) with t = 0, and eq. (21.1.3) with t = δ, we find

∑

m′

cm′ |m′〉 =

(
I − i δ

~
Hint

)∑

n

bn|n〉. (21.1.6)

Now taking the inner product with another H ′0 eigenstate 〈k′|, and then relabeling k′ → m′, we

get the solution

cm′ =
∑

n

bnan→m′, (21.1.7)
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where the transition amplitude is

an→m′ = 〈m′|n〉 − i δ
~
〈m′|Hint|n〉. (21.1.8)

Given the initial state, specified by the coefficients bn of the H0 eigenstates, the final state is

determined by the coefficients cm′ of the H ′0 eigenstates.

One application of eq. (21.1.8) is to the special case H ′0 = H0, so that Hint −H0 acts for a

short time as a perturbation to an otherwise constant Hamiltonian. Then 〈m|n〉 = δnm, and

an→m = δnm − i
δ

~

∑

n

〈m|Hint|n〉. (21.1.9)

For example, if the initial state is an eigenstate |n〉 of H0, so that only one of the bn is non-zero,

then the probability of finding the system in a different H0 eigenstate |m〉 after t > δ is

Pn→m =
δ2

~2
|〈m|Hint|n〉|2. (21.1.10)

In the next section, we will see that this result can be obtained as a special case application of a

general treatment that we will develop for time-dependent perturbation theory; see eqs. (21.2.8)

and (21.2.9) with W = Hint −H0 for 0 < t < δ.

The sudden approximation is obtained if we assume that δ is so small that Hint is irrel-

evant, but H ′0 6= H0. Then, if the system was originally in an H0 eigenstate |n〉 for t < 0, the

probability of finding the system in an H ′0 eigenstate |m′〉 for t > 0 is

Pn→m′ = |cm′ |2 = |〈m′|n〉|2. (21.1.11)

This follows from the δ → 0 limit of eq. (21.1.8).

As an example, suppose that a one-dimensional harmonic oscillator is in its ground state,

when the angular frequency in the Hamiltonian suddenly doubles, due to some outside agent.

Let us compute the probability that the oscillator will be found in the ground state of the

new Hamiltonian. Working in the position representation, the normalized wavefunctions of the

ground states are

〈x|0〉ω =
(mω
π~

)1/4
exp(−mωx2/2~) (before), (21.1.12)

〈x|0〉2ω =

(
2mω

π~

)1/4

exp(−mωx2/~) (after). (21.1.13)

Then, in the sudden approximation, we compute

2ω〈0|0〉ω =

∫ ∞

−∞
dx 2ω〈0|x〉〈x|0〉ω =

√√
2mω

π~

∫ ∞

−∞
dx exp(−3mωx2/2~) =

23/4

31/2
, (21.1.14)
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which results in P0ω→02ω = 2
√
2/3 ≈ 0.9428.

As a more practical example, consider the effect of the decay of the tritium (3H) nucleus on

the atomic electron state. The tritium nucleus consists of 1 proton and 2 neutrons, so Z = 1.

It undergoes a β decay to a helium isotope and an electron and antineutrino,

3H → 3He + e− + νe. (21.1.15)

The antineutrino has only weak interactions, and so can be ignored for the present purposes.

The β-decay electron is emitted with average (maximum) kinetic energy 0.0057 MeV (0.0186

MeV), so that its average (maximum) speed can be computed to be 0.15c (0.26c). These are

much larger than the typical semi-classical speeds of electrons in a Z = 1 atom, v = αc ≈ c/137.

Therefore, it is a good approximation to also ignore the β-decay electron, as it leaves the scene

very quickly.

The remaining 3He atom consists of the nucleus with 2 protons and 1 neutron, so Z =

2, together with the left-over atomic electron from the 3H atom. Therefore, in the sudden

approximation the probability of the atomic electron starting in the ground state of 3H and

ending up in the ground state of the 3He+ ion is P1,0,0→1,0,0 = |a1,0,0→1,0,0|2, where

a1,0,0→1,0,0 =

∫
d3r

[
ψZ=2
1,0,0(r )

]∗
ψZ=1
1,0,0(r ). (21.1.16)

Recalling that

ψZ1,0,0(r ) =

√
Z3

πa30
e−Zr/a0 , (21.1.17)

we have

a1,0,0→1,0,0 = 4π

∫ ∞

0

dr r2
23/2

πa30
e−3r/a0 = 29/2/33, (21.1.18)

and the probability of the electron remaining in the atomic ground state after the decay is

P1,0,0→1,0,0 = 29/36 = 512/729 ≈ 0.702. (21.1.19)

21.2 Transition amplitudes and probabilities in perturbation theory

In section 3.4, we learned how to solve for the time-dependence of quantum state. If the

Hamiltonian does not depend on time, and one can solve its eigenvalue problem, then the time

evolution can always be found by writing the unitary operator U(t, t0) in terms of the stationary

states with appropriate phases factors that depend on the energy; see eqs. (3.4.1) and (3.4.7).

However, if the Hamiltonian does depend on time, then as we saw in section 20.2, the time
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evolution is given in terms of a Dyson series that typically cannot be obtained exactly in closed

form. The approximation that follows from truncating the Dyson series in the interaction picture

is known as time-dependent perturbation theory.

Just as in our discussion of the interaction picture, we suppose that the full Hamiltonian is

H(t) = H0 +W (t), (21.2.1)

where H0 does not depend explicitly on time, and we assume that we know (at least approxi-

mately) the solutions to its eigenvalue problem,

H0|n〉 = En|n〉. (21.2.2)

Since H0 is an observable, the kets |n〉 form a complete orthobasis. The remaining part of the

full Hamiltonian, W (t), contains the explicit time dependence. Then, given the state of the

system at time t0, the solution for the state at a later time t is found in terms of the transition

amplitudes an→m defined by eq. (20.2.20), which relies on eq. (20.2.16), where

WI(t) = eiH0t/~W (t) e−iH0t/~ (21.2.3)

is the perturbation part of the Hamiltonian, translated into the interaction picture.

The time-dependent perturbative expansion simply amounts to assuming thatW (t) is small,

so that we can expand the transition amplitude in eq. (20.2.20) as

an→m(t, t0) = a(0)n→m + a(1)n→m + a(2)n→m + a(3)n→m + · · · , (21.2.4)

where each term a
(N)
n→m contains N factors of W , following from the corresponding terms in

eq. (20.2.16). In practice, eq. (21.2.4) is then truncated at some finite N , usually at N = 1 or

N = 2. Note that the zeroth order contribution is just

a(0)n→m = 〈m|n〉 = δnm, (21.2.5)

as follows from the identity operator (N = 0) part of UI .
The preceding tells us that the first-order contribution to the transition amplitude is

a(1)n→m = − i
~

∫ t

t0

dt1 〈m|eiH0t1/~W (t1) e
−iH0t1/~|n〉. (21.2.6)

Fortunately, each H0 can be evaluated acting on a neighboring eigenket or eigenbra. So, defining

ωmn = (Em − En)/~, (21.2.7)

we obtain

a(1)n→m = − i
~

∫ t

t0

dt1 e
iωmnt1 〈m|W (t1) |n〉. (21.2.8)
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This result provides the time evolution of a general state from t0 to t, at the leading order in

time-dependent perturbation theory, using eqs. (20.2.22)–(20.2.23) with an→m = δnm + a
(1)
n→m.

Before moving on to consider the higher-order contributions, consider the special case that

the system starts at time t0 in an eigenstate |n〉 of H0, and we then measure H0 at time t. The

transition probability to transfer from the stationary state |n〉 to a different eigenstate |m〉 of
H0, at the leading non-trivial order in the perturbation, is simply

Pn→m = |a(1)n→m|2, (for m 6= n). (21.2.9)

The validity of the approximation requires that we find |a(1)n→m| ≤ 1, so that the probability

does not exceed 1. This is a necessary but not sufficient condition, because the sum of |a(1)n→m|2

for multiple final states |m〉 could still exceed 1. And, even if that does not happen, the series

expansion in eq. (21.2.4) could still fail to converge when higher-order terms are included. The

perturbation expansion is often, but not always, more reliable if |a(1)n→m| ≪ 1.

It is also instructive to consider what happens if we try to use the first-order approximation

to directly compute the probability to remain in the initial stationary state |n〉. Since a(0)n→n = 1,

we get, instead of eq. (21.2.9):

Pn→n = |1 + a(1)n→n + a(2)n→n + · · · |2. (21.2.10)

Now, as part of the Hamiltonian, W (t1) must be Hermitian, so its expectation values are always

real, and

a(1)n→n = − i
~

∫ t

t0

dt1 〈n|W (t1)|n〉 (21.2.11)

is a pure imaginary number. Therefore, although one might naively neglect a
(2)
n→n as being

of higher order, eq. (21.2.10) would then give 1 + |a(1)n→n|2, which is clearly unacceptable for

a probability unless the first-order correction vanishes. To get a meaningful result from this

direct calculation, we must work consistently to at least second order, by also including the

contribution from a
(2)
n→n in the transition amplitude, with the result [dropping contributions of

third order in W (t)]

Pn→n = 1 + |a(1)n→n|2 + 2Re[a(2)n→n]. (21.2.12)

Alternatively, the probability to remain in the initial eigenstate of H0 can be obtained indirectly,

from the complementary probability,

Pn→n = 1−
∑

m6=n
Pn→m = 1−

∑

m6=n
|a(1)n→m|2, (21.2.13)
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which is also second order in the perturbation. Comparing these, we learn that

2Re[a(2)n→n] = −
∑

m

|a(1)n→m|2, (21.2.14)

with the sum over m now including n.

Now consider the second-order contribution to the transition amplitude, obtained from

eqs. (20.2.16), (21.2.3), and eq. (20.2.20),

a(2)n→m =

(
− i
~

)2 ∫ t

t0

dt2

∫ t2

t0

dt1 〈m|eiH0t2/~W (t2)e
iH0(t1−t2)/~W (t1)e

−iH0t1/~|n〉. (21.2.15)

To evaluate this, we use completeness, by inserting a sum over all eigenstates of H0,

I =
∑

k1

|k1〉〈k1|, (21.2.16)

immediately before W (t1). This puts every H0 adjacent to one of its eigenstate bras or kets,

allowing it to be replaced by En, Em, or Ek1, with the result

a(2)n→m =

(
− i
~

)2 ∫ t

t0

dt2

∫ t2

t0

dt1
∑

k1

eiωmk1
t2〈m|W (t2)|k1〉 eiωk1n

t1 〈k1|W (t1)|n〉. (21.2.17)

It is left to Exercise 21.3 to perform the check of taking the special case |m〉 = |n〉 and manip-

ulating the result to verify that eq. (21.2.14) indeed holds.

In the same way, the third-order contribution is found to be

a(3)n→m =

(
− i
~

)3 ∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1
∑

k1

∑

k2

eiωmk2
t3〈m|W (t3)|k2〉

eiωk2k1
t2 〈k2|W (t2)|k1〉 eiωk1n

t1 〈k1|W (t1)|n〉. (21.2.18)

A diagrammatic representation of the contributions a
(N)
n→m is shown in Figure 21.2.1. Each line

with an arrow represents an eigenstate of H0, as labeled. For each vertex with incoming state

line k, outgoing state line k′, and time label tj , one writes a factor

− i
~
eiωk′ktj 〈k′|W (tj)|k〉 . (21.2.19)

Then one integrates
∫ tj+1

t0
dtj for each of the intermediate times t1, . . . , tN in the diagram for

a
(N)
n→m, with the identification tN+1 = t. All internal state labels kj are summed over. This

diagrammatic mnemonic allows us to quickly write down the formula for a
(N)
n→m, corresponding

to each sub-diagram starting with n and ending with m.
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t0 t

n m
=

t0 t

n m
+

t0 t1 t

n m
+

t0 t1 t2 t

n mk1

+
n mk1 k2

t0 t1 t2 t3 t
+

n mk1 k2 k3

t0 t1 t2 t3 t4 t
+ · · ·

Figure 21.2.1: A diagrammatic representation of the time-dependent perturbation theory
expansion for the transition amplitude an→m(t, t0), represented by the double line with
arrow, on the left. In the sum on the right side of the equality, each contribution with N
vertices represents a

(N)
n→m(t, t0). Each single line with arrow represents an H0 eigenstate, as

labeled. Each vertex labeled by a time tj and incoming line k and outgoing line k′ represents

a factor of − i
~
eiωk′ktj 〈k′|W (tj)|k〉, with an integration

∫ tj+1

t0
dtj . This is done for each of the

intermediate times t1, . . . , tN , with the identification tN+1 = t. All internal H0 eigenstate
labels kj are summed over.

21.3 Applying first-order time-dependent perturbation theory, and

Fermi’s golden rule

In this section and the next, we consider the application of time-dependent perturbation theory

in the approximation of keeping only the first-order contribution to the transition amplitude,

eq. (21.2.8).

As a first example, consider a one-dimensional harmonic oscillator with the usual unper-

turbed Hamiltonian H0 =
P 2

2m
+ 1

2
mω2X2, taken to be in its ground state |0〉 in the far past, at

time t = −∞. A perturbation

W (t) = −qE0e
−t2/τ2X (21.3.1)

is applied, corresponding to a continuous turning on and then off of a uniform electric field E0

that couples to the particle’s charge q. The constant τ controls the time scale of the turn-on

and turn-off. Our goal is to find the probability that the particle is found in a given excited

state |n〉 when the perturbation has become negligible in the far future as t→∞.

Applying eq. (21.2.8) with En = ~ω(n + 1/2), the amplitude for the transition in the far

future, when the perturbation has effectively turned off, is

a
(1)
0→n(t =∞, t0) = − i

~

∫ ∞

t0

dt1 e
inωt1(−qE0e

−t2
1
/τ2)〈n|X|0〉. (21.3.2)

The necessary matrix element is

〈n|X|0〉 =

√
~

2mω
δn1, (21.3.3)
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so that within the first-order approximation, there is a selection rule that only the first excited

state can be reached. Taking the limit t0 → −∞,

a
(1)
0→1 =

iqE0√
2m~ω

∫ ∞

−∞
dt1 exp

(
iωt1 − t21/τ 2

)
. (21.3.4)

The integral can be done by completing the square, using the change of variables u = t1/τ −
iωτ/2, resulting in a transition probability

P(0→ 1) =
πq2E2

0τ
2

2m~ω
e−ω

2τ2/2, (21.3.5)

while a
(1)
0→n and P(0 → n) vanish for all n > 1. Since P cannot exceed 1, the approximation

leading to eq. (21.3.5) must fail if the applied field is too large, that is if q2E2
0τ

2 is too large in

comparison to m~ωeω
2τ2/2.

As a second example with many applications, we consider a generic unspecified H0, and a

perturbation that turns on at t = 0 and is constant thereafter,

W (t) =

{
0 (for t < 0),

V (for t > 0).
(21.3.6)

To be as general as possible, let V be an arbitrary Hermitian operator, with the only restriction

that it has no time dependence. Now consider the probability that the perturbation will induce a

transition from an initialH0 eigenstate |i〉 to a different finalH0 eigenstate |f〉. From eq. (21.2.8),

the amplitude for the transition is

a
(1)
i→f = − i

~
〈f |V |i〉

∫ t

0

dt1 e
iωfit1 , (21.3.7)

where we have exploited the fact that the matrix element of V does not depend on time to pull

it out of the integral, and defined ωfi = (Ef − Ei)/~. Evaluating the integral, and squaring the

magnitude of the result, we obtain the transition probability for t > 0,

Pi→f (t) = |a(1)i→f |2 =
4 sin2(tωfi/2)

~2ω2
fi

|〈f |V |i〉|2, (21.3.8)

valid at first order in perturbation theory. For future convenience, we define the function

F (Ef − Ei, t) ≡
4

(Ef − Ei)2
sin2

(
t(Ef − Ei)

2~

)
, (21.3.9)

so that

Pi→f(t) = F (Ef − Ei, t) |〈f |V |i〉|2. (21.3.10)

The transitions at first order in perturbation theory are limited to those that satisfy

〈f |V |i〉 6= 0, (21.3.11)
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0 1 2 3 4 5 6

tωfi/π

Pi→f

4|〈f |V |i〉|2/(Ef − Ei)2

Figure 21.3.1: The transition probability at first order in time-dependent perturbation theory,
Pi→f = |a(1)i→f |2, as a function of the time t, for a constant perturbation V that turns on at
time t = 0. For short times, the probability grows quadratically like t2|〈f |V |i〉|2/~2, and for
longer times oscillates between 0 and a maximum value 4|〈f |V |i〉|2/(Ef − Ei)2.

an example of a matrix element selection rule.

When applying eq. (21.3.10) in practice, it is important to distinguish the cases for which |f〉
is a discrete state with an isolated H0 eigenvalue Ef (for example, a bound state of an electron

in an atom) from those in which |f〉 is a state in a continuum (for example, a free-particle plane

wave, or an unbound state of an electron ionized from an atom but still under the influence of

the Coulomb potential of the nucleus).

First, suppose that |f〉 is discrete. In that case, eq. (21.3.10) can be directly applied. For

very small t, the transition probability grows quadratically, because for small t,

F (Ef − Ei, t) ≈ t2/~2, (21.3.12)

which is independent of the unperturbed energies. Therefore, eq.(21.3.10) becomes

Pi→f ≈
t2

~2
|〈f |V |i〉|2 (small t). (21.3.13)

Of course, this must fail for sufficiently large t, as the probability cannot exceed 1. Equa-

tion (21.3.13) agrees with the result we had already found in the short-time approximation in

eq. (21.1.10). For longer time scales, the transition probability for a given discrete final state

oscillates between 0 and a maximum value 4|〈f |V |i〉|2/(Ef−Ei)2, as illustrated† in Figure 21.3.1.

Due to the denominator, the final states |f〉 that have Ef ≈ Ei will tend to have the largest

probabilities, provided that the matrix element 〈f |V |i〉 is not too small in magnitude. Also,

the probability for a given final state |f〉 vanishes whenever t = 2πn/ωfi = 2π~n/(Ef − Ei) for
integer n. These features are illustrated by the graph of F (Ef − Ei, t) as a function of Ef − Ei,

†As a function of the time t, the probability oscillates with a similar appearance to the Rabi oscillations
found for a magnetic spin resonance system in section 9.2; compare to Figure 9.2.1. However, the physical
reason behind the oscillations is quite different, because in the present case the excitation is driven by a constant
interaction rather than a harmonic driving frequency.
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F (Ef − Ei, t)

Ef − Ei

t2/h̄2

2πh̄/t0−2πh̄/t

Figure 21.3.2: The function
F (Ef −Ei, t) defined by eq. (21.3.9)
and appearing in the transition
probability for first-order time-
dependent perturbation theory
in eq. (21.3.10), as a function of
Ef − Ei. The main peak height
t2/~2 grows quadratically with
time, while its width shrinks pro-
portionally to 1/t. The total area
under the curve is 2πt/~.

shown in Figure 21.3.2. The final states |f〉 most likely to be reached at a given time t are those

with energies that lie under the main peak around Ei, which is bounded by

|Ef − Ei| < 2π~/t. (21.3.14)

The main peak gets narrower and taller for larger t, so that in the limit of long times, the

most likely transitions are those for which the difference in unperturbed energies is constrained,

increasingly strongly, by eq. (21.3.14).

Now consider the case that |f〉 is not discrete, so that the unperturbed energy eigenvalues

Ef and the matrix elements 〈f |V |i〉 each form a continuum. In that case, we write

|f〉 = |Ef , uEf 〉, (21.3.15)

where uEf represents the degeneracy label (or labels) for the unperturbed energy. (For example,

the degeneracy labels could include the angular direction of a final-state momentum vector,

and/or an unobserved spin.) We also define the density of states ρ(Ef , uEf ) according to

ρ(Ef , uEf ) dEf duEf =

(
number of states between Ef and Ef + dEf ,

and between uEf and uEf + duEf

)
, (21.3.16)

where, for now, the degeneracy labels are also assumed continuous. The corresponding contri-

bution to the transition probability is, from eq. (21.3.10),

dPi→f = |〈f |V |i〉|2 F (Ef − Ei, t) ρ(Ef , uEf ) dEf duEf , (21.3.17)

in terms of the function F defined in eq.(21.3.9). In practice, eq. (21.3.17) must always be

integrated over some ranges of Ef and uEf in order to give the probability of transition to that

range of states,

∆P =

∫
dPi→f . (21.3.18)
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If we want only the transition probability for some of the final states (for example, those with

energy in some range, or momentum direction inside some cone), this can be enforced either by

integrating only over the appropriate ranges of energy and degeneracy labels, or by putting a

projection operator before V within the matrix element 〈f |V |i〉.
In the limit of large time t, we can take advantage of the fact that F (Ef −Ei, t) as a function

of Ef becomes increasingly sharply peaked near Ei, and so approaches proportionality to a delta

function. To understand the proportionality, we note that

∫ ∞

−∞
dEf F (Ef − Ei, t) = 2πt/~, (21.3.19)

so that we can make the replacement

F (Ef − Ei, t) →
2πt

~
δ(Ef − Ei) (21.3.20)

for large t. The transition probability eq. (21.3.17) is then directly proportional to t,

dPi→f = t dRi→f , (21.3.21)

where the proportionality can therefore be interpreted as a transition rate per unit time,

dRi→f =
2π

~
|〈f |V |i〉|2 δ(Ef − Ei) ρ(Ef , uEf ) dEf duEf . (21.3.22)

For a group of states with Ef ≈ Ei, the total transition rate to those states is obtained by

integration over Ef , and integrating (or summing) over the degeneracy label(s) uEf for it. Doing

the energy integration, and using the notation of eq. (21.3.15), we get the transition rate

R =
2π

~

∫
duEf ρ(Ef , uEf )

∣∣〈Ef , uEf |V |i〉
∣∣2, (21.3.23)

where it is now understood that only final states with Ef = Ei are included, and again projection

operators can be used inside the matrix element to restrict to particular classes of final states

with some desired properties. Either eq. (21.3.23) [or its equivalent (21.3.22)] is one version of

Fermi’s golden rule. (It was actually originally obtained by Dirac, but Fermi popularized

it.) If the energy degeneracy labels uEf are discrete rather than continuous, then one makes the

replacement
∫
duEf →

∑
u
Ef

.

Although the derivation of the golden rule turned F into a delta function by assuming that

t is large, we have to be careful if it is too large. This is simply because interpretation of

eq. (21.3.23) as a constant rate clearly requires that t < 1/R, so that the probability does not

exceed 1. More generally, for times that are not short compared to 1/R, the transition rate

decreases as the initial state |i〉 is depleted. If we write Pi→i(t) = e−Rtott for the probability of
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remaining in the initial state, including the effects of changing to all possible final states, then

the transition rate to a particular class of final states approaches Re−Rtott at late times.

The golden rule can also be applied as an approximation in the case of a group of many dis-

crete but closely spaced final states with approximately the same matrix elements 〈Ef , uEf |V |i〉.
This works if the unperturbed energy differences ∆Ef between neighboring discrete final states

are small enough that there are many states under the main peak in the function F (Ef − Ei, t).
This provision requires that

t∆Ef ≪ 2π~, (21.3.24)

so that the elapsed time is short compared to the inverse energy spacing between adjacent states.

21.4 Harmonic time-dependent perturbations

An even more common application of time-dependent perturbation theory is the case of a har-

monic time-dependent perturbation, in which W (t) is proportional to a sine or cosine

function of time. For example, this includes the case of electromagnetic waves interacting with

a charged particle. Suppose that the Hamiltonian perturbation turns on at time t = 0, so

W (t) =

{
0 (for t < 0),

V e−iωt + V †eiωt (for t > 0),
(21.4.1)

where V is an operator that does not depend on time. Note that W (t) is Hermitian, but V need

not be. This perturbation can also be written as (V + V †) cos(ωt) + i(V †− V ) sin(ωt) for t > 0,

with (V + V †) and i(V † − V ) both Hermitian operators.

Applying first-order time-dependent perturbation theory in the form of eq. (21.2.8), the

transition amplitude is

a
(1),ω
i→f (t) = − i

~

∫ t

0

dt′
(
ei(ωf−ωi−ω)t′〈f |V |i〉+ ei(ωf−ωi+ω)t′〈f |V †|i〉

)
(21.4.2)

=
1− ei(ωf−ωi−ω)t

~(ωf − ωi − ω)
Vfi +

1− ei(ωf−ωi+ω)t

~(ωf − ωi + ω)
V †fi, (21.4.3)

where we have used a short-hand notation for the time-independent matrix elements,

Vfi = 〈f |V |i〉, V †fi = 〈f |V †|i〉. (21.4.4)

Requiring that these do not vanish provides a selection rule for first-order time-dependent per-

turbation theory.

The first term in eq. (21.4.3) is resonant only if ωf ≈ ωi + ω, and the second term only if

ωf ≈ ωi−ω. For ω 6= 0, at most one of these conditions can be satisfied for any particular Ef , so
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only one term will be important within the resonance approximation. Therefore, we can make

the approximation of ignoring the cross terms in |a(1),ωi→f (t)|2. Then the probability of transition

between eigenstates of H0 is

Pi→f = F (Ef − Ei − ~ω, t)|Vfi|2 + F (Ef − Ei + ~ω, t)|V †fi|2, (21.4.5)

where the same function F defined by eq. (21.3.9) appears again. The application of eq. (21.4.5)

is slightly different depending on whether the final state is discrete or part of a continuum,

although the final results will have a similar appearance.

First, consider the continuum case, for which we write

|f〉 = |Ef , uEf 〉 (21.4.6)

for the group of final states with H0 eigenvalue Ef and degeneracy label uEf . For large t, the

same argument that led to eq. (21.3.22) now gives

dPi→f = t dRi→f , (21.4.7)

where the differential contribution to the transition rate is

dRi→f =
2π

~

(
δ(Ef − Ei − ~ω) |Vfi|2 + δ(Ef − Ei + ~ω) |V †fi|2

)
ρ(Ef , uEf ) dEf duEf . (21.4.8)

The effect of the first term can be referred to as absorption; since Ef = Ei+~ω, the Hamiltonian

perturbation V causes the initial state to gain energy ~ω and jump up to the final state. The

second term is emission, as the perturbation V † cause the initial state to lose energy ~ω and

jump down to the final state. Since we ignored the cross-terms, and the final state energies must

be different in the two cases anyway, it makes sense to separate these, and write

dRabs
i+~ω→f =

2π

~
|Vfi|2 δ(Ef − Ei − ~ω) ρ(Ef , uEf ) dEf duEf , (21.4.9)

dRem
i→f+~ω =

2π

~
|V †fi|2 δ(Ef − Ei + ~ω) ρ(Ef , uEf ) dEf duEf . (21.4.10)

After integration over Ef ,

dRabs
i+~ω→f =

2π

~
|〈Ef , uEf |V |i〉|

2 ρ(Ef , uEf ) duEf , (21.4.11)

dRem
i→f+~ω =

2π

~
|〈Ef , uEf |V

†|i〉|2 ρ(Ef , uEf ) duEf , (21.4.12)

where it is now understood that the energy conservation conditions

Ef = Ei + ~ω, (absorption), (21.4.13)

Ef = Ei − ~ω, (emission), (21.4.14)
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are enforced, due to the delta functions. Equations (21.4.11) and (21.4.12), or their equivalents

(21.4.9) and (21.4.10), are Fermi’s golden rule for harmonic perturbations. If the energy

degeneracy labels uEf are continuous, then they should be integrated over, and if they are discrete

then the differential duEf is removed and they can be summed over.

If the transition from |i〉 to |f〉 by absorbing energy ~ω from V is allowed, then it follows

that for the same ω one can also have the reverse process of |f〉 to |i〉 by emitting energy ~ω to

V †; both the energy conservation and matrix element selection rules work. For both absorption

and emission, we can obtain the differential rate for the opposite process dRf→i by interchanging

Ef ↔ Ei and |Vfi|2 ↔ |V †if |2. Note that the relevant matrix elements are simply related by

V †if = 〈i|V †|f〉 = (〈f |V |i〉)∗ = (Vfi)
∗ , (21.4.15)

so |V †if |2 = |Vfi|2. Let us now change the i and f labels to a more neutral notation a and b,

since each can play the role of initial and final state. If we multiply eq. (21.4.12) with i = a and

f = b by ρ(Ea, uEa)duEa , the result is the same as multiplying eq. (21.4.11) with i = b and f = a

by ρ(Eb, uEb)duEb, after integrating over the same intervals in the degeneracy labels in each case.

This shows that

ρ(Ea, uEa)
dRem

a→b+~ω

duEb
= ρ(Eb, uEb)

dRabs
b+~ω→a
duEa

. (21.4.16)

This is known as the detailed balance relation between emission and absorption rates and the

densities of states.

Let us now reconsider eq. (21.4.5), this time assuming that the final state |f〉 is discrete.

We now suppose that the perturbations occur as an incoherent distribution with a range of

angular frequencies. By “incoherent”, it is implied that interference contributions will be neg-

ligible, so that to a good approximation the probabilities, not the amplitudes, add for different

driving frequencies. To see how this works, consider instead of eq. (21.4.1), a perturbation that

is a superposition of many such terms with infinitesimally spaced ω’s with smoothly varying

real amplitudes cω and, crucially, phases ϕω that are assumed to be random, with no relation

(coherence) whatsoever between neighboring values of ω,

W (t) =
∑

ω

cω
(
eiϕωV e−iωt + e−iϕωV †eiωt

)
(for t > 0). (21.4.17)

After isolating the emission and absorption resonant pieces as before, the square of the transition

amplitude a
(1)
i→f will contains terms of the form

∣∣a(1)i→f
∣∣2 =

∑

ω

∑

ω′

cωcω′ei(ϕω−ϕω′) · · · , (21.4.18)
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where the · · · represents quantities that are relatively slowly varying functions of ω and ω′.

Because of the random phases and the slow variation of the summand, all terms with ω′ 6= ω

now cancel in the limit of infinitesimal spacing of the sums, leaving behind a single sum of the

form
∑

ω c
2
ω · · · , coming from the subset of terms with ω′ = ω, which add with constructive

interference. This sum can now be converted to an integral

∑

ω

c2ω →
∫
dω ρ(ω), (21.4.19)

described by some density per unit frequency ρ(ω). This means that the transition probabilities

for continuous ω are assumed† to be weighted by a function ρ(ω) that characterizes the pertur-

bation. For example, if the perturbations take the form of electromagnetic radiation, one can

relate ρ(ω) to the intensity spectrum of the incoherent light, as we will do in section 22.2. In

the presence of the integral over continuous ω, even though Ef is discrete, we can again replace

F (Ef − Ei ± ~ω, t) → 2πt

~
δ(Ef − Ei ± ~ω), (21.4.20)

and so obtain the differential transition rates

dRabs
i+~ω→f =

2π

~
|Vfi|2 δ(Ef − Ei − ~ω) ρ(ω)dω, (21.4.21)

dRem
i→f+~ω =

2π

~
|V †fi|2 δ(Ef − Ei + ~ω) ρ(ω)dω. (21.4.22)

After integrating over ω according to

∫
dω δ(Ef − Ei ± ~ω) = 1/~, we have

Rabs
i+~ω→f =

2π

~2
|〈f |V |i〉|2 ρ(ω), (21.4.23)

Rem
i→f+~ω =

2π

~2
|〈f |V †|i〉|2 ρ(ω), (21.4.24)

where it is understood now that ω is fixed in terms of Ef and Ei by eqs. (21.4.14) and (21.4.13).

The energy degeneracies of the final state |f〉 are assumed here to be also discrete, and so are

not indicated explicitly, but can be summed over.

Although eqs. (21.4.11)–(21.4.12) and (21.4.23)–(21.4.24) look similar, it bears emphasis

that they apply in slightly different circumstances. In eqs. (21.4.23)–(21.4.24), the final states

are discrete, and the driving angular frequency is selected (by energy conservation) from an

incoherent continuum of perturbations to the Hamiltonian with some assumed density function

with respect to angular frequency, ρ(ω). In eqs. (21.4.11)–(21.4.12), it is the final state that

†It is also possible to take the distribution of perturbations to be coherent, which means that the phases are
slowly varying functions of ω. In that case one cannot neglect interference cross-terms in the transition amplitude

a
(1)
i→f for given initial and final states. We will not consider that case here.
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is selected by energy conservation from among the continuous final states with density with

respect to energy, ρ(Ef , uEf ), for a driving angular frequency that can be treated as a single

monochromatic Hamiltonian perturbation. In the latter case, the results could also be summed

over an incoherent continuous distribution. Both of these situations arise in the interaction of

matter with electromagnetic waves, depending on whether the final electronic state is bound or

unbound. This is the subject of the next chapter.

21.5 Exercises

Exercise 21.1. At the end of section 21.1, we found P = 512/729 for the probability that a
3H (tritium) atom in its ground state would end up in the ground state of 3He after beta decay.

Find the probability that the atom ends up in each of the n = 2 or n = 3 levels instead. Check

that the total probability for ending up in the n = 1, 2, and 3 levels does not exceed 1.

Exercise 21.2. A particle of mass m moves freely in a 1-dimensional box of length a, with the

left edge at x = 0 and the right edge at x = a. At time t = 0, the particle is in the ground state,

and the box is suddenly lengthened by expanding the right edge out to x = b.

(a) Find the probability that the particle ends up in each of the energy eigenstates of the final

box, labeled by positive integers n.

(b) Use your results from part (a), and your knowledge of the laws of probability, to evaluate

the following mathematical infinite sum

S(a, b) =
∞∑

n=1

sin2(nπa/b)

(n2a2 − b2)2 . (21.5.1)

Quantum mechanics knows how to do non-trivial sums!

(c) As a check, for the special case b = 2a, evaluate the individual probabilities numerically for

each integer up to n = 10, and their total with 6 significant digits. (Be careful for n = 2; the

contribution is non-zero and finite.)

Exercise 21.3. Show that the real part of the second-order transition amplitude for a state to

itself, a
(2)
n→n, as found in eq. (21.2.17) with |m〉 = |n〉, agrees with the right side of the sum rule

eq. (21.2.14).

Exercise 21.4. A particle of mass m is bound in a 1-dimensional simple harmonic oscillator of

natural frequency ω. At t = 0, it is in the ground state, and a perturbation to the Hamiltonian

is turned on, of the form W (X, t) = λX2e−t/T , where λ and T are constants.

(a) Use first-order time-dependent perturbation theory to find the probabilities that, after a

very long time (t≫ T ), the particle will have jumped to each of the excited states.
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(b) Using your answers for part (a), infer the probability that after a long time the particle will

be found in the ground state.

(c) Use second-order time-dependent perturbation theory to directly calculate the probability

of finding the particle in the ground state. Check that your answer agrees with part (b).

Exercise 21.5. A hydrogen atom is in its ground state at time t = 0, when a decaying electric

field E = E0ẑe
−t/T is applied. Use first-order time-dependent perturbation theory to find the

probability for the atom to be found at t ≫ T in each of the first excited states [(n, l,m) =

(2, 0, 0) and (2, 1, 1) and (2, 1, 0) and (2, 1,−1)].

Exercise 21.6. Consider the magnetic spin resonance problem discussed in section 9.2.

(a) Treating B̃ (and therefore Γ) as small, use first-order time-dependent perturbation theory

to calculate the probability for transition from the state |↓〉 to the state |↑〉, as a function of t.

How does this compare to the exact answer found in eq. (9.2.16)?

(b) When ω is very close to ωB, show that the perturbative answer you got in part (a) can be

interpreted in terms of a rate ≈ Nγ2B̃2δ(ω − ωB), where N is a certain number that you will

find. [Hint: note the relationship between eqs. (21.3.9) and (21.3.20).] To apply this in practice,

you would integrate over a spectrum of driving frequencies ω.
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22 Absorption and emission of light

22.1 Electrons in the presence of electromagnetic waves

In this chapter, we will be discussing the interactions of electrons with a classical electromagnetic

wave. The Hamiltonian is obtained from the Coulomb gauge result in eq. (4.3.35), with q = −e
and γ = −gee/2mec ≈ −e/mec for electrons,

H = H0 +
e

mec
A · P +

e2

2mec2
A2 − eΦ +

e

mec
S · B, (22.1.1)

where the electron’s Hamiltonian in the absence of the electromagnetic wave is

H0 =
P 2

2me
+ U(R). (22.1.2)

We have included here an additional potential U , which includes all effects not associated with

the wave, for example the Coulomb attraction of the electron to a fixed heavy nucleus, or

repulsion by other electrons. Let the wave have unit polarization vector ε̂, and wavevector

k = k̂ω/c, (22.1.3)

so that the classical electric and magnetic fields are

E(r, t) = ε̂E0 sin(k · r − ωt), (22.1.4)

B(r, t) = (k̂ × ε̂)E0 sin(k · r − ωt), (22.1.5)

which satisfy Maxwell’s equations provided that ε̂ · k̂ = 0. In Coulomb gauge, the potentials

describing this classical wave are

Φ(r, t) = 0, (22.1.6)

A(r, t) = −ε̂ c
ω
E0 cos(k · r − ωt), (22.1.7)

as one can check using eqs. (4.3.8)–(4.3.9) and (4.3.34).

If the wave is not too intense, it is a good approximation to drop the non-linear term

proportional to A2, so that our Hamiltonian simplifies to H = H0 +W , where

W (t) =
e

mec

(
A · P +B · S

)
(22.1.8)

=
eE0

meω

[
− cos(k · R− ωt) ε̂ · P + sin(k · R− ωt) (k × ε̂) · S

]
. (22.1.9)

This can be treated as a perturbation using the formalism of section 21.4, specifically by writing

W (t) = V e−iωt + V †eiωt, (22.1.10)
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as in eq. (21.4.1), with

V = − eE0

2meω
ei
~k·~R
[
ε̂ · P + i(k × ε̂) · S

]
. (22.1.11)

To put this into a more compact form, we use the identity (k × ε̂) · S = −ε̂ · (k × S) to obtain

V = − eE0

2meω
ε̂ · P~k, (22.1.12)

where we have defined a vector operator

P~k ≡ ei
~k·~R(P − ik × S

)
. (22.1.13)

Note that P~k has the same units as momentum, but it is not Hermitian. Its matrix elements

will be used in our discussion of absorption and emission of electromagnetic waves in the next

few sections. The polarization vector ε̂ can now be taken to be complex, for example to describe

circularly polarized waves, but must satisfy ε̂ · k̂ = 0 and ε̂∗ · ε̂ = 1.

The Hamiltonian for a system of Ne electrons in an external classical electromagnetic wave

can be similarly treated using an appropriate H0 (which will include the repulsive potentials

between each pair of electrons, their attractive potentials due to the heavy nucleus, and spin-

orbit and spin-spin couplings) together with a harmonic perturbation

V = − eE0

2meω

Ne∑

i=1

ε̂ · P~k,i, (22.1.14)

Here, each P~k,i is defined in terms of the position, momentum, and spin operators Ri, Pi, and

Si for the individual electrons, as in eq. (22.1.13). This is the linearized approximation of a

Hamiltonian perturbation describing the interaction with an external electromagnetic wave.

22.2 Absorption of electromagnetic waves

Consider an electron described by some Hamiltonian H0, which then encounters a classical

electromagnetic wave. As described in the previous section, we can now apply time-dependent

perturbation theory as discussed in section 21.4, with

V = − eE0

2meω
ε̂ · P~k (22.2.1)

in eq. (21.4.1), where E0 and ε̂ are the electric field amplitude and unit polarization vector of

the wave, and the operator P~k was defined in eq. (22.1.13) in terms of the wavevector. We

will compute results in terms of matrix elements of P~k, and then work out the simpler electric

dipole and higher multipole approximations in sections 22.4 and 22.5, using an expansion in the

angular frequency ω.
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Consider the rate for an initial H0 eigenstate |i〉 to absorb energy from the wave and end up

in a group of final H0 eigenstates

|f〉 = |Ef , uEf 〉. (22.2.2)

For now, we take these to have continuous eigenvalues Ef and degeneracy labels uEf and density

of states ρ(Ef , uEf ) as defined in eq. (21.3.16). Fermi’s golden rule, eq. (21.4.9), then gives the

rate for absorption transitions,

dRabs
i+~ω→f =

2π

~

(
eE0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf δ(Ef − Ei − ~ω) dEf . (22.2.3)

The time-averaged flux of energy in the incident wave that is causing these transitions is

energy flux in wave =
energy

(time)(area)
=

cE2
0

8π
. (22.2.4)

This can be obtained by time-averaging either cuEM in eq. (4.3.6), or the magnitude of the

Poynting vector |S| in eq. (4.3.7). Since both eq. (22.2.3) and eq. (22.2.4) are proportional to E2
0 ,

it make sense to define a measurable quantity proportional to their ratio, in which the incident

wave intensity cancels out. The appropriate ratio is called the absorption cross-section:

σabs =
absorbed energy/time

energy flux in incident wave
. (22.2.5)

Note that σabs has units of area. The energy absorbed in each i→ f transition is ~ω, so

dσabs
i+~ω→f = ~ω dRabs

i+~ω→f/(cE
2
0/8π), (22.2.6)

or, in terms of the fine-structure constant α = e2/~c,

dσabs
i+~ω→f =

4π2α~

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf δ(Ef − Ei − ~ω) dEf . (22.2.7)

If the final state energies Ef are continuous near Ei + ~ω, one can immediately integrate over

them, with the result

dσabs
i+~ω→f =

4π2α~

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2 ρ(Ef , uEf ) duEf , (22.2.8)

where it is now implicitly required that Ef = Ei + ~ω. Equation (22.2.8) also applies as an

approximation if the relevant final states are discrete but very closely spaced. If some of the

degeneracy labels are discrete rather than continuous, then one should remove duEf and sum

over them rather than integrating.
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Now suppose instead that the final states selected by energy conservation have discrete H0

eigenvalues Ef . We will discuss this situation in three different ways, appropriate for different

circumstances.

First, suppose that the electromagnetic fields are plane waves with fixed propagation direc-

tion k̂ and polarization ε̂, but with incoherent phases and a range of angular frequencies wide

enough to cover the final state in question. Then, as discussed in section 21.4, the incoherent

phases mean that we can sum the probabilities (not the amplitudes) to obtain a transition rate.

From using eq. (22.2.1) in eq. (21.4.21),

Rabs
i+~ω→f =

∫ ∞

0

dω ρ(ω)
2π

~
δ(Ef − Ei − ~ω)

(
eE0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2, (22.2.9)

where ρ(ω) is the density per unit angular frequency of incoherent electromagnetic wave per-

turbations of the form eq. (21.4.1). Let I be the total intensity (power per unit area) in the

electromagnetic radiation, so that

dI =
cE2

0

8π
ρ(ω)dω. (22.2.10)

We thus obtain, in terms of the intensity per unit angular frequency, dI/dω,

Rabs
i+~ω→f =

∫ ∞

0

dω
dI

dω
δ(Ef − Ei − ~ω)

4π2α

m2
eω

2

∣∣〈f |ε̂ · P~k |i〉
∣∣2. (22.2.11)

Doing the integration over ω, we find† an absorption rate

Rabs
i+~ω→f =

4π2α

m2
e~ω

2

dI

dω

∣∣〈f |ε̂ · P~k |i〉
∣∣2, (22.2.12)

where ω = (Ef − Ei)/~ has now been implicitly fixed.

As a second scenario, suppose that the system is bathed in electromagnetic radiation that

is not only phase-incoherent and broad-band in ω, but may be coming from all directions and

with all possible polarization vectors. Although we have been discussing the electromagnetic

field as a classical wave, in this case we choose to frame our discussion in terms of the numbers

of photon quanta with energy ~ω and particular wavenumbers and polarizations. To do so, we

take the system to be in a large cubic box of side L, with periodic boundary conditions giving

allowed wavevectors

k = k̂ω/c =
2π

L
(x̂nx + ŷny + ẑnz) (22.2.13)

where (nx, ny, nz) are integers. In the large-volume continuum limit, a discrete sum over these

wavevectors will correspond to the integration

∑

~k

→
(
L

2π

)3 ∫
d3k =

(
L

2πc

)3 ∫ ∞

0

dω ω2

∫
dΩ~k. (22.2.14)

†This could also be obtained directly from eq. (21.4.23).
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Denote by N~k,ε̂ the occupation number of photons in a mode with wavevector k and polarization

vector ε̂. Then the energy associated with that mode is

~ωN~k,ε̂ = (volume)
( energy

volume

)
= L3

(
E
~k,ε̂
0

)2
/8π, (22.2.15)

where E
~k,ε̂
0 is the corresponding classical electric field amplitude.

Going back to eq. (21.4.5), and using the assumption of incoherence to sum the probabilities

rather than amplitudes, the total probability for absorption is

Pabs
i+~ω→f =

∑

~k

∑

ε̂

(
eE

~k,ε̂
0

2meω

)2 ∣∣〈f |ε̂ · P~k |i〉
∣∣2 F (Ef − Ei − ~ω, t). (22.2.16)

Now, using eqs. (22.2.14) and (22.2.15), this becomes

Pabs
i+~ω→f =

∫ ∞

0

dω

∫
dΩ~k

∑

ε̂

e2~ω

4π2m2
ec

3
N~k,ε̂

∣∣〈f |ε̂ · P~k |i〉
∣∣2 F (Ef − Ei − ~ω, t). (22.2.17)

Note that the polarizations ε̂ that are being summed over depend on the direction of k, because

of the transversality constraint ε̂ · k = 0 for electromagnetic waves. As usual, we now apply

F (Ef − Ei − ~ω, t) = (2πt/~)δ(Ef − Ei − ~ω), and do the integral over ω to obtain Pabs
i+~ω→f =

tRabs
i+~ω→f , where the absorption rate is

Rabs
i+~ω→f =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

N~k,ε̂

∣∣〈f |ε̂ · P~k |i〉
∣∣2, (22.2.18)

in terms of the photon occupation numbers N~k,ε̂ for modes with ω = c|k| = (Ef − Ei)/~. As

one might expect, the contribution to the rate from each mode is proportional to the number of

photons available in that mode. Comparing eq. (22.2.12) to eq. (22.2.18), we see that

dI

dω
→ ~ω3

8π3c2

∫
dΩ~k

∑

ε̂

N~k,ε̂ (22.2.19)

is the effective intensity per unit angular frequency in the bath of photons.

The third way of treating the absorption to a discrete final state is to compute a cross-

section, as we have already done for the case of absorption by a continuous group of final states,

in eq. (22.2.8). To do so, it is necessary to realize that there will always be at least a small

effective broadening of the discrete energy level of the final-state, for two reasons. First, |f〉
must be able to decay, at least back to the lower-energy initial state |i〉 if not others, leading to

a finite lifetime. The second reason, which is often more important in practice, is that there are

environmental effects on the H0 system from perturbations due to nearby atoms with a thermal

distribution of velocities, and from fluctuations in the electromagnetic fields.
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Both types of line-broadening effects imply that the energy level of the final state is not

perfectly sharp, but is described by a Breit–Wigner resonance, with a small finite width that

may need to be obtained empirically. Therefore, when using eq. (22.2.7), the density of final

states, which naively would be a delta function in the case of discrete |f〉, should be

ρ(Ef , uEf ) = fBW(Ef − Ef0, ~γ) ≡
~γ

2π

1

(Ef − Ef0)2 + ~2γ2/4
. (22.2.20)

Here Ef0 is the nominal discrete H0 eigenvalue before the line-broadening is taken into account,

and ~γ is the full width at half maximum (FWHM) of the Breit–Wigner line-shape (named

after Gregory Breit and Wigner, and also known as the Lorentzian line-shape) distribution

for the energy Ef , which is now continuous. Note that the normalization is

∫ ∞

−∞
dEf fBW(Ef − Ef0, ~γ) = 1, (22.2.21)

so that in the narrow-width approximation,

lim
γ→0

fBW(Ef − Ef0, ~γ) = δ(Ef − Ef0), (22.2.22)

as expected. The absorption cross-section for a nominally discrete final state |f〉 becomes, after

using eq. (22.2.20) in eq. (22.2.7) and integrating over dEf ,

σabs
i+~ω→f =

2πα~2γ

m2
eω

∣∣〈f |ε̂ · P~k |i〉
∣∣2

(Ef0 − Ei − ~ω)2 + ~2γ2/4
. (22.2.23)

Here we have removed the duEf under the assumption that the degeneracy labels for the final

state, such as angular momentum quantum numbers, are also discrete and can be summed over.

This cross-section is a strongly peaked function of ω, becoming sharper in the limit γ → 0.

22.3 Induced and spontaneous emission of light

We now turn to the case of transitions between electronic states involving emission of energy

in the form of electromagnetic radiation. The presence of a classical electromagnetic wave with

angular frequency ω will cause an initial H0 eigenstate |i〉 to fall to a state |f〉 of lower energy,
provided that the H0 eigenvalues satisfy Ei − Ef = ~ω. If dI/dω is the intensity of incoherent

electromagnetic waves per unit ω, then we can apply exactly the same reasoning we used to

arrive at eq. (22.2.12), except that we use eq. (21.4.22) for emission rather than eq. (21.4.21)

for absorption. The result is the rate for induced emission (or stimulated emission),

Rind. em.
i→f+~ω =

4π2α

m2
e~ω

2

dI

dω

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2, (22.3.1)
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where now ω = (Ei − Ef)/~ is implicit. This assumes that the wavevector direction k̂ is fixed.

For the case of light incoming from all directions, the transition rate can be expressed in terms

of the photon occupation numbers using eq. (22.2.19), again just as we did for the absorption

case in arriving at eq. (22.2.18),

Rind. em.
i→f+~ω =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

N~k,ε̂

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2. (22.3.2)

The reason for referring to this as “induced” is that it is proportional to the intensity of incident

light, or equivalently to the numbers of photons already present.

Despite the fact that our calculations so far do not show it, the transition from |i〉 to |f〉
with the emission of a photon can also occur even if there are no incident classical waves or

photons present. That process is called spontaneous emission, and we will now show that it

yields a result equal to eq. (22.3.2) but with the factor N~k,ε̂ replaced by 1. The phenomenon of

spontaneous emission, in which an electronic state decays to a lower energy state by emitting a

photon, is the quantum mechanical analog of the classical Larmor radiation of an accelerating

charge. However, it can only occur if there is a quantum state with lower energy, while classical

Larmor radiation would always occur; compare to the discussion in section 1.1.

To obtain the rate for spontaneous emission in the most direct way, the electromagnetic fields

should be treated quantum mechanically, rather than classically as we have done. Recall that

our method so far was to treat the potentials Φ and A and their derivatives E and B as classical

quantities, which are then evaluated in terms of the position and momentum operators for the

electron that witnesses them. In a more logical and complete approach, both the electronic and

radiation degrees of freedom should be treated as a unified quantum system. Then Φ and A will

be operators in their own right, rather than just functions of the position operator, and will act on

a Hilbert space that describes not just the electronic state, but the photons as well. This allows a

direct computation of spontaneous emission (and more complicated phenomena). In this section,

instead of pursuing that direct method, we will derive the results for spontaneous emission using

an indirect argument, based on inference from requiring the consistency of statistical mechanics,

called the Einstein A and B coefficients method.

Consider the thought experiment of a cavity kept in thermal equilibrium at temperature T

with the electromagnetic radiation inside of it. The walls of the cavity are made of a very large

number of atoms that include two states |a〉 and |b〉 with energy difference

Eb − Ea = ~ω, (22.3.3)

so that the photon absorption process a + ~ω → b and the emission process b → a + ~ω are

both constantly occurring to ensure the equilibrium. According to statistical mechanics, and

469



our discussion in section 3.5, the relative probability for a state with energy E is proportional

to the Boltzmann factor e−E/kBT , where kB is Boltzmann’s constant. Therefore, since ~ωN~k,ε̂

is the energy of a state with N~k,ε̂ photons in the mode with wavevector k (with k = ω/c) and

polarization ε̂, the average number of photons in that mode is

N~k,ε̂ =

( ∞∑

n=0

ne−n~ω/kBT
)/ ∞∑

n=0

e−n~ω/kBT =
1

e~ω/kBT − 1
. (22.3.4)

In equilibrium, each N~k,ε̂, which we will refer to as N for short in the following, is constant and

equal to the mean number given by eq. (22.3.4). Therefore, we must have
(
dN

dt

)

spon. em.

+

(
dN

dt

)

ind. em.

+

(
dN

dt

)

absorption

= 0, (22.3.5)

with contributions from spontaneous emission, induced emission, and absorption rates that are

respectively of the forms
(
dN

dt

)

spon. em.

= nbA, (22.3.6)

(
dN

dt

)

ind. em.

= NnbBba, (22.3.7)

(
dN

dt

)

absorption

= −NnaBab. (22.3.8)

Here, we have used the fact that the spontaneous and induced emission contributions to the rate

for creation of photons must both be proportional to the number of atoms nb in the state |b〉,
while the absorption rate contribution to the rate for subtraction of photons is proportional to

the number of atoms na in the state |a〉. Also, the induced emission and absorption rates are both

proportional to the number of photons already present N , but by definition the spontaneous

emission rate has no such factor. Our goal is to determine the ratios of the coefficients† of

proportionality, A, Bba, and Bab. These are in turn proportional to the transition rates Rspon. em.
b→a+~ω ,

Rind. em.
b→a+~ω, and R

abs
a+~ω→b, respectively, but with the corresponding factors of N extracted from the

last two, since we have put them explicitly in eqs. (22.3.7) and (22.3.8).

The numbers na and nb are unknown, but since the system is in thermal equilibrium, we

know their ratio, as they are each proportional to the corresponding Boltzmann factor. So,

na/nb = e−(Ea−Eb)/kBT = e~ω/kBT . (22.3.9)

Using eqs. (22.3.6)–(22.3.9) in eq. (22.3.5), we can solve for the photon occupation number,

N =
A

Babe~ω/kBT − Bba
. (22.3.10)

†Einstein’s original coefficients were normalized differently.
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Now the key point is that A, Bab, and Bba should depend only on the properties of the states

|a〉 and |b〉, but not on the temperature. Therefore, the only way to reconcile the functional

dependences on T of eqs. (22.3.4) and (22.3.10) is

A = Bab = Bba, (22.3.11)

and, reassuringly, this indeed does give eq. (22.3.4).

The equality Bab = Bba is just a check of the detailed balance equality between Rabs
a+~ω→b

and Rind. em.
b→a+~ω, which we had already found by direct computation in eqs. (22.2.18) and (22.3.2).

The new requirement that A = Bba says that, because N was already factored out of Bba, the

rate we calculated for induced emission alone is related to the total emission rate by

induced → induced + spontaneous (22.3.12)

N~k,ε̂ → N~k,ε̂ + 1. (22.3.13)

Thus, the rate for spontaneous emission is obtained by simply removing the factor of N~k,ε̂ from

the formula eq. (22.3.2) for induced emission,

Rspon. em.
i→f+~ω =

αω

2πm2
ec

2

∫
dΩ~k

∑

ε̂

∣∣〈f |ε̂∗ · P†~k |i〉
∣∣2. (22.3.14)

A more direct calculation that treats the electromagnetic fields quantum mechanically gives the

same result.

22.4 Electric dipole approximation

The case in which the wavelength of the electromagnetic wave is much larger than the spatial

extent of the initial-state wavefunction is called the electric dipole approximation. To see

why this might apply as a valid approximation, suppose that the electron is in a hydrogen-

like atomic orbital state with principal quantum number n and atomic number Z. Then the

minimum photon energy needed to ionize the state obeys ~ω = Z2e2/2a0n
2 from eq. (11.1.16),

while the characteristic spatial extent of the initial wavefunction is 〈R〉 = 3n2a0/2Z, using

eq. (11.1.65) with l = 0. For larger l in the initial state, the characteristic size 〈R〉 is even

smaller (for fixed n), according to eq. (11.1.65). To compare the atomic size scale to the inverse

wavenumber of the light (with minimum ionizing energy),

k〈R〉 = ω〈R〉
c
∼ 3αZ

4
. (22.4.1)

This is smaller than 1, even when Z is large, since α = e2/~c ≈ 1/137. For transitions between

bound states, the relevant wavelength is even longer because the change in energy is smaller.
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As an extreme case, the wavelength is macroscopic for transitions between states with the

same principal quantum number, which have very nearly the same energy. This means that in

transitions between bound states we can make the long-wavelength limit approximation

ei
~k·~R ≈ 1 (22.4.2)

over the relevant spatial extent of the atom. In the same limit, one can can also neglect the

k×S contribution compared to the momentum operator P in P~k of eq. (22.1.13). This is made

plausible by the rough estimate

|k × S|
|P |

∼ (ω/c)~

~/〈R〉 (22.4.3)

(using the uncertainty relation for position and momentum in the denominator), which is para-

metrically the same as eq. (22.4.1), and so again suppressed by a factor αZ.

Therefore, the electric dipole (long-wavelength) approximation is defined by taking

〈f |P~k |i〉 ≈ 〈f |P |i〉 (22.4.4)

in the absorption and emission rates. Now we can use a trick, by noticing that if the only

momentum dependence of H0 is in the kinetic term, then

[
H0, R

]
=

1

2me

[
P 2, R

]
= −i ~

me

P, (22.4.5)

so that in the case of absorption,

〈f |ε̂ · P |i〉 = ime

~
ε̂ · 〈f |[H0, R]|i〉 =

ime

~
(Ef − Ei) 〈f |ε̂ ·R |i〉 = imeω〈f |ε̂·R |i〉. (22.4.6)

For the emission case, the only difference is that ε̂→ ε̂∗ and ω → −ω, so

〈f |ε̂∗ · P |i〉 = −imeω〈f |ε̂∗ ·R |i〉. (22.4.7)

The sign change makes no difference, and the complex conjugation of the polarization vector has

no effect for linear polarizations, but makes a difference for circular polarization vectors [such

as ε̂ = (x̂± iŷ)/
√
2 if k̂ = ẑ].

For example, using eq. (22.4.6) in eq. (22.2.8), we have for the absorption cross-section in

the case of continuous final state energies

dσabs,dipole
i→f = 4π2α~ω

∣∣〈f | ε̂ ·R |i〉
∣∣2 ρ(Ef , uEf ) duEf . (22.4.8)

Recalling that ε̂ is the direction of the polarization of the absorbed electromagnetic wave, we see

that the relevant matrix element in the electric dipole approximation is proportional to the posi-

tion operator along the polarization direction. More generally, the electric dipole approximation

amounts to making the substitutions

|〈f | ε̂ · P~k |i〉|2 → m2
eω

2 |〈f | ε̂ · R |i〉|2 (electric dipole absorption) (22.4.9)

472



in the absorption rates for discrete final states with incoherent plane-wave light in eq. (22.2.12),

incoherent light from all directions in (22.2.18), and in the cross-section for a line-broadened

discrete final state in eq. (22.2.23). Similarly, one makes the replacement

|〈f | ε̂∗ · P†~k |i〉|
2 → m2

eω
2 |〈f | ε̂∗ · R |i〉|2 (electric dipole emission) (22.4.10)

in the induced emission rates eq. (22.3.1) for plane waves with a fixed direction of propagation

and eq.( 22.3.2) for light from all directions in terms of the photon occupation numbers, and in

eq. (22.3.14) for spontaneous emission.

In the case of spontaneous emission in eq. (22.3.14), the matrix element 〈f |ε̂∗ · R|i〉 in the

electric dipole approximation does not depend directly on the wavevector magnitude, but does

depend indirectly on the wavevector direction because of the requirement ε̂∗ · k̂ = 0. Temporarily

fixing k̂ = ẑ, the two independent polarization directions to be summed over can be taken along

x̂ and ŷ, so that

∑

ε̂

∣∣〈f |ε̂∗ · R |i〉
∣∣2 =

∣∣〈f |X|i〉
∣∣2 +

∣∣〈f |Y |i〉
∣∣2. (22.4.11)

Then, integrating over all possible directions for k̂ will effectively give an average of the two

terms over three possible directions, so
∫
dΩ~k

∑

ε̂

∣∣〈f |ε̂∗ · R |i〉
∣∣2 = (4π)

2

3

(∣∣〈f |X|i〉
∣∣2 +

∣∣〈f |Y |i〉
∣∣2 +

∣∣〈f |Z|i〉
∣∣2
)

(22.4.12)

=
8π

3
〈f |R |i〉 · 〈i|R |f〉. (22.4.13)

This reduces eq. (22.3.14) to the simple formula

Rspon. em.
i→f+~ω =

4αω3

3c2
∣∣〈f |R |i〉

∣∣2 (22.4.14)

for the rate for an initial state |i〉 to decay to a final state |f〉 by the spontaneous emission of a

photon. Note that the right side involves

∣∣〈f |R |i〉
∣∣2 ≡ 〈f |R |i〉 · 〈i|R |f〉, (22.4.15)

the square of the magnitude of a complex vector matrix element.

Suppose that there is no background electromagnetic radiation to induce emission or absorp-

tion, and let the number of atoms in the state |i〉 be Ni(t) at time t. Then at time t+∆t,

Ni(t +∆t) = Ni(t)−∆t RiNi(t), (22.4.16)

where the total decay rate of the initial state is

Ri =
∑

f

Rspon. em.
i→f+~ω . (22.4.17)
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Then

Ni(t+∆t)−Ni(t)

∆t
= −RiNi(t), (22.4.18)

which in the limit ∆t→ 0 becomes the differential equation

dNi

dt
= −RiNi, (22.4.19)

with the solution

Ni(t) = Ni(t0)e
−(t−t0)Ri . (22.4.20)

Therefore τi = 1/Ri is the lifetime of the state |i〉, defined as the amount of time needed for the

number of atoms in that state to decrease by a factor of 1/e ≈ 0.367879 in the absence of other

perturbations. The half-life, defined as the amount of time required for the number to decrease

by half, is related to this by t1/2 = τi ln 2 = 0.693147/Ri.

The preceding results imply matrix element selection rules that govern both absorption

and emission in the electric dipole approximation when |i〉 and |f〉 are angular momentum

eigenstates. These follow immediately from eqs. (13.2.15)–(13.2.18). First, eq. (13.2.15) tells

us that the change in the orbital angular momentum quantum number l must be exactly 1

unit, ∆l = lf − li = ±1. As a corollary, the parities of the initial and final states must be

opposite, since the parity of a state with orbital angular momentum l is (−1)l from eq. (8.7.5);

this can also be seen directly from the parity selection rule, since the operator R has odd parity.

Also, eqs. (13.2.16)–(13.2.18) tell us that the z-component of the orbital angular momentum

changes by 1 unit or less: ∆ml = ml,f − ml,i = 0,±1. As special cases, if the polarization of

the wave is along ε̂ = ẑ, then eq. (13.2.16) says ∆ml = 0, and if it is in the x, y plane, then

eqs. (13.2.17)–(13.2.18) demand ∆ml = ±1. The spin is not affected by the position operator,

so that ms,f = ms,i.

We therefore have the electric dipole selection rules for single-electron transitions,

∆l = ±1, ∆ml = 0,±1 ∆ms = 0, (electric dipole). (22.4.21)

These can be generalized to the case of multi-electron transitions (where more than one electron

changes orbitals in going from the initial to the final state), for which the electric dipole selection

rules are

πiπf = −1, ∆J = 0,±1, ∆mJ = 0,±1, Ji + Jf > 0, (electric dipole). (22.4.22)

The first three of these follow from requiring the non-vanishing of the matrix element of the

parity-odd electric dipole operator ε̂ · R. The ∆J rule follows from the fact that R is a vector
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operator, and therefore carries total angular momentum 1 in the sense explained in Chapter 13.

In terms of addition of angular momentum, J ⊗ 1 = (J−1)⊕ J ⊕ (J+1) for J ≥ 1.

The last selection rule in eq. (22.4.22) is completely general, even if we do not make the

electric dipole approximation. It says just this: a total angular momentum J = 0 state can

never go to another J = 0 state by absorbing or emitting a single photon. The reason is that a

single photon can always be written as a linear combination of transverse circular polarizations,

carrying intrinsic angular momentum component along the propagation direction with eigenvalue

either +~ or −~, which cannot be matched by the initial and final electronic states if they both

have no angular momentum. Therefore, we have a general rule

Ji + Jf > 0, (all single-photon transitions). (22.4.23)

However, this rule (and all other selection rules listed here) can be violated if one considers

emission or absorption of multiple photons, either as distinct sequential events involving inter-

mediate states, or by going beyond first order in time-dependent perturbation theory or through

perturbations caused by the environment of the atom. Multi-photon transition rates at higher

order in perturbation theory are suppressed by additional powers of the fine-structure constant,

however, and so can often be neglected when they compete with single-photon transitions.

In the approximation of the LS coupling scheme, the total spin, total orbital, and total

angular momentum orthobasis quantum numbers L, S, J,mJ are good quantum numbers for the

initial and final stationary states. Then, because the total spin is not involved at all in the

electric dipole moment operator, one has the additional rules

∆S = 0, ∆L = 0,±1, Li + Lf > 0, (electric dipole, LS coupling) (22.4.24)

Recall, from the discussion in section 18.4, that the LS coupling scheme holds to a good ap-

proximation for atoms with atomic number Z not too large.

22.5 Magnetic dipole, electric quadrupole, and higher orders

Transitions that violate the electric dipole selection rules of eqs. (22.4.21) and (22.4.22) have

rates that are typically suppressed by extra powers of Zα, or by extra inverse powers of the

wavelength of the photon emitted or absorbed. For this reason, they are often referred to as

“forbidden”. Traditionally, this terminology does not mean that they are literally forbidden,

but rather that they take place at highly suppressed rates. By the same terminology, transitions

that take place through the electric dipole operator are often called “allowed”.

To go beyond the electric dipole approximation and its selection rules for absorption and

emission of electromagnetic radiation, consider the expansion in small k of eq. (22.1.13). To
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make things a little simpler, let us temporarily choose the wavevector of the light as k = kẑ and

the polarization as ε̂ = x̂, so

ε̂ · P~k = ei
~k·~R ε̂ · (P − ik × S) = eikZ(Px + ikSy). (22.5.1)

Now, expanding eikZ ≈ 1 + ikZ + · · · , and using ZPx = (ZPx − XPz)/2 + (ZPx +XPz)/2 =

Ly/2 + (ZPx + PzX)/2, we have

ε̂ · P~k = Px + i
ω

2c
[Ly + 2Sy + (ZPx + PzX)] + · · · . (22.5.2)

Recasting this back into a form valid for general orthogonal k̂ and ε̂ gives

ε̂ · P~k = ε̂ · P + i
ω

2c

[
(k̂ × ε̂) · (L+ 2S) + (k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R)

]
+ · · · , (22.5.3)

which is the result to next-to-leading order in the long-wavelength expansion. In the last term,

the ordering of operators R and P does not matter; they commute because of the transversality

condition ε̂ · k̂ = 0

Therefore, for the harmonic perturbation to be used in eq. (21.4.1) and subsequent equations,

we can write

V = VE1 + VM1 + VE2 + · · · , (22.5.4)

where the separated contributions,

VE1 = − eE0

2meω
ε̂ · P, (22.5.5)

VM1 = −i eE0

4mec
(k̂ × ε̂) · (L+ 2S), (22.5.6)

VE2 = −i eE0

4mec
(k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R) (22.5.7)

are called electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2), respectively.

Note that in the magnetic dipole operator, the vector (k̂×ε̂) is the unit vector along the magnetic

field direction in the wave; the magnetic field couples to the combination L+ 2S.

Single-photon transitions that are dominantly magnetic dipole in character can now be eval-

uated from the general formulas in sections 22.2-22.3, by using

∣∣〈f |ε̂ · P~k|i〉
∣∣2 → ω2

4c2
∣∣〈f |(k̂ × ε̂) · (L+ 2S)|i〉

∣∣2 (M1 absorption), (22.5.8)

∣∣〈f |ε̂∗ · P†~k|i〉
∣∣2 → ω2

4c2
∣∣〈f |(k̂ × ε̂∗) · (L+ 2S)|i〉

∣∣2 (M1 emission). (22.5.9)

For the electric quadrupole term, we can do a trick similar to the one we used in the electric dipole

case to get eqs. (22.4.9) and (22.4.10). Assuming that H0 does not depend on the momentum

operator except through the kinetic term P 2/2me, we find from eq. (22.4.5) that

[
H0, k̂ ·R ε̂ ·R

]
= −i ~

me

(
k̂ ·R ε̂ ·P + k̂ ·P ε̂ ·R

)
, (22.5.10)
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where we have made use of ε̂ · k̂ = 0. Therefore,

VE2 =
eE0

4~c

[
H0, k̂ ·R ε̂ ·R

]
, (22.5.11)

and in the matrix elements, one can evaluate H0 on the adjacent ket |i〉 or bra |f〉, giving a

factor of Ef − Ei = ~ω for absorption and −~ω for emission. It follows that in matrix elements

for single-photon absorption, one can make the replacement

VE2 →
eE0ω

4c
k̂ · ←→Q · ε̂, (22.5.12)

where† the symmetric, traceless rank-2 tensor quadrupole moment operator is

Qab = RaRb − δabR2/3, (22.5.13)

for a, b = x, y, z. This uses the fact that the δab part of Qab does not contribute to VE2 because

of ε̂ · k̂ = 0. Within matrix elements for single-photon emission,

V †E2 → −eE0ω

4c
k̂ · ←→Q · ε̂∗ (22.5.14)

similarly applies. Comparing eqs. (22.5.12) and (22.5.14) to eq. (22.2.1), we see that for domi-

nantly electric quadrupole transitions, the general formulas in sections 22.2-22.3 apply with

∣∣〈f | ε̂ · P~k |i〉
∣∣2 → m2

eω
4

4c2
∣∣〈f | k̂ · ←→Q · ε̂ |i〉

∣∣2 (E2 absorption), (22.5.15)

∣∣〈f | ε̂∗ · P†~k |i〉
∣∣2 → m2

eω
4

4c2
∣∣〈f | k̂ · ←→Q · ε̂∗ |i〉

∣∣2 (E2 emission), (22.5.16)

for single-photon absorption and emission, respectively.

We now turn to the selection rules for M1 and E2 transitions. First, let us use eqs. (22.5.8)

and (22.5.9) to find the requirements on the initial and final states in order for a magnetic

dipole transition to occur. In transitions involving a single electron, neither L nor S changes the

orbital quantum number l, and the spin quantum number s is of course fixed at 1/2. However,

the components of L are linear combinations of Lz, L±, and the components of S are linear

combinations of Sz, S±, so they can change ml and ms by zero or one unit. Furthermore, mag-

netic dipole transitions cannot occur between states with different principal (radial) quantum

numbers, because L and S do not operate on the radial wavefunctions and do not change l, so

the matrix element calculation in the position representation will be proportional to
∫ ∞

0

dr r2Rnl(r)Rn′l(r) = δnn′. (22.5.17)

†For two vectors v and w with components va and wa, and a rank-2 tensor
←→
T with components Tab, the

notation v · ←→T · w means
∑

a=x,y,z

∑
b=x,y,z vaTabwb. We have already encountered the quadrupole moment

operator Qab in eqs. (13.1.30)-(13.1.33).
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Therefore, the magnetic dipole selection rules are, for single-electron transitions,

∆n = 0, ∆l = 0, ∆ml = 0,±1, ∆ms = 0,±1, (magnetic dipole). (22.5.18)

For multi-electron transitions, the selection rules from eqs. (22.5.8) and (22.5.9) are

πiπf = +1, ∆J = 0,±1, ∆mJ = 0,±1, Ji + Jf > 0, (magnetic dipole). (22.5.19)

The parity selection rule follows from the fact that the operator L+2S has even parity, and the

∆J and ∆mJ selection rules follow from the fact that it is a vector, and therefore as explained

in Chapter 13 it carries total angular momentum 1. The rule Ji + Jf > 0 is completely general,

as we already noted in our discussion of the electric dipole case. In the LS coupling scheme

approximation, where initial and final stationary states can be assigned total angular momentum

basis quantum numbers L, S, J,mJ , there are additional rules

∆L = 0, ∆S = 0 (magnetic dipole, LS coupling). (22.5.20)

Note that the electric dipole and magnetic dipole contributions cannot both be relevant for a

given initial and final state. Magnetic dipole transitions never change the parity, while electric

dipole transitions always do.

The famous 21 centimeter hyperfine transition line within the ground state of hydrogen is

a magnetic dipole transition, as it involved a spin flip but does not change the orbital angular

momentum or principal quantum number, which are l = 0 and n = 1 in both the initial and

final state. Since the resulting photon has an extremely long wavelength compared to the atomic

size, the hyperfine transition occurs at a highly suppressed rate (compared to what one might

expect if it were an electric dipole transition), because k = ω/c≪ 1/a0.

Now consider the matrix element selection rules that apply to the electric quadrupole term.

Depending on the choices for k̂ and ε̂, the matrix elements in eqs. (22.5.15) and (22.5.16) can

involve linear combinations of the operators XY , XZ, Y Z, X2−Y 2, and X2+Y 2−2Z2, which

are the components of the quadrupole tensor
←→
Q. These operators all have parity πQ = +1, so

electric quadrupole transitions can only connect states with the same parity. Acting on single-

electron orbital angular momentum eigenstates, these operators can change l by 0 or 2 units

(but not 1 unit, as that would not satisfy the parity selection rule), and ml by 0, 1, or 2 units.

Unlike the magnetic dipole interaction, the electric quadrupole operator does act non-trivially on

the radial wavefunction, so there is no restriction on changes in the principal quantum number.

However, it does not change the spin state. So, we have the electric quadrupole selection

rules for single-electron transitions,

∆l = 0,±2, ∆ml = 0,±1,±2, ∆ms = 0, (electric quadrupole). (22.5.21)
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For transitions involving multiple electrons, the selection rules are

πiπf = +1, |∆J | ≤ 2, |∆mJ | ≤ 2, Ji + Jf > 1, (electric quadrupole), (22.5.22)

and in the LS coupling scheme approximation in which the initial and final multi-electron

stationary states have good quantum numbers L, S, J,mJ , there are additional selection rules

∆S = 0, |∆L| ≤ 2, Li + Lf > 1 (electric quadrupole, LS coupling). (22.5.23)

The general constraint that angular momentum can change by at most two units in electric

quadrupole transitions follows from the Wigner–Eckart Theorem 13.3.1 and the fact that the

quadrupole operator is an irreducible tensor of order j = 2, as we noted in section 13.1. The

electric quadrupole transitions can only occur between states that have the same parity, so they

can never occur if electric dipole transitions are allowed. If the initial and final states in question

have ∆l = 0 or ∆L = 0, then the transition can be both magnetic dipole and electric quadrupole

in character, but if ∆L = 2 or ∆J = 2 or it changes ml or mJ by two units, then it will be

electric quadrupole at leading order in the long-wavelength approximation.

If one continues the expansion in k · R of P~k, the resulting electric and magnetic multipole

contributions are called Eq and Mq with q = 1, 2, 3, . . ., where M2 is magnetic quadrupole, E3

is electric octopole, etc. The general selection rules for these contributions are

πiπf = (−1)q, (Eq), (22.5.24)

πiπf = (−1)q−1, (Mq), (22.5.25)

|∆J | ≤ q ≤ Ji + Jf , |∆mJ | ≤ q, (Eq) and (Mq). (22.5.26)

In the long wavelength limit, the leading Eq or Mq contributions for a transition between two

states are those with the smallest q that satisfies these selection rules. For a possible transition

between an odd-parity state with J = 2 and an even-parity state with J = 0, the single-photon

transition would be uniquely determined to be M2, magnetic quadrupole. For two states with

the same parity and both with J = 1, the transition could be either M1 or E2. For two states

both with J = 0, there is no allowed single-photon transition as we have already discussed, and

there will instead be a highly suppressed double-photon emission.

22.6 Photo-electric effect for atoms

In this section, we will compute the photo-electric effect cross-section for atoms, as an application

of the results obtained in section 22.2. Instead of considering the photo-electric effect for a metal

surface, we will take an initial hydrogen-like atomic bound state |i〉 for an electron. The light

to be absorbed has angular frequency ω, polarization ε̂, and wavenumber k = k̂ω/c. The final
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state |f〉 is taken to be a continuum momentum eigenstate with momentum eigenvalue pf = ~K.

This final state is an approximation, as we are neglecting the influence on its wavefunction of

the nuclear electric field; this is to make the problem more tractable, and works best in the limit

that the final-state electron energy ~
2K2/2me is large compared to the binding energy of the

initial state. Since we are not assuming that the wavelength of the electromagnetic wave is large

compared to the de Broglie wavelength 2π/K of the final state, we will not use the multipole

expansion of the previous two sections in the following derivation.

To be specific, let the initial state of the electron be a hydrogen-like atomic ground-state

wavefunction

〈r |i〉 = ψ1,0,0(r) =

√
Z3

πa30
e−Zr/a0 , (22.6.1)

which also applies approximately for 1s electrons in multi-electron atoms, with

Ei = −Z2e2/2a0. (22.6.2)

The final state electronic wavefunction is approximated by

〈r|f〉 = ψ ~K(r) = Aei
~K·~r, (22.6.3)

where A is a normalization constant and the momentum and energy are

pf = ~ ~K, and Ef =
~
2K2

2me
. (22.6.4)

The delta function in eq. (22.2.7) then reveals that the photon energy is

~ω = ~ck =
~
2K2

2me
+
Z2e2

2a0
. (22.6.5)

This shows that there is a minimum possible value of ~ωmin = Z2e2/2a0 in order for the process

to take place, achieved when the kinetic energy of the final-state electron is small. This is

in agreement with the observation that the photo-electric effect requires a minimum incident

photon energy quantum ~ω, regardless of the intensity of the light, as noted in section 1.3.

However, our calculation will work best in the opposite limit of large K compared to the

binding energy, so that the plane-wave approximation of eq. (22.6.3) is more nearly valid. In

that limit, we have ~
2K2/2me ≫ Z2e2/2a0, which can be rewritten as K ≫ Z/a0 by using

a0 = ~
2/mee

2. This also implies ~ω ≫ Z2e2/2a0, so ω/c ≫ Z2e2/2a0~c, or ω/c ≫ Z2α/2a0.

The velocity of the ejected electron is then

vf =
pf
me

=
~K

me
≈ 2ω

K
, (22.6.6)
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where we used eq. (22.6.5) with the approximation that the binding energy is small compared

to the photon energy. Therefore, since we will be treating the electron as nonrelativistic, we

need ω ≪ cK so that vf ≪ c. So, the following results will be most reliable when

K ≫ ω/c ≫ Z2α/2a0, and K ≫ Z/a0. (22.6.7)

The first condition allows us to neglect the spin contribution k×S = (ω/c)k̂×S in eq. (22.1.13)

compared to the P term.

In order to have a well-defined normalization factor A in eq. (22.6.3), the final state is taken

to be confined to a very large cubic box with side L≫ a0/Z; as a check, we will show that the

dependence on L cancels in the final result. Then the normalization condition is

1 =

∫

box

d3r |ψ ~K(r)|2 = |A|2
∫

box

d3r = |A|2L3, (22.6.8)

so A = L−3/2. Imposing periodic boundary conditions on the wavefunction implies that

ψ ~K(r) = ψ ~K(r + L[nxx̂+ nyŷ + ny ŷ]), (22.6.9)

for integers nx, ny, nz, so we obtain the allowed wavenumber components

Kx =
2π

L
nx, Ky =

2π

L
ny, Kz =

2π

L
nz. (22.6.10)

We will need the density of final states, ρ(Ef , cos θf , φf), as defined by eq. (21.3.16), where

(θf , φf) are the spherical coordinate angles of the final-state electron’s momentum vector ~K,

and serve as the degeneracy labels for the energy. For a volume of ~K-space dKxdKydKz, the

number of allowed final states is

(
L

2π

)3

dKxdKydKz =

(
L

2π

)3

d3 ~K =

(
L

2π

)3

K2dK d(cos θf ) dφf . (22.6.11)

Now, since

dEf =
~
2

me
K dK, (22.6.12)

we have

(
number of states in the
range dEf dφf d(cos θf)

)
=

(
L

2π

)3
me

~2
K dEf dφf d(cos θf ), (22.6.13)

from which we obtain, by comparison with eq. (21.3.16), the density of final electron states

ρ(Ef , cos θf , φf) =

(
L

2π

)3
meK

~2
(22.6.14)
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in the plane-wave approximation.

We are assuming that the spin can be neglected due to eq. (22.6.7), so eq. (22.1.13) becomes

P~k = ei
~k·~Rε̂·P . Applying eq. (22.2.8), we now obtain the differential cross-section for absorption,

dσ

dΩf
=

4π2αK

me~ω

(
L

2π

)3 ∣∣〈f |ei~k·~R ε̂ · P |i〉
∣∣2, (22.6.15)

where dΩf = d(cos θf ) dφf . It remains to evaluate the matrix element. Because of the transverse

nature of electromagnetic waves ε̂ · k = 0, we have the commutator
[
k ·R, ε̂ · P

]
= 0, so

〈f |ei~k·~Rε̂ ·P |i〉 = 〈f |ε̂ ·Pei~k·~R|i〉 = ~ ε̂ · ~K 〈f |ei~k·~R|i〉 , (22.6.16)

where we used pf = ~ ~K. The last matrix element is evaluated in the position representation as

〈f |ei~k·~R|i〉 =

∫
d3r

(
1√
L3
e−i

~K·~r
)
ei
~k·~r
(√

Z3

πa30
e−Zr/a0

)
=

√
Z3

πa30L
3
I(q), (22.6.17)

where we have defined the integral

I(q) =

∫
d3r e−Zr/a0ei~q·~r with q ≡ k − ~K, (22.6.18)

so that ~q is the momentum transferred from the photon to the atom.

Due to the spherical symmetry of the initial-state wavefunction, we see that I(q) only de-

pends on the magnitude of q, not its direction. So, for the purpose of evaluating I(q), we can

temporarily choose q = qẑ, so that q · r = qr cos θ, giving

I(q) =

∫ ∞

0

dr r2
∫ 1

−1
d(cos θ)

∫ 2π

0

dφ e−r(Z/a0−iq cos θ). (22.6.19)

The φ integration trivially gives a factor of 2π. Doing the cos θ integration next, and the r

integration last,

I(q) = −2πi
q

∫ ∞

0

dr r
(
e−r(Z/a0−iq) − e−r(Z/a0+iq)

)
=

8πa30
Z3(1 + q2a20/Z

2)2
. (22.6.20)

Putting together eqs. (22.6.15)-(22.6.17) and (22.6.20) we arrive at

dσ

dΩf
=

32α~K

meω

∣∣ε̂ · ~K
∣∣2 a30
Z3(1 + q2a20/Z

2)4
, (22.6.21)

in which the dependences on the size of the box L (from the density of states, and from the

matrix element) have canceled, as promised. Note that the differential cross-section is largest

when the electron is ejected in the direction of the polarization of the electric field of the wave.
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It is now convenient to choose a coordinate system in which (without loss of generality, since

the initial electron wavefunction is spherically symmetric) the incident photon momentum is in

the ẑ direction, and has polarization along the x̂ direction, so

k = ẑk = ẑω/c, ε̂ = x̂. (22.6.22)

Writing, from here on, θ = θf and φ = φf for the ejected electron’s momentum spherical

coordinate direction angles, with ~K = r̂K, we have

ε̂ · ~K = K sin θ cos φ, (22.6.23)

q2 = (k − ~K)2 = K2 + (ω/c)2 − 2K(ω/c) cos θ, (22.6.24)

so that eq. (22.6.21) becomes

dσ

dΩ
=

32α~

meω

a30K
3

Z3(N1 −N2 cos θ)4
sin2 θ cos2 φ, (22.6.25)

in which we have introduced dimensionless quantities

N1 = 1 + a20(K
2 + ω2/c2)/Z2, (22.6.26)

N2 = 2a20Kω/cZ
2. (22.6.27)

To find the total cross-section, we use the integrals

∫ 2π

0

dφ cos2 φ = π, (22.6.28)

∫ 1

−1
d(cos θ)

sin2 θ

(N1 −N2 cos θ)4
=

4

3(N2
1 −N2

2 )
2
, (22.6.29)

to obtain

σ =

∫
dΩ

dσ

dΩ
=

128πα~

3meω

a30K
3

Z3(N2
1 −N2

2 )
2
. (22.6.30)

If the light is polarized along ŷ rather than x̂, then cos2 φ should be replaced by sin2 φ in

the differential cross-section eq. (22.6.25). If the light is unpolarized we should instead make

the replacement based on the average of the two transverse polarizations, cos2 φ → (cos2 φ +

sin2 φ)/2 = 1/2, which gives, after integrating over φ,

dσ

d(cos θ)
=

32πα~

meω

a30K
3

Z3(N1 −N2 cos θ)4
sin2 θ. (22.6.31)

The total cross-section is independent of the polarization, because the angle φ is integrated over.
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Now consider the high-energy limit K ≫ ω/c and K ≫ Z/a0 of eq. (22.6.7), which we

showed was appropriate for our plane-wave approximation for the final state. Expanding to

next-to-leading order in large K, we have

1

(N1 −N2 cos θ)4
=

(
Z

Ka0

)8 (
1 +

8ω

cK
cos θ + · · ·

)
, (22.6.32)

so that eqs. (22.6.25) and (22.6.30) become

dσ

dΩ
=

32α~

meω

(
Z

Ka0

)5 (
1 +

8ω

cK
cos θ

)
sin2 θ cos2 φ, (22.6.33)

σ =
128πα~

3meω

(
Z

Ka0

)5

. (22.6.34)

This can be rewritten to eliminate K in favor of ω using the energy conservation condition

K =
√

2meω/~, which follows from eq. (22.6.5) in the limit of small binding energy compared

to the photon energy. The result for the total cross-section is

σ =
256π

3
α
(a0
Z

)2( |Ei|
~ω

)7/2

, (22.6.35)

where a0/Z is the characteristic length scale of the initial state, and |Ei| = Z2e2/2a0 is the

binding energy, and ~ω is the incident photon energy.

The preceding results apply not just to single-electron wavefunctions for hydrogen-like ions,

but to the ejection of electrons from the K-shell† of heavier atoms. There are two K-shell

electrons (one for each spin), so the cross-section we obtained should be multiplied by 2 to find

the total K-shell ejection cross-section for multi-electron atoms. The most important qualita-

tive features are that the cross-section grows with increasing Z like Z5, and falls sharply with

increasing incident photon energy like 1/(energy)7/2. The ejected electrons are preferentially

emitted along the photon’s electric field polarization, which is perpendicular to the photon’s

propagation direction, but with a slight preference for the forward direction (cos θ > 0) as a

subleading effect in the high-energy expansion in eq. (22.6.33).

In the opposite limit of small K, eqs. (22.6.25) and (22.6.30) appear to show a threshold

behavior proportional to K3. However, in that regime, the calculation we did is not to be

trusted, because the plane-wave approximation for the final state is quite bad.

22.7 Exercises

Exercise 22.1. In this problem you will find the lifetime of the |n, l,m〉 = |3, 2, 2〉 state of an

isolated hydrogen atom, due to spontaneous emission of a single photon. Ignore fine, hyperfine,

†The execrable but traditional jargon “K-shell” just means the innermost shell with principal quantum number
n = 1, called 1s in section 18.4. The 2s, 2p electrons are called L-shell, and 3s, 3p and 3d are called M -shell,
etc. For each shell with principal quantum number n, there can be up to 2

∑n−1
l=0 (2l + 1) = 2n2 electrons.
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and Lamb shift splitting effects, and use the electric dipole approximation.

(a) According to the electric dipole selection rules, what state or states could be the final state?

What are the angular frequency ω, the wavelength λ, and the color of the emitted light? Note

that λ≫ a0, so that the electric dipole approximation is indeed valid.

(b) Use eq. (22.4.14) to evaluate the emission rate, and compute τ = 1/Γ to find the lifetime,

both symbolically in terms of quantities like α, c, ~, a0, and ω, and then numerically in seconds.

Exercise 22.2. Consider an electron trapped in a 3-dimensional isotropic harmonic oscillator

potential with angular frequency Ω. The electron is initially in the first excited state with l = 1,

m = 0, and spontaneously emits a photon to decay to the ground state.

(a) How is the angular frequency ω of the emitted photon related to the angular frequency Ω of

the harmonic oscillator potential?

(b) Compute the lifetime of the first excited state.
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23 Scattering in three dimensions

23.1 Cross-sections and scattering amplitudes

Consider the problem of scattering of free particles from a localized target in three dimensions.

Suppose that the incoming particles are in a mono-energetic beam, all moving in the same

direction, which we will take to be ẑ by a choice of coordinate system. If the beam is uniform

over some area large compared to the size of the target, it can be described by a flux

n =
number of incident particles

(area)(time)
. (23.1.1)

Here, the area is measured in the xy plane, perpendicular to the beam propagation direction.

The experiment then counts (or infers, perhaps from measurements of energy deposited in a

detector) the number of particles scattered in a differential of solid angle

dΩ = dφ d(cos θ). (23.1.2)

Let the number of scattered particles as a function of direction be described by

ds =
number of scattered particles in dΩ

time
. (23.1.3)

Clearly, ds must be proportional to n, and to dΩ. We therefore define the proportionality factor

to be the scattering differential cross-section,

dσ

dΩ
=

ds

n dΩ
. (23.1.4)

Note that this has units of area. The total cross-section is then defined as

σ =

∫
dΩ

dσ

dΩ
=

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

dσ

dΩ
, (23.1.5)

also with units of area. Intuitively, the cross-section is the effective area of the target for the

type of scattering under consideration.

It is often true that the differential cross-section has azimuthal symmetry, which means

that it does not depend on φ. This occurs if the target and the properties of the scattering

process are invariant under rotations about the initial beam propagation direction. In that case,

one can give the differential cross-section in terms of

dσ

d(cos θ)
=

∫ 2π

0

dφ
dσ

dΩ
= 2π

dσ

dΩ
. (23.1.6)

In particular, this will occur if the target is spherically symmetric and the incident particles are

either spinless or have randomly oriented spins.
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α
α

b

R

Figure 23.1.1: A classical trajectory for scattering from a hard sphere of radius R, with
impact parameter b and scattering angle θ measured from the forward direction ẑ (the
direction pointing to the right). The geometry gives the relation b = R cos(θ/2).

For classical scattering problems, the cross-section can be computed in terms of specific

trajectories followed by the incident particles. It is useful to define the impact parameter b as

the distance between a particular initial particle trajectory line (when it is still very far from the

target) and the line parallel to it through a suitably chosen central point in the target, which

we take to be the origin of our coordinate system.

Consider first a classical† example, hard-sphere scattering. Particles are fired at a target

ball (of radius R, and heavy enough that it doesn’t move when hit). Gravitational effects are

neglected, so that the incident particles move in straight lines. For a particular scattering event,

the impact parameter b is the distance between the initial particle trajectory line and the line

parallel to it through the center of the target ball, as shown in Figure 23.1.1. To find the

differential cross-section, the general strategy is to relate b to the scattering angle θ. Using

elementary geometry, the angles α and θ are related to each other and the impact parameter by

α = arcsin(b/R), θ = π − 2α, (23.1.7)

which implies

b = R sin(π/2− θ/2) = R cos(θ/2). (23.1.8)

Assuming a uniform flux n of incident particles moving in the ẑ direction, the number of them

per unit time with impact parameter between b and b+ db is equal to the product of n with the

area of the annulus in the xy plane with inner radius b and outer radius b+ db,

n(2πb db) = n2πR cos(θ/2)Rd(cos(θ/2)) =
1

2
nπR2 d(cos θ). (23.1.9)

This means that the rate of scattered particles in solid angle dΩ in eq. (23.1.3) is

ds =
1

2
nπR2d(cos θ)

dφ

2π
=

1

4
nR2dΩ. (23.1.10)

†We will later obtain the result for the corresponding quantum mechanical problem, in section 23.5.
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We therefore obtain, from the definition eq. (23.1.4), the differential cross-section

dσ

dΩ
= R2/4. (23.1.11)

Because of the azimuthal symmetry, this is equivalently

dσ

d(cos θ)
= πR2/2, (23.1.12)

which integrates to give the total cross-section

σ =

∫ 1

−1
d(cos θ)

dσ

d(cos θ)
= πR2. (23.1.13)

This example has two rather special features. First, the differential cross-section is isotropic;

it does not depend on θ. Second, the total cross-section is simply equal to the geometrical

cross-sectional area of the target; the scattering takes place if and only if the impact parameter

does not exceed the radius R.

Another classical (and classic) example is Rutherford scattering of a light spinless particle

with charge Z1e (for example, an α particle with Z1 = 2) and initial energy E from a static

Coulomb potential

V (r) = Z2e/r, (23.1.14)

for example, caused by a heavy nucleus containing Z2 protons. From the classical hyperbolic

trajectories, one can show (again by finding θ in terms of the impact parameter distance defined

when the scattering particle is very far away) that

dσ

dΩ
=

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
. (23.1.15)

This differential cross-section is certainly not constant, and in fact blows up with a non-integrable

divergence for small θ. To get a finite value for the total cross-section, one must modify the

question slightly and count only those events in which the electron is scattered by some minimal

cut-off angle θmin. (In real-world experiments, this is justified by the finite resolution of detectors,

and by the difficulties encountered if one tries to put a detector too close to the beam.) Then

σ(θ > θmin) =

∫ 2π

0

dφ

∫ cos θmin

−1
d(cos θ)

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
=

πZ2
1Z

2
2e

4

4E2

(
1 + cos θmin

1− cos θmin

)
. (23.1.16)

The divergence is recovered in the limit θmin → 0. The interpretation is that in scattering from

a 1/r potential, the initial charged particle is always scattered at least a little, with sufficient

strength that the unrestricted total cross-section is infinite; we say that the Coulomb potential

has infinite range.
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Most scattering problems are intermediate between the extremes of hard-sphere scattering

(with a sharp cut-off limited range of interaction) and Coulomb scattering (with an infinite

range). Even if scattering occurs for every impact parameter or scattering angle, the integrated

total cross-section σ can still be finite, if the differential cross-section rises less quickly than

1/(1− cos θ) for small θ. If so, then the potential giving rise to it is said to have finite range.

Enough classical warm-ups; we now turn to the quantum theory of scattering. Consider a

beam of particles with fixed momentum p = ~k that encounter a target in the form of a potential

V (r) that has support within a finite volume near the origin. If the potential were completely

absent, the beam could be described by a plane wavefunction

ψ(r) = 〈r|k〉 = 1

(2π)3/2
ei
~k·~r =

1

(2π)3/2
eikz. (23.1.17)

In writing the last equality, we chose our coordinate system so that the initial beam momentum

is along the z direction, so

k = ẑk. (23.1.18)

The wavefunction eq. (23.1.17) cannot be normalized to unity, so we have chosen to instead

normalize it so that it satisfies orthonormality and completeness relations

〈k′|k〉 = δ(3)(k′ − k),
∫
d3k |k〉〈k| = I, (23.1.19)

and the probability of finding a particle per unit volume is

probability

volume
= |ψ(r, t)|2 = |e−iEt/~ψ(r)|2 =

1

(2π)3
, (23.1.20)

a constant in both time and position. This normalization is rather arbitrary, but will cancel in

the differential cross-section. The total flux of particles (probability for a particle in the incident

beam to pass through a unit area, per unit time) described by the wavefunction is therefore

n =
probability

(area)(time)
=

(
probability

volume

)
(speed) =

1

(2π)3
~k

m
. (23.1.21)

Let us next anticipate the form of a stationary-state wavefunction for large r, taking into

account the scattering potential,

ψ(r) =
1

(2π)3/2

(
eikz +

eikr

r
fk(θ, φ)

)
, (r →∞). (23.1.22)

We will justify this form before the end of section 23.2. For now, we just note that the first

term represents the incident wave, while the quantity

fk(θ, φ) (23.1.23)
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characterizes the outgoing flux of probability density, and is called the scattering amplitude.

It multiplies a factor eikr, which corresponds to a wave traveling away from the origin, and a

factor 1/r which indicates that the probability amplitude falls linearly with distance. This gives

a probability density that falls off like 1/r2, which is the requisite behavior so that the probability

to detect a particle scattering within a given solid angle dΩ with area r2dΩ is independent of the

distance to the detector r, when r is large. Due to energy conservation and the assumption that

the scattering potential vanishes at large distances, the magnitude of the wavenumber is the

same k for both incoming and outgoing waves. The scattering amplitude fk(θ, φ) has units of

[length] and depends only on the magnitude k and the spherical coordinate angles, interpreted

as those of the propagation direction of a scattered particle. In cases with azimuthal symmetry,

we will write the scattering amplitude as fk(θ).

A small detector at (θ, φ) covering a solid angle dΩ, at a large distance r from the target,

will see a total probability flux

ds =

(
probability

volume

)
(area)(speed) =

∣∣∣∣
1

(2π)3/2
fk(θ, φ)

eikr

r

∣∣∣∣
2 (
r2dΩ

)(~k

m

)
(23.1.24)

=
|fk(θ, φ)|2
(2π)3

~k

m
dΩ. (23.1.25)

Here we have neglected the interference with the incident part of the wavefunction proportional

to eikz, with the justification that in the real world the incoming particle beam has only a

finite extent that will not overlap with sufficiently distant detectors measuring the scattered

particles. (To summarize the assumptions made: the beam size perpendicular to its direction

is large compared to the target, but small compared to the distance to the detector.) Using

eqs. (23.1.21) and (23.1.25) in eq. (23.1.4), we obtain the important result

dσ

dΩ
= |fk(θ, φ)|2. (23.1.26)

The differential cross-section is equal to the squared magnitude of the scattering amplitude.

23.2 The scattering matrix (S-matrix) operator and the Lippmann–

Schwinger equation

A general scattering problem involves an initial state of well-separated free particles denoted |a〉.
“Free” means that they are described by plane wave momentum eigenstates, and the symbol “a”

is a shorthand for all of the data about the momenta and spins and identities of the incoming

particles. Interactions then occur in a localized scattering region, described by a wavefunction

that might be quite complicated. Finally, one observes particles moving far away from the

scattering region as well-separated plane-waves, in a state denoted |b〉.
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If the incoming and outgoing particles were really pure plane waves, then they would fill all

space at all times. In realistic scattering events, the states are actually wave packets, consisting

of superpositions of plane wave states with some spread of momenta, like the Gaussian superpo-

sitions of section 6.2. Instead of dealing directly with wave packets, the problem can be finessed

by taking our scattering potential to be localized in time as well as position. We imagine that

at some times in both the far past and the far future the non-kinetic Hamiltonian terms are

turned off. Thus, particles in our wave packet that are far away are free in those two extremes,

with a purely kinetic-energy Hamiltonian H0. It is convenient to work in the interaction picture

of section 20.2, so that the plane wave states have no time dependence at all at those times in

the far past and future.

Suppose that the state is a simple plane-wave ket |a〉 in the interaction picture at some very

early time, which we can write (somewhat loosely for now) as t = −∞. As we learned in section

20.2, the interaction-picture state at later times t will be

UI(t,−∞) |a〉 , (23.2.1)

where UI is the unitary time-evolution operator. This motivates the definition of the scattering

matrix or S-matrix operator as its very late-time limit,

S = UI(+∞, −∞), (23.2.2)

where again +∞ is understood to represent some particular large positive time. It follows that

the probability amplitude to find the particle in the far future in another plane wave state |b〉
is the S-matrix element

〈b|S|a〉 . (23.2.3)

By its definition, the S-matrix operator is unitary, which is a way of saying that probability is

conserved. Since UI is built out of the interaction (non-kinetic) Hamiltonian, the S-matrix is

also invariant under any symmetries that the system might have. For example, S will commute

with the angular momentum operator if the interaction Hamiltonian is rotationally invariant.

This means that S will be diagonal in a suitably chosen basis of eigenstates of those symmetries.

The S-matrix also encodes further information about the interaction Hamiltonian, including its

characteristic length and energy scales, and any bound states or interesting substructure that it

may have. Understanding the S-matrix through scattering is therefore a useful probe of physics

at short distance scales that might otherwise be difficult to access directly.

One way to evaluate the S-matrix elements in eq. (23.2.3) is to work at a fixed intermediate

time, which we can choose to be t = 0. To do this, let us define two scattering states |ψ+
a 〉 and
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|ψ−b 〉 according to

|ψ+
a 〉 = UI(0,−∞) |a〉 , (23.2.4)

〈ψ−b | = 〈b| UI(∞, 0). (23.2.5)

In words, |ψ+
a 〉 is the (generally quite complicated) result at time t = 0 of evolving the plane-

wave state |a〉 from the distant past t = −∞, in the interaction picture. The interpretation of

|ψ−b 〉 is perhaps somewhat less intuitive; it is the complicated state at time t = 0 that is obtained

by evolving the simple plane-wave state |b〉 backwards in time from the far future t =∞. This

can be seen by using UI(∞, 0)† = UI(0,∞) in the adjoint of eq. (23.2.5), which implies

|ψ−b 〉 = UI(0,∞) |b〉 . (23.2.6)

The point of making these definitions is that we can now write the S-matrix elements between

plane-wave states as the inner product

〈b|S|a〉 = 〈ψ−b |ψ+
a 〉 , (23.2.7)

evaluated at the fixed time t = 0.

Suppose that the interaction Hamiltonian has no explicit time-dependence, so that energy

is conserved. Then the initial and final states have the same energy Ea = Eb, and we can write

S = I − 2πiδ(Ea − Eb)T, (23.2.8)

which defines an operator T , called the transition operator. It is the part of the S-matrix

associated with genuinely non-trivial scattering. The factor of −2πi is for future convenience,

as we will see soon when we identify T more explicitly.

The preceding discussion has been very general, as we have not specified whether the free

particles in the initial and final configurations are governed by non-relativitistic or relativistic

kinematics, or whether their numbers and identities change in the scattering process. Quan-

tum field theory is the natural framework for addressing the numerous difficult issues that can

arise, including changes in the particle numbers, infrared divergences associated with massless

particles, and ultraviolet divergences associated with very high energies of intermediate states.

In the rest of this book, we will be content to specialize to the simpler case that the scattering

interaction is a potential V (R) that depends on a single coordinate vector operator. This R

could either describe a single particle that appears in both the initial and final states and in-

teracts with an external potential, or it could be the relative coordinate between two particles

that interact with each other through V (R). In both cases, we assume that the scattering is
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elastic, so that particles do not change into particles of another type, and that the kinematics

conserves the non-relativistic energy, so that the Hamiltonian has the time-independent form

H = H0 + V (R), H0 = P 2/2m. (23.2.9)

The potential is assumed to be short-range, which in practice usually means weaker than a

Coulomb potential at large distances, so that rV (r) → 0 for r → ∞. From here on, we will

replace the plane-wave labels a and b by wavenumbers k and k′ associated with momentum

eigenvalues ~k and ~k′, with

H0 |k〉 = E |k〉 , E = ~
2k2/2m. (23.2.10)

Spin labels, if any, are suppressed, so that the S-matrix elements are denoted 〈k′|S|k〉.
With these assumptions, in the interaction picture we have

VI(t) = eiH0t/~V e−iH0t/~, (23.2.11)

and recall from eq. (20.2.7) that the unitary time-evolution operator for finite times is

UI(t, t′) = eiH0t/~e−iH(t−t′)/~e−iH0t′/~. (23.2.12)

However, the latter formula has problematic limits for t or t′ → ±∞, due to its oscillatory

nature. To get around this, we define modified versions of UI(0,−∞) and UI(0,+∞), by inserting

exponential damping factors eǫt
′/~ and e−ǫt

′/~ in the integral equation (20.2.14), to turn off the

interactions in the far past and the far future, respectively,

Ω+ ≡ I − i

~

∫ 0

−∞
dt′ eǫt

′/~ UI(0, t′) VI(t′), [modified UI(0,−∞)], (23.2.13)

Ω− ≡ I +
i

~

∫ ∞

0

dt′ e−ǫt
′/~ UI(0, t′) VI(t′), [modified UI(0,∞)], (23.2.14)

with positive infinitesimal ǫ. These are called Møller operators, after Christian Møller. In-

serting eqs. (23.2.11) and (23.2.12) with t = 0 in eqs. (23.2.13) and (23.2.14), we get

|ψ+
~k
〉 = Ω+ |k〉 =

(
I − i

~

∫ 0

−∞
dt′ei(H−E−iǫ)t

′/~ V

)
|k〉 , (23.2.15)

|ψ−~k 〉 = Ω− |k〉 =

(
I +

i

~

∫ ∞

0

dt′ei(H−E+iǫ)t′/~ V

)
|k〉 , (23.2.16)

where we used e−iH0t′/~ |k〉 = e−iEt
′/~ |k〉. Doing the t′ integrals, we find

|ψ±~k 〉 =
(
I +

1

E −H ± iǫV
)
|k〉 . (23.2.17)
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The states |ψ±~k 〉 are seen to differ in how they avoid the possible singularity in the formal

limit H = E, through opposite ±iǫ prescriptions in the denominator. This equation contains

an inverse operator involving the full Hamiltonian, which is not so convenient for practical

evaluation. It is therefore useful to rearrange it, making use of H = H0 + V , to arrive at

|ψ±~k 〉 = |k〉+ 1

E −H0 ± iǫ
V |ψ±~k 〉 . (23.2.18)

This is called the Lippmann–Schwinger equation, after Bernard Lippmann and Julian

Schwinger. It will play an essential role in the following.

Acting on the Lippmann–Schwinger equation with the operator E − H0 ± iǫ, and making

use of H0 |k〉 = E |k〉 and H = H0 + V again, one finds (H −E) |ψ±~k 〉 = ±iǫ(|ψ
±
~k
〉 − |k〉), which

in the limit ǫ→ 0 reduces to

H |ψ±~k 〉 = E |ψ±~k 〉 . (23.2.19)

Thus we have the nice result that |ψ+
~k
〉 and |ψ−~k 〉 are both stationary states of the full Hamiltonian

H , each with exactly the same energy eigenvalue E = ~
2k2/2m as the H0 eigenvalue of the

corresponding plane-wave state. As we will see, |ψ+
~k
〉 in particular has a wavefunction that has

the large-r form that we anticipated in eq. (23.1.22).

Another remarkable result is that the scattering states have the same orthonormality prop-

erties as the corresponding plane wave state,

〈ψ+
~k′
|ψ+
~k
〉 = 〈ψ−~k′|ψ

−
~k
〉 = 〈~k′|~k〉 = δ(3)(k′ − k), (23.2.20)

where the last equality reflects the assumed normalization in eq. (23.1.19). To prove it, start

by considering the matrix element 〈ψ+
~k′
|V |ψ+

~k
〉, which can be rewritten in two ways, using the

Lippmann–Schwinger equation for |ψ+
~k
〉, and its adjoint for 〈ψ+

~k′
|,

〈ψ+
~k′
|V |ψ+

~k
〉 = 〈ψ+

~k′
|V
(
|k〉+ 1

E −H0 + iǫ
V |ψ+

~k
〉
)
, (23.2.21)

〈ψ+
~k′
|V |ψ+

~k
〉 =

(
〈k′|+ 〈ψ+

~k′
|V 1

E ′ −H0 − iǫ
)
V |ψ+

~k
〉 , (23.2.22)

where we have used the Hermiticity of H0 and V , and E = ~
2k2/2m and E ′ = ~

2k′2/2m. Taking

the difference of these two equations, we find

〈ψ+
~k′
|V |k〉 − 〈k′|V |ψ+

~k
〉+ 〈ψ+

~k′
| V
(

1

E −H0 + iǫ
− 1

E ′ −H0 − iǫ

)
V |ψ+

~k
〉 = 0. (23.2.23)

Now we write

1

E −H0 + iǫ
− 1

E ′ −H0 − iǫ
=

E ′ −E − 2iǫ

(E ′ −H0 − iǫ)(E −H0 + iǫ)
, (23.2.24)
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and then divide eq. (23.2.23) by E ′ − E − 2iǫ. In doing so, we can change the −2iǫ to −iǫ,
since ǫ is infinitesimal and its only purpose is to avoid singular denominators. The result can

be expressed, using E |k〉 = H0 |k〉 in the first term and E ′ 〈k′| = 〈k′|H0 in the second term, as

〈ψ+
~k′
| V 1

E ′ −H0 − iǫ
|k〉+ 〈k′| 1

E −H0 + iǫ
V |ψ+

~k
〉+

〈ψ+
~k′
|V 1

E ′ −H0 − iǫ
1

E −H0 + iǫ
V |ψ+

~k
〉 = 0. (23.2.25)

Again applying the Lippmann–Schwinger equation and its adjoint, this becomes
(
〈ψ+

~k′
| − 〈k′|

)
|k〉+ 〈k′|

(
|ψ+
~k
〉 − |k〉

)
+
(
〈ψ+

~k′
| − 〈k′|

)(
|ψ+
~k
〉 − |k〉

)
= 0, (23.2.26)

which finally simplifies to 〈ψ+
~k′
|ψ+
~k
〉 = 〈k′|k〉. The proof of 〈ψ−~k′|ψ

−
~k
〉 = 〈k′|k〉 is identical except

for iǫ→ −iǫ everywhere.
Equation (23.2.20) means that the operators Ω+ and Ω− preserve the norms of states, as

they obey

Ω†+Ω+ = Ω†−Ω− = I. (23.2.27)

It may therefore come as a surprise to learn that these operators are usually not unitary. In a

finite-dimensional space, an operator A that satisfies A†A = I is invertible, with A−1 = A†, and

also satisfies AA† = I, and so is unitary. However, in an infinite-dimensional Hilbert space, one

can have A†A = I even if A is not invertible, in which case AA† 6= I. Such an operator that

is not unitary, but preserves inner products, is called an isometric operator. In our present

situation, the modification by inserting the convergence factors e±ǫt
′/~ causes Ω± to be isometric

but not necessarily unitary, unlike the unitary operators UI(t, t′) for finite times t, t′.

To better understand this, note that applying completeness of the plane wave states |k〉 to
eqs. (23.2.15) and (23.2.16) yields

Ω± =

∫
d3k |ψ±~k 〉 〈k| , Ω†± =

∫
d3k |k〉 〈ψ±~k | . (23.2.28)

Now, as a check of eq. (23.2.27),

Ω†±Ω± =

∫
d3k

∫
d3q |k〉 〈ψ±~k |ψ

±
~q 〉 〈q| =

∫
d3k

∫
d3q δ(3)(k − q) |k〉 〈q|

=

∫
d3k |k〉 〈k| = I (23.2.29)

However, while the scattering states |ψ+
~k
〉 satisfy Dirac orthonormality, they are not necessarily

a complete orthobasis, because we know that they have positive energy, while the potential V

may have bound states |χn〉 with negative energy. Therefore, completeness for them reads
∫
d3k |ψ+

~k
〉 〈ψ+

~k
| +

∑

n

|χn〉 〈χn| = I, (23.2.30)
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and similarly for |ψ−~k 〉. It follows from eqs. (23.2.28) and (23.2.30) that

Ω+Ω
†
+ = Ω−Ω

†
− = I −

∑

n

|χn〉 〈χn| . (23.2.31)

So, the Møller operators are unitary (and invertible) only if the potential V has no bound states.

The S-matrix operator and its adjoint are given by

S = Ω†−Ω+, S† = Ω†+Ω−. (23.2.32)

The unitarity of S defined in this way may not be immediately obvious, but it is true. To prove

it, note first that since the scattering states |ψ±~k 〉 and the bound states |χn〉 are eigenstates of

the same Hermitian operator H with different eigenvalues, Theorem 2.6.4 guarantees us that

they are orthogonal. It follows immediately from eq. (23.2.28) that

Ω†± |χn〉 = 0, 〈χn|Ω± = 0. (23.2.33)

So, we can now compute

S†S = Ω†+Ω−Ω
†
−Ω+ = Ω†+

(
I −

∑

n

|χn〉 〈χn|
)
Ω+ = Ω†+Ω+ = I, (23.2.34)

and similarly

SS† = Ω†−Ω+Ω
†
+Ω− = Ω†−

(
I −

∑

n

|χn〉 〈χn|
)
Ω− = Ω†−Ω− = I. (23.2.35)

Thus the unitarity of the S matrix survives the exponential time damping modification for

infinitesimal ǫ, even though the Møller operators that it is built out of are not unitary.

Let us investigate the S-matrix element between two arbitrary plane-wave states:

〈k|S|k′〉 = 〈ψ−~k |ψ
+
~k′
〉 = 〈ψ+

~k
|ψ+
~k′
〉+

(
〈ψ−~k | − 〈ψ

+
~k
|
)
|ψ+
~k′
〉 (23.2.36)

= δ(3)(k − k′) + 〈k|V
(

1

E −H + iǫ
− 1

E −H − iǫ

)
|ψ+
~k′
〉 , (23.2.37)

where we used eq. (23.2.20) and the adjoint of eq. (23.2.17) to get the last equality. Now, thanks

to eq. (23.2.19), we can replace H by E ′ = ~
2k′2/2m, to get

〈k|S|k′〉 = δ(3)(k − k′)− 2i
ǫ

(E − E ′)2 + ǫ2
〈k|V |ψ+

~k′
〉 . (23.2.38)

It might be tempting to suppose that the last term should vanish in the limit ǫ→ 0, but special

care is needed when E = E ′. Recalling that

lim
ǫ→0

ǫ

x2 + ǫ2
= πδ(x), (23.2.39)
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we actually find

〈k|S|k′〉 = δ(3)(k − k′)− 2πiδ(E −E ′) 〈k|V |ψ+
~k′
〉 . (23.2.40)

Comparing with eq. (23.2.8), we see that the transition operator T must satisfy

T |k〉 = V |ψ+
~k
〉 , (23.2.41)

so that

〈k|S|k′〉 = δ(3)(k − k′)− 2πiδ(E − E ′) 〈k|T |~k′〉 . (23.2.42)

Since the plane-wave kets |k〉 form an orthobasis, by superposition eq. (23.2.41) provides a

complete definition of T acting on any state.

Our next goal is to relate the matrix elements of T to the scattering amplitude fk(θ, φ)

introduced in eqs. (23.1.22)-(23.1.26) of the previous section. To do this, we will work with the

Lippmann–Schwinger equation (23.2.18) in the position representation. From here on, we drop

the subscript k for the scattering state kets and wavefunctions to reduce clutter, so that |ψ±〉
are understood to be the scattering states related to |k〉 by time evolution from t = ∓∞ to

t = 0, with wavefunctions ψ±(r) = 〈r|ψ±〉. The wavefunction form of the Lippmann–Schwinger

equation is then

〈r |ψ±〉 = 〈r |k〉+
∫
d3r ′ 〈r | 1

E −H0 ± iǫ
|r ′〉〈r ′| V |ψ±〉, (23.2.43)

where we have used completeness with respect to position eigenstates |r′〉. The last term in

eq. (23.2.43) involves a matrix element that we write as

〈r | 1

E −H0 ± iǫ
|r ′〉 =

2m

~2
G±(r, r

′), (23.2.44)

which defines G±(r, r
′) as a function independent of the scattering potential V .

To evaluate the function G±(r, r
′), we will now use completeness twice more, this time with

respect to plane-wave states with momenta ~q and ~q′, normalized just as in eq. (23.1.17), so

〈r|q〉 =
1

(2π)3/2
ei~q·~r, (23.2.45)

with orthonormality and completeness relations

〈q′|q〉 = δ(3)(q′ − q),
∫
d3q |q〉〈q| = I. (23.2.46)

Thus eq. (23.2.44) becomes

G±(r, r
′) =

~
2

2m

∫
d3q′

∫
d3q 〈r |q′〉〈q′ | 1

E −H0 ± iǫ
|q〉〈q|r ′〉. (23.2.47)
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The reason for doing this is that now the operator H0 can be evaluated as a number, using

H0|q〉 =
~
2q2

2m
|q〉, (23.2.48)

so that

〈q′| 1

E −H0 ± iǫ
|q〉 = δ(3)(q′ − q) 1

E − ~2q2/2m± iǫ . (23.2.49)

Doing the
∫
d3q′ integration in eq. (23.2.47) using the delta function, and remembering that

E = ~
2k2/2m is the energy of the incident beam particles, we find an integral expression for the

function defined by eq. (23.2.44),

G±(r, r
′) =

∫
d3q

(2π)3
ei~q·(~r−~r

′)

k2 − q2 ± iǫ . (23.2.50)

Before doing this integral, as an aside we observe that G±(r, r
′) could also be defined math-

ematically as the solution to a differential equation. To see this, note that

∇2G±(r, r
′) =

∫
d3q

(2π)3
(−q2) ei~q·(~r−~r ′)

k2 − q2 ± iǫ , (23.2.51)

where the Laplacian was taken with respect to the coordinate r, taking advantage of the simple

exponential dependence. Therefore,

(∇2 + k2)G±(r, r
′) =

∫
d3q

(2π)3
ei~q·(~r−~r

′) = δ(3)(r − r ′), (23.2.52)

which shows that G±(r, r
′) is a Green function (named after mathematician George Green)

for the Helmholtz differential operator ∇2 + k2, with a delta-function source at r′.

To evaluate the Green function, go back to eq. (23.2.50) and put the integral
∫
d3q into

spherical coordinates,

G±(r, r
′) =

1

(2π)3

∫ ∞

0

dq q2
∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

eiq|~r−~r
′| cos θ

k2 − q2 ± iǫ , (23.2.53)

where the angles θ and φ of q are measured from the direction r − r ′. Now do the angular

integrals to get

G±(r, r
′) =

i

4π2|r − r ′ |

∫ ∞

0

dq
q

q2 − k2 ∓ iǫ
(
eiq|~r−~r

′| − e−iq|~r−~r ′|
)
. (23.2.54)

Let x = |r− r ′ |, and call the integral I(x, k). It can be evaluated (using the method of complex

variable contour integration, for example) as I(x, k) = iπe±ikx. Therefore, the Green function is

G±(r, r
′) = − e±ik|~r−~r

′|

4π|r − r ′ | . (23.2.55)
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Plugging this result into the Lippmann–Schwinger equation (23.2.43), using eq. (23.2.44), gives

〈r|ψ±〉 = 〈r|k〉 − 2m

~2

∫
d3r ′

e±ik|~r−~r
′|

4π|r − r ′ | 〈r
′ | V |ψ±〉. (23.2.56)

We now complete the translation into the position representation by noticing that

〈r ′ | V |ψ±〉 =

∫
d3r ′′ 〈r ′ | V |r ′′ 〉〈r ′′ |ψ±〉 = V (r ′ )〈r ′ |ψ±〉, (23.2.57)

where we have used 〈r ′ | V |r ′′ 〉 = δ(3)(r ′−r ′′)V (r′). Therefore, the Lippmann–Schwinger equa-

tion in the position representation is

ψ±(r) =
eikz

(2π)3/2
− 2m

~2

∫
d3~r ′

e±ik|~r−~r
′|

4π|r − r ′ | V (r ′)ψ±(r ′). (23.2.58)

Here, ψ±(r) is the total wavefunction, split into the part describing the incident particle beam,

and the integral coming from the effect of scattering by the potential.

We now specialize to points r that are very far away from the points r ′ in the neighborhood

of the origin where V (r ′) has its support. We do this by expanding for r′ ≪ r, so that

|r − r ′ | =
√
r2 − 2r · r ′ + r′2 = r

√
1− 2r̂ · r ′/r + · · · = r − r̂ · r ′ + · · · . (23.2.59)

Let us define a wavevector k′, with the same magnitude as the incoming wavevector k = kẑ,

but directed away from the scattering region (in the radial direction),

k′ = kr̂. (23.2.60)

Then eq. (23.2.59) implies

e±ik|~r−~r
′| ≈ e±ikre∓i

~k ′·~r ′

. (23.2.61)

and eq. (23.2.58) becomes, for large r,

ψ±(r) =
1

(2π)3/2
eikz − m

2π~2

e±ikr

r

∫
d3r ′ e−i

~k ′·~r ′

V (r ′)ψ±(r ′). (23.2.62)

We now see that the factor e+ikr in ψ+(r) corresponds to a scattered wave moving away from

the target potential. The factor e−ikr in ψ−(r) corresponds to the counterintuitive situation of

an incoming radial wave converging on a target from all directions and cleverly matching itself

onto a plane wave. Therefore we concentrate on

ψ+(r) =
1

(2π)3/2

(
eikz +

eikr

r
fk(θ, φ)

)
, (r →∞), (23.2.63)
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where we have now identified an expression for the scattering amplitude,

fk(θ, φ) = − m

2π~2
(2π)3/2

∫
d3r ′ e−i

~k ′·~r ′

V (r ′)ψ+(r ′), (23.2.64)

with the angles (θ, φ) defined to be the spherical coordinate angles of k′ when the coordinate

system has been chosen so that k = ẑk. Equation (23.2.63) indeed has the form promised in

eq. (23.1.22). However, eqs. (23.2.63) and (23.2.64) do not yet constitute a solution, because

eq. (23.2.63) writes ψ+ in terms of fk(θ, φ), which in turn depends on ψ+. Our remaining task

in this section is to see how to solve these equations for fk(θ, φ) by eliminating ψ+.

Since the ket |k′〉 is the state with position wavefunction ei
~k′·~r/(2π)3/2, an equivalent way of

writing eq. (23.2.64) is

fk(θ, φ) = −4π
2m

~2
〈k′|V |ψ+〉, (23.2.65)

Now, using the definition of the transition operator in eq. (23.2.41), this becomes a matrix

element between completely known (plane-wave) states,

fk(θ, φ) = −4π
2m

~2
〈k′|T |k〉. (23.2.66)

The problem of finding the scattering amplitude has therefore been reduced to solving for the

matrix elements of T .

From the Lippmann–Schwinger equation (23.2.18) with the + sign selected, and again using

the definition of the transition operator in eq. (23.2.41), we find

T |k〉 = V

(
|k〉+ 1

E −H0 + iǫ
V |ψ+〉

)
=

(
V + V

1

E −H0 + iǫ
T

)
|k〉 . (23.2.67)

Since this is true for every plane-wave ket |k〉, we have an operator relation between T , V , H0,

and the incident particle energy E,

T = V + V
1

E −H0 + iǫ
T. (23.2.68)

This can be formally solved for T , with the result

T =

(
I − V 1

E −H0 + iǫ

)−1
V. (23.2.69)

Together with eq. (23.2.66), we can finally say that we have a solution for the scattering am-

plitude. However, practical evaluation of it is still a non-trivial task that typically requires

approximation. Different approximation schemes amount to practical methods for evaluating

the formal inverse operator on the right side of eq. (23.2.69).
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23.3 The Optical Theorem

TheOptical Theorem is an identity relating the total integrated cross-section to the imaginary

part of the forward scattering amplitude fk(θ = 0), as follows:

σ =
4π

k
Im [fk(0)] . (23.3.1)

This is useful for at least two reasons. First, it can provide a check of the consistency of a

calculation. Second, it is sometimes easier to obtain Im[fk(0)] than it is to find the total cross-

section directly. Note that we write fk(0) for θ = 0 even though we are not assuming azimuthal

symmetry, because the coordinate φ is both meaningless and irrelevant when θ = 0.

To prove the Optical Theorem, start with

Im [fk(0)] = −4π
2m

~2
Im
(
〈k |V |ψ+〉

)
, (23.3.2)

which is obtained from eq. (23.2.65) by setting 〈k′| = 〈k| for forward scattering, and then taking

the imaginary part. To evaluate the right side, we can apply the Hermitian adjoint of the

Lippmann–Schwinger equation (23.2.18) with the + sign selected,

〈k| = 〈ψ+| − 〈ψ+|V 1

E −H0 − iǫ
, (23.3.3)

to obtain

Im
(
〈k |V |ψ+〉

)
= Im

(
〈ψ+|V |ψ+〉

)
− Im

(
〈ψ+|V 1

E −H0 − iǫ
V |ψ+〉

)
. (23.3.4)

The first term on the right side is 0, because V is Hermitian, and therefore always has real

expectation values. In contrast, the second term does not vanish, because the operator 1/(E −
H0 − iǫ) is not Hermitian, due to the iǫ. Using the definition of the transition operator in

eq. (23.2.41),

Im
(
〈k |V |ψ+〉

)
= −Im

(
〈k|T † 1

E −H0 − iǫ
T |k〉

)
(23.3.5)

= − 1

2i
〈k|T †

(
1

E −H0 − iǫ
− 1

E −H0 + iǫ

)
T |k〉 (23.3.6)

= −〈k|T † ǫ

(E −H0)2 + ǫ2
T |k〉 . (23.3.7)

Inserting a completeness relation
∫
d3k′ |k′〉 〈k′| = I just before the T operator, this becomes

Im
(
〈k |V |ψ+〉

)
= −

∫
d3k′ |〈k|T |k′〉|2 πδ(E − E ′), (23.3.8)
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where we made use of limǫ→0
ǫ

x2+ǫ2
= πδ(x). Separating the integration over k′ into an angular

and radial part, and using δ(E − E ′) = (mk/~2)δ(k − k′) to do the radial integration over k′,

eq. (23.3.8) turns into

Im
(
〈k |V |ψ+〉

)
= −πmk

~2

∫
dΩ~k′ |〈k|T |k′〉|2. (23.3.9)

Putting this into eq. (23.3.2) gives the imaginary part of the forward scattering amplitude in

terms of the matrix elements of the transition operator,

Im [fk(0)] =
4π3m2k

~4

∫
dΩ~k′ |〈k|T |k′〉|2. (23.3.10)

Since |〈k|T |k′〉|2 depends only on the common magnitude of k and k′ and the angle between

them, we can take it to be a function of k′ with k held fixed, and use eqs. (23.1.26) and (23.2.66)

to write

|〈k|T |k′〉|2 =
~
4

16π4m2
|fk(θ′, φ′)|2 =

~
4

16π4m2

dσ

dΩ′
, (23.3.11)

where the angles (θ′, φ′) of k′ are now measured with respect to the k direction. Inserting this

in eq. (23.3.10) and doing the angular integration gives

Im [fk(0)] =
k

4π
σ, (23.3.12)

which is the Optical Theorem.

23.4 Born approximation

The Born approximation is a type of perturbative expansion applied to scattering problems,

in which the wavefunction within the target region is assumed to be only mildly altered by the

potential. In the first-order (or “leading”) Born approximation, for the purposes of eq. (23.2.64)

we simply take the wavefunction inside the target to be the same as the incident plane wave,

ψ+(r ′) ≈ 1

(2π)3/2
eikz

′

. (23.4.1)

Recall that the wavevectors of the incident and scattered wavefunctions are k = kẑ and k′ = kr̂

respectively, so that kz′ = k · r′. Equation (23.2.64) then reduces to an integral that can be

evaluated for any given potential,

fk(θ, φ) ≈ − m

2π~2

∫
d3r ′ ei(

~k−~k ′)·~r ′

V (r ′). (23.4.2)

Note that in this first-order Born approximation, the sign of the potential does not make any

difference, since it enters linearly in the scattering amplitude, which then gets squared to give
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dσ
dΩ

= |fk(θ, φ)|2. In particular, within the leading Born approximation, an attractive potential

gives the same differential cross-section as a repulsive potential with the same magnitude.

Before proceeding to use it, let us first address the question of the validity of the Born

approximation. Intuitively, this relies on the potential not being too strong. Consider the

wavefunction form of the Lippmann–Schwinger equation valid inside the target region, as it

appeared in eq. (23.2.58) before we took the large r limit. To make a rough estimate, let us

call a the characteristic range of the potential, meaning that V (r) is significant only for r < a.

Then we can require that in the right side of eq. (23.2.58) the correction term is much smaller

in magnitude than the plane wave term,

2m

~2

∣∣∣∣
∫
d3r ′

eik|~r−~r
′|

4π|~r − ~r ′|V (r′) eikz
′

∣∣∣∣ ≪ 1, (23.4.3)

for r < a, where we have presumptively replaced the wavefunction ψ+ by its putative approxi-

mation eq. (23.4.1). To make things easier, we can just consider r close to the origin, where the

correction might be expected to be largest, or at least not much smaller than at other points.

Then a rough condition for validity of the Born approximation is

m

2π~2

∣∣∣∣
∫
d3r ′

1

r′
eik(r

′+z′)V (r′)

∣∣∣∣ ≪ 1. (23.4.4)

Now, we make the further approximation of taking k ≈ 0 and replacing the potential by its

average over r′ < a, a constant factor that we will call V . The rest of the integral is then
∫
d3r ′

1

r′
= 4π

∫ a

0

dr′ r′ = 2πa2. (23.4.5)

Thus our estimate for the validity condition of the Born approximation is

ma2

~2
|V | ≪ 1, (23.4.6)

where a and V are the characteristic range and strength of the potential. This could have been

guessed merely on dimensional grounds, at least in the low-energy limit of small k. However,

this estimate for the range of validity of the Born approximation can often be too conservative,

particularly for larger k, because then the oscillation of the integrand can produce efficient

cancellation in the left side of eq. (23.4.3), not accounted for in our rough estimate. In that

case, dimensional analysis suggests that the weaker condition ma|V |/~2k ≪ 1 could suffice.

It is also an amusing fact that the Optical Theorem completely fails in the leading Born

approximation. This is immediately obvious from the fact that eq. (23.4.2) is real when k′ = k,

so that Im[fk(0)] = 0, but the total cross-section does not vanish. Going beyond the leading

order Born approximation, as we will do before the end of this section, is necessary to restore

the validity of the Optical Theorem.
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k

qk ′

θ/2

Figure 23.4.1: Geometry of vectors involved in elastic scattering
from a potential. The initial and final wavevectors k and k′ have
equal length k. The vector q = k− k′, where ~q is the momentum
transferred from the initial particle to the scattering potential, has
length q = 2k sin(θ/2), where θ is the angle between k and k′.

Let us now consider examples of the leading Born approximation. An important special

case is that of a spherically symmetric potential, so that the scattering amplitude has azimuthal

symmetry (no dependence on φ). Define

q = k − k′, (23.4.7)

so that ~q is the momentum transferred from the initial particle to the scattering potential. (See

Figure 23.4.1.) Then fk(θ) only depends on k and θ through the combination

q = |k − k′ | = 2k sin(θ/2). (23.4.8)

Indeed, eq. (23.4.2) becomes

fk(θ) = − m

2π~2

∫
d3r ′ V (r′) eiqr

′cos θ′ , (23.4.9)

where we have taken advantage of the spherical symmetry to choose our r′ coordinate system

in the integral so that q is in the cos θ′ = 0 direction. It follows that

fk(θ) = − m

2π~2

∫ ∞

0

dr′r′2
∫ 2π

0

dφ′
∫ 1

−1
d(cos θ′) V (r′) eiqr

′ cos θ′ (23.4.10)

=
im

~2q

∫ ∞

0

dr′r′V (r′)
(
eiqr

′ − e−iqr′
)
, (23.4.11)

which we can rewrite, without the distracting primes, as

fk(θ) = −2m

~2q

∫ ∞

0

dr rV (r) sin(qr). (23.4.12)

This is the first-order Born approximation result for the scattering amplitude with an arbitrary

spherically symmetric potential. In this case, fk(θ) is always real. Note that the large distance

contribution to the integral converges if V (r) decreases faster than 1/r for large r.

In the low-energy approximation q → 0, one can use sin(qr) ≈ qr to find that

fk(θ) = −2m
~2

∫ ∞

0

dr r2V (r), (small q limit), (23.4.13)

which is independent of q, and therefore independent of θ. In the opposite limit of very large q,

eq. (23.4.12) gives fk(θ)→ 0 because of the q in the denominator together with the cancellation

due to the very rapid oscillation of sin(qr) in the integrand.
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As an example, consider the Yukawa potential, named after Hideki Yukawa, who used it

in 1935 to model the strong interactions between nucleons due to the exchange of mesons. It is

V (r) = −g
r
e−r/a, (23.4.14)

where g and a are constants with units of [(energy)(length)] and [length], respectively. For

r ≪ a, this has the same form as a Coulomb potential. However, for large r ≫ a, the potential

approaches 0 exponentially faster than the Coulomb potential does. For that reason it is some-

times also known as the screened Coulomb potential, and a can be thought of as the range

of the potential. Applying eq. (23.4.12) gives

fk(θ) =
2mg

~2q

∫ ∞

0

dr e−r/a sin(qr) =
2mg

~2

1

q2 + 1/a2
. (23.4.15)

Now we can use q2 = 4k2 sin2(θ/2) = 2k2(1− cos θ), to find

dσ

dΩ
= |fk(θ)|2 =

(
2mg

~2

)2
1

[2k2(1− cos θ) + 1/a2]2
(23.4.16)

in the Born approximation. If we take the long-range limit a→∞ and let −g = Z1Z2e
2, then

dσ

dΩ
=

Z2
1Z

2
2e

4m2

4~4k4 sin4(θ/2)
=

Z2
1Z

2
2e

4

16E2 sin4(θ/2)
, (23.4.17)

where in the last expression we used E = ~
2k2/2m. This is the same differential scattering cross-

section as we found for the corresponding classical Rutherford scattering problem in section 23.1.

In the limit of low-energy scattering from the Yukawa potential, the rough condition for

validity of the Born approximation is obtained by taking V = g/a in eq. (23.4.6), so

|g| ≪ ~
2/ma. (23.4.18)

This can be compared to the condition necessary for a bound state to exist, which can be shown

(for example, applying the variational method with a carefully chosen trial wavefunction) to be

approximately g > 0.8399~2/ma. The general lesson is that if the potential allows a bound

state, then it is too strong for the Born approximation to be valid for low E. However, it can

be valid for larger E, such that k ≫ 1/a.

Returning to the general scattering problem, let us consider how to extend the Born approx-

imation beyond leading order. We can start with the expression eq. (23.2.69) for the transition

operator, and use the expansion (I −X)−1 = I +X +X2 +X3 + · · · . The result is

T = V + V
1

E −H0 + iǫ
V + V

1

E −H0 + iǫ
V

1

E −H0 + iǫ
V + · · · . (23.4.19)
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The ordering of operators matters, because H0 and V do not commute unless the latter is a

trivial (constant) potential. Recalling, from eq. (23.2.66), that

fk(θ, φ) = −4π
2m

~2
〈k′ |T |k〉, (23.4.20)

we obtain an expansion in powers of the potential,

fk(θ, φ) = f
(1)
k (θ, φ) + f

(2)
k (θ, φ) + f

(3)
k (θ, φ) + · · · , (23.4.21)

where f (N)(θ, φ) has N factors of the potential V . In particular,

f
(1)
k (θ, φ) = −4π

2m

~2
〈k′ |V |k〉 (23.4.22)

is just the leading Born approximation that we have already studied, and the second-order and

third-order contributions in the Born expansion are now seen to be

f
(2)
k (θ, φ) = −4π

2m

~2
〈k′ |V 1

E −H0 + iǫ
V |k〉, (23.4.23)

f
(3)
k (θ, φ) = −4π

2m

~2
〈k′ |V 1

E −H0 + iǫ
V

1

E −H0 + iǫ
V |k〉, (23.4.24)

etc. Note that the leading Born approximation just amounts to setting T = V in eq. (23.4.20).

We can now work out these contributions in the wavefunction representation, in terms of the

Green function, by using completeness with respect to position and eqs. (23.2.45) and (23.2.44)

for the plane wave and Green function. The results are

f
(1)
k (θ, φ) = − 1

4π

(
2m

~2

)∫
d3r1 e

i~k·~r1V (r1)e
−i~k′·~r1, (23.4.25)

f
(2)
k (θ, φ) = − 1

4π

(
2m

~2

)2∫
d3r1

∫
d3r2 e

i~k·~r1V (r1)G+(r1, r2)V (r2)e
−i~k ′·~r2, (23.4.26)

f
(3)
k (θ, φ) = − 1

4π

(
2m

~2

)3∫
d3r1

∫
d3r2

∫
d3r3 e

i~k·~r1V (r1)G+(r1, r2)V (r2)G+(r2, r3)V (r3)e
−i~k ′·~r3 .

(23.4.27)

A diagrammatic version of these contributions is shown in Figure 23.4.2. The formula for

f
(N)
k (θ, φ) contains N vertices where the scattering potential acts. At each scattering vertex,

labeled n = 1, . . . , N , there is an integration

vertex ↔ 2m

~2

∫
d3rn V (rn), (23.4.28)

and we assign factors

internal lines ↔ G+(rn, rn+1) (23.4.29)
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V (r1)ei
~k·~r1

e−i
~k′·~r1

V (r1)

V (r2)

G+(r1, r2)

ei
~k·~r1

e−i
~k′·~r2

V (r1)

V (r2)

V (r3)

G+(r1, r2)

G+(r2, r3)

ei
~k·~r1

e−i
~k′·~r3

Figure 23.4.2: Diagrammatic representation of the first three terms in the Born approxima-
tion expansion for the scattering amplitude, f

(1)
k , f

(2)
k , and f

(3)
k from eqs. (23.4.25)–(23.4.27).

Each of the vertex positions rn is integrated over, with an associated factor of 2m/~2.

to the lines between consecutive vertices rn and rn+1. There are also two factors

external lines ↔ ei
~k·~r1e−i

~k ′·~rN (23.4.30)

associated with the initial and final momenta, and a single factor of −1/4π.
An intuitive interpretation for the Born expansion is that the particle is described by plane

waves except for interactions with the potential. Between potential interactions, it propagates

according to the Green function of the Helmholtz operator, and the initial and final wavefunc-

tions are free plane-waves. All possible numbers of interactions are summed over, and then all

possible interaction positions are integrated over, to give the total scattering amplitude.

23.5 Spherical potential scattering and the partial wave expansion

Consider scattering from a spherically symmetric potential V (r) = V (r). As usual, we take

the initial particle wavenumber to be k = ẑk, so that we have azimuthal symmetry and the

scattering amplitude can only depend on θ, not φ. This implies that we can write a partial

wave expansion in the orbital angular momentum quantum number l,

fk(θ) =

∞∑

l=0

(2l + 1)Pl (cos θ) fl(k). (23.5.1)

The Pl(cos θ) are the Legendre polynomials, and the factor of 2l + 1 is a convention. This

equation defines the quantities fl(k), called partial wave amplitudes, that appear on the

right side. They can equivalently be viewed as functions fl(E) of the energy E = ~
2k2/2m.

To better understand the partial wave expansion, recall the expansion of a plane wave in the

absence of scattering, worked out at the end of section 10.2,

eikz = eikr cos θ =
∞∑

l=0

(2l + 1)Pl(cos θ) i
ljl(kr). (23.5.2)

The jl(kr) are spherical Bessel functions. For large r, we find from eq. (10.2.17) that

iljl(kr) ≈
eikr − e−ikr+iπl

2ikr
, (r ≫ 1/k). (23.5.3)
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Plugging eqs. (23.5.1)-(23.5.3) into eq. (23.2.63)

ψ+(r) =
1

(2π)3/2

[
eikz + fk(θ)

eikr

r

]
(23.5.4)

=
1

(2π)3/2

[
∞∑

l=0

(2l + 1)Pl(cos θ)

(
eikr − e−ikr+iπl

2ikr

)
+

∞∑

l=0

(2l + 1)Pl(cos θ)fl(k)
eikr

r

]
, (23.5.5)

where the large r condition is implicit. Collecting like terms, we find

ψ+(r) =
1

(2π)3/22ik

∞∑

l=0

(2l + 1)Pl(cos θ)

(
Sl
eikr

r
+ (−1)l+1 e

−ikr

r

)
(23.5.6)

for r →∞, where we have defined

Sl = 1 + i2kfl(k). (23.5.7)

The terms proportional to eikr and e−ikr are outgoing and incoming spherical waves, respectively;

compare to the discussion around eqs. (10.2.24)–(10.2.27). They are called the partial waves

of angular momentum l. Note that the outgoing spherical waves depend on the potential V (r)

through the coefficients Sl. In contrast, the incoming spherical waves do not depend on the Sl

and therefore do not depend on V (r); they are just a re-writing of the incoming beam.

The quantities Sl have a simple interpretation: they are the S-matrix elements in an angular

momentum basis. To see this, consider general spherical coordinate angles for the directions of

k and k′, which are Ω~k = (θ~k, φ~k) and Ω~k′ = (θ~k′, φ~k′) respectively. The angle between these

two vectors is the θ appearing in the preceding equations. Therefore, the spherical harmonics

addition formula (8.6.71) allows us to rewrite the scattering amplitude in eq. (23.5.1) as

fk(θ) = 4π

∞∑

l=0

l∑

m=−l
Y m
l (θ~k′, φ~k′)

∗ Y m
l (θ~k, φ~k)

Sl − 1

i2k
. (23.5.8)

So, eq. (23.2.66) tells us that the transition operator matrix elements are

〈k′|T |k〉 = i~2

2πmk

∑

l,m

Y m
l (θ~k′ , φ~k′)

∗ Y m
l (θ~k, φ~k) (Sl − 1), (23.5.9)

and so the S-matrix elements are, from eq. (23.2.42),

〈k′|S|k〉 = δ(3)(k − k′) + ~
2

mk
δ(E −E ′)

∑

l,m

Y m
l (θ~k′ , φ~k′)

∗ Y m
l (θ~k, φ~k) (Sl − 1). (23.5.10)

This can be simplified using δ(E − E ′) = (m/~2k)δ(k − k′), and the definition

δ(3)(k − k′) =
1

k2
δ(k − k′)δ(φ~k − φ~k′)δ(cos θ~k − cos θ~k′), (23.5.11)
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and the spherical harmonic completeness formula (8.6.32), reproduced here for convenience,

δ(φ− φ′)δ(cos θ − cos θ′) =
∑∞

l=0

∑l
m=−l Y

m
l (θ′, φ′)∗ Y m

l (θ, φ), to give

〈k′|S|k〉 = 1

k2
δ(k − k′)

∞∑

l=0

l∑

m=−l
Y m
l (θ~k′, φ~k′)

∗ Y m
l (θ~k, φ~k)Sl. (23.5.12)

Now consider a basis of free-particle angular momentum eigenstates |k, l,m〉, of the type dis-

cussed in section 10.2. These states are related to the plane-wave states by

|k, l,m〉 =

∫
dΩ~k Y

m
l (θ~k, φ~k) |k〉 , (23.5.13)

|k〉 =
∞∑

l=0

l∑

m=−l
Y m
l (θ~k, φ~k) |k, l,m〉 , (23.5.14)

and satisfy orthonormality and completeness relations

〈k′, l′, m′|k, l,m〉 =
1

k2
δ(k − k′) δll′ δmm′ , (23.5.15)

∫ ∞

0

dk k2
∞∑

l=0

l∑

m=−l
|k, l,m〉 〈k, l,m| = I. (23.5.16)

It is a short exercise to show that the content of eq. (23.5.12) can now be expressed as

〈k′, l′, m′|S|k, l,m〉 =
1

k2
δ(k − k′) δll′ δmm′ Sl, (23.5.17)

or, in yet another way, as

S =

∫ ∞

0

dk k2
∞∑

l=0

l∑

m=−l
Sl |k, l,m〉 〈k, l,m| (23.5.18)

The fact that the S-matrix is diagonal in a basis of orbital angular momentum eigenstates is

due to the assumed rotational symmetry invariance of the potential.

The unitarity of the S-matrix now implies

I = S†S =

∫ ∞

0

dk′ k′2
∑

l′,m′

∫ ∞

0

dk k2
∑

l,m

S∗l′Sl |k′, l′, m′〉 〈k′, l′, m′|k, l,m〉 〈k, l,m|

=

∫ ∞

0

dk k2
∑

l,m

|Sl|2 |k, l,m〉 〈k, l,m| (23.5.19)

where the last equality made use of the orthonormality relation (23.5.15) to eliminate the k′

integral and the l′ and m′ sums. Comparison with eq. (23.5.16) establishes that |Sl|2 = 1 for

each l. This crucial fact is called partial wave unitarity, and it is a way of restating the
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assumption that the potential is only scattering the particles, not creating or destroying them.

It means that we can write, for the complex factors Sl in eq. (23.5.6),

Sl = 1 + i2kfl(k) = ei2δl , (23.5.20)

which defines a set of real numbers δl called the phase shifts of the angular momentum l partial

waves. (The factor of 2 in the exponent is a traditional convention.) Equation (23.5.20) exposes

that the effect of the scattering is just to give each outgoing partial wave of orbital angular

momentum l an extra phase factor ei2δl relative to the corresponding incoming partial wave.

The general scattering problem for a spherically symmetric potential thus reduces to finding

the phase shifts δl appearing in the wavefunction for large r obtained by re-writing eq. (23.5.6),

ψ+(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)
[
ei2δleikr − e−i(kr−lπ)

]
/2ikr, (r →∞). (23.5.21)

In the limit that the potential V (r) vanishes, then δl = 0, and more generally the δl parameterize

the effect of V (r) on each l partial wave. We will show before the end of this section that it is

a good approximation to use only the lowest few partial waves l = 0, 1, 2, . . ., except in the case

of very high-energy scattering.

Some useful equivalent ways of writing the relation between the phase shifts and the partial

wave amplitudes fl(k) are, from eq. (23.5.20),

fl(k) =
ei2δl − 1

2ik
=

eiδl sin δl
k

=
1

k(cot δl − i)
. (23.5.22)

Using the next-to-last expression of eq. (23.5.22) in eq. (23.5.1), we have the scattering amplitude

in terms of the phase shifts,

fk(θ) =
1

k

∞∑

l=0

(2l + 1)eiδl sin δl Pl(cos θ). (23.5.23)

This can be used to compute the total cross-section,

σ = 2π

∫ 1

−1
d(cos θ)|fk(θ)|2 (23.5.24)

=
2π

k2

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)ei(δl−δl′) sin(δl) sin(δl′)

∫ 1

−1
d(cos θ)Pl′(cos θ)Pl(cos θ). (23.5.25)

To simplify this, apply the Legendre polynomial orthogonality condition
∫ 1

−1 duPl′(u)Pl(u) =

δll′2/(2l + 1). We arrive at

σ =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl. (23.5.26)
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Note that even though the differential cross-section dσ/dΩ = |fk(θ)|2 certainly has interferences

between partial wave amplitudes with different l, there is no such interference in the total

cross-section. As a check, or an alternative derivation, the Optical Theorem tells us that

σ =
4π

k
Im
[
fk(θ = 0)

]
=

4π

k

(
1

k

∞∑

l=0

(2l + 1)Pl(1) sin(δl)Im[eiδl ]

)
, (23.5.27)

which reproduces eq. (23.5.26) after using Im[eiδl ] = sin δl and the Legendre polynomial normal-

ization condition Pl(1) = 1.

An important consequence of eq. (23.5.22), as encoded in eq. (23.5.26), follows if we write

σ =
∞∑

l=0

σl, (23.5.28)

where σl is the contribution from orbital angular momentum l. Then sin2 δl ≤ 1 implies

σl ≤
4π

k2
(2l + 1). (23.5.29)

This is known as the partial wave unitarity bound. Equality is achieved only if sin2 δl = 1,

which implies δl = (n+ 1/2)π for integer n. In that case, σl is said to saturate the partial wave

unitarity bound. Remarkably, this bound on the contribution σl for each partial wave applies

no matter how big the scattering potential is. It becomes stronger with increasing energy, as it

can be rewritten

σl ≤
2π~2

mE
(2l + 1), (23.5.30)

and it should be viewed as a requirement imposed by the conservation of probability.

Partial wave unitarity also restricts the values that fl(k) can take to a circle of radius 1/2k

in the complex plane, as given by the first equality of eq. (23.5.22) and illustrated in Figure

23.5.1. If δl is small, then fl(k) is also small in magnitude, and is almost purely real. This is

realized in the leading Born approximation limit. In the opposite case that |fl(k)| is maximal,

so that the partial wave unitarity bound eq. (23.5.29) is saturated, then fl(k) is at the top of

the circle and is almost pure imaginary, equal to i/k.

Consider potentials that vanish completely† outside of a finite range, so that V (r) = 0 for

r > R. Then the exact (not just the large r limit) wavefunction for a stationary scattering state

can be written as, taking into account the azimuthal symmetry,

ψ+(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)Fl(r), (23.5.31)

†This is done mostly for convenience; such potentials are not completely realistic. However, the results we are
about to obtain are often a good approximation, provided that the potential V (r) is suitably weak for r > R.
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Im[fl(k)]

Re[fl(k)]

1/k

1/2k−1/2k

2δl

Figure 23.5.1: Partial wave unitarity illustrated:
the possible values of the partial wave amplitude
fl(k) = (ei2δl − 1)/2ik lie on a circle with ra-
dius 1/2k in the upper-half complex plane, and
are related to the phase shift angle δl as shown.
The Born approximation limit is realized near
the bottom of the circle, for small sin δl, which
gives small and nearly real fl(k). The partial
wave unitarity bound eq. (23.5.29) is saturated
for fl(k) ≈ i/k, near the top of the circle, with
sin2 δl = 1, so δl = (n + 1/2)π for integer n.

where the radial wavefunction for the angular momentum l partial wave is

Fl(r) =

{
Al(r) (for r ≤ R),

Bl(r) (for r ≥ R).
(23.5.32)

The exact form of the function Al(r) may be quite difficult to obtain, since it depends on the

scattering potential. However, since we are taking the potential to vanish for r ≥ R, the function

Bl(r) must be a superposition of the free-particle solutions that we found in section 10.2,

Bl(r) = clh
(1)
l (kr) + dlh

(2)
l (kr), (23.5.33)

where cl and dl are constant coefficients, and h
(1)
l and h

(2)
l are the spherical Hankel functions

h
(1)
l (kr) = jl(kr) + inl(kr) ∼

ei(kr−lπ/2)

ikr
, (23.5.34)

h
(2)
l (kr) = jl(kr)− inl(kr) ∼ −

e−i(kr−lπ/2)

ikr
, (23.5.35)

where the large r asymptotic forms are shown. Matching to our scattering wavefunction for

large r, eq. (23.5.21), we can solve for the constants cl and dl in terms of the phase shifts δl.

The result is

Bl(r) =
1

2
eiπl/2

[
ei2δlh

(1)
l (kr) + h

(2)
l (kr)

]
, (23.5.36)

or equivalently,

Bl(r) = eiπl/2eiδl [cos(δl) jl(kr)− sin(δl)nl(kr)] . (23.5.37)

To obtain scattering state solutions, one can now adopt the following strategy. First, the

difficult part: solve the time-independent Schrödinger differential equation for Al(r) in the region

of non-zero potential, r ≤ R. Because this is a second-order differential equation in r, in general
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there will be two linearly independent solutions with arbitrary coefficients. To fix the coefficients,

match these solutions to eq. (23.5.37) at r = R, using continuity of the wavefunction,

Al(R) = Bl(R), (23.5.38)

and, if the potential is finite at r = R, continuity of the derivative

A′l(R) = B′l(R). (23.5.39)

Since the Bl(R) are given in eq. (23.5.37) in terms of known functions, one can solve for the δl.

To write the solution as compactly as possible, it is useful to define the quantities

αl ≡ A′l(R)/Al(R), (23.5.40)

in which the overall normalization cancels. Then, since eqs. (23.5.38) and (23.5.39) imply

αl = B′l(R)/Bl(R), (23.5.41)

we obtain the general solution for the phase shift using eq. (23.5.37),

tan δl =
αljl(kR)− kj′l(kR)
αlnl(kR)− kn′l(kR)

. (23.5.42)

Summarizing: once the αl have been found using eq. (23.5.40), the phase shifts can be calcu-

lated from eq.(23.5.42), and then used in eq. (23.5.23) to obtain fk(θ), which in turn gives the

differential cross-section |fk(θ)|2.
At leading order in an expansion in small kR, eqs. (10.2.14) and (10.2.15) for the spherical

Bessel and Neumann functions can be used to find

tan δl =
(kR)2l+1(l − Rαl)

(2l − 1)!! (2l + 1)!! (l + 1 +Rαl)
. (23.5.43)

For l = 0, 1, 2, 3, and 4, the denominator factor (2l−1)!! (2l+1)!! is respectively 1, 3, 45, 1575, and

99225, so the coefficient of (kR)2l+1 gets smaller rapidly as l increases. For low and intermediate

energies (meaning as long as kR is not very large compared to 1), it is therefore justified to keep

only the first few partial wave contributions, as we had promised to show earlier.

Let us now specialize to the low energy limit, kR≪ 1, where it is justified to neglect all but

the s-wave phase shift δ0 contribution, which behaves like tan δ0 ∝ k and provides an isotropic

differential cross-section. Expanding the l = 0 case of eq. (23.5.42) to the next-to-leading order

in k, the result can be parameterized in the form

k cot δ0 = −1

a
+

1

2
r0k

2 + · · · , (23.5.44)
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which defines length scales a and r0, called the scattering length and the effective range

respectively. In terms of R and α0 = A′0(R)/A0(R), one finds

a =
α0R

2

1 + α0R
(23.5.45)

and the determination of r0 is left to Exercise 23.8. The scattering length a can be either positive

or negative depending on the sign of α0, and can be much larger in magnitude than the length

scale R built into the potential, as we will see. In terms of these parameters, we can evaluate

the low-energy, and therefore s-wave, cross-section from eq. (23.5.26),

σ =
4π

k2
1

1 + cot2 δ0
=

4πa2

1 + (1− r0/a)a2k2
, (23.5.46)

where terms of higher order than k2 have been consistently neglected in the denominator. In

the extreme low-energy approximation, σ has a simple dependence on the scattering length,

σ ≈ 4πa2. (23.5.47)

In principle, a, r0, and higher order contributions to eq. (23.5.44) can be obtained experimentally

from the energy dependence and interference effects in the low-energy limit.

23.6 Bound states, resonances, and poles in scattering amplitudes

The partial wave scattering amplitudes and cross-sections, viewed as functions of the energy E

analytically continued to the complex domain, have an analytic structure that conveys informa-

tion about the potential. As we will explain in this section, a pole (divergence) in the partial

wave scattering amplitude corresponds either to a true bound state, or to a resonance, also

known as a quasi-bound state, of the potential V (r).

First, consider the case that the potential has one or more discrete bound states. We assume

that the constant part of the potential has been fixed so that it vanishes at large distances,

V (∞) = 0, so that the condition for a bound state is an isolated eigenvalue Ebound < 0 for

the time-independent Schrödinger equation. To uncover the connection between such states

and the scattering amplitude, consider the unbound scattering solutions for the wavefunction

ψE(r) with positive E = ~
2k2/2m. Here k is the wavenumber far from the origin as discussed

in section 23.1 and 23.2, with the asymptotic form of the wavefunction for large r as given in

eq. (23.5.21). Suppose we try the trick of making the replacement k → iκ in that wavefunction,

where κ is now taken to be a real number. The solution so obtained, if it exists, will have energy

Ebound = −~2κ2/2m < 0 and therefore will be a bound state.

The only obstacle to constructing bound state wavefunction solutions in this way is that

they will almost always be hopelessly non-normalizable, and therefore unphysical. To see this,
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note that the asymptotic form for large r given in eq. (23.5.21) will be, after k → iκ,

ψ(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)
[
−Sle−κr + (−1)leκr

]
/2κr, (r →∞). (23.6.1)

The term proportional to e−κr is sensible, but the term eκr evidently gives a probability density

that diverges exponentially for large r. It appears that this wavefunction would describe a

physically absurd state in which the probability to find the particle in any finite region is

vanishingly small compared to the probability to find it farther away from the origin.

However, this solution can be salvaged for special, isolated values of the energy. Since we are

considering a spherically symmetric potential, we can look for eigenstates of the total orbital

angular momentum. Taking a term of fixed l in eq. (23.6.1), and re-normalizing the wavefunction

by multiplying by a constant factor −2(2π)3/2/(2l + 1)Sl, we have

ψl(r) = Pl(cos θ)

(
e−κr + (−1)l+1 e

κr

Sl

)
/κr, (r →∞). (23.6.2)

In order to re-interpret this wavefunction as a sensible (normalizable) energy and angular mo-

mentum eigenstate wavefunction at large r, it is necessary to eliminate the offending second

term by requiring

Sl →∞. (23.6.3)

We conclude that a true bound state for the potential V (r) with negative energy Ebound must

correspond to a pole in the S-matrix element Sl = ei2δl , and thus in the scattering amplitude

fl(k) = (ei2δl − 1)/(2ik), when viewed as a function of energy analytically continued to E =

Ebound < 0. Due to the factor Pl(cos θ), the orbital angular momentum quantum number of the

bound state is l. So, one can relate the bound state energies, and even their angular momenta,

to the poles in the partial-wave scattering amplitudes.

Since scattering solutions always have positive energy, and the bound states always have

negative energy, one never actually hits the bound state pole directly in scattering experiments.

Indeed, this is clear from the fact that for positive E, partial wave unitarity tells us that ei2δl has

magnitude 1. Nevertheless, the presence of the bound states can be inferred from the functional

dependence of ei2δl (and thus the cross-section) on E, particularly if −Ebound is small.

As an example, consider low-energy (small k) scattering as discussed in equations (23.5.44)–

(23.5.47) of the previous section. Taking k → iκ in eq. (23.5.44), we see from eq. (23.5.22) that

the s-wave scattering amplitude can have a pole at the solution to

κ =
1

a
+

1

2
r0κ

2, (23.6.4)
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with κ positive to ensure that the bound-state wavefunction is well-behaved at r → ∞. Thus,

if the scattering length a is found to be positive and not too small, one can predict a weakly

bound state with κ ≈ 1/a and energy close to

Ebound ≈ − ~
2

2ma2
. (23.6.5)

Including the effect of r0, this is more precisely

Ebound ≈ −~
2κ2

2m
, (23.6.6)

where κ is the smaller solution to the quadratic equation (23.6.4), approximately

κ ≈ 1

a
+

r0
2a2

. (23.6.7)

The low-energy s-wave cross-section eq. (23.5.46) in the presence of a weakly bound state with

energy Ebound < 0 can now be written in the convenient form

σ0 ≈
4πa2

1−E/Ebound
, (23.6.8)

as dictated by the E = 0 limit found in eq. (23.5.47), together with the requirement of a pole

at E = Ebound.

Returning to the case of general (not necessarily small) k, the bound-state energies are not

the only possible poles in the partial wave amplitude. To see this, let us look for peaks in the

cross-section. The partial wave cross-section from eq. (23.5.26) can be rewritten as

σl =
4π

k2
2l + 1

1 + cot2 δl
, (23.6.9)

where cot2 δl is often quite large, as for example in the Born approximation limit. However, if

it happens for some E that cot δl ≈ 0, then σl will peak at that energy, saturating the partial

wave unitarity bound. Suppose that E = Eres is a resonant energy that makes cot δl = 0. For

energies that are close to this, we can expand cot δl in E −Eres, so that

cot(δl) = cot(δl)
∣∣∣
E=Eres

+(E − Eres)
d

dE
cot(δl)

∣∣∣
E=Eres

+O(E − Eres)
2. (23.6.10)

The first term on the right vanishes by assumption, and we define the quantity Γ, with units of

energy, according to

2

Γ
= − d

dE
cot(δl)

∣∣∣
E=Eres

, (23.6.11)

so that, near the resonant energy,

cot(δl) ≈ −2(E −Eres)/Γ. (23.6.12)
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σl
2πh̄2(2l+1)
mEres

0
EEres

Γ

δl

(n+ 1)π

(n+ 1
2 )π

nπ

EEres

slope = 2/Γ

Figure 23.6.1: Behavior of the partial-wave cross-section σl and the phase shift δl as a
function of the scattering energy E near a resonance pole Eres − iΓ/2. In the left figure,
the partial-wave cross-section is given by the Breit–Wigner lineshape. The phase shift δl
increases by π near each resonance, and for the lowest such resonance n in the right figure
can be taken to be 0.

Using this in eq. (23.6.9) gives, for E close to Eres,

σl ≈
4π(2l + 1)

k2
Γ2/4

(E − Eres)2 + Γ2/4
. (23.6.13)

Excluding the energy dependence of the 1/k2 = ~
2/2mE factor, this is the Breit–Wigner, or

Lorentzian, lineshape with full width at half maximum (FWHM) Γ for the quasi-bound state

resonance with angular momentum l and energy Eres. It is depicted in Figure 23.6.1.

Near E = Eres, eq. (23.6.12) tells us that the phase shift behaves like

δl ≈ π (n + 1/2) + arctan

(
E − Eres

Γ/2

)
, (23.6.14)

for some integer n. This behavior is also sketched in Figure 23.6.1, showing that the phase shift

rises through π(n + 1/2) near a resonant energy. These resonances correspond to poles in the

partial wave scattering amplitude as a function of complex energy, at E = Eres − iΓ/2, because

fl(k) =
1

k (cot δl − i)
≈ − Γ/2k

E − Eres + iΓ/2
, (23.6.15)

which follows from eq. (23.5.22). The assignment of complex energy Eres − iΓ/2 is the tell-tale

signature of an unstable state, as discussed at the end of section 5.6.

Figure 23.6.2 shows plausible potential shapes that could give rise to true bound state (left

panel) and resonant quasi-bound state (right panel) poles in the scattering amplitude. Recall

from our discussion at the end of section 10.4 that in three dimensions, the existence of a true

bound state with energy Ebound < 0 is not guaranteed unless the potential well is sufficiently

517



Veff(r)

0
r

Ebound < 0

Veff(r)

0 r

Eres > 0

Figure 23.6.2: Sketches of example effective potentials Veff(r) and energies for a true bound
state with l = 0 (left) and a quasi-bound state resonance (right), which will cause the
scattering amplitude and the cross-section to have poles at E = Ebound < 0 or at E =
Eres − iΓ/2, respectively. In the latter case, the local minimum of the effective potential
could be either negative (as shown) or positive, and could arise from the combination of an
attractive potential V (r) < 0 and the repulsive centrifugal core ~

2l(l + 1)/2mr2.

deep. Unlike a true bound state, a quasi-bound state resonant energy Eres is positive. One

way that such a quasi-bound state can arise is from the interplay between an attractive central

potential V (r) and the orbital angular momentum contribution to the effective potential for the

radial wavefunction in the Schrödinger equation (recall the discussion in section 10.1),

Veff(r) = V (r) +
~
2l(l + 1)

2mr2
. (23.6.16)

For l 6= 0, the centrifugal term is repulsive and grows stronger at small r. The potential shown

in the right panel of Figure 23.6.2 has a finite barrier height between its minimum well and the

asymptotic region at very large distances where it vanishes. Any corresponding state peaked

inside the effective well with positive energy is not a true bound state; the wavefunction will

always leak outside by tunneling. This is the reason for the terminology “quasi-bound state”.

Since a quasi-bound state resonant pole occurs only for complex E, it again can never be hit

directly in scattering experiments, but can be inferred from the complex analytic singularity

structure of the scattering amplitudes. The smaller Γ is, the closer one can approach the

resonance pole. However, ei2δl always has unit magnitude for physical (real positive) values of

the scattering energy E.

A schematic map of the two kinds of poles in the complex E plane for ei2δl , and therefore

for fl(k), are shown in Figure 23.6.3. They consist of true bound states on the negative real E

axis and quasi-bound states below the positive real E axis.
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Re[E]

Im[E]

resonances
(quasi-bound states)

true bound states

Figure 23.6.3: Positions of poles of the partial wave
amplitudes and S-matrix elements ei2δl , in the complex
energy plane. Quasi-bound state resonances have poles
in the analytic continuation to complex E below the
real E axis, at E = Eres−iΓ/2. True bound states have
poles on the negative real E axis, at E = Ebound < 0.
Physical scattering energies are only on the positive
real E axis. Therefore, these poles are never directly
accessed in scattering, where ei2δl is always finite with
unit magnitude, but their influence can be seen in the
dependence of the cross-section on energy.

23.7 Examples of scattering from spherical potentials

Consider the scattering of a particle from a hard (impenetrable) sphere, so that the potential is

V (r) =

{ ∞ (for r ≤ R),

0 (for r ≥ R).
(23.7.1)

This is the quantum mechanical version of the classical scattering of a particle from a hard

sphere, discussed in section 23.1. In this particular case, it is not necessary to use eqs. (23.5.39)–

(23.5.42), because the solution for r ≤ R is trivial,

ψ+(r) = 0 (r ≤ R), (23.7.2)

corresponding to Al(r) = 0. Meanwhile, for r ≥ R, we write

ψ+(r) =
1

(2π)3/2

∞∑

l=0

(2l + 1)Pl(cos θ)Bl(r), (23.7.3)

with Bl(r) given by eq. (23.5.37). To match to the vanishing solution at r = R, we need

Bl(R) = 0, so

tan δl = jl(kR)/nl(kR), (l = 0, 1, 2, . . .) (23.7.4)

for each of the s-wave, p-wave, d-wave, . . . partial shifts. This is especially simple for the s-wave,

tan δ0 = [sin(kR)/kR] / [− cos(kR)/kR] = − tan(kR), (23.7.5)

with the solution

δ0 = −kR. (23.7.6)

Therefore, for l = 0,

B0(r) ∝ cos δ0
sin(kr)

kr
+ sin δ0

cos(kr)

kr
=

1

kr
sin(kr + δ0) =

1

kr
sin(k(r − R)). (23.7.7)
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rF0(r)

R r

Figure 23.7.1: The solid line shows the s-wave radial wavefunction rF0(r) as a function of
r, for scattering from a hard sphere with V = ∞ in the shaded region r < R. The dashed
line shows what rF0(r) would be if the potential were absent, corresponding to free particle
propagation. The potential pushes out the wavefunction by a distance R, giving a phase
shift δ0 = −kR.

As illustrated in Figure 23.7.1, the outgoing s-wave is just shifted out by a distance R, compared

to the free-particle solution.

More generally, consider all δl in the low-energy limit kR ≪ 1 in which the wavenumber is

much smaller than the inverse size of the hard sphere. In that case,

jl(kR) ≈
(kR)l

(2l + 1)!!
, nl(kR) ≈ −

(2l − 1)!!

(kR)l+1
, (23.7.8)

so, from eq. (23.7.4),

tan δl = − (kR)2l+1

(2l − 1)!! (2l + 1)!!
, (23.7.9)

which quickly becomes very small as l is increased. [Note that this result for tan δl could also

be obtained simply as the αl →∞ limit of eq. (23.5.43).]

In the extreme low energy limit kR≪ 1, only the s-wave contributes, resulting in

dσ

dΩ
≈ |f0(k)|2 =

sin2 δ0
k2

=
sin2(kR)

k2
≈ R2, (kR≪ 1). (23.7.10)

Since this is isotropic (constant in both φ and cos θ), the total cross-section is

σ =

∫
dΩ

dσ

dΩ
= 4πR2, (kR≪ 1), (23.7.11)

which is 4 times the classical result σclassical = πR2 that we found in section eq (23.1.13).

In the opposite limit of very high scattering energy, many δl can contribute. For kR≫ 1, one

can show that σ ≈ 2πR2, which is still twice the classical result. This can be understood from

the fact that since V (r) is discontinuous at r = R, no matter how big E is, the wavefunction

varies sharply on length scales ≪ 1/k. To get σ = πR2 = σclassical, it is necessary to take a
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smoothed potential (a “softened hard sphere”), in which the the potential decreases to V = 0

over a distance scale much smaller than R but much larger than 1/k.

As another example, consider a finite well or barrier, with potential

V (r) =

{
V0 (for r ≤ R),

0 (for r ≥ R),
(23.7.12)

where the constant V0 can be either negative (an attractive well) or positive (a repulsive core

potential). Let us only consider s-wave scattering, valid at low energy. Outside the potential’s

range, the radial wavefunction is proportional to

F0(r) = eiδ0 [cos δ0j0(kr)− sin δ0n0(kr)] = eiδ0
sin(kr + δ0)

kr
, (r ≥ R), (23.7.13)

with the normalization chosen arbitrarily, and

~
2k2

2m
= E. (23.7.14)

Inside the potential’s range, assuming E > V0, the radial wavefunction is

F0(r) = Cj0(k
′r) = C sin(k′r)/k′r, (r ≤ R), (23.7.15)

with a relative normalization constant C, and

~
2k′2

2m
= E − V0. (23.7.16)

The solution n0(k
′r) is rejected here, because it is not normalizable at r = 0, as discussed in

section 10.2. Now we match the solutions at r = R, to obtain an equation that determines C,

C sin(k′R)/k′R = eiδ0 sin(kR + δ0)/kR. (23.7.17)

We also match dψ+/dr at r = R, by specializing the convenient general results of eqs. (23.5.40)

and (23.5.42),

tan δ0 =
(k/k′) sin(k′R) cos(kR)− cos(k′R) sin(kR)

(k/k′) sin(k′R) sin(kR) + cos(k′R) cos(kR)
. (23.7.18)

The preceding assumed E > V0. If instead E < V0, then k
′ will be imaginary, but eqs. (23.7.17)

and (23.7.18) are valid after making the replacements sin(k′R)/k′ → sinh(κR)/κ and cos(k′R)→
cosh(κR), where ~

2κ2/2m = V0 −E.
Graphs of the l = 0 wavefunction normalized by a factor of the radial coordinate are shown

in Figure 23.7.2 for the attractive case V0 < 0 so that k′ > k, and the repulsive case V0 > 0 so

that k′ < k, respectively. In the attractive case, δ0 is positive, and the potential “pulls in” the
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rF0(r)

r

δ0/k

rF0(r)

r

|δ0|/k

Figure 23.7.2: The solid lines show examples of the s-wave radial wavefunction rF0(r) as
a function of r, for scattering from a spherical-well potential in the shaded region, if the
potential is attractive (top) or repulsive (bottom). The dashed line shows the corresponding
result if the potential is absent. The potential pulls in (for the attractive case, δ0 > 0) or
pushes out (for the repulsive case, δ0 < 0) the wavefunction by a distance |δ0|/k.

l = 0 wave by a shift δ0/k in the position of the nodes. In contrast, for the repulsive case, δ0 is

negative, and the potential can be thought of as “pushing out” the l = 0 wave by an amount

|δ0|/k. Things are a little more complicated for the partial waves with l > 0, and for potentials

that are not piecewise constant. However, the essential qualitative feature remains that outgoing

partial waves are pulled in by attractive potentials (because the Schrödinger equation dictates

that the wavefunction oscillates faster in the region where the potential energy is smaller) and

pushed out by repulsive potentials (because the wavefunction oscillates more slowly, or not at

all, in regions with larger potential energy).

The phase shift δ0 is small in magnitude for E ≫ |V0|. In the case of an attractive potential

(V0 < 0), the phase shift increases as E decreases until it reaches δ0 = π/2, where the s-wave

cross-section is as large as it can possibly be, for a given energy,

σl=0

∣∣∣
max

=
4π

k2
sin2(π/2) =

2π~2

mE
. (23.7.19)

In this case, the scattering has saturated the partial wave unitarity bound. Decreasing E even

more, eventually one may reach δ0 = π, for which

σl=0

∣∣∣
min

=
4π

k2
sin2(π) = 0. (23.7.20)

This is the Ramsauer–Townsend effect; there is no scattering even though V (r) is non-negligible

and attractive, because the de Broglie wavelength happens to match the characteristic length

522



scale of the potential. We have seen this type of behavior already in a one-dimensional scattering

example, at the end of section 6.6, and in the real world it was first observed as suppressions in

the cross-sections for electron scattering from inert gas atoms Ar, Kr, and Xe.

In the low-energy limit, one can find the scattering length and effective range defined in

eq. (23.5.44), by expanding eq. (23.7.18) for small k. The results are

a = R− tan(k0R)/k0, (23.7.21)

r0 = R− R3

3a2
− 1

ak20
, (23.7.22)

where we have defined

k0 =
√
−2mV0/~. (23.7.23)

If k0R happens to be slightly larger than π/2, then the scattering length can be large, a ≫ R.

This corresponds to the existence of an s-wave bound state with small binding energy Ebound ≈
−~2/2ma2, and then σ ≈ 4πa2/(1−E/Ebound) as discussed in the previous section.

23.8 Neutron-proton scattering and the deuteron

The low-energy scattering of neutrons and protons provides a practical illustration of some of

the ideas discussed in sections 23.5–23.7. The masses of the proton and neutron are respectively

mp = 938.272 MeV/c2 andmn = 939.565 MeV/c2, with a reduced mass in the two-body problem

(see section 4.2),

µ =
mnmp

mn +mp

≈ 469.459 MeV/c2. (23.8.1)

The potential between nucleons arises from the rather complicated strong nuclear force, but the

spectrum of bound states for two nucleons is very simple. There are no pp or nn bound states,

and there is only one bound state for the neutron and the proton. This is the deuteron (d), a

state with spin 1 and binding energy

−Ed
bound = 2.2246 MeV, (23.8.2)

which is determined by measuring the energy of the photon (γ) emitted when a proton captures

a neutron, n+p→ d+γ. The binding energy 2.2246 MeV is rather small in comparison to other

nuclear binding energies per nucleon pair. Since the deuteron is weakly bound, there should be

a pole in the neutron-proton scattering cross-section when extrapolated to negative energy.

Let us now understand the angular momentum and parity quantum numbers of the deuteron,

as a prerequisite to figuring out its role in neutron-proton scattering. Since the full Hamiltonian
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must be invariant under rotations, the energy eigenstates are also eigenstates of the square

of the total angular momentum operator J , obtained by combining the spins of both of the

constituents Sp and Sn and their total orbital angular momentum L in the center-of-mass frame.

The statement that the deuteron has spin 1 means that the operator J2 has eigenvalue ~2J(J+1),

where J = 1. The neutron and proton each have spin 1/2, so the possible total constituent spin

combinations for the deuteron are S = 0 and S = 1. The J = 1 spin of the deuteron is then

obtained by combining this with the total orbital angular momentum quantum number L in

the center-of-mass frame, which can therefore only be L = 0, 1, or 2. Now, the magnetic dipole

moment of the deuteron is known experimentally to be µd = 0.85744µN , which is very close to

the sum of the dipole moments of the neutron and proton, µp+µn = 2.79285µN − 1.91304µN =

0.87981µN . This indicates that the deuteron magnetic moment is very nearly realized when

the spins are aligned in the S = 1 state, without much contribution from the orbital motion

of the charged proton. Therefore, the deuteron must have predominantly L = 0. However,

there are also two clear experimental indications that it cannot be a pure L = 0 eigenstate.

First, there is the small but significant discrepancy in the magnetic moment sum noted above.

Second, the deuteron is found experimentally to have a non-zero electric quadrupole moment,

which would be inconsistent with the perfect spherical symmetry of a pure L = 0 eigenstate.

The strong interaction Hamiltonian responsible for binding the deuteron is known (from its

more fundamental formulation, quantum chromodynamics, or QCD) to commute with parity.

Therefore, eq. (8.7.8) applies, and it must be possible to assign the deuteron a definite parity

eigenvalue ηd = (−1)Lηpηn. Here, ηp and ηn are the intrinsic parities of the proton and neutron,

which are conventionally taken to be ηp = ηn = 1. To have a definite parity eigenvalue ηd = ±1,
the deuteron must be a superposition of states with either all L even, or all L odd. Since we

already know that the state is mostly L = 0, this implies ηd = +1 and rules out the possibility

of any L = 1 component. Therefore, the deuteron must be a linear combination of L = 0 and

L = 2. In order to give J = 1, it follows that the combination of constituent spins can only be

pure S = 1. In spectroscopic notation, the deuteron state is predominantly 2S+1LJ = 3S1, but

with a few percent 3D1 component.

For our present purposes, the most important feature of the previous paragraph is that the

deuteron is a pure S = 1 combination. The absence of a bound state in the S = 0 combination

shows that the strong nuclear force is spin-dependent, which means that we should also keep

track of the S = 0 and S = 1 combinations separately in scattering. The data for low-energy

scattering of neutrons and protons in the S = 0 and S = 1 combinations yield scattering lengths
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and effective ranges, as defined in eq. (23.5.44), of

aS=1 = 5.42 fm, rS=1
0 = 1.75 fm, (23.8.3)

aS=0 = −23.7 fm, rS=0
0 = 2.7 fm, (23.8.4)

in units of 1 fm = 10−15 meters. The positive scattering length in the S = 1 channel supports

the hypothesis of a bound state. Solving eq. (23.6.4) gives a prediction for the bound state of

κ = 0.231 fm−1, (23.8.5)

which then yields the estimate

Ebound = −~
2κ2

2µ
= −2.22 MeV, (23.8.6)

in good agreement† with the experimental deuteron binding energy quoted in eq. (23.8.2). Now,

using the facts that the E = 0 cross-section for s-wave scattering is 4πa2, and that it must have

a pole at E = Ed
bound, we have as in eq. (23.6.8),

σS=1 =
4π
(
aS=1

)2

1−E/Ed
bound

≈ 3.69 b

1 + E/2.2246 MeV
, (23.8.7)

where we have used the traditional nuclear physics unit of cross-section

1 b = 100 fm2 = 10−28 meters2, (23.8.8)

called‡ a barn.

In the S = 0 channel for neutron-proton scattering, the fact that the scattering length aS=0

is negative confirms that there is no bound state. Still, we can write the cross-section in a form

similar to eq. (23.8.7), by using eq. (23.5.46),

σS=0 =
4π
(
aS=0

)2

1 + (kaS=0)2(1− rS=0
0 /aS=0)

≈ 70.6 b

1 + E/(0.066 MeV)
. (23.8.9)

However, it should be emphasized that there really is no neutron-proton bound state with

energy near −0.066 MeV. Such a pole in the scattering cross-section at negative real E, but

with a negative scattering length a and therefore not associated with an actual bound state, is

†Neglecting rS=1
0 here would give much worse agreement. However, it must be admitted that the excellence of

the agreement as presented here is partly accidental. Since eq. (23.5.44) was truncated beyond order k2, rather
than solving the quadratic equation (23.6.4) for κ, one could just as consistently approximate it by eq. (23.6.7),
which would have given instead κ = 0.214 fm−1 and thus Ebound = −1.91 MeV.

‡The origin of the unit name refers to the fact that, by nuclear physics standards, this is not a small area,
jokingly considered as easy to hit as “the broad side of a barn” in idiomatic North American English. Collider
experiments at the present high-energy frontier often discuss cross-sections in units of picobarns or femtobarns.
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sometimes called a virtual bound state. It can be interpreted as an indication that if the

S = 0 neutron-proton potential were just slightly more attractive, then the scattering length

would be positive and a bound state would exist. Such virtual bound state poles should not be

confused with the quasi-bound state resonances with positive energy discussed in section 23.6.

The initial neutron and proton spins are often random and unmeasured, so that the four

spin states (1 for S = 0 and 3 for S = 1) are equally likely. Averaging over them, the prediction

for the total neutron-proton cross-section in the E → 0 limit is

σ =
1

4
σS=0 +

3

4
σS=1 = 20.4 b, (23.8.10)

in good agreement with experimental observation.

The data eqs. (23.8.3) and (23.8.4) can also be used to make a crude model for the neutron-

proton potential in the form of a spherical well as in (23.7.12), by solving eqs. (23.7.21)–(23.7.23)

numerically for R and k0 =
√−2µV0/~. The results are

RS=1 = 2.07 fm, kS=1
0 = 0.91 fm−1, V S=1

0 = −34 MeV, (23.8.11)

RS=0 = 2.59 fm, kS=0
0 = 0.58 fm−1, V S=0

0 = −14 MeV. (23.8.12)

From the analysis of section 10.4, the condition for such a spherical-well potential to have n

bound states with l = 0 can be written as [see eq. (10.4.12), and recall that V0 and a there are

−V0 and R here]

k0R/π > n− 1/2. (23.8.13)

Putting in the numbers, the S = 1 potential model predicts exactly one bound state, and the

S = 0 potential model barely misses having a bound state, in accord with the observed facts.

The deuteron is surprisingly weakly bound, in the sense that the binding energy (2.2246 MeV)

is more than an order of magnitude smaller than the depth of the potential (34 MeV).

23.9 Scattering of identical particles

So far, we have neglected the possibility that the scattering particles might be identical. To

remedy this, first consider the scattering of two identical bosons with no spin (for example, α

particles, also known as 4He nuclei). The total wavefunction will then be of the form

Ψ(r1, r2) = ei~p·(~r1+~r2)/2~ψ(r), (23.9.1)

where, following eqs. (4.2.4) and (4.2.5), p is the total momentum of the two particles, (r1+r2)/2

is the center-of-mass position, and

r = r1 − r2 (23.9.2)
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is the relative position vector. By choosing the center-of-mass reference frame, we can take

p = 0. Because the particles are spinless bosons, this wavefunction must be symmetric under

r1 ↔ r2, so the relative-position wavefunction must obey

ψ(r) = ψ(−r), (23.9.3)

in other words, it must have even parity. Therefore, instead of a scattering wavefunction pro-

portional to eikz + fk(θ)
eikr

r
, we must have (dropping the overall normalization in this section)

ψ(r) = eikz + e−ikz + [fk(θ) + fk(π − θ)]
eikr

r
(23.9.4)

for the scattering wavefunction in the center-of-momentum frame. In this way, both incoming

particles, and both outgoing particles, are described on an equal footing. The differential cross-

section is therefore of the form

dσ

dΩ
= |fk(θ) + fk(π − θ)|2 = |fk(θ)|2 + |fk(π − θ)|2 + 2Re [f ∗k (θ)fk(π − θ)] . (23.9.5)

This incorporates the fact that if one outgoing particle is detected at angle θ, then by momentum

conservation the other must be found at angle π−θ. It is a necessary feature that the differential

cross-section should be equal at those two angles, due to the intrinsic indistinguishability of the

particles.

As a consequence, there must be constructive interference in the amplitudes for identical

spinless bosons for right-angle scattering,

dσ

dΩ

∣∣∣
θ=π/2

= 4|fk(π/2)|2. (23.9.6)

Also, only even-l partial waves can contribute in the identical boson scattering case, because

fk(θ) + fk(π − θ) =
∞∑

l=0

(2l + 1) [Pl(cos θ) + Pl(cos(π − θ))] fl(k) (23.9.7)

= 2
∑

even l

(2l + 1)Pl(cos θ)fl(k), (23.9.8)

where the terms with odd l have canceled because Pl(cos(π − θ)) = (−1)lPl(cos θ).
Now consider the case of scattering of electrons, or other identical spin-1/2 fermions. This

can be divided into two cases, depending on the total spin quantum number S.

First, suppose that S = 0. Since that is an antisymmetric spin state, the spatial wavefunction

must be symmetric under exchange of the labels 1, 2, so ψ(r) = ψ(−r), and

dσ

dΩ

S=0

= |fk(θ) + fk(π − θ)|2 , (23.9.9)
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and so all of the remarks just made for scattering of identical bosons go through as before.

If instead the total spin state is the symmetric S = 1 combination, then the spatial wave-

function must be antisymmetric under exchange of the labels 1, 2, so ψ(r) = −ψ(−r) with odd

parity. Therefore, the scattering wavefunction must be proportional to

ψ(r) = eikz − e−ikz + [fk(θ)− fk(π − θ)]
eikr

r
, (23.9.10)

which implies

dσ

dΩ

S=1

= |fk(θ)|2 + |fk(π − θ)|2 − 2Re [f ∗k (θ)fk(π − θ)] . (23.9.11)

It follows that there is perfect destructive interference for right-angle scattering,

dσ

dΩ

S=1∣∣∣
θ=π/2

= 0 (23.9.12)

for identical fermions in the symmetric spin state. Furthermore, only partial waves with odd l

contribute.

In many cases, the fermion spins are random and unmeasured. If so, then four spin states

(1 for S = 0 and 3 for S = 1) are equally likely, so the observed unpolarized cross-section for

identical fermions is the weighted average:

dσ

dΩ

∣∣∣
unpolarized

=
1

4

dσ

dΩ

S=0

+
3

4

dσ

dΩ

S=1

(23.9.13)

= |fk(θ)|2 + |fk(π − θ)|2 − Re [f ∗k (θ)fk(π − θ)] , (23.9.14)

where the absence of a factor of 2 in front of the interference term is not a typographical error.

For right angle scattering, the result is partial destructive interference.

In all of the cases of scattering of identical particles, it is important to note that when

integrating the differential cross-section to get the total cross-section, one must include a factor

of 1/2 to avoid double counting. This is because a state with one particle at (θ, φ) also has an

identical particle at (π − θ, φ + π). Therefore, the state specified by the presence of a particle

at (θ, φ) and the state specified by (π− θ, φ+ π) are actually the same state, and should not be

counted twice. So, one has

σ =
1

2

∫
dΩ

dσ

dΩ
(identical particles) (23.9.15)

for both the identical boson and identical fermion case. Note that this factor of 1/2 for identical

particles comes in at the level of the total cross-section, not the differential cross-section.
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23.10 Exercises

Exercise 23.1. Particles of mass m and incident momentum p = ~kẑ scatter from a potential

V (r) =

{
V0 (for r < a)
0 (for r > a),

(23.10.1)

where V0 and a are constants. Apply the first-order Born approximation to:

(a) Find the differential scattering cross-section for small |V0|. Write your answer in terms of

q = 2k sin(θ/2). Check that your answer has units of area.

(b) Show that in the limit of small ka, the differential cross-section found in part (a) is constant

with respect to the scattering angle, and show that the total cross-section is σ = nV 2
0 a

6 where

n is a quantity that you will find. (Check the units.)

(c) Working now to the next-to-leading order in an expansion in small ka, show that the dif-

ferential cross-section has the form dσ/dΩ = b+ c cos(θ), and determine the quantities b and c.

Exercise 23.2. Particles of mass m and momentum p = ~kẑ scatter from a potential V =

V0e
−r/a. Use the leading Born approximation to find the differential cross-section dσ/dΩ, and

integrate it to find the total cross-section.

Exercise 23.3. Consider the scattering of a spinless point particle with mass m, momentum

p = ~kẑ, and charge −e, due to a point charge Ze fixed at the origin, which is screened at large

distances by a uniform thin spherical shell of opposite charge at r = R, so that

V (r) =

{
−Ze2/r (for r < R),
0 (for r > R).

(23.10.2)

Use the first-order Born approximation for scattering to:

(a) Find the differential cross section.

(b) Find the lowest energy E for which dσ/d(cos θ) vanishes for backward scattering (θ = π).

(c) Find the differential cross section and the total cross section in the low energy limit, keeping

the leading and next-to-leading non-zero contributions.

Exercise 23.4. Suppose that the differential cross-section for particles of momentum ~k to

scatter from a potential V0(r) centered at the origin is known to be dσ0/dΩ in the leading Born

approximation. Now consider scattering from N such potentials centered at positions an, so that

the total potential is V (r) =
∑N

n=1 V0(r − an). Show that in the leading Born approximation

the differential cross-section is

dσ

dΩ
=

∣∣∣∣∣

N∑

n=1

exp
(
i(~k − ~k′) · an

)∣∣∣∣∣

2

dσ0
dΩ

. (23.10.3)
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Exercise 23.5. A beam of electrons with momentum p = ~kẑ scatters from the classical

potential V (r) produced by a hydrogen atom in its ground state, which (from Gauss’ law) obeys

dV

dr
=
q2e
r2

[
1−

∫ r

0

dr′4πr′2|ψ1,0,0(r
′)|2
]
. (23.10.4)

Here, the electron charge is qe, to distinguish it from the base of the natural logarithms.

(a) Obtain dV/dr from the above equation by doing the integral, and deduce that V (r) =

−q2e(1/r + A/a0)e
−Br/a0 , where A and B are certain constants that you will determine. [Hint:

take the derivative of this form of V (r) and match it to the dV/dr that you found.]

(b) Find the differential cross section in the Born approximation, ignoring spin. Show that it

can be written as dσ/dΩ = n1(N2 + a20q
2)2/(N3 + a20q

2)4, where n1 is a quantity that you will

find, and N2 and N3 are certain positive integers, and q = 2k sin(θ/2).

(c) In the low energy limit, what is dσ/dΩ? How does it depend on θ?

(d) In the high energy limit, show that dσ/dΩ approaches the Rutherford differential cross

section. (Can you explain why, even though the atom is electrically neutral?)

(e) Find the total cross section. Does it diverge, as for Rutherford scattering?

Exercise 23.6. For scattering of particles with mass m and momentum p = ~kẑ from a spher-

ically symmetric potential V (r), show that in the leading Born approximation the phases shifts

in the partial wave expansion are

δl = N
mk

~2

∫ ∞

0

dr r2V (r) (jl(kr))
2 , (23.10.5)

where N is a certain integer that you will discover.

Exercise 23.7. The differential cross-section of a beam of spinless particle of mass m with fixed

low kinetic energy E on a target of spherically symmetric atoms is found to be

dσ

d(cos θ)
=
π~2

mE
[c0 + c1 cos(θ) + c2 cos

2(θ)]. (23.10.6)

where c0, c1, and c2 depend on E but not on θ. Assume that the target is very small compared

to the experimental apparatus, that multiple scatterings within the target are not an issue, and

that the results should be interpreted as a combination of s-wave and p-wave scattering.

(a) Find real equations relating the phase shifts δ0 and δ1 to the measured quantities c0, c1, c2.

(b) Use partial wave unitarity to find theoretical upper bounds on c0 and c2.

(c) What are the theoretical upper and lower bounds on c1? [Hint: both upper and lower bounds

are realized by phase shifts satisfying δ0 = πn0/6 and δ1 = πn1/6 where n0 and n1 are positive

integers less than 6. You may use this fact without proving it.]
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Exercise 23.8. The low-energy (s-wave) limit of scattering from a potential that vanishes

outside of some range R is treated at the end of section 23.5. By expanding eq. (23.5.42) with

l = 0, verify eq. (23.5.44) with the scattering length a given in eq. (23.5.45), and show that the

effective range is r0 = nR (1− 1/α0R + 1/(α0R)
2) where n is a certain positive rational number

that you will discover.
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24 Subsystems: entanglement, evolution, and general-

ized measurements

24.1 Open and bipartite systems and entanglement

An open system is a quantum system that is part of a larger one. The rest of the larger system

may be referred to as the environment, and we often want to study the dynamics of the open

system in such a way that its interactions with the environment are to be simplified or averaged

over in some way. Typically, the dynamics of the environment are not completely accessible to

us, or are too complicated to understand in full detail, but will still have important impacts on

the open system of primary interest.

More generally, we wish to consider bipartite quantum systems, defined to be those

whose Hilbert space is the tensor product of two Hilbert spaces for subsystems a and b, so that

Hab = Ha⊗Hb. Often, subsystem a is the open system whose behavior we want to understand,

and b is its environment (perhaps the whole rest of the universe). Another interpretation is

that we might consider b to contain a quantum measurement apparatus that works through

its correlations with the object of measurement, subsystem a. Yet another interpretation is

that a and b might be associated with observers Alice and Bob who are in different locations,

and therefore each have access to only part of a quantum state. Understanding the quantum

correlations that arise between two subsystems gives insights into the dynamical origins of

measurements, the emergence of macroscopic classical-like behavior in quantum mechanics, and

the properties of information in quantum mechanics.

To describe the quantum physics of an open system, it is natural to use the density matrix

operator description introduced in section 3.5. To understand why, take the simple example of

the entangled state that we introduced in eq. (14.1.1) and used in our discussion of the EPR

problem, which we re-write here in the notation

|ψ〉 =
1√
2

(
|↑〉a ⊗ |↓〉b − |↓〉a ⊗ |↑〉b

)
. (24.1.1)

Consider how Alice will describe the situation when she can observe only system a, assuming

no communication with Bob. No matter what spin components of her particle Alice measures,

if the experiments are repeated many times, the results are perfectly described as a random

ensemble with equal probability 1/2 to be a spin-up or spin-down state. Considered as an open

system, Alice can therefore describe her particle’s spin a using a density operator

ρa =
1

2

(
|↑〉 〈↑|+ |↓〉 〈↓|

)
. (24.1.2)

Even if Bob is busily making measurements of spin b, as long as Alice does not (yet) know the

results, she will still describe her measurements in terms of ρa. This density operator is that of
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a completely random ensemble, and contains no information. In this way, the density operator

formalizes the absence of instantaneous communication to Alice due to Bob’s local interactions

with spin b.

In contrast, suppose the combined state is instead a non-entangled ket, say

|ψ′〉 = |↑〉a ⊗ |↓〉b (24.1.3)

for example. In this case, for the purposes of Alice’s experiments, the subsystem a is always

spin up, so the density operator is

ρ′a = |↑〉 〈↑| , (24.1.4)

corresponding to a pure ensemble.

As these examples suggest, if a combined system ab is in a product (non-entangled) pure

state, then the subsystem a can always be described by a pure ensemble, but if the combined

system is in an entangled state, then a is described by a mixed ensemble. We will now proceed

to understand this in the general case.

Let us denote orthobases for the two subsystem Hilbert spaces as |ϕi〉a with i = 1, . . . , da

and |χj〉b with j = 1, . . . , db. Then the dadb kets |ϕi〉 ⊗ |χj〉 form an orthobasis for Hab. Now,

suppose Alice is measuring an observable A that operates only on Ha and has eigenvalues (the

possible measurement outcomes) α. These outcomes are associated with projection operators

Pα ⊗ I, (24.1.5)

where Pα acts on subsystem a, and the identity operator acts on subsystem b. To be as general

as possible, suppose that we have prepared a mixed ensemble of states of the system ab, which

is therefore described by a density operator ρab. Using eq. (3.5.11), the probability of getting

the measurement result α for A is

P(α) = Tr[ρab(Pα ⊗ I)] =
∑

i

∑

j

(
〈ϕi| ⊗ 〈χj |

)
ρab (Pα ⊗ I)

(
|ϕi〉 ⊗ |χj〉

)
. (24.1.6)

To put this into a nicer form, define the reduced density operator for subsystem a,

ρa = Trb[ρab] =
∑

j

〈χj|ρab|χj〉 . (24.1.7)

Here we have taken the trace only over Hb, called a partial trace. The notation is a bit tricky,

since the objects 〈χj|ρab|χj〉 are matrix elements with respect to the Hilbert space Hb, but are

still operators in Ha. Then eq. (24.1.6) becomes simply

P(α) = Tra[ρaPα] =
∑

i

〈ϕi|ρaPα|ϕi〉 . (24.1.8)
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Thus, ρa as defined by eq. (24.1.7) contains all of the information that is available to Alice† by

only observing subsystem a. It follows from eq. (24.1.8) that the average result of measurements

of A is

A = Tra[ρaA]. (24.1.9)

These results are in accord with eqs. (3.5.11) and (3.5.12).

It is also a short exercise to check that ρa = Trb(ρab) obeys the three crucial properties

required of any density operator. First, it is a Hermitian operator on Ha. Second, it has unit

trace, Tra(ρa) = 1. Third, it is a positive operator. In general, an operator A is said to be

positive‡ if 〈ψ|A|ψ〉 ≥ 0 for any ket |ψ〉. More generally, if we wish to describe an open system

a without any direct reference to a particular environment system, it is essential to require that

it is described by a density operator ρa satisfying these three properties.

Consider the special case of a pure state for the combined system. The general form of such

a state is

|ψ〉 =
∑

i

∑

j

cij |ϕi〉 ⊗ |χj〉 , (24.1.10)

where cij are complex coefficients, which form the elements of a da×db complex matrix C. Now,

the singular value decomposition of linear algebra asserts that any complex matrix can be

written in the form C = U †DV , where U and V are unitary da×da and db×db matrices, and D is

a da×db diagonal matrix, whose only non-zero entries are non-negative real numbers (called the

singular values of C) on the diagonal. Since the singular values appear only on the diagonal

of D, the number of them that are non-zero is at most min(da, db). In our case, U simply acts as

a change of orthobasis in the Hilbert space Ha, and V similarly acts as a change of orthobasis

in the Hilbert space Hb. So, writing the singular values as
√
pk with k = 1, . . . ,min(da, db), we

have just proved that the state can always be written in a particularly useful way:

Theorem 24.1.1. (Singular value decomposition of a pure state in a bipartite system)

Consider a pure state |ψ〉 of a bipartite system with subsystems a and b with Hilbert space

dimensions da and db. Then one can always find a particular choice of orthobases |ϕi〉a with

i = 1, . . . , da and |χj〉b with j = 1, . . . , db, such that

|ψ〉 =
min(da,db)∑

k=1

√
pk |ϕk〉 ⊗ |χk〉 , (24.1.11)

where pk are non-negative real numbers, with
∑

k pk = 1 if the state is normalized to unity.

†Conversely, Bob, who makes observations only on subsystem b, will describe his experiences using ρb =
Tra[ρab] =

∑
i 〈ϕi|ρab|ϕi〉. Of course, the observables he can measure do not include A.

‡A better terminology would be “non-negative”, but it is hard to fight tradition.
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The choice of bases needed to accomplish eq. (24.1.11) depends on the state |ψ〉. Equation

(24.1.11) is also called the Schmidt decomposition, and the number of non-zero singular

values is called the Schmidt number. A useful corollary relates the Schmidt number to the

entanglement of the state:

Theorem 24.1.2. (Schmidt number reveals entanglement) A pure state |ψ〉 of a bipartite

system is entangled if, and only if, the Schmidt number of non-zero coefficients
√
pk in its

singular value decomposition exceeds 1.

Proof: the key point is that the list of singular values of a complex matrix C is uniquely

determined. So, if there are at least 2 non-zero singular values, then there can be no way to

choose a ket from each subsystem such that |ψ〉 is their tensor product; therefore it is entangled
by definition. Conversely, if only one of the pk is non-zero, then |ψ〉 is a product state, and so

it is not entangled by definition. (If all of the pk are zero, then |ψ〉 is the null ket, of course.) ���

In terms of the singular value decomposition coefficients and orthobases, the pure state |ψ〉
of the combined system has a reduced density operator

ρa = Trb
(
|ψ〉 〈ψ|

)
=
∑

j

〈χj|ψ〉 〈ψ|χj〉 =
∑

k

pk |ϕk〉 〈ϕk| . (24.1.12)

So, the non-zero ensemble probabilities pk of ρa in this basis are equal to the squares of the

non-zero Schmidt coefficients of the combined system state. It follows that ρa describes a mixed

state (more than one non-zero pk) if the combined system state |ψ〉 is entangled, and is a pure

state (only one non-zero pk) if |ψ〉 is a product state.

The von Neumann entropy of the subsystem a density operator, following eq. (3.5.16), is

σa = −
∑

k

pk ln pk. (24.1.13)

In the context of bipartite systems, this is known as the entanglement entropy. Of course, one

can reverse the roles of subsystems a and b. Taking the trace over Ha to find the density operator

for subsystem b, one obtains ρb =
∑

k pk |χk〉 〈χk| . In particular, this shows that if the combined

system state is a pure one, then ρb has exactly the same list of non-zero ensemble probabilities,

and therefore the same entanglement entropy, σb = σa. This may be somewhat surprising,

since a and b can have very different properties considered as open systems by themselves,

including hugely disparate degrees of freedom. For example, a might describe a single spin,

while subsystem b might be the entire rest of the universe. The maximum entanglement entropy

for a pure state of a bipartite system occurs when all of the non-zero pk are equal to 1/min(da, db).

More generally, it is a single quantitative measure of the amount of entanglement of the pure

combined state.

535



In the discussion leading to eq. (3.5.24), we found that the von Neumann entropy of a closed

system does not change when it undergoes unitary time evolution. However, subsystems of

the closed system often become entangled in this process. For example, an open system in a

pure product state (with vanishing entanglement entropy) will often evolve into a state with

non-zero entanglement entropy. Thus, the entanglement entropy of the subsystems can increase

even when the closed system entropy is fixed. Although we will not prove it, the entropy of

any combined system density operator ρab and the reduced density operators ρa and ρb of its

subsystems can be shown to always obey

|σa − σb| ≤ σab ≤ σa + σb. (24.1.14)

The second inequality becomes an equality in the special case of a product density matrix

ρab = ρa⊗ρb, while σab = 0 and σa = σb in the special case of a pure combined state ρab = |ψ〉 〈ψ|,
as we have seen.

As examples of eq. (24.1.12) in action, it is straightforward to verify that the EPR state

|ψ〉 in eq. (24.1.1) leads to the completely random ensemble density operator ρa as claimed in

eq. (24.1.2), and the unentangled state |ψ′〉 in eq. (24.1.3) leads to the pure ensemble density

operator ρ′a of eq. (24.1.4). But let us generalize the first example slightly, by replacing the

minus sign in eq. (24.1.1) by an arbitrary relative phase eiθ, so that

|ψ〉 =
1√
2

(
|↑〉a ⊗ |↓〉b + eiθ |↓〉a ⊗ |↑〉b

)
. (24.1.15)

To an observer who is capable of making measurements on the combined system ab, this relative

phase is certainly physically relevant; for example, you can check that the observable Ω = σx⊗σx
has expectation value 〈ψ|Ω|ψ〉 = cos θ. Now, the density operator for the combined system is

ρab = |ψ〉 〈ψ| =
1

2

[(
|↑〉 〈↑|

)
a
⊗
(
|↓〉 〈↓|

)
b
+
(
|↓〉 〈↓|

)
a
⊗
(
|↑〉 〈↑|

)
b

+eiθ
(
|↓〉 〈↑|

)
a
⊗
(
|↑〉 〈↓|

)
b
+ e−iθ

(
|↑〉 〈↓|

)
a
⊗
(
|↓〉 〈↑|

)
b

]
. (24.1.16)

Taking the partial trace over the b spin using Trb(ρab) = 〈↑|b ρab |↑〉b + 〈↓|b ρab |↓〉b, the last two

terms in eq. (24.1.16) do not contribute, and we find

ρa =
1

2

(
|↑〉 〈↑|+ |↓〉 〈↓|

)
. (24.1.17)

The relative phase information present in the combined system state as the factor eiθ is therefore

completely inaccessible to Alice alone.§ Recall, from the discussion surrounding eqs. (3.5.5) and

(3.5.6), that this loss of phase information is a characteristic feature of mixed ensembles.

§To see this without using the density operator language, but in a morally equivalent way, note that the
most general combined Hilbert space Hermitian operator that acts non-trivially only on Alice’s spin is A =(
r0I + r1σx + r2σy + r3σz

)
⊗ I, where r0,1,2,3 are arbitrary real numbers. It is a short exercise to compute

〈ψ|A|ψ〉 and check that it does not depend on θ.
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24.2 Dynamical maps and evolution of open systems

Consider an open system described at a given time by a density operator ρ. (Going forward, we

refer to the subsystem a of a bipartite system ab as simply “the open system”, and often leave

off the subscript a for its states and operators.) What is the density operator ρ′ that describes

the system at some unspecified later time? For the special case of a closed system, the answer

was given in eq. (3.5.23), which says that ρ′ = UρU † for some unitary operator U . However,

this is not true for open systems. In general, we can write

ρ→ ρ′ = E(ρ), (24.2.1)

where E is a map taking operators to operators, sometimes called a superoperator. We will

refer to E as a quantum dynamical map, but it has many names; other sources refer to it as

a quantum channel, or a quantum operation. Our goal is to understand the possible forms

allowed by quantum mechanics for dynamical maps of open systems.

One way to investigate the issue is to introduce a specific environment subsystem with

orthobasis |χn〉b where n = 1, . . . , db. Let us further assume that the initial condition for the

combined system is a product density operator

ρab = ρ⊗ (|0〉 〈0|), (24.2.2)

where |0〉 is some reference state of subsystem b. We now let the combined system evolve in

time, just as in eq. (3.5.23), which says that the final density operator is UρabU
† for some unitary

operator U that acts on the combined system. The reduced density operator for the open system

after the evolution is obtained by taking the partial trace over the environment subsystem b,

E(ρ) = Trb(UρabU
†) =

∑

n

〈χn|U |0〉 ρ 〈0|U †|χn〉 . (24.2.3)

The objects 〈χn|U |0〉 and 〈0|U †|χn〉 are matrix elements of the environment subsystem b, but

are still operators acting on the open system. They reflect the fact that the unitary evolution

of the combined state causes the environment state to transition from |0〉 to a superposition of

basis states, correlated with the evolution of the open system. Giving them the names

Kn = 〈χn|U |0〉 , K†n = 〈0|U †|χn〉 (n = 1, . . . , db), (24.2.4)

we have the important result

E(ρ) =
∑

n

KnρK
†
n, (24.2.5)
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where it is easy to check from eq. (24.2.4), using completeness, that

∑

n

K†nKn = I. (24.2.6)

In general, equations of the form (24.2.5) and (24.2.6) constitute an operator-sum represen-

tation for the dynamical map E , and the Kn are called Kraus operators, after Karl Kraus.

If there is only a single non-zero Kraus operator, then eq. (24.2.6) tells us that it is a unitary

operator. In that special case, we say that the dynamical map is unitary, as it has the same

form as the unitary time evolution of a closed system in eq. (3.5.23), namely ρ′ = UρU †.

Dynamical maps defined by operator-sum representations, as in eqs. (24.2.5) and (24.2.6),

can be sequentially combined. This means that if E1 and E2 are dynamical maps with operator

sum representations, then so is

E2 ◦ E1 (ρ) = E2(E1(ρ)). (24.2.7)

A dynamical map E has an inverse dynamical map E−1, so that E−1 (E(ρ)) = ρ, if and only if

the map is unitary. The proofs of these properties are left as exercises. The most interesting

dynamical maps for open systems are non-unitary and thus non-invertible.

As a simple example of a non-unitary dynamical map for an open system, consider a model

for the decay of an atom in an excited state |1〉a to its ground state |0〉a by emitting a photon.

These two states are the orthobasis for the open system. The environment orthobasis consists

of states with and without a photon from the decay, denoted |1〉b and |0〉b respectively. The

combined system thus has an orthobasis of four states |n〉a⊗ |m〉b with n,m = 0, 1. The atomic

state can be either excited or not, but we assume that there is no photon present initially. This

means that the combined system always starts in a superposition of the two orthobasis states

|0〉a ⊗ |0〉b , and |1〉a ⊗ |0〉b . (24.2.8)

We now define a unitary map U to describe the evolution of the combined system,

U
(
|0〉 ⊗ |0〉

)
= |0〉 ⊗ |0〉 , (24.2.9)

U
(
|1〉 ⊗ |0〉

)
=

√
1− p |1〉 ⊗ |0〉+√p |0〉 ⊗ |1〉 , (24.2.10)

where p is a real number between 0 and 1. The interpretation of the first equation is that

nothing happens if the atom starts in its ground state. The second equation says that if it starts

in the excited state, then with probability p it will decay to the ground state while adding the

photon to the environment state, and with probability 1−p everything will remain as it is. The

operator U preserves inner products, in the sense that the states in eqs. (24.2.9) and (24.2.10)
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are orthogonal and each have norm 1. This is an important requirement for our assertion that

U is a unitary operator on the complete Hilbert space.†

Following the construction of eq. (24.2.4), we see that there are two Kraus operators in this

example, one for each of our two environment orthobasis states. We can use that equation as a

recipe to construct their actions on the orthobasis of the open system,

K0 |0〉a = 〈0|b U
(
|0〉 ⊗ |0〉

)
= |0〉a , (24.2.11)

K0 |1〉a = 〈0|b U
(
|1〉 ⊗ |0〉

)
=
√
1− p |1〉a (24.2.12)

K1 |0〉a = 〈1|b U
(
|0〉 ⊗ |0〉

)
= 0, (24.2.13)

K1 |1〉a = 〈1|b U
(
|1〉 ⊗ |0〉

)
=
√
p |0〉a , (24.2.14)

or, in matrix representation form,

K0 =

(
1 0
0
√
1− p

)
, K1 =

(
0
√
p

0 0

)
. (24.2.15)

These indeed satisfy the completeness requirement
∑

nK
†
nKn = I. Now, given an initial density

matrix of the open system (the atom),

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
, (24.2.16)

the dynamical map resulting from the Kraus operator-sum representation of eq. (24.2.5) is

E(ρ) = K0ρK
†
0 +K1ρK

†
1 =

(
ρ00 + pρ11

√
1− p ρ01√

1− p ρ10 (1− p)ρ11

)
. (24.2.17)

So far, we have not associated the dynamical map with a specific time interval. To remedy this,

we can take eq. (24.2.17) to correspond to an infinitesimal time interval ∆t, with an excited

state atomic decay probability p = Γ∆t. We then apply the map N times. In doing so, we take

the initial state of the environment to be the no-photon state |0〉b each time, on the grounds

that any photons from decays in earlier iterations of the dynamical map will have fled the scene

anyway, and therefore can and should be ignored. The result is

ρ →
(
ρ00 + (1− (1− p)N)ρ11 (

√
1− p)N ρ01

(
√
1− p)N ρ10 (1− p)Nρ11

)
. (24.2.18)

†Actually, we have only bothered to specify how U acts on two of the four orthobasis states for the combined
system, because that is all we will directly need, but you can easily complete it by constructing U

(
|0〉⊗ |1〉

)
and

U
(
|1〉 ⊗ |1〉

)
such that U is unitary. More generally, it is true that if an operator preserves all inner products on

a subspace, it can always be extended to a unitary operator on the full Hilbert space. The formal statement and
a constructive proof of this assertion are postponed to Theorem 24.2.2 near the end of this section.
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Now taking the limit N →∞, with t = N∆t held fixed, and using the defining property of the

exponential function,

lim
N→∞

(
1− Γt

N

)N
= e−Γt, (24.2.19)

we find, after making use of the trace condition ρ00 = 1− ρ11,

ρ(t) =

(
1− e−Γtρ11 e−Γt/2 ρ01

e−Γt/2 ρ10 e−Γtρ11

)
. (24.2.20)

The interpretation of the diagonal entries is simply that a population of excited states decays to

the ground state with a probability 1− e−Γt, which approaches 1 at late times. The off-diagonal

entries of the density operator matrix also decay, with a lifetime twice as large. This dynamical

map is non-invertible, and no matter what mixed state we started with, it always evolves into

the pure ground state at late times. In particular, the entropy for this open system decreases

to 0, unlike what we found for a unitary evolution of a closed system in eq. (3.5.24).

In the construction of eq. (24.2.4), the number of Kraus operators was db, the same as

the dimension of the environment subsystem Hilbert space. This is not necessarily convenient,

especially if the environment is a very large and complicated system. However, the operator-sum

representation is not unique, and different versions for the same map E(ρ) can have different

numbers of Kraus operators. One can define new Kraus operators by

K̃µ =
∑

n

vµnKn, (24.2.21)

after which the same map can be rewritten as E(ρ) =
∑

µ K̃µρK̃
†
µ with

∑
µ K̃

†
µK̃µ = I, provided

that
∑

µ v
∗
µn′vµn = δnn′. This condition is equivalent to saying that the (non-square, in general)

matrix of elements vµn can be extended to a unitary matrix. Fortunately, for any given dynamical

map E , we will soon show that there is always an operator-sum representation with no more

than d2 Kraus operators, where d is the dimension of the open system Hilbert space, regardless

of the (possibly enormous) dimension db of the environment Hilbert space.

We can now inquire about more general dynamical maps, beyond the type we defined in

eq. (24.2.3). One obvious possibility is to take the initial condition for the combined system

to involve a general density operator for the environment, rather than a pure state |0〉, so that

initially‡

ρab = ρ⊗ ρb, (24.2.22)

‡The initial condition of eq. (24.2.22) is still far from general, as it is a product of density operators for
the subsystems, with no initial correlations between system and environment. It is an understatement to say
that the general case of an entangled density operator for the initial condition is much more subtle. It will
not be addressed here. See P. Pechukas, Phys. Rev. Lett. 73, no.8, 1060 (1994); T. F. Jordan, A. Shaji,
and E. C. G. Sudarshan, Phys. Rev. A 70, 052110 (2004) [arXiv:quant-ph/0407083]; D. Schmid, K. Ried, and
R.W. Spekkens, Phys. Rev. A 100, 022112 (2019) [arXiv:1806.02381], and associated references.
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and then E(ρ) = Trb[U(ρ⊗ ρb)U †] for some unitary joint-state operator U . It is left to Exercise

24.3 to show that in this case the map E(ρ) can be written in the same operator-sum form, but

with d2b Kraus operators instead of only db, although as noted in the previous paragraph it is

often possible to reduce this number.

Given this, it is a plausible guess that dynamical maps can always be written in the operator-

sum form of eqs. (24.2.5) and (24.2.6). As we will now show, this is indeed true, provided we

assume some reasonable conditions motivated by the requirement that E(ρ) must be a legitimate

density operator for the open system. These conditions are:

(i) E is a linear map, satisfying E(c1A1+ c2A2) = c1E(A1)+ c2E(A2) for complex numbers c1,2

and operators A1,2. There are two motivating reasons to impose this condition. The first

reason is that any collection of mixed ensembles can be viewed as a single mixed ensemble,

so one must have for any density operators ρk with population ratios pk,

E
(∑

k

pkρk

)
=

∑

k

pkE(ρk). (24.2.23)

The second reason is that linearity implies that the map preserves Hermiticity; if ρ is

Hermitian, then E(ρ) will be also, as it must.

(ii) The map E preserves traces, so that Tr[E(A)] = Tr(A). When A = ρ and Tr(ρ) = 1, this

is equivalent to the conservation of probability.

(iii) The map E is a completely positive map.

The last condition requires a terminology explanation. A superoperator E is said to be a positive

map if E(A) is a positive operator whenever A is a positive operator. A positive map is said to

be completely positive if every extension of it to include an environment system, on which

it acts trivially, is also positive. In other words, a positive map E(A) for operators A on Ha is

completely positive if, for any extended system Ha ⊗Hb, the map Eext defined by

Eext(A⊗B) = E(A)⊗ B (24.2.24)

is also a positive map. A motivation for requiring dynamical maps to be completely positive is

that if E(ρ) is a valid quantum dynamics, then it ought to remain one if we add an arbitrary

environment to which it is very weakly coupled. Naively, this might seem trivial, but it is not,

because there do exist linear trace-preserving maps that are positive but not completely positive.

A minimal example will be given at the end of this section.

It is a short exercise to confirm that a dynamical map with the operator-sum form of

eqs. (24.2.5) and (24.2.6) satisfies the three conditions above. Conversely, we can now make,

and prove, a strong statement about the general form of dynamical maps on open systems:
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Theorem 24.2.1. (Operator-sum representation of dynamical maps) If a map ρ →
ρ′ = E(ρ) for density operators on an open system Hilbert space of dimension d is linear, trace-

preserving, and completely positive, then it has an operator-sum representation

E(ρ) =
N∑

n=1

KnρK
†
n,

N∑

n=1

K†nKn = I, (24.2.25)

where it is always possible to choose N to be d2 or less.

Proof: for the open system Hilbert space Ha, choose an orthobasis |ϕi〉 with i = 1, . . . , d.

Now introduce§ an auxiliary system Hilbert space Hb with the same dimension d, so that we

can choose an orthobasis |χi〉 for it, again with i = 1, . . . , d. This allows us to assign to each ket

|ϕi〉 a uniquely associated 〈χi|, a fact that will be important soon. Now consider the following

normalized state defined on the combined system with Hilbert space Ha ⊗Hb:

|Ψ〉 = 1√
d

d∑

i=1

|ϕi〉 ⊗ |χi〉 . (24.2.26)

[As an aside, this is a maximally entangled ket, with Schmidt number d and entanglement

entropy ln(d).] Consider the extension of E to a map Eext for operators on the combined Hilbert

space, defined in general as in eq. (24.2.24), so that

Eext (|Ψ〉 〈Ψ|) =
1

d

d∑

i=1

d∑

j=1

E(|ϕi〉 〈ϕj |)⊗ (|χi〉 〈χj |). (24.2.27)

Because E is completely positive by assumption, Eext is a positive map, by definition. Therefore,

since |Ψ〉 〈Ψ| is a valid density operator on Ha ⊗ Hb, it follows that so is Eext (|Ψ〉 〈Ψ|), since
it satisfies the conditions of being a positive Hermitian operator with trace 1. As a density

operator, it must be possible to express it in terms of an orthobasis of its eigenkets |Φn〉, as in
eq. (3.5.14),

Eext (|Ψ〉 〈Ψ|) =

d2∑

n=1

pn |Φn〉 〈Φn| . (24.2.28)

Here we have used the fact that the number of orthobasis eigenkets |Φn〉 is d2, because that is

the dimension of Ha⊗Hb. Equating (24.2.27) and (24.2.28), and then acting from the left with

〈χi| and the right with |χj〉 and multiplying by d, we obtain

E(|ϕi〉 〈ϕj |) = d
d2∑

n=1

pn 〈χi|Φn〉 〈Φn|χj〉 . (24.2.29)

§It is important that this auxiliary system b is introduced only as a calculation trick, and is not the physical
environment system, which we will not need to make any reference to in this proof.
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In the last expression, 〈χi|Φn〉 is a matrix element inHb, but it is a ket in the open system Hilbert

space Ha. We now make the crucial observation that, because there is a unique association of

|ϕi〉 with 〈χi|, we can define a linear operator Kn on Ha by specifying its action on each of the

orthobasis kets,

Kn |ϕi〉 =
√
dpn 〈χi|Φn〉 . (24.2.30)

This allows us to rewrite eq. (24.2.29) as

E(|ϕi〉 〈ϕj|) =
d2∑

n=1

Kn |ϕi〉 〈ϕj |K†n. (24.2.31)

Since E is linear by assumption, and any density operator can be expressed as a linear combina-

tion ρ =
∑

i,j ρij |ϕi〉 〈ϕj|, we obtain the result for E(ρ) in the first part of eq. (24.2.25). Finally,

we compute from eq. (24.2.31) that

Tr
[
E(|ϕi〉 〈ϕj|)

]
=

∑

k

∑

n

〈ϕk|Kn|ϕi〉 〈ϕj|K†n|ϕk〉 =
∑

n

〈ϕj| |K†n
(∑

k

|ϕk〉 〈ϕk|
)
Kn| |ϕi〉

= 〈ϕj |
(∑

n

K†nKn

)
|ϕi〉 . (24.2.32)

Now, using the assumption that E is trace-preserving, this must equal Tr(|ϕi〉 〈ϕj|) = δij , which

shows that
∑

nK
†
nKn is the identity operator, the second part of eq. (24.2.25). ���

We conclude this section by tying up two loose ends. First, in the footnote following

eq. (24.2.10), it was claimed that any linear operator that preserves all inner products on a

subspace can be extended to a unitary operator on the whole Hilbert space. More formally:

Theorem 24.2.2. (Construction of a unitary operator from its action on a subspace)

Let H be a Hilbert space with a subspace Hs. Suppose that Us is a linear operator that acts

on kets in the subspace Hs, mapping them to kets in the full space H while preserving inner

products. This means that for all kets |v〉 and |w〉 in Hs, the kets Us |v〉 and Us |w〉 are elements

of H, and

〈w|U †sUs|v〉 = 〈w|v〉 . (24.2.33)

Then Us can be extended to a unitary operator U defined on all of H. In other words, one can

find an operator U such that U |v〉 = Us |v〉 for all |v〉 in Hs, and U
†U = UU † = I.

Proof: we will explicitly construct a unitary operator U that satisfies the theorem. Let the

dimensions of H and Hs be d and ds, respectively. Choose an orthobasis {|φj〉} for Hs, with

j = 1, . . . , ds. Now, let H⊥ be the subspace of kets in H that are perpendicular to all kets
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in Hs. Then H⊥ is a Hilbert space, and one can use the Gram-Schmidt procedure to find an

orthobasis {|φk〉} for it, with k = 1, . . . , d − ds. Note that {|φj〉 , |φk〉} is an orthobasis for H.
Next, note that from eq. (24.2.33), Us |φj〉 are a set of ds orthonormal kets in H. The set of kets
perpendicular to all of them is a Hilbert space with dimension d−ds, and one can therefore find

an orthobasis {|φ̃k〉} for it, again with k = 1, . . . , d− ds. Now define

U =
ds∑

j=1

Us |φj〉 〈φj|+
d−ds∑

k=1

|φ̃k〉 〈φk| . (24.2.34)

Since 〈φk|φi〉 = 0 and 〈φj|φi〉 = δij , it is clear that U |φi〉 = Us |φi〉 for all orthobasis elements of

Hs, as required. Finally, we check that U is indeed unitary:

U †U =
(∑

j′

|φj′〉 〈φj′|U †s +
∑

k′

|φk′〉 〈φ̃k′|
)(∑

j

Us |φj〉 〈φj| +
∑

k

|φ̃k〉 〈φk|
)

=
∑

j,j′

|φj′〉 〈φj′|φj〉 〈φj| +
∑

k,k′

|φk′〉 〈φ̃k′|φ̃k〉 〈φk|

=
∑

j

|φj〉 〈φj| +
∑

k

|φk〉 〈φk| = I, (24.2.35)

where we have used eq. (24.2.33) and the orthonormality and completeness properties of |φj〉,
|φk〉, and |φ̃k〉 on their respective subspaces. ���

The other loose end is that after eq. (24.2.24) we promised to exhibit a linear, trace-

preserving, positive map that is not completely positive. A standard example is the transpose

map, E(ρ) = ρT , which is defined to act on subsystem a by taking the transpose of the density

matrix in some orthobasis. This map is linear, and trace-preserving and positive because ρ

and ρT have the same eigenvalues, and the trace is the sum of the eigenvalues while a positive

operator is one with all non-negative eigenvalues. However, its extension Eext(ρ) as defined by

eq. (24.2.24) is not a positive map. To see this in a minimal case, consider two 2-dimensional

subspaces a and b, with orthobases |0〉a , |1〉a and |0〉b , |1〉b respectively. Let us use a notation

|jk〉 = |j〉a ⊗ |k〉b for j, k = 0, 1. Then the map Eext(ρ) acts to exchange the subsystem a labels

only, according to

Eext
(
|jk〉 〈nm|

)
= |nk〉 〈jm| . (24.2.36)

Now consider the combined system density operator

ρab =
1

2

(
|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|

)
. (24.2.37)

This is the density operator for the pure state (|00〉+|11〉)/
√
2, so it is clearly a positive operator.

Applying eq. (24.2.36) to it gives

Eext(ρab) =
1

2

(
|00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11|

)
. (24.2.38)
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Now consider the state |ψ〉 = (|01〉 − |10〉)/
√
2. One finds

〈ψ|Eext(ρab)|ψ〉 = −1/4, (24.2.39)

so Eext(ρab) is not a positive operator, and by definition E(ρ) is not a completely positive map.

24.3 Generalized measurements

The postulates of quantum mechanics presented in section 3.1 give rules for observables and

measurements in closed systems. The allowed results of a measurements are the eigenvalues α

of a Hermitian operator, and the probabilities and post-measurement state of the system are

dictated by Hermitian projection operators Pα constructed out of the corresponding eigenstates.

This type of measurement, used up to now in this book, is called a projective measurement.

For open systems, a more general type of measurement process is available. As a model, the

open system a is coupled to an environment subsystem b which we can call the “meter”. To

conduct a measurement, the meter is initially prepared in a specific reference state. We then

allow a unitary transformation† to take place, causing the combined system state to become

entangled. In a sense, this is already a kind of measurement on the open system, since there are

now correlations between it and the meter, and even if the open system was originally in a pure

state, it is now described by a mixed ensemble. To expose this, a projective measurement is then

performed on the meter subsystem. The combination of the unitary entanglement followed by

the projective measurement on the meter is called a generalized measurement of the open

system. It will give us probabilities associated with the possible measurement outcomes, and

for each outcome will also tell us the post-measurement density operator of the open system.

To be specific, let the quantum meter subsystem have dimension db = N , with an orthobasis

of states |χn〉 where n = 1, 2, . . . , N . To define the measurement process, we require that the

meter system is always prepared in the same reference state |0〉 initially. Then, for any open

system state |ψ〉, define the entangling unitary transformation by

U
(
|ψ〉 ⊗ |0〉

)
=

∑

n

(
Mn |ψ〉 ⊗ |χn〉

)
, (24.3.1)

where the operators Mn are called measurement operators on the open system. The Mn can

be recognized as nothing other than the Kraus operators for a dynamical map. In fact, in the

following we will essentially be revisiting the discussion surrounding eqs. (24.2.2)-(24.2.6), just

with Kn replaced by Mn and in a cosmetically different way.

†The unitary transformation of the combined system is typically associated with some time evolution, but we
need not be specific about the time interval or the Hamiltonian.
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In order for U to be unitary, it must preserve inner products between any two states |ψ〉⊗|0〉
and |φ〉 ⊗ |0〉. This implies

∑
k

∑
n 〈φ|M †nMk|ψ〉 〈χn|χk〉 = 〈φ|ψ〉. Due to the orthonormality

of the meter states 〈χn|χk〉 = δnk, this simplifies to 〈φ|
∑

nM
†
nMn|ψ〉 = 〈φ|ψ〉. Since this is

supposed to hold for any |φ〉 and |ψ〉, it is necessary that

∑

n

M †nMn = I, (24.3.2)

as in eq. (24.2.6). Theorem 24.2.2 guarantees that eq. (24.3.2) is also sufficient; having defined

U to preserve all inner products when acting on the subspace of states of the form |ψ〉 ⊗ |0〉, it
can be extended to a unitary operator on the whole combined Hilbert space.

Now suppose, to be general, that we have a mixed ensemble of open system states, so that

we start with a combined density operator of the form

ρab = ρ⊗ |0〉 〈0| . (24.3.3)

Applying the unitary transformation U , the new density matrix of the combined system is

ρ′ab = UρabU
† =

∑

k,m

MkρM
†
m ⊗ |χk〉 〈χm| . (24.3.4)

To complete the measurement process, we assume that an observer, with access to the meter

only, makes a projective measurement to collapse the meter to one of the states |χn〉, using
mutually orthogonal projection operators that act nontrivially only on the meter subsystem,

Pn = I ⊗ |χn〉 〈χn| . (24.3.5)

Specifically, the Hermitian observable for this projective measurement is

Q =

N∑

n=1

nPn, (24.3.6)

which is a spectral decomposition in terms of the Pn. The outcome of the measurement is thus

one of the Q eigenvalues, n = 1, . . . , N . Applying eq. (3.5.11), the probability of getting each

outcome n is

P(n) = Tr
(
ρ′abPn

)
=
∑

k,m

Tr
(
MkρM

†
m

)
Tr
(
|χk〉 〈χm|χn〉 〈χn|

)
, (24.3.7)

which simplifies, using Tr
(
|χk〉 〈χm|χn〉 〈χn|

)
= δmn 〈χn|χk〉 = δmnδkn, to

P(n) = Tr
(
ρM †nMn

)
. (24.3.8)
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Also, if the measurement process outcome is n, then the post-measurement combined system

density operator, obtained by applying the general formula eq. (3.5.29), will be

ρ′′ab =
Pnρ

′
abPn
P(n) =

MnρM
†
n ⊗ |χn〉 〈χn|

Tr
(
ρM †nMn

) . (24.3.9)

Taking the partial trace over the meter subsystem, using Tr
(
|χn〉 〈χn|

)
= 〈χn|χn〉 = 1, gives

ρn =
MnρM

†
n

P(n) =
MnρM

†
n

Tr
(
ρM †nMn

) . (24.3.10)

for the density operator of the open subsystem after the outcome n.

To recapitulate and slightly augment the preceding discussion, a generalized measurement on

an open system can be defined by choosing any set of measurement operators Mn that obey the

completeness relation (24.3.2). The probability of getting the outcome n from the measurement

is eq. (24.3.8), and the open system density operator after the measurement outcome n will be

eq. (24.3.10). In the special case that the open system starts in a pure state |ψ〉, these imply

P(n) = 〈ψ|M †nMn|ψ〉 , |ψn〉 =
Mn |ψ〉√
P(n)

. (24.3.11)

Note that the post-measurement state |ψn〉 is also a pure one, due to the collapse of the meter

state. These rules can be taken as definitions of a generalized measurement that do not refer to

a specific environment, although we had our meter subsystem in mind while deriving them. As

consistency checks, note first that the sum of all of the measurement result probabilities is

∑

n

P(n) =
∑

n

Tr
(
ρM †nMn

)
= Tr(ρ) = 1, (24.3.12)

where the completeness relation,
∑

nM
†
nMn = I, plays the important role of ensuring the

conservation of probability. Second, eq. (24.3.10) implies that the open system density operator

after the measurement obeys Tr(ρn) = 1 and ρn = ρ†n, and that ρn is a positive operator (with

positive eigenvalues), provided that the initial ρ satisfied these properties.

There is a close relationship between generalized measurements and dynamical maps on open

systems. In this connection, the generalized measurement operatorsMn can simply be identified

with the Kraus operators Kn of a dynamical map. To see this more generally (without reference

to the derivations above in terms of specific environment models), suppose we start with an

open system density operator ρ, and make a generalized measurement with operators Mn, but

do not know the result. Then the open system will be described by a mixed ensemble of states

obtained by summing over the outcomes using eqs. (24.3.8) and (24.3.10),

ρ =
∑

n

P(n)ρn =
∑

n

MnρM
†
n, (24.3.13)
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which is nothing but the dynamical map definition of eq. (24.2.25) with Kn = Mn. Thus, any

dynamical evolution of an open system can be viewed as a generalized measurement of it by

the environment, if the result of the generalized measurement is unknown or disregarded. Con-

versely, any generalized measurement can be viewed as a dynamical map followed by an ordinary

projective measurement, but with the key feature that the collapse-of-the-state is banished from

the open system being measured, and instead occurs in the meter system.

Projective measurements are special cases of generalized measurements, as the latter’s name

implies. They arise if one imposes the further conditions that the measurement operators Mn

are Hermitian, and are orthogonal projection operators in the sense that for any n and m,

MnMm = δnmMn (projective measurements). (24.3.14)

This implies that M †nMn = Mn can play the role of the orthogonal Hermitian projection op-

erators Pα in Postulates 4 and 5 of section 3.1, and their equivalents for density operators,

eqs. (3.5.11) and (3.5.29).

Generalized measurements can do interesting things that projective measurements restricted

to the open system cannot. First, recall that Postulate 3 tells us that the outcome of doing a

projective measurement is always one of the eigenvalues α of a Hermitian operator. In particular,

the number of distinct possible outcomes cannot exceed the dimension of the state space. In

contrast, the outcomes for generalized measurements are not necessarily associated with the

eigenvalues of a Hermitian operator, and the number N of distinct possible outcomes can be

arbitrarily large. Also, because theMn are not necessarily orthogonal projection operators, if one

does a generalized measurement on an open system and finds the result n, one is not guaranteed

to get the same result if one immediately repeats the same measurement. For the same reason,

the post-measurement states need not be orthogonal to each other for different outcomes of a

generalized measurement, again unlike the case for projective measurements. Finally, while a

projective measurement cannot decrease the entropy [as we showed in the discussion leading to

eq. (3.5.35)], a generalized measurement can do so, as we will see by example soon.

In some applications, we may care only about the probabilities, and not what the density

operator is after the measurement. In that case, we can define a measurement by specifying

Hermitian operators‡ En with the completeness requirement

∑

n

En = I, (24.3.15)

and the positivity requirement 〈ψ|En|ψ〉 ≥ 0 for each n and all |ψ〉. With these conditions,

one can show that it is always possible to find operators Mn such that En = M †nMn. One can

‡The notation En for the operators M †nMn is a standard tradition, and they have nothing to do with energy.
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therefore copy eq. (24.3.8) by assigning probability results

P(n) = Tr
(
ρEn). (24.3.16)

In this context, a choice of operators En is often called a positive operator-valued measure,

or POVM. However, for any choice of POVM, there are actually many inequivalent generalized

measurements, because there are many different operators Mn such that En = M †nMn. In

particular, if a POVM {En} is obtained as En = M †nMn from a set {Mn}, then clearly it can

also be obtained as En = M ′†nM
′
n from the set {M ′n} = {VnMn}, where the Vn are arbitrary

unitary operators chosen independently for each n. Choosing a POVM {En} fully determines the

outcome probabilities, but it certainly does not determine the open system post-measurement

density operator, because eq. (24.3.10) does not just involve the En. To completely define the

generalized measurement, one must choose the specific operators Mn.

Suppose we want to measure a system to detect the presence of a photon. As a very simplified

model, consider an open system with two orthobasis states |0〉 (no photon) and |1〉 (photon is

present). One way to proceed is to define a projective measurement using

Pphoton = |1〉 〈1| , (24.3.17)

which has eigenvalues α = 0 and 1, with eigenstates |0〉 and |1〉. For an input density matrix

|ψ〉 =
(
ρ00 ρ01
ρ10 ρ11

)
, (24.3.18)

the probability of obtaining the result α = 1 (“yes, the photon is present”) will be P(1) = ρ11.

After that result, the system will definitely be in the pure state |1〉; according to the standard

rules of projective measurements, detecting the photon ensures that any future measurement

will also detect it. But this shows that our simple model is too simple. In the real world, the

process of observing a photon typically destroys the photon by converting it and collecting its

energy in a detector. A more realistic description of the measurement should have the property

that if the photon was detected, the post-measurement state should be |0〉.
To do better while still maintaining simplicity, we can invent a generalized measurement, let

us call it a destructive measurement of the photon, by defining two measurement operators

M0 = |0〉 〈0| , M1 = |0〉 〈1| . (24.3.19)

The corresponding POVM operators are then

E0 = M †0M0 = |0〉 〈0| , E1 = M †1M1 = |1〉 〈1| , (24.3.20)
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so that the completeness condition
∑

nM
†
nMn = I is indeed satisfied. Because M †1M1 is equal

to Pphoton, the probability for the outcome n = 1 is exactly the same, P(1) = ρ11. The difference

is entirely in the post-measurement state for this outcome. Applying eq. (24.3.10) gives

ρ1 =
M1ρM

†
1

P(1) =
1

ρ11

(
0 1
0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 0
1 0

)
=

(
1 0
0 0

)
, (24.3.21)

which describes the pure state |0〉 with no photon, as expected, since if it was there we destroyed

it by measuring it. If we try to measure it again, we will not find it. Similarly, the results for

the outcome n = 0 are a probability P(0) = ρ00 and a post-measurement density operator

ρ0 =
M0ρM

†
0

P(0) =
1

ρ00

(
1 0
0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
1 0
0 0

)
=

(
1 0
0 0

)
. (24.3.22)

Regardless of the outcome of the generalized measurement, the post-measurement result is the

pure state with no photon, so the entropy has been reduced to 0.

As POVMs, both the projective measurement and the destructive measurement of the photon

have the same operators E0 = |0〉 〈0| and E1 = |1〉 〈1|, which in this example happen to be

projection operators. The only difference between them is that for the projective measurement

we chose M1 = |1〉 〈1|, while for the destructive measurement we chose M1 = |0〉 〈1|, which
is not a projection operator. Both choices gave the same probabilities, but the latter choice

gave a better model for the impact of the environment (detector) on the photon. It is left to

Exercise 24.4 to consider the case M1 =
√
p |0〉 〈1|+√1− p |1〉 〈1|, which interpolates between

the two choices for the detector impact on an initial-state photon while keeping the same POVM

operator E1.

We close this section with another example of the useful application of a generalized mea-

surement: the problem of distinguishing two states. Suppose that Alice is presented with a spin

state which is known to be one of two possibilities, |ψ1〉 or |ψ2〉. Can she do a measurement to

determine which it is?

If the two possible state are orthogonal, for example |ψ1〉 = |↑〉 and |ψ2〉 = |↓〉, then the task

is trivial. Alice can simply measure the projection operator observable P↑ = |↑〉 〈↑|, which has

eigenvalues 0 and 1. Depending on which result she gets, she knows which state she was given,

with certainty.

However, if the two possible states are not orthogonal, then absolute certainty is not possible.

Consider, for example, the problem of distinguishing

|ψ1〉 = |↑〉 , |ψ2〉 =
1√
2

(
|↑〉+ |↓〉

)
. (24.3.23)

Alice could again make a projective measurement with the observable P↑ = |↑〉 〈↑|. If the state

was |ψ1〉, then she will certainly get the result 1, but then she cannot know which state it was,
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because if could have been |ψ2〉. On the other hand, if the state was |ψ2〉, then she will have

probability 1/2 to get each of the results 0 and 1 for P↑. If, and only if, the result was 0, then

she will know with certainty that the state was not |ψ1〉, so it must have been |ψ2〉. Therefore,
given an ensemble of experiments in which she is given the two states randomly with equal

probability, Alice will know with certainty which state it was in only a fraction 1/4 of the trials.

Alice is clever and knows about generalized measurements, so she devises one with the

following three POVM operators in matrix form in the |↑〉, |↓〉 basis,

E1 =
a

2

(
1 −1
−1 1

)
, E2 = a

(
0 0
0 1

)
, E3 =

(
1− a/2 a/2
a/2 1− 3a/2

)
, (24.3.24)

where a is a real number to guarantee Hermiticity. Note that these operators are designed to

satisfy
∑

nEn = I. The positivity requirement limits the range of a, because requiring E1 and

E2 to have non-negative eigenvalues and to be distinct operators implies a > 0, and requiring

E3 to have non-negative eigenvalues implies a ≤ 2−
√
2. Now if Alice is given |ψ1〉, you can use

P(n) = 〈ψ1|En|ψ1〉 to calculate that the measurement outcome probabilities are

P(1) = a/2, P(2) = 0, P(3) = 1− a/2, (24.3.25)

while if she is given |ψ2〉, then the outcome probabilities are

P(1) = 0, P(2) = a/2, P(3) = 1− a/2. (24.3.26)

So, if Alice measures the outcome n = 1, she will know with certainty that the state was |ψ1〉,
and if she measures n = 2, she will know that the state was definitely |ψ2〉. Alice will never

wrongly identify the state, but if instead the outcome is n = 3, then she gains no information.

To maximize her discrimination ability, Alice should choose a to be the maximum allowed,

which results in a probability a/2 = 1− 1/
√
2 ≈ 0.293 that she will be able to identify the state

with absolute certainty, no matter which it is. In exchange for this opportunity to sometimes

identify either state with certainty, the state will remain unknown if the outcome is n = 3, with

probability 1− a/2 = 1/
√
2 ≈ 0.707.

24.4 Summary of rules of quantum mechanics for open systems

In the preceding sections of this chapter, we derived rules for open quantum systems based

on models of interactions with an environment. An alternative is to treat these rules for open

systems as fundamental principles, made without reference to an environment, and comparable

to the postulates that we listed in section 3.1. For convenient reference and review, they are

collected in this short section, for the case of a Hilbert space with finite dimension.
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First, the state of an open system is specified, not by a ket, but by a density operator ρ,

which must be Hermitian, unit-trace, and positive. In other words, it must satisfy ρ† = ρ and

Tr(ρ) = 1 and 〈ψ|ρ|ψ〉 ≥ 0 for all kets |ψ〉 in the Hilbert space on which it acts. Second, a

generalized measurement corresponds to a collection of some number N (which can be arbitrarily

large) of operators Mn that satisfy

N∑

n=1

M †nMn = I. (24.4.1)

In other words, the operators En =M †nMn form a positive operator-valued measure. Third, the

possible outcomes of a generalized measurement are associated with the integers n = 1, . . . , N

that label the measurement operators. Fourth, the probability of obtaining the result n for a

generalized measurement is

P(n) = Tr
(
ρM †nMn

)
= Tr

(
ρEn

)
. (24.4.2)

Fifth, the state after the generalized measurement outcome n is given by the density operator

ρn =
MnρM

†
n

P(n) . (24.4.3)

Sixth, the evolution of the open-system state is given by a trace-preserving completely positive

dynamical map, which can be written in the form

ρ → ρ′ =
∑

n

KnρK
†
n, (24.4.4)

for some set of Kraus operators satisfying

∑

n

K†nKn = I. (24.4.5)

This evolution is unitary only in the special case that there is only one Kraus operator.

Some sources give postulates allowing generalized measurements even for closed systems,

which might be viewed as more permissive than the postulates we presented in section 3.1.

However, since any system other than the whole universe is actually an open system, in practice

this does not really allow anything new. This follows because we showed that generalized

measurements can be derived from unitary time evolution and a projective measurement after

adding an environment system to the open system being measured.

The sixth rule for open systems might be considered too vague or incomplete, since it contains

no statement about how the Kraus operators are constructed or how they are related to the

elapsed time of the evolution. This is because in general the time evolution of the density

operator of an open system is only governed by a differential equation in an approximation, if

at all. This is the subject of the next section.
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24.5 Local time evolution approximation and the Lindblad equation

How do open systems evolve in time? For a closed system, we learned in eq. (3.5.21) that the

density operator obeys a simple linear first-order differential equation, i~ρ̇ = [H, ρ], which was

derived by applying the Schrödinger equation to the states in a mixed ensemble. It would be

nice to have a similar differential equation for the density operator of an open system interacting

with an environment, but it turns out that this is possible only in an approximation. Intuitively,

the obstacle is that interactions transfer energy and information to the environment, from which

their effects can return after a non-infinitesimal time delay. Even if the combined system has

unitary time evolution, the effective dynamics of the open subsystem will not be local in time,

and so cannot be expressed using a differential equation in t with a finite number of derivatives.

Instead, ρ̇(t) can depend not just on ρ(t), but on ρ(t′) for all earlier times t′ < t.

Fortunately, in many cases the dynamics of an open system are still approximately local in

time; this is sometimes called the Markovian approximation. This will occur if the environ-

ment tends to “forget” what has happened on time scales longer than some characteristic value

τenv, for example by thermal averaging or dissipation processes. This is particularly plausible if

the environment is very large, or if parts of it with direct coupling to the open system are a small

subset of the whole. For example, the open system may emit light or vibrational quanta, which

might be unlikely to return to it within any particular time interval. The fact that some of the

energy flowing into the environment may be effectively lost forever also leads to damping of the

open system on some time scale τdamping. Also relevant are time scales of order ~/∆E, where ∆E

are energy eigenstate differences for the open system treated in isolation, which would describe

unitary time evolution of the open system if the environment were absent. Let us denote the

smallest of those by τunitary. If τenv is very short, then we can hope to describe the averaged

dynamics, for dt much larger than τenv but much smaller than τdamping and τunitary, by

ρ(t + dt) ≈ ρ(t) + dtL(ρ), (24.5.1)

where

L(ρ) = dρ/dt (24.5.2)

is called the Liouvillian. It is a superoperator map from the open system density operator to

its approximate time derivative. Our next goal is to understand its form.

The density operator ρ(t+dt) can be obtained from ρ(t) by a dynamical map. As we learned

in eq. (24.2.25), this can always be expressed in an operator-sum form with at most d2 Kraus

operators,

ρ(t+ dt) =
d2−1∑

n=0

Kn ρ(t)K
†
n, (24.5.3)
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where, for future convenience, we have chosen to start the index n from 0. To conserve proba-

bility, they must obey

d2−1∑

n=0

K†nKn = I (24.5.4)

The assumed approximation of locality in time, eq. (24.5.1), implies that ρ(t + dt) must be

linear in dt, and since it is quadratic in the Kraus operators, the latter must be quadratic in√
dt. Therefore, we can write for each n,

Kn = K(0)
n +

√
dtK(1)

n + dtK(2)
n , (24.5.5)

where we are consistently dropping contributions higher order in dt.

Now consider the limit dt = 0, which tells us that

d2−1∑

n=0

K(0)
n ρK(0)†

n = ρ (24.5.6)

for all ρ. Choosing an orthobasis |ϕi〉 for the open system, and looking at the specific case

ρ = |ϕi〉 〈ϕi|, and applying 〈ϕj| from the left and |ϕj〉 from the right, we learn that

d2−1∑

n=0

∣∣〈ϕj |K(0)
n |ϕi〉

∣∣2 = δij (i, j = 1, . . . , d2). (24.5.7)

The left side is a sum of non-negative numbers, so this is only possible if 〈ϕj|K(0)
n |ϕi〉 = 0 for each

n when i 6= j, so the matrix representations of all K
(0)
n are diagonal. Since our orthobasis choice

was arbitrary, and the only operators that are diagonal in every orthobasis are proportional to

the identity, we must have K
(0)
n = knI for each n, for some complex numbers kn, which must

then satisfy
∑

n |kn|2 = 1. Now, by doing a unitary rotation among the Kraus operators of the

form of eq. (24.2.21), we can arrange that one of the kn (let us choose n = 0) is equal to 1, and

the others vanish.

Having selected K
(0)
0 = I, and K

(0)
n = 0 for all other n, next consider the parts of eqs. (24.5.3)

and (24.5.4) proportional to
√
dt, which give, respectively,

K
(1)
0 ρ+ ρK

(1)†
0 = 0, K

(1)
0 +K

(1)†
0 = 0. (24.5.8)

It follows that K
(1)
0 is anti-Hermitian and [K

(1)
0 , ρ] = 0 for every ρ, which together imply that

K
(1)
0 = 0. So, writing K

(2)
0 = G− i

~
H , which defines Hermitian operators G and H , we have

K0 = I + dt
(
G− i

~
H
)
, (24.5.9)

Kn =
√
dtLn, (n = 1, . . . , d2 − 1). (24.5.10)
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In the last expression we have written K
(1)
n = Ln to agree with a traditional notation, and

dropped K
(2)
n since it now only contributes to eq. (24.5.3) and (24.5.4) at order (dt)3/2, due to

the absence of K
(0)
n . Plugging eqs. (24.5.9) and (24.5.10) into eq. (24.5.4) gives

I =
d2−1∑

n=0

K†nKn = I + dt

(
2G+

d2−1∑

n=1

L†nLn

)
, (24.5.11)

so that we can solve for

G = −1

2

d2−1∑

n=1

L†nLn. (24.5.12)

Therefore, using eqs. (24.5.9), (24.5.10), and (24.5.12) in eqs. (24.5.3) and then (24.5.1), we

arrive at

dρ

dt
= L(ρ) = − i

~
[H, ρ] +

d2−1∑

n=1

(
LnρL

†
n −

1

2
L†nLnρ−

1

2
ρL†nLn

)
. (24.5.13)

This is known as the Lindblad equation after Göran Lindblad; a slightly different form of it

was obtained earlier by Vittorio Gorini, Andrzej Kossakowski, and E.C. George Sudarshan. It

follows that the Liouvillian L(ρ) is linear in ρ, and traceless, so that Tr[ρ(t)] = Tr[ρ(0)] = 1.

Equation (24.5.13) is the (Markovian approximation) generalization to open quantum sys-

tems of the unitary time evolution for closed systems, eq. (3.5.21). The operators Ln are known

as Lindblad operators, or jump operators because the terms LnρL
†
n are responsible for tran-

sitions (“jumps”) in the open system that occur solely due to the influence of the environment.

The Lindblad operator terms often produce damping due to a net energy flow from the open

system to the environment, but on a much shorter time scale they can also cause an irreversible

loss of coherence among the open system states. These effects will be explained and explored in

more detail, with examples, in Chapter 25.

We can interpret H in eq. (24.5.13) as an effective Hamiltonian for the open system, although

it need not be the same as the Hamiltonian for the limit in which interactions with the environ-

ment are removed. In fact, H is not even uniquely determined by the previous discussion. As

an exercise, you can check that the Liouvillian L(ρ) is unchanged under a transformation

Ln → Ln + cnI, (24.5.14)

H → H +
i

2
~

d2−1∑

n=1

(cnL
†
n − c∗nLn), (24.5.15)

where the cn are arbitrary complex numbers. This freedom can be used to choose a representation

such that the Lindblad operators are each traceless, Tr(Ln) = 0. There is a further freedom

to do unitary rotations of the Lindblad operators among each other without changing L(ρ), as
Ln →

∑
m vnmLm, where vnm are the elements of a unitary (d2 − 1)× (d2 − 1) matrix.
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24.6 Exercises

Exercise 24.1. Consider the density matrix ρa = Trb(ρab) for subsystem a obtained by tracing

over the complementary subsystem b, as in section 24.1.

(a) Show that ρa is Hermitian, has trace 1, and is a positive operator.

(b) Show that if there is a unitary time evolution for subsystem b, then ρa is unchanged.

(c) Show that if an arbitrary projective measurement is made on subsystem b, but the results

are unknown, then ρa is unchanged.

Exercise 24.2. Prove the following claims made about dynamical maps in section 24.2:

(a) If E1 and E2 are dynamical maps with operator sum representations, then so is E2 ◦ E1 (ρ) =

E2(E1(ρ)).
(b) A dynamical map E has an inverse E−1 if and only if the map is unitary (can be defined

with a single Kraus operator).

Exercise 24.3. For an arbitrary environment density operator ρb and unitary joint-state oper-

ator U , consider the dynamical map E(ρ) = Trb[U(ρ ⊗ ρb)U †]. Show that E(ρ) can be written

in operator-sum form with d2b Kraus operators.

Exercise 24.4. An open system has two orthobasis kets |0〉 and |1〉 representing the absence

and presence of a photon respectively, as in the discussion involving eqs. (24.3.17)-(24.3.22).

Consider a generalized measurement defined by operators

M0 = |0〉 〈0| , M1 =
√
p |0〉 〈1|+

√
1− p |1〉 〈1| , (24.6.1)

which allows a photon some chance to survive the generalized measurement.

(a) Check that the corresponding POVM operators are E0 = |0〉 〈0| and E1 = |1〉 〈1|.
(b) For a general initial density matrix

(
ρ00 ρ01
ρ10 ρ11

)
, find the probabilities of the outcomes n = 0

and n = 1, and the post-measurement density operator and its entropy in each case.

Exercise 24.5. Show that the Liouvillian L(ρ) defined by eq. (24.5.13) is not changed under

the transformation of Lindblad operators in eqs. (24.5.14) and (24.5.15).

Exercise 24.6. Show that for time evolution governed by the Lindblad equation (24.5.13), the

entropy cannot decrease if the Lindblad operators are all Hermitian.
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25 Decoherence

25.1 Emergence of classical behavior

Quantum mechanics is most commonly applied to phenomena that, by the standards of everyday

experience, involve very small amounts of time, distance, energy, and angular momentum. These

processes include scattering and transitions involving electrons, photons, atoms, molecules, nu-

clei, and elementary particles. In contrast, our everyday experiences with larger objects are

well-explained using classical physics. Some aspects of this are not too hard to understand. For

example, the tiny value of ~ when expressed in macroscopic measurement units immediately im-

plies that in our daily lives we can usually ignore the position-momentum uncertainty principle,

and the discrete quantization of angular momentum.

A more subtle feature is that superposition and interference never seem to play any role in

our efforts to understand and describe our macroscopic experiences, despite being absolutely

essential and ubiquitous features of quantum mechanics. When trying to hit, catch, or throw

in baseball or cricket, it is not necessary to take into account the possibility that the ball might

be in a superposition of states that suffer visible interference. While the smallness of ~ again

plays a role, there is still something to be explained: why is it so hard to prepare a baseball in a

state where interference might become an obvious issue? Even the best pitchers in baseball and

bowlers in cricket, whatever their other formidable skills in velocity, placement, and deception,

never seem to achieve interference nodes or distinct wavepacket peaks separated on a scale of,

say, centimeters. The explanation for this is decoherence, which can be defined as the quantum

processes, due to interaction with the environment, by which certain non-classical-like coherent

superposition states of macroscopic objects become impossible, for all practical purposes.

A famous example, known even in popular culture, is the thought experiment of Schrödinger’s

cat. A cat is confined to a box which also includes a radioactive nucleus which can decay in an

infinitesimal time interval ∆t with probability Γ∆t. If the decay occurs, an apparatus within

the box kills the poor cat. As an idealization, the cat, the nucleus, and the lethal apparatus

are all treated as a single quantum system undergoing unitary time evolution. After some time

comparable to 1/Γ, which could be hours or days for a suitably chosen nucleus, it might be

supposed that the system will therefore be in a coherent superposition of states in which the

cat has significant probability amplitudes to be both alive and dead, like

e−Γt/2 |alive〉+
√
1− e−Γt |dead〉 . (25.1.1)

This supposedly continues until we open the box and observe the contents, presumably only

then collapsing the state to one in which the cat is definitely alive or dead.

557



Schrödinger presented this idealized picture as contrary to both common sense and experi-

ence. Real cats seem to always be in either a state |alive〉 or |dead〉, and never in a superposition.

However, general superpositions of states are perfectly valid and commonly encountered in quan-

tum mechanics for electrons, and even for larger composite objects like nuclei and molecules.

What makes the cat different? There are two obvious and related features to take into account.

First, the cat is composed of a much larger number of constituent particles, something like 1028

total electrons, protons, and neutrons, if it is well-fed. Surely this makes a difference. Sec-

ond, contrary to the idealized assumption, the cat (and any apparatus potent enough to kill

it) cannot be isolated in reality. Instead, the cat-apparatus-nucleus quantum system has an

enormous number of interactions with the walls of the box, and even the photons in the cosmic

microwave background radiation. These environmental interactions might be viewed as effec-

tively conducting continuous measurements on the state of the cat’s health, collapsing the state

into one in which the cat is definitely dead or alive. While the influence of the environment

is generally accepted to be crucial, the exact mechanism by which decoherence works is not

obvious. Furthermore, we ought to be able to treat the walls of the box, and any photons within

it, as also part of the quantum system undergoing unitary time evolution, although this might

be prohibitively difficult to analyze.

Despite many remaining questions, a general picture of decoherence, pioneered by H. Dieter

Zeh starting in the early 1970’s and continuing with Wojciech Zurek a decade later, can be

summarized qualitatively as follows. The dynamics of interacting subsystems entangles them,

in such a way that the density operator of any particular open system evolves towards a mixed

ensemble (not a superposition!) of special states, called robust states or classical-like states

or pointer states. For macroscopic open systems, the entanglement involves an enormous

number of degrees of freedom and is very rapid, even if the other effects of the environment

are not so dramatic. The robust states are the ones that correspond to everyday experience.

Other states, including almost all superpositions of the robust states, have such extremely low

probabilities to endure after a very short time that they may as well not exist. The interactions

of each open system with its environment selects the robust states for possible survival.

In terms of Schrödinger’s thought experiment, the Hamiltonian coupling of the cat and its

environment are supposed to pick out the states |alive〉 and |dead〉 as robust states. Instead of

eq. (25.1.1), the density operator will evolve almost instantaneously towards the time-dependent

diagonal form

ρ(t) = e−Γt |alive〉 〈alive|+ (1− e−Γt) |dead〉 〈dead| . (25.1.2)

The missing off-diagonal terms in the density operator, proportional in this case to |alive〉 〈dead|
and |dead〉 〈alive|, are called coherences, while the diagonal entries are called populations.
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The key point is that the coherences are absent here because their coefficients are presumed to

have a time dependence like e−γdecot or perhaps e−γ
2
deco

t2 , with an incredibly small decoherence

time 1/γdeco, many orders of magnitude shorter than humans (or even cats) can resolve. In

particular, 1/γdeco can easily be much shorter than the time scale 1/Γ associated with the

nuclear decay and the cat’s demise. The absence of the coherences after a very short time

asserts that, even before we open the box, for all practical purposes the cat is either dead or

alive, rather than a coherent superposition. If we re-write this density operator in any other

orthobasis, say,

1√
2

(
|alive〉+ |dead〉

)
,

1√
2

(
|alive〉 − |dead〉

)
, (25.1.3)

it is not diagonal; evidently, these states are not robust because they do not decohere. Another

way of saying the same thing is that for times much larger than 1/γdeco, the system is described

almost perfectly as in eq. (25.1.2) by a mixed ensemble of only states in which the cat is either

alive or dead, and not by the coherent superposition pure state in eq. (25.1.1),

Underpinning all of this is the idea that if we can calculate 1/γdeco, it will be shown to be

tiny because ~ is small in everyday units. However, calculating the details of this in terms of

cats is too complicated (and cat-killing experiments are unlikely to be funded anyway), so we

will resort to some much simpler models to illustrate how decoherence should work.

To explain in general terms how the coherences in a density operator could be reduced,

consider an open system a coupled to an environment b in such a way that the unitary time

evolution operators for the combined system have the special form

U =
∑

n

(
|ϕn〉 〈ϕn|

)
⊗ Vn, (25.1.4)

where Vn are unitary operators acting on the environment, and the states |ϕn〉 form an orthoba-

sis, and will turn out to be the prototypical robust states of the open system in this example.

Suppose that initially the density operator for the combined system has the form

ρcom = ρ⊗ (|0〉 〈0|) , (25.1.5)

where |0〉 is some normalized reference environment state, perhaps its ground state. Writing

ρnm = 〈ϕn|ρ|ϕm〉 for the initial density operator matrix elements of the open system, the com-

bined system density operator after the evolution is then

ρ′com = UρcomU
† =

∑

n,m

ρnm

(
|ϕn〉 〈ϕm|

)
⊗
(
Vn |0〉 〈0|V †m

)
. (25.1.6)

To find the density operator for the open system after the evolution, we trace ρ′com over the envi-

ronment subsystem using Trb
(
Vn |0〉 〈0|V †m

)
= 〈0|V †mVn|0〉. Defining new unit-norm environment
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states |χn〉 = Vn |0〉, we arrive at

ρ′ =
∑

n,m

〈χm|χn〉 ρnm |ϕn〉 〈ϕm| , (25.1.7)

so that, for each n and m,

ρ′nm = 〈χm|χn〉 ρnm. (25.1.8)

Now, the unitarity of Vn ensures that 〈χn|χn〉 = 1, so the diagonal elements ρnn of the open

system density matrix are unaffected by the evolution. However, for the off-diagonal entries,

the matrix elements 〈χm|χn〉 have magnitude less than 1 for n 6= m, and so the coherences will

be reduced in magnitude. In this example, the special set of states |ϕn〉 that interact with the

environment in the special form of eq. (25.1.4) are the ones whose populations remain intact,

while their coherences are reduced.

The previous discussion leaves unanswered the question of why the coherences should decay

exponentially (or faster) with time, rather than some more mild reduction. This is indeed the

key question to explain decoherence for any particular system. For a toy model example to

address this, consider an open system whose density operator evolves according to the Lindblad

equation (24.5.13), but with the very simple assumption that there is only one non-zero Lindblad

operator, which is proportional to the open system Hamiltonian itself, L =
√
αH , where α is a

constant with units of 1/(energy)2(time). We therefore have

dρ

dt
= − i

~
[H, ρ] + α

(
HρH − 1

2
H2ρ− 1

2
ρH2

)
. (25.1.9)

This is straightforward to evaluate in an orthobasis of energy eigenstates satisfying H |ϕn〉 =
En |ϕn〉, with the result that the density operator matrix elements ρnm = 〈ϕn|ρ|ϕm〉 satisfy

d

dt
ρnm =

[
− i
~
(En − Em)−

1

2
α(En − Em)2

]
ρnm. (25.1.10)

This is a particularly easy differential equation, with the solution

ρnm(t) = exp

([
− i
~
(En − Em)−

1

2
α(En −Em)2

]
t

)
ρnm(0). (25.1.11)

The diagonal elements (populations) with n = m are constant in time. The off-diagonal elements

(coherences) have a time-dependent phase, but more importantly their magnitudes suffer an

exponential decay with mean lifetime 2/α(En − Em)2. In this particular simple example, the

robust classical-like states that survive decoherence at late times are the energy eigenstates, but

we will soon see that this is not a general feature.
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25.2 Loss of coherence for a damped harmonic oscillator

In section 7.4, we observed that the energy eigenstates of the harmonic oscillator behave nothing

like our macroscopic experience, as their expectation values for position and momentum do not

change in time. This motivated us to introduce the quasi-classical, or coherent, states, which

behave as much as possible like classical oscillators. These are indeed the robust states called

for by the decoherence idea. Note that in this case, the robust states are not energy eigenstates.

They also do not form an orthobasis, since no two coherent states are orthogonal.

However, noting the mere existence of such states is only solving half of the problem of

classical behavior; the other half is to understand why they are inevitable for macroscopic masses

and displacements. What would happen if we were somehow able to prepare a superposition of

such states with a macroscopic position gap? How quickly does decoherence occur? Why are

non-classical-like states essentially impossible to obtain? In this section we will show firstly that

coherent states robustly survive the introduction of damping by an environment, and secondly

that these states will decohere from each other at an incredibly fast rate.

Let us take a simple model for the damped harmonic oscillator as an open system, based on

the Lindblad equation (24.5.13). To incorporate damping, we choose a single non-zero Lindblad

operator

L =
√
γa, (25.2.1)

where γ is a positive real parameter with units of 1/(time), and a is the lowering operator of

the oscillator. As we will confirm soon, this Lindblad operator evolves the open system by

continuously lowering the energy, which is transferred to the environment. The environment

therefore is effectively providing a frictional force. For the open system Hamiltonian in the

Lindblad equation, we take H = ~ω(a†a + 1/2). So, the equation governing the time evolution

of the density operator of the oscillator is

dρ

dt
= −iω

[
a†a, ρ

]
+ γ
(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
. (25.2.2)

Our first goal is to show that there are pure coherent state solutions |α(t)〉 to this equation.

Referring to the formula for coherent states, eq. (7.4.8), we therefore try

ρ = |α〉 〈α| = e−|α|
2

∞∑

n=0

∞∑

m=0

αn√
n!

α∗m√
m!
|n〉 〈m| , (25.2.3)

where α is a function of time to be determined. It is convenient to proceed by defining the

matrix elements

ρnm = 〈n|ρ|m〉 = e−|α|
2 αn√

n!

α∗m√
m!
, (25.2.4)
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so that

ρ =
∑

n,m

ρnm |n〉 〈m| . (25.2.5)

One can now compute the various pieces needed in eq. (25.2.2),

dρ

dt
=

∑

n,m

(
n

α

dα

dt
+
m

α∗
dα∗

dt
− d

dt
|α|2
)
ρnm |n〉 〈m| , (25.2.6)

a†aρ =
∑

n,m

nρnm |n〉 〈m| , (25.2.7)

ρa†a =
∑

n,m

mρnm |n〉 〈m| , (25.2.8)

aρa† =
∑

n,m

√
n
√
mρnm |n− 1〉 〈m− 1| = |α|2

∑

n,m

ρnm |n〉 〈m| , (25.2.9)

where the last equality was obtained by using
√
n
√
mρnm = |α|2ρn−1,m−1 and then relabeling

the summation indices according to n− 1→ n and m− 1→ m. Plugging eqs. (25.2.6)-(25.2.9)

into eq. (25.2.2), and collecting like terms, one finds for each n and m

[
n

(
d

dt
lnα + iω + γ/2

)
+m

(
d

dt
lnα∗ − iω + γ/2

)
− d

dt
|α|2 − γ|α|2

]
ρnm = 0. (25.2.10)

These equations have the neat common solution

α(t) = α0 exp
[
−(iω + γ/2)t

]
, (25.2.11)

where α0 is an arbitrary complex number that serves as the initial condition. Thus, a pure

coherent state remains a pure coherent state, with a simple time dependence including an

exponential damping. Note that with γ = 0, we recover the time evolution of the coherent

state found in eq. (7.4.33). Recalling from eq. (7.4.37) that |α| is proportional to the position

amplitude of the coherent state oscillation, we see that the parameter γ is associated with a

damping factor e−γt/2 in the amplitude, and therefore e−γt in the energy.

To address the question of decoherence, suppose we somehow manage to prepare a pure state

that is a superposition of two coherent states,

|ψ〉 =
1√
N

(
|α0〉+ |β0〉

)
. (25.2.12)

(Recall that coherent states are never orthogonal, so N = 2 + 2Re
(
〈β0|α0〉

)
is not equal to 2.)

The initial condition for the density operator is then

ρ(0) = |ψ〉 〈ψ| = 1

N

(
|α0〉 〈α0|+ |β0〉 〈β0|+ |α0〉 〈β0|+ |β0〉 〈α0|

)
. (25.2.13)
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We have already seen how the first two terms in this density operator evolve, so we can make

an educated guess

ρ(t) =
1

N

(
|α〉 〈α|+ |β〉 〈β|+ F (t) |α〉 〈β|+ F (t)∗ |β〉 〈α|

)
, (25.2.14)

where, as in eq. (25.2.11),

α = α0 exp
[
−(iω + γ/2)t

]
, β = β0 exp

[
−(iω + γ/2)t

]
, (25.2.15)

and the other time dependence is in the decoherence factor F (t), which remains to be found.

Plugging the guess of eq. (25.2.14) into the Lindblad equation (25.2.2), and using the same

sort of strategy as in eqs. (25.2.4)-(25.2.10), one finds success provided that

d

dt
F (t) = γ

(
−1

2
|α|2 − 1

2
|β|2 + αβ∗

)
F (t), (25.2.16)

which can be rewritten as

d

dt
ln(F ) =

(
−1

2
|α0|2 −

1

2
|β0|2 + α0β

∗
0

)
γe−γt. (25.2.17)

Integrating both sides with respect to t, then exponentiating, and imposing the initial condition

F (0) = 1, we find after rewriting the α0, β0 part slightly,

F (t) = exp
[(
−1

2
|α0 − β0|2 + iIm[α0β

∗
0 ]
)(

1− e−γt
)]
. (25.2.18)

When α0 and β0 are macroscopic and different, this decoherence factor quickly approaches 0,

eliminating the off-diagonal terms in ρ(t). Expanding in the short time limit γt≪ 1 gives

F (t) ≈ eiΩte−γdecot, (25.2.19)

where Ω = γIm(α0β
∗
0) is a mostly uninteresting phase, and

γdeco =
1

2
γ|α0 − β0|2 (25.2.20)

is the much more interesting decoherence rate.

Equation (25.2.20) shows that the environmental energy damping γ is accompanied by

a faster exponential damping of the coherences between classical-like states. Recall, from

eq. (7.4.37), that α0 is related to the position amplitude by α0 =
√

mω
2~
x0. So, writing

|α0 − β0|2 =
mω

2~
(∆x)2, (25.2.21)

we have

γdeco
γ

=
mω(∆x)2

4~
. (25.2.22)

563



This shows that the very short decoherence time 1/γdeco for macroscopic states is indeed due to

the smallness of ~. Let us put in some numbers to get an idea. Take the same undergraduate lab

oscillator discussed in section 7.4, with m = 0.2 kg and ω = 10 radians/second, and consider the

decoherence of two coherent states with peaks ∆x = 1 centimeter apart. If the energy damping

rate is a generous 1/γ = 1000 seconds, corresponding to a quite low-friction environment, then

the time scale needed for a loss of coherence is

1/γdeco ≈ 2× 10−27 seconds, (25.2.23)

which is a tiny fraction of the time needed for light to traverse a proton’s diameter.

One should certainly question whether the above estimate is accurate for a realistic case,

since the physical processes leading to damping operate on much larger time scales than the

1/γdeco that we found. Real-world macroscopic oscillators have internal structures with all

kinds of vibrational modes, and there are numerous environmental factors that contribute to

damping in different ways not captured in our simple model. However, the key conceptual result

stands: decoherence implies a ridiculously short time for a macroscopic system to become almost

perfectly described by a mixed ensemble of robust coherent states, and never a superposition of

such states subject to interference.

25.3 Measurement and decoherence: phase damping of a spin

The process of phase damping of a spin gives another instructive simple example of decoher-

ence, without appealing to the Lindblad equation approximation.

Consider an open system a consisting of a single spin with orthobasis |↑〉 and |↓〉, coupled to

an environment b with three orthobasis states labeled |0〉, |1〉, and |2〉. The environment starts

in the reference state |0〉, and it subsequently evolves according to a dynamical map defined by

a unitary operator on the combined system, with†

U
(
|↑〉 ⊗ |0〉

)
=

√
1− p |↑〉 ⊗ |0〉+√p |↑〉 ⊗ |1〉 , (25.3.1)

U
(
|↓〉 ⊗ |0〉

)
=

√
1− p |↓〉 ⊗ |0〉+√p |↓〉 ⊗ |2〉 , (25.3.2)

where 0 < p < 1. This map has the property that it does not change the spin at all, but instead

has some probability amplitude to move the environment to a different state that is correlated

with the spin. If the spin is up, then the environment may be changed to the state |1〉, but if the
spin is down, then it may be changed to the state |2〉 instead. In this way, the dynamical map can

†Equations (25.3.1)-(25.3.2) only explicitly define U acting on 2 of the 6 orthobasis states for the combined
system, but Theorem 24.2.2 assures us that, since it preserves inner products, it can be completed to a unitary
operator on the whole combined Hilbert space. We will do this soon.
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be thought of as making a sort of imperfect measurement on the open system, by entangling it

with the environment. An observer who projectively measures the post-map environment state

will have completed a generalized measurement, as discussed in section 24.3. If the observer

finds it to be |1〉, the open system must be in the spin-up state, and if it is |2〉, it is spin-down.
If found to be |0〉, the spin will remain unknown.

The dynamical map on the open system induced by U can be written in operator-sum form

in terms of three Kraus operators K0, K1, and K2, one for each of the environment orthobasis

states |0〉, |1〉, and |2〉. To construct them, we compute their actions on the two open system

orthobasis kets using eq. (24.2.4),

K0 |↑〉 = 〈0| U
(
|↑〉 ⊗ |0〉

)
=
√

1− p |↑〉 , (25.3.3)

K0 |↓〉 = 〈0| U
(
|↓〉 ⊗ |0〉

)
=
√

1− p |↓〉 , (25.3.4)

K1 |↑〉 = 〈1| U
(
|↑〉 ⊗ |0〉

)
=
√
p |↑〉 , (25.3.5)

K1 |↓〉 = 〈1| U
(
|↓〉 ⊗ |0〉

)
= 0, (25.3.6)

K2 |↑〉 = 〈2| U
(
|↑〉 ⊗ |0〉

)
= 0, (25.3.7)

K2 |↓〉 = 〈2| U
(
|↓〉 ⊗ |0〉

)
=
√
p |↓〉 , (25.3.8)

from which we learn

K0 =
√

1− pI, K1 =
√
p |↑〉 〈↑| , K2 =

√
p |↓〉 〈↓| . (25.3.9)

These satisfy K†0K0+K
†
1K1+K

†
2K2 = I as required, and the dynamical map is E(ρ) = K0ρK

†
0+

K1ρK
†
1 +K2ρK

†
2. Given an initial density matrix for the spin,

ρ =

(
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
, (25.3.10)

the result of the dynamical map is found to be

E(ρ) =

(
ρ↑↑ (1− p)ρ↑↓

(1− p)ρ↓↑ ρ↓↓

)
. (25.3.11)

In words, the spin populations (the diagonal entries) are unchanged, while the spin coherences

in this basis are reduced by a factor 1− p.
So far we have not associated the dynamical map with a specific elapsed time interval. This

can be remedied by treating the dynamical map as corresponding to an infinitesimal time ∆t,

and then repeating the process a large number of times N to build up the result for a finite

time t = N∆t. However, there are two ways to do this, which lead to quite different outcomes.

For the first way, which we will call Version 1, we can suppose that each iteration starts from
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the combined system state left over from the previous iteration. Since the environment is left

in a different state than it started, this means that each dynamical map is actually a slightly

different one than its predecessor. The second way, Version 2, proceeds by assuming that, after

each iteration, the environment state is restored to |0〉, perhaps by some relaxation process not

captured in our simple model. For example, the states |1〉 and |2〉 might quickly turn back into

|0〉 by emitting a photon that always leaves the scene without further effect. In that case, we

just use the same map eq. (25.3.11) over and over.‡ Let us see what these two versions predict.

To implement Version 1, the simplest way is to go back to the unitary map U defined in

eq. (25.3.1)-(25.3.2), and complete it to the whole combined Hilbert space. Working in a matrix

representation with the orthobasis |↑〉 ⊗ |0〉, |↑〉 ⊗ |1〉, |↓〉 ⊗ |0〉, |↓〉 ⊗ |2〉, |↑〉 ⊗ |2〉, |↓〉 ⊗ |1〉, in
that order, you can check that the map is implemented by the unitary matrix

U =




√
1− p −√p 0 0 0 0√
p

√
1− p 0 0 0 0

0 0
√
1− p −√p 0 0

0 0
√
p

√
1− p 0 0

0 0 0 0 1 0
0 0 0 0 0 1




. (25.3.12)

To realize this as an exponential of infinitesimal time maps, we invent a Hermitian Hamiltonian

H = ~ω




0 −i 0 0 0 0

i 0 0 0 0 0

0 0 0 −i 0 0

0 0 i 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




, (25.3.13)

so that U = exp(−iHt/~), where we can now identify

√
p = sin(ωt),

√
1− p = cos(ωt). (25.3.14)

In this interpretation, eq. (25.3.11) becomes

E(ρ) =

(
ρ↑↑ cos2(ωt) ρ↑↓

cos2(ωt) ρ↓↑ ρ↓↓

)
, (Version 1), (25.3.15)

where cos2(ωt) has replaced 1 − p as the parameterization of the dynamical map. This is the

result if the environment evolves continuously without being reset.

‡Note that the treatment of the decaying atomic state example surrounding eqs. (24.2.18)-(24.2.20) corre-
sponds to Version 2 here, for the good reason explained there that the outgoing photon should not be relevant
to the atom. This would be revealed in a more detailed treatment that took into account the photon kinematics.
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To implement Version 2, we take p = Γ∆t = Γt/N in the infinitesimal map, and then use

limN→∞(1− Γt/N)N = e−Γt to write the N -fold iteration of eq. (25.3.11) as

E(ρ) =

(
ρ↑↑ e−Γt ρ↑↓

e−Γt ρ↓↑ ρ↓↓

)
, (Version 2). (25.3.16)

This is the result if the environment is continually being restored to the reference state |0〉.
Both versions lead to decoherence in the preferred basis of robust states |↑〉 and |↓〉, but in

different ways. In Version 1, the decoherence is quadratic in t for short times, with 1 − p ≈
1− ω2t2/2, and becomes complete at time t = π/2ω. However, the density operator is periodic,

and the coherences are restored at regular time intervals. In Version 2, the decoherence is

linear in t for short times, but is monotonic, irreversible, and complete for long times. This

irreversibility can be viewed as due to the fact that the information flowing to the environment

is eliminated by the resetting of the environment state, so that any coherence present in the

initial spin state will be lost forever. In both versions, after the dynamical map has taken place,

the completion of a generalized measurement by projectively measuring the environment may

provide some information about the open system state. The probability that the spin state

will be successfully measured is equal to p, and so is maximized if p = 1, corresponding to

complete decoherence. Both versions are only simplified models for how an environment will

cause decoherence of a spin state, but in a realistic scenario there will almost always be some

irreversible component to the loss of coherence. In the rapidly growing enterprise of quantum

information, one often seeks practical ways to minimize this.

25.4 Decoherence for a spin in an exactly solvable model

In the example of decoherence of a damped harmonic oscillatorin section 25.2, we used the

Lindblad equation to model the interaction with the environment. However, the Lindblad

equation is an approximation, so one might have residual doubts about the results obtained. In

the case of phase damping of a spin in section 25.3, we studied two versions. In the first version,

an exact unitary time evolution of the combined system resulted in complete decoherence, but

this was temporary and the coherences were restored at regular intervals. The second version

resulted in permanent decoherence at late times, but at the cost of appealing to a non-unitary

reset of the environment state.

In this section we will study a slightly more complicated model† for decoherence of a spin,

which can be solved exactly and leads to effectively complete decoherence at late times in a

preferred basis of robust states, despite having quasi-periodic time-dependence. Since we can

†W.H. Zurek, Phys. Rev. D 26, 1862, (1982).
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solve it exactly, we will not have to use the Markovian approximation of local time dependence

for the open system, or appeal to non-unitary time evolution in the environment.

The open system of interest will consist of a single spin with orthobasis |↑〉, |↓〉, which will

turn out to be the robust states. It interacts with an environment consisting of a large number

N of spins, each with orthobasis |↑〉k, |↓〉k for k = 1, . . . , N . The Hamiltonian is taken to be

H = σz ⊗Henv, (25.4.1)

where σz acts on the open-system spin, and the environment part of the Hamiltonian is

Henv =
~

2

N∑

k=1

ωkσ
(k)
z , (25.4.2)

where σ
(k)
z acts on the environment spin k, with coupling constants ωk that have units of angular

frequency. Since H is diagonal acting on each spin in our chosen orthobasis, it will be simple to

exponentiate.

We start at time t = 0 in a product density operator for the combined system,

ρcom(0) = ρ(0)⊗ |0〉 〈0| , (25.4.3)

where the initial environment state is itself a product state,

|0〉 =
N⊗

k=1

(
αk |↑〉k + βk |↓〉k

)
, (25.4.4)

with |αk|2 + |βk|2 = 1 for each k, and we write the initial open system density operator as

ρ(0) = ρ↑↑ |↑〉 〈↑|+ ρ↑↓ |↑〉 〈↓|+ ρ↓↑ |↓〉 〈↑|+ ρ↓↓ |↓〉 〈↓| . (25.4.5)

Now, using U = e−iHt/~, we obtain the time evolutions

U
(
|↑〉 ⊗ |0〉

)
= |↑〉 ⊗ |χ+〉 , U

(
|↓〉 ⊗ |0〉

)
= |↓〉 ⊗ |χ−〉 , (25.4.6)

where the unit-norm environment states correlated with the open system spins are

|χ±〉 =

n⊗

k=1

(
αke

±iωkt/2 |↑〉k + βke
∓iωkt/2 |↓〉k

)
. (25.4.7)

The combined system density operator at time t is therefore

ρcom(t) = Uρcom(0)U
† = ρ↑↑ |↑〉 〈↑| ⊗ |χ+〉 〈χ+|+ ρ↑↓ |↑〉 〈↓| ⊗ |χ+〉 〈χ−|+

ρ↓↑ |↓〉 〈↑| ⊗ |χ−〉 〈χ+|+ ρ↓↓ |↓〉 〈↓| ⊗ |χ−〉 〈χ−| . (25.4.8)
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To obtain the reduced density operator for the open system, we need to trace ρcom over all of

the environment spins. This can be done easily by noticing that

Tr
(
|χ+〉 〈χ+|

)
= 〈χ+|χ+〉 = 1, (25.4.9)

Tr
(
|χ−〉 〈χ−|

)
= 〈χ−|χ−〉 = 1, (25.4.10)

Tr
(
|χ+〉 〈χ−|

)
= 〈χ−|χ+〉 = F (t), (25.4.11)

where

F (t) =
N∏

k=1

(
|αk|2eiωkt + |βk|2e−iωkt

)
, (25.4.12)

which has initial value F (0) = 1. The resulting density operator, in the matrix representation

in the |↑〉 , |↓〉 basis, is

ρ(t) =

(
ρ↑↑ F (t)ρ↑↓

F (t)∗ρ↓↑ ρ↓↓

)
. (25.4.13)

We therefore recognize that F (t) is the decoherence factor responsible for suppressing the co-

herences of the robust states |↑〉 and |↓〉. Using the normalization condition |αk|2 + |βk|2 = 1,

you can show from eq. (25.4.12) that

|F (t)| =

N∏

k=1

√
1− 4|αk|2|βk|2 sin2(ωkt), (25.4.14)

which is a product of N factors, each between 0 and 1. If the frequencies ωk are not all

commensurate, then |F (t)| < 1 for all t > 0. However, because it is a product of periodic

functions, it is quasi-periodic for any finite N , which means that it will return arbitrarily close

to 1 for some sufficiently large t. This property is called‡ Poincaré recurrence.

However, the Poincaré recurrence time t to have |F (t)| > 1−ǫ for any fixed ǫ grows extremely

quickly with N . So, for a sufficiently large environment with slightly different ωk values, it will

take many orders of magnitude longer than the age of the universe, and therefore has no practical

significance. For large N , we expect that the suppression of coherences is otherwise extremely

efficient. An analysis by W.H. Zurek, F.M. Cucchietti, and J.P. Paz, Phys. Rev. A 72, 052113,

‡The recurrence property was originally pointed out as a general feature of Hamiltonian classical physics by
Henri Poincaré in 1890. Any dynamical system that preserves phase-space volumes and has only bounded orbits
will return arbitrarily close to its initial conditions, with a recurrence time that is finite, but quite possibly
irrelevantly large, especially if the number of degrees of freedom is more than a few. For example, if you opened
a bottle of classical gas molecules inside a sealed room, the molecules will in principle eventually all return to
the open bottle, but obviously it is pointless to try to observe this phenomenon. For every practical purpose, it
cannot happen, because the recurrence time scale is much too large.
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arXiv:quant-ph/0312207, argues that for large N and ωk distributed randomly and with a finite

standard deviation, for almost all t one will have Gaussian decoherence,

|F (t)| ≈ e−γ
2
deco

t2 , γ2deco = 2
N∑

k=1

|αk|2|βk|2ω2
k. (25.4.15)

Indeed, this has the same expansion for small t as eq. (25.4.14). We conclude that the form of

the environmental interactions selects |↑〉 and |↓〉 as robust states, and for large N ensures that

at late times the open system will be described by a mixed ensemble of them, rather than a

coherent superposition.

25.5 Exercises

Exercise 25.1. A spin-1/2 system obeys the Lindblad equation (24.5.13) with H = ωSz and

a single jump operator L =
√
γSz/~, where ω and γ are constants with units 1/(time). This

could be interpreted as a coupling of the spin to a magnetic field pointing in the ẑ direction,

which also acts as an environment that monitors the spin.

(a) Find the differential equations for the four elements of the 2 × 2 density matrix, and solve

for them in terms of their initial conditions. What are the robust states that always survive

decoherence at late times?

(b) Suppose that the system starts in the pure state (4 |↑〉+ |↓〉)/
√
5. Write the density matrix

in the |↑〉 , |↓〉 basis as a function of t. Use it to find 〈Sz〉 and 〈Sx〉 as functions of time.

(c) Express the density matrix solution from the previous part in the diagonal form ρ(t) =

p1 |ψ1〉 〈ψ1|+ p2 |ψ2〉 〈ψ2|, identifying the eigenvalues p1, p2, and eigenvectors |ψ1〉, |ψ2〉.

Exercise 25.2. A (very) simplified model for quantum Brownian motion of a particle with mass

m moving in one dimension uses a single Lindblad operator L =
√
2γX/λth, where X is the

position operator, γ is the dissipation rate characterizing energy exchange with the environment

at temperature T , and λth = ~/
√
2mkBT is the thermal de Broglie wavelength. Solve the

Lindblad equation (24.5.13), ignoring the H term for extra simplicity, in position space in terms

of ρ(x, x′, t) = 〈x|ρ(t)|x′〉, to show that the exponential decay of spatial coherences is

ρ(x, x′, t) = e−γdecotρ(x, x′, 0), (25.5.1)

where the ratio of the decoherence rate for wavefunction separations |x− x′| to the dissipation

rate is

γdeco
γ

=
(x− x′)2
λ2th

=
2mkBT (x− x′)2

~2
. (25.5.2)

The diagonal part of the density matrix with x = x′ is unaffected. What is γdeco/γ for x− x′ =
10−9 meters, for a nanoparticle of mass m = 10−18 grams at room temperature?
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26 Invitation to quantum information

26.1 Qubits and the Bloch ball

In this chapter, we will briefly introduce some of the basic concepts of quantum information

theory. This is an exciting and rapidly developing field, with the potential to revolutionize how

computations are done and what they can accomplish. However, the practical realization of

quantum computations faces significant challenges. Although some simple quantum computers

have been built, it is not clear at present which of many types of physical implementations will

scale in a useful way. Accordingly, our scope will be limited to theoretical considerations, which

represent an idealized limit for what might be attainable in the real world. We will avoid some

of the specialized terminology and tools that are very useful in quantum information theory,

including quantum circuit diagrams. There are many references that treat the subject in much

more depth and detail, including the free lecture notes of John Preskill, and the book Quantum

Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang.

In classical information theory, the basic unit of information is a bit, which can be either 0

or 1, and can be thought of as the answer to a single yes/no question. To encode or process

information, one can use a register, which is an ordered collection of N bits. Since each bit

has two possible values, there are 2N possible classical states for the register. The binary

representation of the register is an integer n, in the range from 0 to 2N − 1. Thus, we can write

n = (01011010 · · ·1) (26.1.1)

to express the fact that the classical bit register can be used to store or transmit the information

corresponding to n. Classical computations consist of operations on the register to change its

value in some desired way.

The analogous basic unit of quantum information is a quantum bit, or qubit, a system with

two orthobasis states. Physically, a qubit could be the spin state of an electron or nucleus, the

polarization state of a photon or electromagnetic field mode in a cavity, a pair of energy levels

for a trapped ion or a neutral atom, a spin or charge state of a semiconductor quantum dot, or

the state of a superconducting circuit. In the quantum information context it is traditional to

label the orthobasis states as |0〉 and |1〉, rather than, say, |↑〉 and |↓〉 in the case of a spin-1/2

system. The most general pure state of a qubit is

|ψ〉 = a |0〉+ b |1〉 , (26.1.2)

where a and b are two complex numbers. Because the norm of the state has no physical signifi-

cance, we can impose the restriction |a|2+ |b|2 = 1, eliminating one real degree of freedom. The
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global phase is also not physical, eliminating a second real degree of freedom. Therefore, the

physical information in a qubit amounts to one complex number, or two real numbers.

However, measurements on a quantum state can only extract partial information about it.

For a single qubit, the most general observable can only have two possible results, since that is the

dimension of the state space. For example, if the observable is σz, the measurement will project

onto the basis vectors |0〉 and |1〉. For a general qubit state a |0〉 + b |1〉, the outcome of this

measurement is not deterministic, with probabilities |a|2 and |b|2 for the two possible outcomes.

Furthermore, the act of measurement collapses the qubit to one of |0〉 or |1〉, permanently erasing

some of the information it contained, as more measurements will reveal nothing about what it

was initially. To do better, it is necessary to devise measurements that act on multiple qubits

in a carefully chosen way, but even this can only determine some of the information contained

in the quantum state. Much of quantum information theory amounts to extracting a desired

subset of information from multiple entangled qubits.

A qubit will certainly interact with its environment. Sometimes this is what we want,

as in planned operations such as quantum computations, or measurements to reveal partial

information about its state. However, interactions with the environment can also be a curse

that we want to suppress as much as possible. The environment can induce decoherence of

the qubit, corrupting it in a way analogous to noisy errors in classical computations. In both

cases, treating the qubit as an open system by tracing over its environment means that it can

be described by a density matrix, as explained in section 24.1.

The density matrix for a qubit in the |0〉 , |1〉 basis is a 2× 2 Hermitian matrix with trace 1,

for which the most general form is

ρ =
1

2

(
1 + b3 b1 − ib2
b1 + ib2 1− b3

)
, (26.1.3)

for some real numbers b1, b2, and b3. By constructing the vector ~b = b1x̂ + b2ŷ + b3ẑ, we can

rewrite the density matrix as

ρ =
1

2

(
I +~b · σ

)
, (26.1.4)

where σ = σxx̂+ σy ŷ + σz ẑ is the vector of Pauli matrices. The eigenvalues of ρ are

p± =
1

2

(
1±

√
b21 + b22 + b23

)
=

1

2

(
1± |~b|

)
. (26.1.5)

As we learned in section 3.5, p+ and p− can be interpreted as the mixed ensemble probabilities

for the orthobasis states consisting of the eigenvectors of ρ. As probabilities, they must be in

the range from 0 to 1 inclusive, so ~b must be a vector with length |~b| ≤ 1.
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Figure 26.1.1: The entanglement entropy σ = −p+ log(p+)−
p− log(p−) for the density matrix of a qubit, as a function of
the larger eigenvalue p+. The normalization of σ is fixed here
by using logarithms base 2. The entropy is maximum for the
completely random ensemble with p+ = 1/2 and minimum for
pure states with p+ = 1, decreasing monotonically for larger
information content.

The vector ~b that specifies the density matrix of a qubit is called its Bloch vector, and

it lies in the Bloch ball of radius 1, both named for Felix Bloch. In the case that ~b is a unit

vector, lying anywhere on the spherical surface of the Bloch ball, the qubit is in a pure state. A

complete specification of such a pure state with p+ = 1 and p− = 0 requires the two spherical

coordinate direction angles (θb, φb) of the Bloch vector, corresponding to the two real degrees of

freedom mentioned above. The pure state is the eigenstate of ~b · σ with eigenvalue 1,

|ψ〉 = cos(θb/2) |0〉+ eiφb sin(θb/2) |1〉 . (26.1.6)

To specify a mixed state of the qubit requires not just the direction but the length |~b|. The

unique density matrix for the completely random ensemble has ~b = 0, the point at the center of

the Bloch ball, with p+ = p− = 1/2.

The information content in a qubit can be measured by the von Neumann entropy

σ = −p+ log(p+)− p− log(p−), (26.1.7)

as defined in eq. (3.5.16), which we revisited as entanglement entropy in the context of bipartite

systems in eq. (24.1.13). In eq. (26.1.7), we have normalized σ by using logarithms base 2. If the

qubit’s density matrix is that of a completely random ensemble, so that we have no information

about its state, then the entropy is −2(1/2) log(1/2) = 1. At the other extreme, if the qubit’s

state is perfectly known, so that the information is maximized, then p+ = 1 and p− = 0, and

the entropy vanishes. Figure 26.1.1 shows how σ depends on p+, illustrating that the entropy

decreases monotonically with more information content.

26.2 Quantum registers and parallelism

A register of N qubits is a tensor product state of the form

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 = |ψ1ψ2 · · ·ψN 〉 . (26.2.1)
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The register has a canonical orthobasis of unentangled states of the form, for example,

|n〉 = |01011010 · · ·1〉 , (26.2.2)

where n is a convenient integer label for the binary representation. This means that the complete

information about the state of the register can be specified in terms of 2N complex numbers

coefficients cn, as

|Ψ〉 =
2N−1∑

n=0

cn |n〉 . (26.2.3)

The norm of |Ψ〉 has no physical significance, and can be set to 1 by requiring
∑

n |cn|2 = 1,

eliminating one real degree of freedom. The global phase of |Ψ〉 is also not observable, eliminating

another real degree of freedom (say, the phase of one of the non-zero cn). This leaves 2N − 1

complex numbers to completely specify the state of the register.

There are two general types of things that we can do with a register of qubits. First, we can

apply a unitary transformation to it, which is equivalent to evolving it in time with some appro-

priate Hamiltonian, as we learned in section 3.4. However, in theoretical quantum computation

studies, one often does not bother to specify either the elapsed time or the Hamiltonian. Instead,

one simply assumes that any linear unitary operation on the qubit register is allowed, and can

be realized somehow. The corresponding transformation is called a quantum gate, by analogy

with logic gates in ordinary computation. The simplest gates operate on only one or two qubits

at a time, and more complicated gates can be constructed out of simpler ones. Since unitary

transformations are invertible, the information contained in the register can be recovered and is

not changed. The second type of thing that one can do to a register is to conduct measurements

on it to find out partial information about its state, for example to read a message or to learn

something about the result of a computation. Measurements collapse the state, so some of the

information that had been present in the register will necessarily be destroyed.

A first clue as to the power of quantum information over classical information is the enormous

difference in information content. As we have just seen, a quantum register of N qubits stores

2N −1 continuous complex numbers worth of information, while the classical N bit register only

stores an integer in the range from 0 to 2N−1, equivalent to the responses to N yes/no questions.

The possibility of entanglement of the qubits in the register is a big part of the quantum

advantage, as most of the states with more than one non-zero coefficient cn are entangled states.

Entanglement is not just a puzzling phenomenon to be understood, but the key resource behind

much of quantum information and computing capabilities.

To see the benefit of entanglement, consider a function f , which maps an integer n in the

range from 0 to 2N − 1 to another integer f(n) in the range from 0 to 2M − 1. The numbers n

574



and f(n) can each be given a binary representation in an N -bit andM-bit register, respectively.

If we want to evaluate all of the values of the function f , we would need to do the classical

computation 2N times, one for each possible value of n. Quantum computation provides a

powerful alternative. Consider a tensor product of an N -qubit register with anM-qubit register,

and the map Uf defined by

Uf

(
|n〉 ⊗ |m〉

)
= |n〉 ⊗ |m+ f(n)〉 , (26.2.4)

where the sum m + f(n) is taken modulo 2M . Since the states labeled |n〉 ⊗ |m〉 form an

orthobasis, by linearity this completely specifies the map for any state of the combined system.

It is also a very short exercise to show that this map is unitary.

Now we apply Uf to a particular useful choice. For each qubit, define the orthobasis† of

eigenstates of σx,

|+〉 = 1√
2

(
|0〉+ |1〉

)
, |−〉 = 1√

2

(
|0〉 − |1〉

)
. (26.2.5)

and construct from |+〉 the N -qubit register state |++ · · ·+〉 = |+〉⊗|+〉⊗· · ·⊗|+〉. By expanding

the tensor product, we find

|++ · · ·+〉 =
1√
2N

2N−1∑

n=0

|n〉 . (26.2.6)

This is a very useful state, as it is an equal-weight superposition of all 2N canonical basis states

of the N -qubit register. By linearity, the map defined by eq.(26.2.4) acts according to

Uf

(
|++ · · ·+〉 ⊗ |m〉

)
=

1√
2N

2N−1∑

n=0

|n〉 ⊗ |m+ f(n)〉 . (26.2.7)

For each m, this single state is a superposition containing information about all of the results

f(n) for every n. It does this by entangling the information for f(n) with the information for n.

The point is that, in principle, we can use a single operation to perform the computational task

simultaneously for all of the different n, which is 2N computations at once. This is not possible

in classical computations, except by duplicating the hardware or by extending the computation

time, which quickly becomes impractical for increasing N . This beautiful aspect of quantum

information is called parallelism.

However, for parallelism to be useful it is not enough to perform the calculation; it is also

necessary to find a way to extract information from the state. Although quantum registers

†Some jargon: in quantum information and computing, the unitary transformation between the {|0〉 , |1〉} and
{|+〉 , |−〉} orthobases is called the Hadamard transformation or Hadamard gate, and is usually denoted H

(not to be confused with a Hamiltonian). It obeys H = H−1 = H† =
1√
2

(
1 1
1 −1

)
in either basis.
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can store and process vastly more information than classical registers, only a subset of the

information can be extracted through measurement. For example, one might gain information

about f(n) for some particular n by conducting a measurement that projects onto the input

register state |n〉. But this collapses the state, permanently erasing all of the information about

f(n) for other values of n. Fortunately, some global information about the function (that is,

information that depends on the values of f(n) for multiple different inputs n) can be extracted

by making further use of superposition and devising measurements that are cleverer than just

projecting onto |n〉.
To illustrate how this might work in a simple example, consider the following problem in

quantum computation, due to Ethan Bernstein and Umesh Vazirani as a variation on earlier

problems proposed and solved by David Deutsch and Richard Jozsa. To make things simple,

suppose that the result for the function f(n) is either 0 or 1, so that the second register in the

discussion above hasM = 1. Furthermore, suppose the function f(n) is not known, but is coded

into the unitary operation Uf , and is asserted to be of the form

f(n) = a · n (mod 2), (26.2.8)

for some unknown integer a in the same domain as n, from 0 to 2N −1. The dot notation means

a · n ≡
N∑

k=1

aknk, (26.2.9)

where (a1a2 . . . aN ) and (n1n2 . . . nN ) are the binary representations of the integers a and n, with

each ak and nk equal to 0 or 1. We would like to determine what a is. In classical information

theory, we would need N evaluations of f(n) in order to determine the N bits ak. However, using

quantum mechanics, the problem can be solved using only one operation of Uf on a cleverly

chosen input state, followed by one measurement.

To see how it works, let us first remark on a useful change of basis. The original canonical

basis of N -qubit register states, based on |0〉 and |1〉 for the individual qubits, is

|n〉 = |n1n2 · · ·nN〉 , (each nk = 0 or 1). (26.2.10)

Now, using the orthobasis |+〉, |−〉 for each qubit, we can construct another canonical basis for

the N -qubit states,

|s̃〉 = |s̃1s̃2 · · · s̃N 〉 , (each s̃k = + or −). (26.2.11)

Expanding the implicit tensor product gives the relation between the two orthobases,

|s̃〉 = |s̃1s̃2 · · · s̃N〉 =
1√
2N

2N−1∑

n=0

(−1)s·n |n〉 , (26.2.12)
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where the dot notation means

s · n ≡
N∑

k=1

sknk, where sk =

{
0 if s̃k = +,

1 if s̃k = −.
(26.2.13)

Note that eq. (26.2.6) was a special case of this, in which all s̃k = +, so that s · n = 0 for all n.

Conversely, by taking the real inner product 〈n|s̃〉 = 〈s̃|n〉, we find

|n〉 =
1√
2N

∑

s̃k=±
(−1)s·n |s̃〉 . (26.2.14)

To solve the Bernstein–Vazirani problem, we start with the state |++ · · ·+〉⊗ |−〉 and act on

it with the unitary operator Uf defined as in eq. (26.2.4). The result, using eq. (26.2.7), is

Uf

(
|++ · · ·+〉 ⊗ |−〉

)
=

1√
2N+1

2N−1∑

k=0

|n〉 ⊗
(
|f(n)〉 − |f(n) + 1〉

)
. (26.2.15)

Recall that the addition in the last ket label is taken mod 2. It follows that |f(n)〉−|f(n) + 1〉 =
(−1)f(n)

(
|0〉 − |1〉

)
= (−1)a·n

(
|0〉 − |1〉

)
, and therefore

Uf

(
|++ · · ·+〉 ⊗ |−〉

)
=

1√
2N

2N−1∑

k=0

(−1)a·n |n〉 ⊗ |−〉 . (26.2.16)

Using eq. (26.2.12), this can be rewritten as simply

Uf

(
|++ · · ·+〉 ⊗ |−〉

)
= |ã1ã2 · · · ãN〉 ⊗ |−〉 , (26.2.17)

with

ãk =

{
+ if ak = 0,

− if ak = 1.
(26.2.18)

Now we conduct a measurement by projecting the state onto the |s̃〉 basis, using the observable

Q =

(∑

s̃k=±
s |s̃〉 〈s̃|

)
⊗ I. (26.2.19)

This solves the problem, since exactly one of the |s̃〉 is |ã1ã2 · · · ãN 〉. With probability 1, the

result of the measurement of Q on the state Uf (|++ · · ·+〉 ⊗ |−〉) will be the number a.

As promised, quantum information methods solve the Bernstein–Vazirani problem with only

one unitary transformation and one measurement, a task that would take N evaluations of

f(n) with classical computation methods. This is not necessarily very impressive, as doing 1

computation with N + 1 qubits is not obviously easier (with present technology) than doing

N classical computations on N bits. However, it shows the general principle that quantum
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parallelism provides advantages. Although it is beyond our scope to show here, there are some

computation problems that are believed to be not feasible in practical terms using classical

methods, but become easy (in principle) by exploiting quantum parallelism in more sophisticated

ways that exploit entanglement and superposition.

The most famous example is Peter Shor’s 1994 breakthrough quantum computing algorithm

for factoring an integer n as a product of primes. The reason for its fame is that it cracks

the most popular modern public-key encryption schemes, with profound implications for human

events far beyond mere scientific curiosity. In these schemes, anyone can encrypt a message

using a public key that depends on some very large integer n, but to decrypt and read the

message one must know the prime factorization of n, which is not publicly provided. Thus, the

security of the code relies on the widely held, but unproved, belief that if n has more than a few

hundred digits, prime factorization is a hard problem for classical computing,‡ with a computa-

tion time that grows faster than any polynomial in the number of bits of n. The running time

for the best known algorithm (the general number field sieve) scales for large n approximately

like exp([(64/9)(logn)(log log n)2]1/3). In contrast, Shor’s factoring algorithm on a quantum

computer should have a running time that scales like only (log n)2(log log n)(log log log n). The

quantum algorithm is not deterministic, and gives the answer only with high probability rather

than unit probability, but checking a candidate factorization is trivial in terms of computation

time, as it requires only one multiplication. As of this writing, the immediate implications

of Shor’s factoring algorithm are only academic, since implementation of it for large n on a

quantum computer is not feasible yet,§ for mundane practical reasons. However, those with

important secrets to keep should not bet on this remaining true forever.

Shor’s factoring algorithm, and algorithms for many other problems that are classically hard,

makes use of the quantum Fourier transform, a unitary map defined by

UFT |n〉 =
1√
2N

2N−1∑

k=0

exp
(
2πink/2N

)
|k〉 (26.2.20)

This provides a change of basis that is useful for parallelizing calculations and extracting relevant

information through measurement. It is crucial that there exists an efficient way of implementing

the quantum Fourier transform as a subroutine acting on qubit registers. The factoring problem

is a special case of a more general type of problem called the hidden subgroup problem, which

contains many other interesting and useful examples that can be attacked in similar ways by

quantum computing. An example of a completely different type of problem is Grover’s search

algorithm, discovered by Lov Grover in 1996, which uses quantum parallelism to give a quadratic

‡At least, this is true for publicly known classical algorithms.
§At least, this is true for publicly known quantum computing hardware.
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speed improvement over classical search methods. It is also worth mentioning that quantum

computation may be the natural way to attack difficult quantum mechanics problems.

26.3 Sending information using entanglement: teleportation and dense
coding

Transmission of information using classical bits is a well-exploited feature of modern life, under-

lying much familiar technology. An electromagnetic wave signal can be modulated in various

patterns to represent the 0’s and 1’s in a register. In quantum information, the problem is more

subtle, since even a single qubit contains a continuum of information.

Let us establish some notation before continuing. First, the Pauli matrices acting on qubits

will occur often, and position operators will not appear at all, so throughout the rest of this

chapter we will follow a common practice in the quantum information literature by writing

X ≡ σx, Y ≡ σy, Z ≡ σz , (26.3.1)

so that Z |0〉 = |0〉 and Z |1〉 = − |1〉, and X |0〉 = |1〉 and X |1〉 = |0〉, and Y |0〉 = i |1〉 and
Y |1〉 = −i |0〉. When there is more than one qubit, a subscript on X , Y , or Z may be used

to indicate which qubit is being acted on. The simplest cases will involve entanglement of two

qubits, like the one familiar to Alice and Bob from the Einstein–Podolsky–Rosen and Bohm

problem in section 14.1. Let us define four maximally entangled states of a 2-qubit system,

|φ±〉 =
1√
2

(
|00〉 ± |11〉

)
, (26.3.2)

|ψ±〉 =
1√
2

(
|01〉 ± |10〉

)
. (26.3.3)

These are called Bell states or EPRB states. In many, but not all, cases of interest, the two

qubits are spatially separated, after which they cannot be directly accessed simultaneously by

a single observer. If we identify |0〉 and |1〉 with spin-up and spin-down respectively, then the

state featured in the EPRB discussion in section 14.1 was |ψ−〉 in the present notation, but the

problem could have been equally well formulated in terms of any one of the other Bell states

instead. Note that |φ+〉, |φ−〉, |ψ+〉, |ψ−〉 form a complete orthobasis for the two-qubit system,

and the four unentangled states |00〉, |01〉, |10〉, and |11〉 form another orthobasis.

There is a very useful measurement that projects any 2-qubit state onto the four Bell states.

The corresponding observable may be defined explicitly as

Q = |φ+〉 〈φ+|+ 2 |φ−〉 〈φ−|+ 3 |ψ+〉 〈ψ+|+ 4 |ψ−〉 〈ψ−| , (26.3.4)

with possible outcomes equal to the four eigenvalues 1, 2, 3, and 4. The result of the measurement

of Q can therefore be expressed using 2 classical bits. This is an example of a collective

measurement, as it acts nontrivially on more than one qubit.
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Now consider the following problem: Alice has a qubit state

|γ〉c = c0 |0〉+ c1 |1〉 , (26.3.5)

which she would like to transmit to Bob in a distant location, without sending the physical

qubit. Can this be accomplished by transmitting only classical bits? Naively, it might seem

impossible, since the qubit contains two continuous real numbers worth of information, while the

classical bits to be transmitted are only a discrete set. Indeed, it will not do for Alice to make

any kind of measurement on the qubit |γ〉c alone. For example, measuring Z by projecting onto

the basis |0〉 and |1〉 will not allow reconstruction of |γ〉c, and even worse, it will collapse the

state, making further measurements useless. However, it can be done, provided that Alice and

Bob already share a known Bell state, which was prepared for this occasion, and upon which

they have not yet conducted any measurements. It is not important which entangled Bell state

they share, but to be concrete let us suppose it is |φ+〉ab. Alice can act on the first qubit of

this entangled pair either by measuring it or by unitarily evolving it, but she is not able to do

anything with the second qubit. The converse is true for Bob in the obvious way.

To accomplish the task, Alice makes a collective measurement on the two qubits that she

has access to, labeled a (the one entangled with Bob’s qubit b) and c (the one to be sent).

Specifically, Alice measures the observable Qac from eq. (26.3.4), projecting onto the four Bell

orthobasis states |φ+〉ac, |φ−〉ac, |ψ+〉ac, and |ψ−〉ac. (This is equivalent to the simultaneous

measurement of the two commuting observables ZaZc and XaXc, as you will show in Exercise

26.3.) The result of Alice’s measurement will be one of four possibilities, corresponding to these

four orthogonal states. She then sends this information, equivalent to only two classical bits, to

Bob by some ordinary communication channel. Bob then applies a unitary operator Ub to his

qubit of the shared Bell state, following this rule:

Ub = I, if Alice’s measurement result corresponded to |φ+〉ac, (26.3.6)

Ub = Z, if Alice’s measurement result corresponded to |φ−〉ac, (26.3.7)

Ub = X , if Alice’s measurement result corresponded to |ψ+〉ac, (26.3.8)

Ub = −iY , if Alice’s measurement result corresponded to |ψ−〉ac. (26.3.9)

As we are about to show, this will put Bob’s qubit into the state (c0 |0〉+ c1 |1〉)b, an exact copy

of the state that Alice wanted to transfer. This is called quantum teleportation of the qubit

from Alice to Bob.

To see why the procedure works, first note that we can write the initial joint state of all
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three qubits as

|φ+〉ab ⊗ |γ〉c =
1√
2

(
|00〉+ |11〉

)
ab
⊗
(
c0 |0〉+ c1 |1〉

)
c

(26.3.10)

=
1√
2

(
c0 |000〉+ c0 |110〉+ c1 |001〉+ c1 |111〉

)
abc
. (26.3.11)

Now the key trick: you can check by a little routine expansion that this is also equal to

1

2
|γ〉b ⊗ |φ+〉ac +

1

2

(
Z |γ〉

)
b
⊗ |φ−〉ac +

1

2

(
X |γ〉

)
b
⊗ |ψ+〉ac +

1

2

(
iY |γ〉

)
b
⊗ |ψ−〉ac . (26.3.12)

When Alice makes her measurement of Qac, the state is projected onto one of these four terms,

and her ordinary 2-bit message to Bob tells him which one. Bob’s application of the appropriate

unitary operator selected from the list in eqs. (26.3.6)-(26.3.9) then turns qubit b into the state

|γ〉b, due to the Pauli-matrix relations X2 = Y 2 = Z2 = I.

The teleportation of the qubit has several interesting features to keep in mind. First, it is

only possible because of entanglement; using an unentangled qubit pair in place of |φ+〉ab would
certainly not work. Second, Alice’s original qubit |γ〉c is necessarily destroyed by the process of

teleporting it to Bob, in the sense that its state is collapsed by Alice’s measurement on it. This

means that the qubit has been transferred, but not cloned, which turns out to be impossible

on general grounds as we will show in section 26.4. Third, neither Alice nor Bob has learned

anything about the teleported state during the process. No matter what the teleported qubit

was, Alice’s measurement has equal probabilities 1/4 for each of the four outcomes, and the

measurement result only gives information about the joint state of the qubits a and c, not c

alone. For his part, Bob has only applied a unitary transformation, not measured anything.

Finally, the teleportation of the state is definitely not instantaneous communication, as the

transfer speed is limited by that of the two classical bits sent from Alice to Bob.

Teleporting a whole register of N qubits (including their possible entanglements with each

other) is a straightforward generalization, as can be understood using the same ideas, with some

proliferation of indices. Alice and Bob will need to start with N prepared Bell pairs,

|Ψ〉ab = |φ+〉a1b1 ⊗ · · · ⊗ |φ
+〉aN bN , (26.3.13)

which can be thought of as an entangled state living in the tensor product of an N -qubit register

controlled by Alice and an N -qubit register controlled by Bob. Let us write the register to be

teleported from Alice to Bob as

|Γ〉c =
∑

{γk}
cγ1···γN |γ1 · · · γN〉 , (26.3.14)

where each γk is summed over 0 and 1. The initial joint state is therefore a 3N -qubit register,

|Ψ〉ab ⊗ |Γ〉c =
∑

{γk}
cγ1,...,γN

(
|φ+〉a1b1 ⊗ |γ1〉c1

)
⊗ · · · ⊗

(
|φ+〉aN bN ⊗ |γN〉cN

)
. (26.3.15)
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Now each of the N factors in parentheses can be re-expressed, using exactly the same trick as

for a single qubit, as

|φ+〉akbk ⊗ |γk〉ck =
1

2
|γk〉bk ⊗ |φ

+〉akck +
1

2

(
Z |γk〉

)
bk
⊗ |φ−〉akck

+
1

2

(
X |γk〉

)
bk
⊗ |ψ+〉akck +

1

2

(
iY |γk〉

)
bk
⊗ |ψ−〉akck . (26.3.16)

For each k = 1, . . . , N , Alice makes a projective measurement Qakck on the four Bell states for

the two qubits ak, ck, and sends the results to Bob as 2N classical bits of information. Bob then

applies an appropriate unitary transformation

Ub = Ub1 ⊗ Ub2 ⊗ · · · ⊗ UbN (26.3.17)

on his register, with each Ubk chosen just as in eqs. (26.3.6)-(26.3.9). The result will be that the

N -qubit register Bob controls will be left in the state |Γ〉b.
Now we turn to a question that may at first seem unrelated, but is actually just the inverse

of quantum teleportation. Suppose that Alice needs to send a message composed of classical

bits to Bob. She decides to encode the information using qubits,† since she knows that they are

denser in information than classical bits. How much classical bit information can Alice send to

Bob, encoded in a register of N qubits?

First consider what happens if Alice only sends a single unentangled qubit. Clearly, she can

use it to encode a single classical bit, for example by preparing the qubit in one of the two

states |0〉 and |1〉, which will then be measured by Bob using the observable Z. A little thought

reveals that this is also the best that can be done. No matter how Alice prepares the qubit, any

measurement that Bob can do will have one of at most 2 results, since that is the dimension

of the 1-qubit state space. Importantly, Bob’s measurement will also collapse the qubit’s state

into a completely known one, making all further measurements useless. So only one classical bit

can be sent with a single unentangled qubit.

But now suppose that Alice and Bob share a known Bell state, prepared earlier, say |φ+〉,
with each having excess to one qubit of the pair. To send her message, Alice does one of the 4

unitary transformations U = I, Z, X , or iY on the qubit a that she controls, causing the Bell

state to change in one of the following ways:

Ia |φ+〉 = |φ+〉 , (26.3.18)

Za |φ+〉 = |φ−〉 , (26.3.19)

Xa |φ+〉 = |ψ+〉 , (26.3.20)

iYa |φ+〉 = |ψ−〉 . (26.3.21)

†The physical delivery of a qubit over a distance is a challenge, not the least because one must avoid deco-
herence due to environmental interactions. Photonic polarization qubits can be transmitted with lasers or over
optical fibers, but direct transportation of particle spins is much more difficult. We consider the idealized case.
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Alice sends the qubit a to Bob, who now controls both qubits. Bob can measure the observable Q

from eq. (26.3.4), projecting onto the Bell state basis and giving the result 1, 2, 3, or 4 depending

on the choice Alice made. Thus, Alice has successfully transmitted two classical bits to Bob,

by sending only one qubit. The transfer of two classical bits by sending one entangled qubit

is known as superdense coding, or slightly more modestly as dense coding. Entanglement

effectively doubles the information capacity of the communication.

One might object that dense coding requires the involvement of two qubits to encode and

send two classical bits. However, it is also true that Alice never had direct access to Bob’s qubit.

In fact, the Bell pair could have been created and separated to the two parties long before Alice

decided what message to send. Bob could have even prepared the Bell state himself, then sent

Alice’s share to her. Then, by modifying the one qubit and sending it back, Alice accomplished

the mission (perhaps without even knowing for sure that Bob’s share of the Bell pair existed).

Another benefit to the dense coding protocol, likely more important than information den-

sity, is security. Alice and Bob have an evil nemesis, Eve, who wants to eavesdrop on their

conversations. If Alice sent classical bits, then Eve might be able to read them by listening

in. If a single unentangled qubit is sent instead, then Eve could still read it by measuring the

observable Z, provided that she can intercept the qubit and knows that it is encoded in the |0〉,
|1〉 basis. Eve could then send the qubit on its way to Bob, without Alice or Bob ever knowing.

But, in the dense coding method, any measurement done by Eve provides her no information,

because Eve only has access to the half of the entangled pair that was sent by Alice. A formal

way of expressing this is that the density matrix for the qubit sent by Alice, obtained by tracing

over the qubit held by Bob, is ρa = I/2, corresponding to a completely random ensemble.

A new pristine entangled qubit is needed for each pair of classical bits transmitted, as they

are “used up” by the measurement collapse needed by Bob to extract the message. Therefore,

by sending a register of N qubits, Alice can transmit 2N classical bits of information extractable

by Bob. This is the converse of the result found above that Alice can sent 2N classical bits to

teleport a general N -qubit register.

We have seen that in teleportation, sending two classical bits is enough to transmit one

qubit, while in dense coding sending one qubit is enough to transmit two classical bits. In that

sense, they are opposites or inverses. However, one should be careful not to claim that a qubit

is equivalent to two classical bits; the statements refer to the optimal extraction of information

aided by entanglement, rather than equivalence of information contained.
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26.4 Copying quantum information: the no-cloning theorem and re-
dundant encoding

Suppose we have a system in a state |ψ〉, which we would like to copy without changing the

original. Let us try to do this by producing the copy on another system of the same type, but

starting in some state |β〉 that is not of interest and will be overwritten. In other words, we

might like to devise a method of starting with the tensor product state |ψ〉⊗ |β〉 and ending up

with |ψ〉⊗ |ψ〉, no matter what |ψ〉 is. If this were possible, it would be very useful for quantum

information applications. For example, we could make many exact copies of a quantum state, and

then measure it in many different ways, including with non-commuting operators, to determine

its exact form. However, it cannot be done.

To see why, it is easiest to take the simple case that |ψ〉 is a single qubit. Suppose that we

have a device or method, realized as a linear unitary operator, whose effect is the transformation

|0〉 ⊗ |β〉 → |0〉 ⊗ |0〉 , (26.4.1)

|1〉 ⊗ |β〉 → |1〉 ⊗ |1〉 . (26.4.2)

Then, acting on a general qubit |ψ〉 = a |0〉+ b |1〉, by linearity we must have

(
a |0〉+ b |1〉

)
⊗ |β〉 → a |0〉 ⊗ |0〉+ b |1〉 ⊗ |1〉 . (26.4.3)

The point is simply that this is not the same as

|ψ〉 ⊗ |ψ〉 = a2 |0〉 ⊗ |0〉+ ab |0〉 ⊗ |1〉+ ab |1〉 ⊗ |0〉+ b2 |1〉 ⊗ |1〉 , (26.4.4)

except in the very special case that ab = 0 and a2 = a and b2 = b, which implies a = 1, b = 0

or a = 0, b = 1. A straightforward generalization of this proof gives the following no-go result,

obtained in 1982 by William Wootters, Wojciech Zurek, and Dennis Dieks:

Theorem 26.4.1. (No cloning) It is not possible to produce an identical copy of a general

state |ψ〉 without modifying the original. In other words, given a system consisting of a tensor

product of two subsystems of the same type, there does not exist a linear operator that takes

|ψ〉 ⊗ |β〉 → |ψ〉 ⊗ |ψ〉 for every state |ψ〉.

This is consistent with the example of teleportation in section 26.3, in which Alice had to

destroy her qubit by measurement collapse in the process of sending it to Bob. More generally,

the impossibility of cloning a state avoids paradoxes involving instantaneous communication.

Consider an entangled Bell state |φ+〉ab shared by Alice and Bob. Alice wants to send a message

to Bob, either yes or no. To say “yes”, she measures Za, and to say “no”, she instead measures

Xa. (The actual result of the measurement is not relevant to the argument.) Now, suppose Bob
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could clone his qubit. He makes a large number of copies, and then measures Zb on half of them

and Xb on the other half. If Alice’s message was “yes”, Bob’s measurements of Zb will all have

the same result, and his measurements of Xb will appear random. Conversely, if Alice’s message

was “no”, then Bob’s measurements of Zb will appear random and his measurements of Xb will

all have the same result. By cloning his qubit, Bob could (almost always) learn Alice’s message

immediately. But this is just fiction; in reality Bob has access to only one copy of his qubit, and

no instantaneous communication can occur.

Although cloning of states is prohibited, it is possible to do something slightly different, and

still very useful, called redundant encoding. Consider the linear unitary transformation of

eqs. (26.4.1)-(26.4.3), which we can express in a more compact way by leaving out the irrelevant

qubit |β〉, and using a double arrow to denote an encoding, as

a |0〉+ b |1〉 ⇒ a |00〉+ b |11〉 (26.4.5)

Although this perfectly valid operation does not clone the original qubit, what we have managed

to do is to encode its information in a 2-qubit register, in which the second qubit is redundant.

By iterating this procedure, it is possible to encode a qubit |ψ〉 = a |0〉+ b |1〉 in a register with

as many redundant qubits as we wish,

a |0〉+ b |1〉 ⇒ a |000 · · ·0〉+ b |111 · · ·1〉 . (26.4.6)

The right-hand side is sometimes known as a logical qubit or a synthetic qubit, to distinguish

it from the physical qubits that it is made out of. Its information content is exactly the same

as in the original qubit, one complex degree of freedom. Redundant encoding does not violate

the no-cloning theorem, because the redundant qubits that form the synthetic qubit are fully

entangled with each other. The key difference is that a cloned copy of the original qubit would

have been an independent copy, not entangled with the original.

Redundant encoding can be done in usefully different ways, depending on the choice of basis.

For example, we might choose to use for the redundant physical qubits the basis

|+〉 = 1√
2

(
|0〉+ |1〉

)
, |−〉 = 1√

2

(
|0〉 − |1〉

)
, (26.4.7)

which are eigenstates of X with eigenvalues 1 and −1, respectively. Then one can construct a

redundant encoding of a logical qubit that takes the form

a |0〉+ b |1〉 ⇒ a |+++ . . .+〉 + b |−−− . . .−〉 . (26.4.8)

One can also nest this encoding procedure, by bundling synthetic qubits into bigger synthetic

qubits. As we will see in section 26.6, these synthetic qubit tricks are very useful for quantum

error correction.
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26.5 Keeping secrets with quantum private key generation

As noted at the end of section 26.2, the security of many public-key encryption schemes is threat-

ened by the prospect of quantum computers solving problems that were previously believed to

be too hard, based on classical computation algorithms. Shor’s quantum factorization algorithm

is the most famous example of this, but there are others. One way to improve public-key codes

is to devise decryption problems for which the solution would take too long even for the best

possible quantum computers, and some proposals have been made along these lines. However, a

different approach is to use private keys. In this section, we will show how quantum information

enables secure generation of private keys and their distribution over large distances.

The one-time private key encryption method is unbreakable, even classically. Suppose

that Alice and Bob each have a copy of a prepared and secret register of random bits, κ =

(κ1κ2 · · ·κN). This is the private key. Now Alice has a message that she wants to send to Bob,

consisting of bits α = (α1α2 · · ·αN). To encrypt the message, she adds the two classical registers

bitwise to get ǫ = α+κ = (ǫ1ǫ2 · · · ǫN ), where ǫk = αk+κk (mod 2) for each k = 1, . . . , N . Alice

then sends the encrypted message ǫ to Bob, who can read the message by bitwise subtracting

(or adding, which is the same thing) the key, α = ǫ − κ. An eavesdropper Eve who intercepts

the message will gain absolutely no information without knowing the private key, because if the

key κ consists of completely random bits, so does the encrypted message ǫ.

However, this absolute security requires that one cannot reuse the key or any part of it.

Otherwise, it is conceivable that a clever Eve might be able to discern patterns that allow

the key to be discovered. If Alice and Bob are at different locations, they will need to have

a new private key with a new random bit for each bit of message to be sent. What if they

run out of their supply of private key bits? Any classical communication of a new private

key provides an opportunity for Eve to intercept it. Fortunately for Alice and Bob, there are

quantum methods for private key generation and distribution, which can work even when they

are spatially separated, and allow for any eavesdropping by Eve to be detected.

It should be emphasized that the overriding concern here is security, not speed or efficiency

of communication. Also, only the private key generation and distribution, not the encryption

or decryption, relies on the principles of quantum mechanics.

One way of generating and distributing private keys is the EPR protocol. Alice and Bob

are distant from each other, but share a large collection of Bell pairs, all in the same state

|φ+〉 =
1√
2

(
|00〉+ |11〉

)
=

1√
2

(
|++〉+ |−−〉

)
. (26.5.1)

When they need to generate a private key, Alice and Bob each measure X or Z, chosen randomly

and independently, sequentially for each qubit that they control, getting one of two results in
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each case. They then communicate to each other the sequence of measurements that they made,

but not the results of those measurements. There is no need to hide this communication, which

is therefore considered public. In about half of the cases, they will have chosen to make different

measurements, and their results will be uncorrelated; those are discarded. In the other cases,

their measurements were either both X , or both Z. In those cases, Alice and Bob will always

get the same result, and those will define the bits of their private key. (Alice and Bob agree that

X = 1 or Z = 1 stand for a classical bit 0, and X = −1 or Z = −1 for a classical bit 1.) For each

sequence of N Bell states that they process in this way, they can therefore expect to generate a

private key of length approximately N/2, with random bits known only to them. This private

key can then be used to encrypt and decrypt a message composed of ordinary classical bits.

Alice and Bob should worry that Eve might be trying to learn their private key. Eve could

do this my intercepting and modifying the Bell pairs before they are used. For example, perhaps

Eve is actually the vendor that sold the supposed Bell pairs to Alice and Bob, and she substituted

states of her own choosing in place of |φ+〉. Fortunately for Alice and Bob, there is an easy way

to detect this. After generating their private key, they tell each other publicly what their results

are for a random selection of the private key bits, which of course will not be used for actual

secret messages. If those bits fail to match, they will know that the 2-qubit state provided to

them was not actually |φ+〉, exposing Eve’s fraud. By sacrificing a sufficient fraction of their

private key bits, they can be reasonably sure that the states were not tampered with, and feel

safe in using the other bits. This relies on the fact that |φ+〉 is the unique 2-qubit state that

will always give the same result to Alice and Bob regardless of whether it was X or Z that they

both measured. This also explains why they had to go to the trouble of randomly measuring

X and Z, and then discarding the results when their choices did not match. If Eve knew in

advance that they were both going to measure Z, then she could substitute the state |00〉 or
|11〉 in place of the state |φ+〉, ensuring that the private key bit for that case would be 0 or 1,

at Eve’s discretion, and that Alice and Bob would not see anything amiss.

The use of Bell pairs in the preceding might give the impression that entanglement is a

necessary ingredient for quantum private key distribution, but this is not true. To see this,

consider the following variation on the scheme. Alice creates the Bell pairs |φ+〉ab herself,

measures X or Z randomly on qubit a, and then sends qubit b to Bob. Then Bob measures

either X or Z on qubit b, and the rest of the protocol is the same. This is formally equivalent

to a protocol in which qubit a never existed at all, and Alice simply prepares qubit b randomly

in one of the four states |0〉 or |1〉 (the Z basis) or |+〉 or |−〉 (the X basis). She then sends

this qubit to Bob, who measures either X or Z. Alice and Bob announce to each other over a

public channel their choices of the X or Z basis, and the rest of the protocol is the same. This
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version, which uses only a one-way sending of qubits and no entanglement, is called the BB84

protocol, after its 1984 proposal by Charles Bennett and Gilles Brassard. This has the clear

advantage that Alice and Bob do not need a large supply of nonlocally entangled Bell states.

In the BB84 scheme, it is again crucial that Alice and Bob use both the X and Z bases

randomly. If Eve can intercept the qubits that Alice sends, and knew in advance that a qubit

was definitely an eigenstate of X or of Z, she would be able to measure it in the corresponding

eigenstate basis and send on an exact copy to Bob. Without this knowledge, the no-cloning

theorem prevents Eve from making a duplicate and keeping one copy for herself, to be measured

after Alice and Bob have announced whether they both chose X or Z. Any measurements that

Eve makes will collapse the qubits unless Eve happens to guess whether they are eigenstates of

X and Z. So, Alice and Bob will again discover any eavesdropping by sacrificing a portion of

their private key bits and noting that sometimes they do not match.

In the real world, the qubits are typically encoded in photon polarizations, and sent ei-

ther through optical fibers or through empty space. There are of course practical limitations,

including noise, decoherence, and photon loss, which become more acute for long-distance com-

munications. Also, the detection of Eve’s possible shenanigans is only probabilistic, and one

must account for the fact that in some cases the check bits will fail to match because of non-

malicious faults. The need for tradeoffs and optimizations has given rise to more sophisticated

protocols. The relative simplicity of one-way non-entangled photonic qubit transmission, and the

market demand for privacy in communication, has already lead to the availability of commercial

implementations of quantum key generation and distribution.

26.6 Fighting decoherence and other faults with error correction

An important issue in both classical and quantum information is dealing with errors that may

change a register in undesirable ways. In the case of classical bits, errors can be introduced

by stray electromagnetic fields, mechanical defects, thermal fluctuations, radioactivity, or even

cosmic rays. There are well-developed methods for preventing such errors, and detecting and

correcting them when they occur, so that the engineering problem for classical bits is essentially

a solved one. For qubits, the same sort of errors can occur, but there is the additional and

especially pernicious problem of decoherence due to interactions with the environment. As we

have seen in Chapter 25, decoherence is very hard to avoid completely, especially in systems

with even small couplings to macroscopic degrees of freedom. Correction of decoherence errors is

therefore a necessity in order to build practical large-scale quantum computers. In this section,

we will give a brief account of error-correction strategies for qubits.

For the case of a single classical bit, a simple strategy for error correction is redundant
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encoding followed by majority-rule correction. For example, one might redundantly encode

each logical bit as three physical bits, according to the rule

0⇒ (000), 1⇒ (111). (26.6.1)

Then, if only one physical bit is modified by an error, the logical bit 0 might change to (100)

or (010) or (001), while the logical bit 1 might change to (011) or (101) or (110). Such an error

is easily diagnosed by the fact that the three physical bits are not all the same. The error is

then corrected by changing the different bit to agree with the majority. This strategy fails if an

error affects two or three physical bits at the same time, but this is hopefully rare, especially if

the error correction is applied repeatedly after short time intervals. An obvious way to improve

the reliability is to use more than three physical bits for each logical bit, but there are more

sophisticated and efficient schemes for classical error-correcting codes.

Error correction of qubits is more difficult for several reasons. First, the no-cloning theorem

declares that it is not possible to just copy the qubit to three independent identical copies as in

the classical case; therefore we will have to use redundant encoding as described in section 26.4.

Second, a measurement on a single physical qubit will inevitably collapse the state, erasing the

information it contains. So, we will have to use cleverly chosen collective measurements, which

act on more than one physical qubit at a time in such as way as to not destroy the information

in the logical qubit. Third, there is only one type of error for a classical bit; it can flip, changing

from 0 to 1 or 1 to 0. In contrast, qubits have multiple different error syndromes, because

the general qubit state is an arbitrary linear combination of the basis states, including relative

phases that have physical meaning.

To expand on the last point, let us consider several different errors types. The most obvious

counterpart to the classical bit error for a qubit is the basis bit-flip error, which changes the

qubit basis state |0〉 to |1〉 and vice versa, so that the general physical qubit state changes

according to

a |0〉+ b |1〉 → a |1〉+ b |0〉 (bit-flip error). (26.6.2)

Another type of error is a phase flip, which changes the relative phase between the kets |0〉 and
|1〉 by a factor of −1, so that

a |0〉+ b |1〉 → a |0〉 − b |1〉 (phase-flip error). (26.6.3)

The error could also be a combination of a phase flip and a bit flip,

a |0〉+ b |1〉 → a |1〉 − b |0〉 (phase-and-bit-flip error). (26.6.4)
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These three error types are realized by unitary operators, respectively,

Uerr = X, (bit-flip error), (26.6.5)

Uerr = Z, (phase-flip error), (26.6.6)

Uerr = −iY, (phase-and-bit-flip error). (26.6.7)

These are “large” errors, as they square to the identity (up to a global phase). More generally,

a qubit error could be an arbitrary unitary transformation. Since the identity matrix and the

Pauli matrices together form a basis for addition of all 2 × 2 matrices, one can always write

(again up to an irrelevant global phase factor),

Uerr =
I + i(ǫXX + ǫY Y + ǫZZ)√

1 + ǫ2X + ǫ2Y + ǫ2Z
, (26.6.8)

where the unitarity condition U †errUerr = I requires that ǫX , ǫY , and ǫZ are real numbers, which

may or may not be small. The three special cases of the bit flip, the phase flip, and the combined

phase-and-bit flip are recovered in the limits of large ǫX , large ǫZ , and large ǫY , respectively

(once again, up to a global phase). Also included in this general parameterization are “small”

errors that are continuously connected to the no-error case, but can build up over time. Ideally,

a quantum error-correction method should be able to fix any error of this type, even if we have

no way of knowing which error occurred. We will see that this is indeed true.

The strategy for quantum error correction can be summarized as follows. First, each logical

qubit is redundantly encoded as a register of physical qubits. After some time, an error may

have been introduced in one of the physical qubits, but we don’t know which error or which

qubit, if any. Therefore, one makes measurements on the register to diagnose which error

syndrome has occurred, but this must be done in a careful way so that the state is unaffected

if there was actually no error. The joint result of the measurements will be one of a discrete

finite set. If an error is detected, the measurements also project the register state onto a

corresponding discrete set of known error-syndrome states. Finally, one applies an appropriate

unitary operator, determined by the result of the diagnostic measurements, to correct the register

back to its pre-error state. This error-correction process should be repeated at regular time

intervals, short enough so that the probability of multiple errors within each interval is small.

For simplicity, the following discussion is framed in terms of pure-state qubits affected by

an error that takes the form of a unitary transformation Uerr, as above. However, it is very

important that this class of algorithms also corrects decoherence errors that evolve the pure

state of the qubit to a mixed state, through entanglement with the environment. The reason is

that the diagnostic measurement step automatically projects the density matrix of the register
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onto a pure error-syndrome state, unentangled with the environment. The ensuing correction is

a unitary operator on the register alone, so that the final restored state is always a pure one.

As a warmup example, let us first consider the simplified case that errors are restricted to

the bit-flip type on a single physical qubit. Inspired by the majority-rule scheme for classical

bits, we use the triply redundant encoding rule

a |0〉+ b |1〉 ⇒ a |000〉+ b |111〉 . (26.6.9)

A bit-flip error on one of the three physical qubits could change this state to any one of the

following error-syndrome states:

a |100〉+ b |011〉 (bit-flip error on qubit 1), (26.6.10)

a |010〉+ b |101〉 (bit-flip error on qubit 2), (26.6.11)

a |001〉+ b |110〉 (bit-flip error on qubit 3). (26.6.12)

These states are illegal, according to the original encoding, and so must be corrected. Now,

to diagnose the error, it would be bad to simply measure the three qubits one at a time, the

strategy that worked in the classical case. If we measure Z1 for the first qubit, that would give

results 1 and −1 with probabilities |a|2 and |b|2 or vice versa, but this does not distinguish

with certainty which qubit may have suffered an error. Even worse, the information stored will

have been destroyed by the measurement collapse, which projects onto only states with definite

Z1 = 1 or −1, rather than the superposition in the original state. Measurement of a single

physical qubit would irrevocably destroy the logical qubit we are trying to correct.

Instead, the correct strategy is to use only collective measurements, which act on more than

one physical qubit. Specifically, we measure the compatible operators†

A12 = Z1Z2, and A13 = Z1Z3, (26.6.13)

which compare pairs of qubits without measuring them individually. Each of the four states

appearing in eqs. (26.6.9)-(26.6.12) is always an eigenstate of both A12 and A13, no matter what

a and b are. This means that measuring one or both of them does not change the state, and

there is no loss of information from collapse. Furthermore, the four possible results for the

measurement of (A12, A13) correspond to the four possible error syndromes (including the trivial

syndrome of no error), telling us which error occurred and how to correct it. If we measure

(A12, A13) = (−1,−1), the error was a bit-flip of qubit 1, as in eq.(26.6.10). We can therefore

correct the error by applying the unitary operator X1. If instead (A12, A13) = (−1, 1), the error
was a bit-flip of qubit 2, and we should correct the error by applying X2. If (A12, A13) = (1,−1),

†The notation means the same thing as A12 = Z ⊗ Z ⊗ I and A13 = Z ⊗ I ⊗ Z.
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Error syndrome A12 A13 Urecovery

No error 1 1 I
Bit flip on qubit 1 −1 −1 X1

Bit flip on qubit 2 −1 1 X2

Bit flip on qubit 3 1 −1 X3

Table 26.6.5: Error correction for single-qubit bit-flips, using the 3-physical-qubit encoding
of one logical qubit. Simultaneous measurement of the compatible observables A12 and A13

diagnoses the error syndrome and projects onto the corresponding error syndrome state. The
unitary operator Urecovery then corrects the error.

then the error was a bit-flip of qubit 3, and we should apply the unitary operator X3. Finally,

the case (A12, A13) = (1, 1) corresponds to no error, so no unitary correction is applied. This

error-correction algorithm is summarized in Table 26.6.5.

The algorithm actually corrects a more general class of errors on a single qubit, namely those

obtained with ǫY = ǫZ = 0 and arbitrary ǫX in eq. (26.6.8). For example, suppose that the error

hits the first physical qubit, according to the unitary transformation

a |000〉+ b |111〉 → 1√
1 + ǫ2

[
a |000〉+ b |111〉+ iǫ

(
a |100〉+ b |011〉

)]
, (26.6.14)

where ǫ is a real number whose magnitude may or may not be small. (Note that ǫ = 0 corre-

sponds to no error, while ǫ → ∞ is the large bit-flip error case.) Now when the measurement

of (A12, A13) takes place, there are two possible results. With probability 1/(1 + ǫ2), the mea-

surement will give the result (1, 1) and collapse the state to a |000〉 + b |111〉. In this case, no

unitary recovery transformation is applied. With probability ǫ2/(1 + ǫ2), the measurement will

give the result (−1,−1), diagnosing the error syndrome as a bit-flip on qubit 1, and collapsing

the state to a |100〉+ b |011〉. In that case, the algorithm calls for applying the unitary operator

Urecovery = X1, changing the state back to a |000〉+ b |111〉. So, in both cases, the final result for

the state is the correct pre-error state. Even though there is non-trivial measurement collapse

in this case, it is actually beneficial, because it forces the state into one of the discrete error

syndromes that we know how to fix. The measurement allows us to correctly repair the state

using one of three operations, every time, no matter what the continuous parameter ǫ was.

However, the preceding example does not protect at all against phase-flip errors. As a second

warmup, let us consider an algorithm that corrects all single-qubit phase-flip errors (but does

not handle bit-flip errors). The strategy is actually very similar to the previous case, based on

the observation that a phase-flip in the basis |0〉 , |1〉 is equivalent to a bit-flip in the basis |+〉,
|−〉, and vice versa. We use the following 3-qubit redundant encoding:

a |0〉+ b |1〉 ⇒ a |+++〉 + b |−−−〉 , (26.6.15)
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where |±〉 = (|0〉 ± |1〉)/
√
2 are the eigenstates of X with eigenvalues ±1. A phase-flip error

amounts to changing |+〉 ↔ |−〉 on one of the qubits, so the possible error-syndrome states are

a |−++〉 + b |+−−〉 (phase-flip error on qubit 1), (26.6.16)

a |+−+〉 + b |−+−〉 (phase-flip error on qubit 2), (26.6.17)

a |++−〉 + b |−−+〉 (phase-flip error on qubit 3). (26.6.18)

It is straightforward to check that measurement of the compatible operators

B12 = X1X2, and B13 = X1X3 (26.6.19)

will uniquely diagnose the phase-flip error syndrome, with (B12, B13) = (−1,−1), (−1, 1),
(1,−1), or (1, 1) for, respectively, a phase-flip of qubit 1, 2, 3, or no error. This also works

for the case of any Uerr in eq. (26.6.8) with arbitrary ǫZ , as long as ǫX = ǫY = 0. In general,

the measurement projects onto one of the phase-flip error-syndrome states. The error is then

corrected by applying the unitary operator Z1, Z2, Z3, or I, respectively.

In 1995, Shor showed how to neatly generalize these ideas into an algorithm that corrects

any single-qubit error. One starts with the following 9-qubit redundant encoding:

|0〉 ⇒ 1√
23

(
|000〉+ |111〉

)
⊗
(
|000〉+ |111〉

)
⊗
(
|000〉+ |111〉

)
, (26.6.20)

|1〉 ⇒ 1√
23

(
|000〉 − |111〉

)
⊗
(
|000〉 − |111〉

)
⊗
(
|000〉 − |111〉

)
. (26.6.21)

This encodes each logical qubit as three bundles of three physical qubits each. It can be viewed

as a nested encoding, first triply redundantly in the |+〉, |−〉 basis, and then triply redundantly

in the |0〉, |1〉 basis.
Now, if a phase-flip error occurs in any single physical qubit, it will change the relative sign of

the two terms within one of the three bundles. The resulting state does not depend on which of

the three qubits in the bundle suffered the error. Therefore, phase-flip errors can be completely

diagnosed by simultaneously measuring the two compatible operators

B123456 = X1X2X3X4X5X6, (26.6.22)

B123789 = X1X2X3X7X8X9, (26.6.23)

each with eigenvalues ±1. If, and only if, B123456 is found to be −1, then the phase-flip error must

have been in either the first or second bundle, and similarly if B123789 is found to be −1, then
the error was in either the first or third bundle. There are thus four possible error syndromes for

the combined measurement of the two operators. After the measurement projects the state onto

one of them, the phase-flip error can be corrected by applying a unitary transformation. For
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example, if it is determined that the phase-flip error occurred on the second bundle, one can undo

the error by applying Uphase
recovery = Z4 (although using Z5 or Z6 or the symmetric combination

Z4Z5Z6 instead would work just as well). The same encoding also allows one to detect and

correct any bit-flip error. By measuring each of the pairs

A12 = Z1Z2, A13 = Z1Z3, (26.6.24)

A45 = Z4Z5, A46 = Z4Z6, (26.6.25)

A78 = Z7Z8, A79 = Z7Z9, (26.6.26)

one can detect which of the 9 qubits was bit-flipped, and apply the appropriate unitary recovery

operator. All eight of these observables commute, and measurement collapse has no effect on the

state in the special case that there was no error. The error correction algorithm is summarized

in Table 26.6.6. As you will check explicitly by doing Exercise 26.5, the algorithm corrects every

possible single-qubit error of the general form given in eq. (26.6.8). The essential reason for this

is that the general error transformation in eq. (26.6.8) is always a linear combination (superpo-

sition) of I, X , Z, and Y , which means no change, a bit flip, a phase flip, or a combination of

phase and bit flips.

This error correction strategy relies on the assumption that only one physical qubit was

affected. This may be a reasonable (but not guaranteed) assumption if errors are rare on

the time scale between applications of the algorithm. If two qubits both had bit-flip errors,

the algorithm would wrongly flip the qubit that did not change, instead of the two that did.

Similarly, if two bundles had phase-flip errors, the wrong bundle would have its phase flipped.

Although Shor’s encoding and error-correction algorithm is relatively simple to understand,

it is no longer the most efficient. It turns out to be possible to do the same thing with synthetic

qubits containing only 5 (instead of 9) physical qubits. There are also more sophisticated

methods than can, with high probability, correct errors that occur in more than one physical

qubit simultaneously.
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Error syndrome B123456 B123789 Uphase
recovery

No phase-flip error 1 1 I
Phase flip on qubit 1, 2, or 3 −1 −1 Z1

Phase flip on qubit 4, 5, or 6 −1 1 Z4

Phase flip on qubit 7, 8, or 9 1 −1 Z7

Error syndrome A12 A13 U123
recovery

No bit-flip error on qubit 1, 2, or 3 1 1 I
Bit flip on qubit 1 −1 −1 X1

Bit flip on qubit 2 −1 1 X2

Bit flip on qubit 3 1 −1 X3

Error syndrome A45 A46 U456
recovery

No bit-flip error on qubit 4, 5, or 6 1 1 I
Bit flip on qubit 4 −1 −1 X4

Bit flip on qubit 5 −1 1 X5

Bit flip on qubit 6 1 −1 X6

Error syndrome A78 A79 U789
recovery

No bit-flip error on qubit 7, 8, or 9 1 1 I
Bit flip on qubit 7 −1 −1 X7

Bit flip on qubit 8 −1 1 X8

Bit flip on qubit 9 1 −1 X9

Table 26.6.6: Error correction for the Shor 9-physical-qubit encoding of one logical qubit based
on measurement of the 8 compatible observables B123456, B123789, A12, A13, A45, A46, A78, and
A79. Measurement of B123456 and B123789 diagnoses any single-qubit phase-flip error, and projects
onto the corresponding error-syndrome state, which can then be corrected by applying the
corresponding unitary operator Uphase

recovery. Measurement of A12 and A13 diagnoses any bit-flip
error of qubit 1, 2, or 3, which is then corrected by the corresponding U123

recovery, and similarly for
bit-flip errors on qubits 4, 5, 6, 7, 8, or 9. This corrects any error on any single physical qubit,
restoring the 9-qubit register to its pre-error state.
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26.7 Exercises

Exercise 26.1. The decoherence of a pure state qubit to a mixed state can be described using a

dynamical map using Kraus operators Kn, according to ρ→
∑

nKnρK
†
n, as discussed in section

24.2. Consider the set of points on the unit-sphere surface of the Bloch ball, corresponding to

all pure states of the qubit. What surface results from applying each of the following maps?

(a) the depolarizing channel map defined by K0 =
√
1− 3p/4I and K1 =

√
p/4σx and

K2 =
√
p/4σy and K3 =

√
p/4σz . [Answer: you should find that the effect of the map is to

shrink the Bloch vector according to ~b→ (1− p)~b. Thus, pure states on the unit-sphere surface

of the Bloch ball are mapped to mixed states on a sphere of radius 1− p.]
(b) the bit-flip decoherence channel defined by K0 =

√
1− pI and K1 =

√
pσx.

(c) the phase-flip decoherence channel defined by K0 =
√
1− pI and K1 =

√
pσz.

(d) the bit-and-phase-flip decoherence channel defined by K0 =
√
1− pI and K1 =

√
pσy.

Exercise 26.2. Show that the map Uf defined by eq.(26.2.4) is unitary.

Exercise 26.3. Consider the two operators A = Z1Z2 and B = X1X2 acting on a system

of two qubits labeled 1 and 2. Show that [A,B] = 0, and that their common eigenstates

are the maximally entangled states |φ±〉 and |ψ±〉 given in eq. (26.3.2) and (26.3.3). Find

the corresponding eigenvalues. Relate the eigenvalues of (A,B) to those of the operator Q in

eq. (26.3.4).

Exercise 26.4. Consider the teleportation of a qubit |γ〉c from Alice to Bob as discussed in

section 26.3, but suppose that the initial shared Bell pair is in the state |ψ−〉ab, instead of |φ+〉ab.
What rules will Bob follow to receive the teleported state, replacing eqs. (26.3.6)-(26.3.9)?

Exercise 26.5. For Shor’s 9-qubit encoding of a logical qubit a |0〉 + b |1〉 using eqs. (26.6.20)

and (26.6.21), consider the most general unitary error transformation of the form in eq. (26.6.8)

applied to the first physical qubit. For the simultaneous measurement of the operators B123456,

B123789, A12, and A13, give the possible outcomes and their probabilities, in terms of ǫX , ǫY ,

and ǫZ . Give the corresponding post-measurement states, and check that the error-correction

algorithm summarized in Table 26.6.6 always restores the qubit to the pre-error state. (Since

there is nothing special about the first physical qubit, this generalizes to a general unitary error

transformation on any single qubit.)
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27 Relativistic quantum mechanics

27.1 Special relativity, four-vectors, and Lorentz transformations

Einstein’s special relativity places the four dimensions of spacetime on an equal footing. This

presents a challenge for the quantum mechanics of a single particle as formulated above, where

the three spatial coordinates are operators, but time is treated completely differently, as a mere

parameter. In this chapter we will discuss how quantum mechanical wave equations can be

made consistent with the symmetries of special relativity, leading to the Klein-Gordon equation

for spin-0 particles and the Dirac equation for spin-1/2 particles.

Classically, a four-vector coordinate can be assigned to each event,

(ct, x, y, z) = (x0, x1, x2, x3) = xµ. (27.1.1)

Greek indices µ, ν, ρ, . . . run over the values 0, 1, 2, 3, and c is the speed of light in vacuum. It

is a guiding principle of special relativity that the laws of physics should take the same form

in any inertial reference frame, which means that the coordinates of a free classical particle

do not accelerate. It is often useful to change our coordinate system from one inertial reference

frame to another, according to

xµ → x′µ = Lµνx
ν . (27.1.2)

Here Lµν is a constant 4×4 real matrix satisfying an orthogonality constraint to be found soon,

and the repeated (and therefore implicitly summed) index ν is said to be “contracted”. Such

a change of coordinates specified by Lµν is called a Lorentz transformation. By convention,

contracted indices must have opposite heights.

As a matter of terminology, xµ (with a raised index) is an example of a contravariant

four-vector. By definition, all contravariant four-vectors transform in the same way,

aµ → a′µ = Lµνa
ν . (27.1.3)

Another contravariant four-vector is the four-momentum consisting of the energy E and spa-

tial momentum p of a particle,

pµ = (E/c, p). (27.1.4)

In the rest frame of a particle of mass m, its four-momentum is pµ = (mc, 0, 0, 0).

A simple example of a Lorentz transformation is the rotation about the z-axis by a fixed

angle α. In the new coordinate system, ct′ = ct, x′ = x cosα + y sinα, y′ = −x sinα + y cosα,

and z′ = z. As another example, called a boost, we could go to a frame moving with respect
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to the original frame with velocity v along the ẑ direction, with the origins of the two frames

coinciding at time t = t′ = 0. Then,

ct′ = γ(ct− vz/c), x′ = x, y′ = y, z′ = γ(z − vt), (27.1.5)

where

γ = 1/
√
1− v2/c2. (27.1.6)

It follows that the Lorentz transformation for a boost v along the ẑ direction is

Lµν =




γ 0 0 −γv/c
0 1 0 0
0 0 1 0

−γv/c 0 0 γ


 , (27.1.7)

and the inverse Lorentz transformation is

aµ = (L−1)µνa
′ν , (L−1)µν =




γ 0 0 γv/c
0 1 0 0
0 0 1 0

γv/c 0 0 γ


 . (27.1.8)

As one might expect, the inverse of a boost simply replaces the boost velocity vẑ by −vẑ.
For any two events one can define the proper distance, which is independent of the choice of

Lorentz frame and therefore tells us how far apart the two events are in a coordinate-independent

sense. Consider two events occurring at xµ and xµ + dµ, where dµ is some four-vector displace-

ment. The proper distance between the events is

(∆x)2 = −(d0)2 + (d1)2 + (d2)2 + (d3)2 = gµνd
µdν , (27.1.9)

where the metric tensor is

gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (27.1.10)

Furthermore, one can define an inverse metric gµν so that

gµνgνρ = δµρ , (27.1.11)

where δµν = 1 if µ = ν, and otherwise = 0. In special relativity, the matrix forms of gµν and gµν

have the same numerical entries, and do not depend on the inertial reference frame.
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The metric tensor allows us to define covariant four-vectors by lowering an index,

xµ = gµνx
ν = (−ct, x, y, z), (27.1.12)

pµ = gµνp
ν = (−E/c, px, py, pz), (27.1.13)

which always just flips the sign of the time-like component. More generally,

aµ = gµνa
ν , aµ = gµνaν . (27.1.14)

It follows that covariant four-vectors transform as

a′µ = Lµ
νaν , (27.1.15)

where we define (note the positions of the indices)

Lµ
ν = gµρg

νσLρσ. (27.1.16)

If aµ and bµ are contravariant four-vectors, then

gµνa
µbν = gµνaµbν = aµb

µ = aµbµ. (27.1.17)

Since the four-vector indices have been contracted, this quantity should be Lorentz-invariant,

meaning that it is independent of the choice of inertial frame coordinates. This implies gµνa
′µb′ν =

gµνa
µbν , so that

gµνL
µ
ρL

ν
σa

ρbσ = gρσa
ρbσ. (27.1.18)

Since aρ and bσ are arbitrary, it must be true that

gµνL
µ
ρL

ν
σ = gρσ. (27.1.19)

This is the orthogonality constraint that a Lorentz transformation matrix must satisfy. It has

the equivalent form

Lν
κLνσ = δκσ, (27.1.20)

obtained by contracting eq. (27.1.19) with gρκ and using eq. (27.1.16).

Let us now consider some particular Lorentz transformations. To begin, we note that as a

matrix, eq. (27.1.20) reads LTL = I, which in turn implies det(L) = ±1 because of the general

facts det(AB) = detA detB and detAT = detA. An improper Lorentz transformation is

one with det(L) = −1. An example is

Lµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (27.1.21)

599



This just flips the sign of the time coordinate, and is therefore known as time reversal,

x′0 = −x0 x′1 = x1 x′2 = x2 x′3 = x3. (27.1.22)

Another improper Lorentz transformation is parity or space inversion,

Lµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (27.1.23)

so that

x′0 = x0, x′1 = −x1, x′2 = −x2, x′3 = −x3. (27.1.24)

It was once thought that the laws of physics must be invariant under these operations. Although

this might seem intuitively reasonable, it was shown experimentally in the 1950s that parity is

violated in the weak interactions, specifically in the weak decays of the 60Co nucleus and the

K± mesons. Likewise, experiments in the 1960s on the decays of K0 mesons showed that

time-reversal invariance is not a symmetry of the Hamiltonian governing the weak interactions.

However, all experiments up to now are consistent with invariance of the laws of physics

under the subset of Lorentz transformations that are continuously connected to the identity;

these are known as proper Lorentz transformations and have det(L) = +1. They can all

be built up out of infinitesimal Lorentz transformations

Lµν = δµν + ωµν +O(ω2). (27.1.25)

For these, eq. (27.1.19) gives gµν(δ
µ
ρ + ωµρ + · · · )(δνσ + ωνσ + · · · ) = gρσ, or after simplification,

gρσ + ωσρ + ωρσ + · · · = gρσ. Therefore,

ωσρ = −ωρσ (27.1.26)

is an antisymmetric 4×4 matrix, with 6 independent entries. These nonzero elements correspond

to 3 rotations (ρ, σ = 1,2 or 1,3 or 2,3) and 3 boosts (ρ, σ = 0,1 or 0,2 or 0,3). It is a mathematical

fact that any Lorentz transformation can be built up out of repeated infinitesimal boosts and

rotations, perhaps combined with time-reversal and/or space inversion. Lorentz transformations

obey the mathematical properties of a group, known as the Lorentz group. The subset of

Lorentz transformations that can be built out of repeated infinitesimal boosts and rotations

form a smaller group, called the proper Lorentz group.

A Lorentz tensor is a multi-component object that can carry an arbitrary number of

spacetime vector indices, and transforms appropriately when one goes to a new reference frame.
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The objects gµν and gµν and δµν are examples of constant tensors. Contravariant and covariant

four-vectors are also tensors. In general, the defining characteristic of a tensor function T µ1µ2···ν1ν2··· (x)

is that under a change of reference frame, it transforms so that in the primed coordinate system,

the corresponding tensor T ′ is:

T ′µ1µ2···ν1ν2··· (x
′) = Lµ1ρ1L

µ2
ρ2 · · ·Lν1σ1Lν2σ2 · · ·T ρ1ρ2···σ1σ2···(x). (27.1.27)

A Lorentz scalar function is the special case of a Lorentz tensor that carries no vector indices,

and is therefore independent of the choice of inertial reference frame.

For example, if pµ and qµ are the contravariant four-momenta of any particles, then pµqµ is

a scalar, and must not depend on which inertial reference frame it is computed or measured in.

In particular, this implies that a particle with mass m satisfies the on-shell condition

pµpµ = −E2/c2 + p2 = −m2c2, (27.1.28)

where the right side is obtained by evaluation in the rest frame with pµ = (mc, 0, 0, 0).

Spacetime derivatives of functions are four-vectors. Suppose that f(xµ) = f(t, r) is a scalar

function of xµ. Then

∂µf ≡
∂f

∂xµ
=

(
1

c

∂f

∂t
, ∇f

)
(27.1.29)

satisfies the Lorentz transformation rule of a covariant four-vector, eq. (27.1.15). By raising the

index, one obtains a contravariant four-vector function

∂µf = gµν∂νf =

(
−1
c

∂f

∂t
, ∇f

)
. (27.1.30)

One can obtain another scalar function by acting twice with the 4-dimensional derivative oper-

ator on f , contracting the indices,

∂µ∂µf = − 1

c2
∂2f

∂t2
+∇2f. (27.1.31)

The differential operator ∂µ∂µ is thus a four-dimensional generalization of the Laplacian.

27.2 Klein-Gordon wave equation

As a first attempt at relativistic quantum mechanics, let us consider the simple case of a free

spinless particle of mass m, whose wavefunction Φ(xµ) satisfies the Schrödinger equation

HΦ = i~
∂Φ

∂t
. (27.2.1)

To construct a Hamiltonian consistent with the symmetry of invariance under Lorentz transfor-

mations, we note that for a free particle, there should be an orthobasis of states Φ that are also
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eigenstates of P = −i~∇ with eigenvalues p, the three-momentum of the particle. Now, using

the special relativistic form E =
√
m2c4 + c2p2, one can try

H =

√
m2c4 + c2P 2, (27.2.2)

where P 2 = −~2∇2 acting on wavefunctions. This has a series expansion,

H = mc2 − ~
2

2m
∇2 − ~

4

8m3c2
(∇2)2 + · · · . (27.2.3)

If we keep only the first two terms, then we recover the standard nonrelativistic quantum

mechanics of a free particle, since the constant rest-energy contribution mc2 contributes only

an unobservable phase to the time evolution. However, in the fully relativistic case in which

the series is not truncated, the presence of an infinite number of terms with arbitrarily large

numbers of derivatives is quite problematic, including apparently nonlocal effects. Furthermore,

the Schrödinger equation in this case is not manifestly relativistic, since it involves only a single

time derivative but an infinite number of spatial derivatives.

Instead, one can consider H2Φ, avoiding the square root. Setting this equal to (i~∂/∂t)2

acting on Φ, in order to be consistent with the Schrödinger equation, we find
(
−~2 ∂

2

∂t2
+ c2~2∇2 −m2c4

)
Φ = 0. (27.2.4)

Using eq. (27.1.31), this can be written in the manifestly Lorentz-invariant form
(
~
2∂µ∂µ −m2c2

)
Φ = 0. (27.2.5)

This wave equation is called the Klein-Gordon equation after the 1926 proposals of Oskar

Klein and Walter Gordon.

It is easy to guess the solutions of the Klein-Gordon equation. If we try

Φ(xµ) = Φ0e
ipµxµ/~, (27.2.6)

where Φ0 is a normalization constant and pµ = (p0, p) is a constant four-vector, then ∂µΦ =

i(pµ/~)Φ, and so

∂µ∂µΦ = −(pµpµ/~2)Φ. (27.2.7)

Therefore, we obtain a basis of solutions by imposing pµpµ = −m2c2. Any Φ of this form is

an eigenstate of H and P , with energy eigenvalue E = cp0 and three-momentum eigenvalue p,

provided that they satisfy the on-shell condition E2 = m2c4 + p2c2.

However, there is a big problem with this. For every positive-energy solution pµ = (E/c, p)

with E =
√
m2c4 + p2c2 > 0, there is a corresponding negative-energy solution pµ = (−E/c, p).

By increasing |p|, one can have arbitrarily large |E|, so the negative energies are not bounded

from below. This would lead to the release of an infinite amount of energy as negative-energy

particles interact, acquiring larger and larger three-momenta without bound.
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27.3 Dirac equation

In 1928, Dirac suggested an alternative, based on the observation that the problem with the

Klein-Gordon equation seemed to be that it is quadratic in H ; this leads to the sign ambiguity

for E. Dirac could also have been motivated by the fact† that the electron has spin; since it

has more than one intrinsic degree of freedom, trying to describe it with a single wavefunction

Φ(xµ) is doomed to failure. Instead, Dirac proposed to write a relativistic Schrödinger equation,

linear in H , for a multi-component wavefunction Ψi(x
µ), where the index i = 1, 2, . . . , n runs

over the components. These indices will be suppressed from here on, as we write Ψ as a column

vector when its explicit form is needed.

Dirac reasoned that since the Schrödinger wave equation is linear in ∂/∂t, and since relativity

places t on the same footing as x, y, z, it should also be linear in derivatives of the spatial

coordinates. Therefore, the equation ought to take the form

i~
∂Ψ

∂t
= HΨ = (cα · P +mc2β)Ψ, (27.3.1)

where αx, αy, αz, and β are dimensionless n × n matrices. Equation (27.3.1) is known as the

Dirac equation, and Ψ is called a Dirac spinor.

To determine what α and β should be, consider ∂2Ψ/∂t2, which can be evaluated in two

ways. First, the on-shell condition for E2 gives, just as in the Klein-Gordon case,

−~2∂
2Ψ

∂t2
= (−c2~2∇2 +m2c4)Ψ. (27.3.2)

On the other hand, expressing H2 in terms of the right-hand side of eq. (27.3.1), we find

−~2∂
2Ψ

∂t2
=

[
−c2~2αaαb

∂2

∂xa∂xb
− i~mc3(αaβ + βαa)

∂

∂xa
+m2c4β2

]
Ψ, (27.3.3)

where a and b are summed over x, y, z. Since partial derivatives commute,

αaαb
∂2

∂xa∂xb
=

1

2
(αaαb + αbαa)

∂2

∂xa∂xb
. (27.3.4)

So, in order for eqs. (27.3.2) and (27.3.3) to agree, we must have

β2 = I, (27.3.5)

αaβ + βαa = 0, (27.3.6)

αaαb + αbαa = 2δabI. (27.3.7)

It is also necessary that α and β are Hermitian matrices, in order for H to be Hermitian.

†He evidently realized this quickly, but only in hindsight.
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For particles with non-zero mass, a solution for α and β turns out to require at least n = 4

spinor indices.‡ This may be somewhat surprising, since naively one only needs n = 2 to describe

a spin-1/2 particle like the electron. As we will see, the Dirac equation necessarily describes

negative energy electrons in a way similar to the Klein-Gordon equation, accounting for the

doubling. It is convenient to write the 4× 4 matrices in 2× 2 blocks. The necessary conditions

are satisfied by

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
, (27.3.8)

where σ are the Pauli matrices, I is the 2× 2 identity, and “0” means a 2× 2 block of 0’s.

The Dirac equation automatically incorporates intrinsic angular momentum, or spin. To see

this, we note that the Hamiltonian for a free particle should have the symmetry of rotations

generated by a total angular momentum operator J , so that [J,H ] = 0. Let us first consider

how orbital angular momentum fits in. Since L = R × P , its components can be written as

La = ǫabcRbPc. Now we find the commutator of La with the Dirac Hamiltonian H . The mc2β

term has no coordinate dependence, so it does not contribute to the commutator. Therefore,

[La, H ] = cαb[La, Pb] = cαbǫadc[Rd, Pb]Pc = i~cαbǫadcδbdPc = i~cǫabcαbPc, so that

[L,H ] = i~cα× P. (27.3.9)

This does not vanish, so there must be another contribution to J . By inspired guesswork, we

try defining the spin operator

S =
~

2

(
σ 0
0 σ

)
. (27.3.10)

To check this guess, note that the non-zero commutator of S with H is due entirely to the

matrix nature of both,

[Sa, H ] = cPb[Sa, αb] =
~

2
cPb

(
0 [σa, σb]

[σa, σb] 0

)
= i~cǫabcPbαc, (27.3.11)

where we have made use of [σa, σb] = 2iǫabcσc. This gives

[S,H ] = −i~cα × P = −[L,H ]. (27.3.12)

Thus [J,H ] = 0, so that the Dirac Hamiltonian is indeed invariant under rotations generated

by the total angular momentum operator J = L+ S.

‡The fact that Dirac spinors and Lorentz vectors both have 4 components is coincidental, and one must be
careful not to confuse the two types of 4-dimensional spaces. If we lived in D-dimensional spacetime, Dirac
spinors would have n = 2D/2 components.
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The Dirac Hamiltonian also respects parity, but the way this works is slightly tricky. We can

start by defining a “coordinate parity” operator Πc that is proportional to the identity matrix

in spinor space, and obeys

ΠcRΠc = −R, (27.3.13)

from which it follows that

ΠcPΠc = −P (27.3.14)

as well. However, it is then easy to see that ΠcHΠc 6= H , because the α ·P term flips sign, but

the β term does not. Therefore, we define a matrix factor of the parity operator,

Πm = β, (27.3.15)

so that ΠmαΠm = −α and ΠmβΠm = β. Then the complete parity operator defined by

Π = ΠcΠm =

(
Πc 0
0 −Πc

)
, (27.3.16)

satisfies ΠHΠ = H , and the Dirac Hamiltonian commutes with parity.

The Dirac equation (27.3.1) can be rewritten in a nicer way by multiplying it on the left by

the matrix β, and defining gamma matrices γµ, carrying a raised Lorentz index, by

γ0 = β, γa = βαa, (a = 1, 2, 3). (27.3.17)

Since β2 = I, the Dirac equation can be expressed as

[
i~

(
γ0

∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)
−mc

]
Ψ = 0, (27.3.18)

or, even more nicely, as

(i~γµ∂µ −mc)Ψ = 0. (27.3.19)

The γµ matrices defined above are explicitly given by

γ0 =

(
I 0
0 −I

)
, γa =

(
0 σa

−σa 0

)
, (a = 1, 2, 3). (27.3.20)

However, this representation is not unique. To see this, suppose U is any constant unitary 4× 4

matrix satisfying U †U = UU † = I. Then the Dirac equation implies

U(i~γµ∂µ −mc)U †UΨ = 0, (27.3.21)
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from which it follows that, writing γ ′µ = UγµU †, and Ψ′ = UΨ,

(i~γ ′µ∂µ −mc)Ψ′ = 0. (27.3.22)

So, the new γ ′µ matrices together with the new spinor Ψ′ are just as good as the old pair γµ,Ψ;

there are an infinite number of different, equally valid choices. The choice in eqs. (27.3.8) and

(27.3.20) is called the Dirac representation. Another choice, popular in treatments of high-energy

particle physics and quantum field theory, is the chiral representation (see Exercise 27.1).

Some useful properties of the γµ matrices, independent of the representation choice, are

γ0† = γ0, γa† = −γa, (a = 1, 2, 3), (27.3.23)

γ0γµ†γ0 = γµ, (27.3.24)

Tr(γµγν) = −4gµν , (27.3.25)

γµγµ = −4, (27.3.26)

γµγν + γνγµ = {γµ, γν} = −2gµν . (27.3.27)

On the right sides of each of eqs. (27.3.26) and (27.3.27), there is an implicit 4× 4 unit matrix.

How does a Dirac spinor Ψ(x) transform under a Lorentz transformation? It carries no

vector index, so it is not a tensor. On the other hand, the fact that the Hamiltonian “mixes up”

the four components of Ψ(x) is a clue that it does not transform like an ordinary scalar function

either. Instead, we might expect that the primed frame spinor is given by

Ψ′(x′) = ΛΨ(x), (27.3.28)

where Λ is a 4 × 4 matrix that depends on the Lorentz transformation matrix Lµν . It is left

to Exercise 27.2 to show that Lorentz invariance of the Dirac equation implies that, for an

infinitesimal Lorentz transformation Lµν = δµν + ωµν ,

Λ = I − ωµν [γµ, γν ]/8 + · · · . (27.3.29)

To obtain the result for a non-infinitesimal proper Lorentz transformation, we apply the same

infinitesimal transformation N times, and take N →∞. Letting Ωµν = Nωµν , we obtain

Lµν = lim
N→∞

(δµν + Ωµν/N)N = [exp(Ω)]µν (27.3.30)

by using limN→∞(1 + x/N)N = ex. For the Dirac spinor, one finds similarly

Ψ′(x′) = lim
N→∞

(1− Ωµν [γ
µ, γν ]/8N)N Ψ(x) = exp (−Ωµν [γµ, γν ]/8)Ψ(x). (27.3.31)

So, the Lorentz transformation matrix for Dirac spinors as defined in eq. (27.3.28) is

Λ = exp (−Ωµν [γµ, γν ]/8) , (27.3.32)
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corresponding to the Lµν that appears in eq. (27.3.30):

We conclude this section by constructing plane-wave solutions to the free-particle Dirac

equation. Consider first the special case of the rest frame of the particle, so that the α ·P term

can be neglected. The Dirac equation then has the diagonal form

i~
∂Ψ

∂t
= mc2βΨ. (27.3.33)

Defining 2-component spinors

χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)
, (27.3.34)

it is easy to check that a basis of four solutions is

Ψ+
s = e−imc

2t/~

(
χs
0

)
, Ψ−s = eimc

2t/~

(
0
χs

)
, (27.3.35)

with positive and negative energy eigenvalues E = mc2 and E = −mc2 for the superscript labels
+ and −, and Sz eigenvalues ~/2 and −~/2 for the subscript labels s =↑ and ↓. These spin

assignments follow immediately from the spin operator that we found in eq. (27.3.10).

Dirac spinor wavefunctions for arbitrary non-zero three-momenta can now be constructed

at will from the rest-frame solutions by applying the Lorentz transformation for boosts and/or

rotations using eq. (27.3.32). Alternatively, one can find the eigenspinors of the Dirac Hamil-

tonian directly. Let us do this for the special case of three-momentum p along the ẑ direction.

Factoring out the plane-wave time and position dependence, we try

Ψ(r, t) = ei(pz−Et)/~u, (27.3.36)

where u is a constant spinor. Plugging this into the Dirac equation [either eq. (27.3.1), or its

equivalent eq. (27.3.19)] gives
(
(mc2 −E)I pcσz

pcσz (−mc2 − E)I

)
u = 0, (27.3.37)

which has two energy eigenvalue solutions E = ±
√
m2c4 + p2c2, each with degeneracy 2. Up to

normalization, the corresponding orthogonal basis spinors are, for E = +
√
m2c4 + p2c2,

u+↑ =




√
m2c4 + p2c2 +mc2

0
pc
0


 , u+↓ =




0√
m2c4 + p2c2 +mc2

0
−pc


 , (27.3.38)

and for E = −
√
m2c4 + p2c2,

u−↑ =




−pc
0√

m2c4 + p2c2 +mc2

0


 , u−↓ =




0
pc
0√

m2c4 + p2c2 +mc2


 . (27.3.39)
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These are again eigenstates of Sz, with eigenvalues ~/2 for ↑ and −~/2 for ↓.
Like the Klein-Gordon equation, the Dirac equation has the embarrassment of solutions with

negative energies with arbitrarily large magnitudes, despite the fact that it is linear in H and

∂/∂t. Undaunted, Dirac proposed to get around the problem of negative energy states by using

the fact that spin-1/2 particle are fermions. Recall that the Pauli exclusion principle dictates

that two fermions cannot occupy the same quantum state. This motivated Dirac to suggest that

all of the negative energy states are normally occupied. This prevents electrons with positive

energy from making disastrous transitions to the E < 0 states. The infinite number of filled

E < 0 states is called the Dirac sea.

If one of the states in the Dirac sea becomes unoccupied, it leaves behind a “hole”. Since a

hole is the absence of an E < 0 state, it effectively has energy −E > 0. An electron has charge

−e, so the hole corresponding to its absence effectively has the opposite charge, +e. Since

both electrons and holes obey pµpµ = m2, they have the same mass. Dirac’s proposal therefore

predicts the existence of “anti-electrons” or positrons, with positive energy and positive charge.

Because no other candidate was known at the time, he briefly entertained the incorrect suggestion

that the anti-electron was the proton, until the positron was discovered in 1932 in cosmic ray

experiments.

Despite this impressive and revolutionary success, the modern solution of the problem of neg-

ative energy states for both the Klein-Gordon and Dirac cases is to abandon the whole approach

of using operators for positions and momenta. Instead, relativistic particles are described by

quantum field theories, in which the position coordinates r join the time t as parameters, not op-

erators. In quantum field theories, there are still objects Φ(xµ) for spinless particles and Ψ(xµ)

for spin-1/2 particles, but they are operators (“quantum fields”) rather than wavefunctions.

This automatically avoids negative energy states and introduces antiparticles without appealing

to Dirac’s rather ad hoc sea.§ However, the Dirac equation formalism and Dirac spinors are still

essential in setting up the kinematics of quantum field theories for spin-1/2 particle. There is

much more that can be said about the Dirac wave equation and its solutions, and but we mostly

leave this to texts that specialize in relativistic quantum field theory. In the remainder of this

chapter, we will only discuss two important successes of the Dirac equation having to do with

the coupling of the electron to electromagnetic fields.

§In any case, Dirac’s sea trick cannot work for the Klein-Gordon equation, or any other relativistic theory of
bosons, since they do not have a Pauli exclusion principle. Unlike Dirac, we are privileged to know of a scalar
particle that is quite possibly fundamental, the Higgs boson. There are also spin-1 bosons that are plausibly
fundamental based on all presently available evidence (the photon, the W and Z particles, and the gluon of the
Standard Model), and many composite integer-spin mesons.
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27.4 Electromagnetic fields and the Dirac equation

In this section, we will work out how the Dirac equation incorporates the effects of background

electromagnetic fields, and then recover the nonrelativistic limit.

As Einstein famously showed in 1905, Maxwell’s electromagnetism is already a relativistic

theory. To illustrate this, we start by revisiting some of the key equations of section 4.3, putting

them into a manifestly Lorentz-covariant form. The classical electromagnetic potentials are

unified into a contravariant four-vector,

Aµ = (Φ, A). (27.4.1)

The gauge transformation A→∇Λ with Φ→ Φ− 1
c
∂Λ
∂t

is then realized as

Aµ → Aµ + ∂µΛ (27.4.2)

for an arbitrary scalar function Λ. The relations between the potentials and the fields, E =

−∇Φ− 1
c
∂ ~A
∂t

and B = ∇×A, can be expressed as




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 = Fµν = ∂µAν − ∂νAµ, (27.4.3)

which defines the antisymmetric field strength tensor Fµν . The classical densities of charge and

current can also be unified into a contravariant four-vector, as

jµ = (cρ, j). (27.4.4)

The sourced Maxwell equations (Gauss’ Law ∇·E = 4πρ and Ampère’s Law∇×B = 1
c
∂ ~E
∂t
+ 4π

c
j)

are then given by

∂νF
µν =

4π

c
jµ, (27.4.5)

or equivalently,

∂ν∂
µAν − ∂ν∂νAµ =

4π

c
jµ. (27.4.6)

The remaining Maxwell equations (∇·B = 0 and Faraday’s Law ∇×E = −1
c
∂ ~B
∂t
) are equivalent

to the identity

∂ρFµν + ∂µFνρ + ∂νFρµ = 0, (27.4.7)

for µ, ν, ρ = 0, 1, 2, 3. Note that this equation is automatically true by construction in terms of

Aµ, as can be seen using eq. (27.4.3).
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Also, because F µν is antisymmetric and partial derivatives commute, we have ∂µ∂νF
µν = 0.

It follows, by comparing with ∂µ acting on eq. (27.4.5), that

∂µj
µ = 0, (27.4.8)

which expresses the local conservation of charge, as it can be rewritten ∇ · j + ∂ρ/∂t = 0.

To see how to incorporate electromagnetic effects into the Dirac equation, we recall from

eq. (4.3.16) that the space and time derivatives in the Schrödinger equation are modified, in the

presence of A and Φ, according to

P → P − q

c
A, i~

∂

∂t
→ i~

∂

∂t
− qΦ. (27.4.9)

Applying this rule to eq. (27.3.1), we arrive at the version of the Dirac Hamiltonian with elec-

tromagnetic potentials included,

H = cα ·
(
P − q

c
A
)
+mc2β + qΦ. (27.4.10)

Also, the two parts of eq. (27.4.9) can be unified neatly into a Lorentz-covariant rule

i~∂µ → i~∂µ +
q

c
Aµ. (27.4.11)

Applying this to eq. (27.3.19), we arrive at the covariant form of the Dirac wave equation,

[
γµ
(
i~∂µ +

q

c
Aµ

)
−mc

]
Ψ = 0, (27.4.12)

for a particle of mass m and charge q in the presence of electromagnetic potentials.

We now wish to recover the nonrelativistic limit of the Dirac equation; this is a useful thing

to do because it fixes the g-factor for the electron to be ge = 2 (before corrections coming from

virtual photons of the quantized electromagnetic field), and provides the fine-structure terms in

the Hamiltonian for the hydrogen atom. To accomplish this, it is useful to write the Dirac spinor

as two 2-component spinors ϕ and χ, and factor out the largest part of the time dependence for

positive energy states,

Ψ = e−imc
2t/~

(
ϕ
χ

)
. (27.4.13)

The Schrödinger equation for the Hamiltonian in eq. (27.4.10) then becomes

i~
∂ϕ

∂t
= cΠ ·σχ+ qΦϕ, (27.4.14)

i~
∂χ

∂t
= cΠ ·σϕ+ (qΦ− 2mc2)χ, (27.4.15)
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where Π = P−(q/c)A. Now, in the nonrelativistic limit (small p) limit, we see from eq. (27.3.38)

that the positive-energy solutions are mostly ϕ, and from eq. (27.3.38) that the negative-energy

solutions are mostly χ. Since our goal is to take the nonrelativistic limit for the positive-

energy solutions, our strategy will be to eliminate the small components χ in favor of the large

components ϕ. Accordingly, we rewrite eq. (27.4.15) as

χ =
1

2mc
Ωϕ +

1

2mc2

(
−i~ ∂

∂t
+ qΦ

)
χ, (27.4.16)

where we have defined, for convenience, the Hermitian operator

Ω = Π ·σ. (27.4.17)

By iterative elimination of χ in the limit of large c, eq. (27.4.16) gives

χ =
1

2mc

[
I +

1

2mc2

(
−i~ ∂

∂t
+ qΦ

)
+ · · ·

]
Ωϕ. (27.4.18)

Putting this into eq. (27.4.14) gives an uncoupled differential equation for ϕ,

i~
∂ϕ

∂t
=

[
1

2m
Ω2 + qΦ+

1

4m2c2
Ω

(
−i~ ∂

∂t
+ qΦ

)
Ω+ · · ·

]
ϕ, (27.4.19)

where terms with 4 or more powers of c in the denominator have been dropped.

It might be tempting to interpret eq. (27.4.19) as the wave equation for the positive energy

solutions, but this is wrong for a subtle reason: unitary time evolution does not preserve the

norm of ϕ. To see this, note that the squared norm of the full Dirac spinor obeys

1 =

∫
d3rΨ†Ψ =

∫
d3r (ϕ†ϕ+ χ†χ) =

∫
d3r

(
ϕ†ϕ+ ϕ†

Ω2

4m2c2
ϕ+ · · ·

)
, (27.4.20)

where in the last expression we have used the leading approximation for χ from eq. (27.4.18).

This shows that the two-component spinor ψ defined by

ϕ =

(
I − Ω2

8m2c2
+ · · ·

)
ψ (27.4.21)

will have constant norm, and therefore unitary time evolution. Thus, ψ defined in this way

(and not ϕ) is the correctly normalized wavefunction describing the nonrelativistic limit of a

spin-1/2 particle with leading relativistic corrections. Plugging eq. (27.4.21) into eq.( 27.4.19),

and consistently dropping terms of order 1/c4, after a little algebra the result can be written

i~
∂ψ

∂t
=

(
1

2m
Ω2 + qΦ+∆H + · · ·

)
ψ, (27.4.22)
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where the leading-order relativistic correction is

∆H =
1

4m2c2

(
Ω2
(
−i~ ∂

∂t
+ qΦ

)
− 1

2

[
Ω,
[
Ω, −i~ ∂

∂t
+ qΦ

]])
. (27.4.23)

To put the nonrelativistic part into a more familiar form, we evaluate

Ω2 = (Π ·σ)2 = Π2 + iσ ·(Π× Π) =
(
P − q

c
A
)2
− ~q

c
σ · (∇× A), (27.4.24)

where the second equality uses the Pauli matrix product identity (a·σ)(b·σ) = a·b+ i(a× b) · σ,
and the last term uses the position-representation differential form P = −i~∇. Now, using

∇× A = B, and σ = 2S/~, we arrive at

i~
∂ψ

∂t
=

(
1

2m

(
P − q

c
A
)2

+ qΦ− q

mc
S ·B +∆H + . . .

)
ψ. (27.4.25)

This agrees with the form of eq. (4.3.28), provided that the gyromagnetic ratio is γ = q/mc.

Indeed, for the electron with q = −e, we have learned that the gyromagnetic ratio is successfully

predicted by the Dirac equation. Comparing with eq. (4.3.19),

γe = −
gee

2mc
= − e

mc
, (27.4.26)

so that ge = 2. The same holds for the muon and the tau lepton (just with different masses),

as they are also fundamental fermions. However, the Dirac equation cannot give the correct

gyromagnetic ratios for composite fermions like the proton and the neutron, because of large

contributions from their internal structure.

Returning to the leading-order relativistic correction in eq. (27.4.23), the first term simplifies

because, from eq. (27.4.19), (−i~ ∂
∂t

+ qΦ)ψ = − Ω2

2m
ψ, up to higher order terms in 1/c. So

∆H = − 1

8m3c2
Ω4 − 1

8m2c2

[
Ω,
[
Ω, −i~ ∂

∂t
+ qΦ

]]
. (27.4.27)

From here on, we consistently drop terms in ∆H with −(q/c)A. So, at leading order in 1/c, we

can write Ω4 = (P 2)2. Also, we can evaluate

[
Ω, −i~ ∂

∂t
+ qΦ

]
= −i~qσ ·∇Φ = i~qσ ·E, (27.4.28)

and then,

[
Ω,
[
Ω, −i~ ∂

∂t
+ qΦ

]]
= i~q

(
σ ·P σ ·E − σ ·E σ ·P

)
(27.4.29)

= ~
2q∇·E + 2~qσ ·(E × P ) + i~2qσ ·(∇× E), (27.4.30)
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after using the Pauli matrix product identity again. Dropping the last term because ∇× E =

−1
c
∂ ~B
∂t

has an extra power of 1/c, we finally get

∆H = − 1

8m3c2
(P 2)2 − q

2m2c2
S ·(E × P )− ~

2q

8m2c2
∇·E. (27.4.31)

These three terms are, respectively, the relativistic kinematic, spin-orbit, and Darwin terms that

appeared in the fine-structure Hamiltonian for an electron in a central electrostatic potential,

eqs. (17.1.3)-(17.1.5). In making this comparison, one can use q = −e, m = me, ∇·E = −∇2Φ,

and E = − 1
R
dΦ
dR
R for a spherically symmetric potential, followed by R×P = L. In particular, the

Dirac equation automatically gives the Thomas precession factor in the spin-orbit Hamiltonian,

and the correct normalization of the Darwin term.

27.5 Dirac equation solutions for the hydrogen atom

In the previous section, we obtained the relativistic corrections to the Hamiltonian for a spin-1/2

charged particle, at leading order in 1/c2. These can in turn be used to obtain the fine-structure

energy corrections for the hydrogen atom, as we had already done in section 17.1 using first-

order perturbation theory. We will now show that these effects can also be obtained directly

from an exact† solution of the Dirac equation, without relying on perturbation theory and to

all orders in 1/c. As a bonus, we will find the relativistic wavefunction.

Our task is to solve the equation

HΨ(r) = EΨ(r) (27.5.1)

with the Dirac Hamiltonian in the position representation,

H = −i~cα ·∇ +mc2β − Ze2/r, (27.5.2)

which arises from q = −e and the four-vector potential Aµ = (Ze2/r, 0, 0, 0) for a nucleus of

charge Ze. Now, eq. (27.3.9) implies that Lz and L2 do not commute with H , so we cannot

hope to find energy eigenstates that are also eigenstates of orbital angular momentum with

fixed l. However, it follows from eq. (27.3.12) that J = L + S does commute with H , and the

parity operator Π defined in eq. (27.3.16) does as well. Therefore, an appropriate CSCO for our

problem is H , J2, Jz, and Π.

We will use spherical coordinates (r, θ, φ), and begin by constructing two-component spinor

eigenstates of J2 and Jz with fixed L2 eigenvalue ~2l(l+1), called spinor harmonics. Then we

†However, the results we will obtain below are not fully exact because nuclear spin, nuclear structure, and
virtual photon effects from quantization of the electromagnetic field are not included in the Dirac equation.
Thus, the hyperfine splitting and Lamb shift are neglected in this section.
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will form the four-component Dirac spinor energy eigenstates by combining two spinor harmonics

with different l, but the same J2 and Jz eigenvalues ~
2j(j + 1) and ~m.

Fortunately, the problem of adding orbital and spin-1/2 angular momentum was already

done in section 12.3. For a given j and m, we can construct two distinct spinor harmonics, one

with l = j − 1/2 and another with l = j + 1/2. From eqs. (12.3.11) and (12.3.14), we see that

they are respectively

φ+
jm =

1√
2l + 1

(√
l + 1/2 +mY

m−1/2
l√

l + 1/2−mY
m+1/2
l

)
, (l = j − 1/2), (27.5.3)

φ−jm =
1√

2l + 1

( √
l + 1/2−m Y

m−1/2
l

−
√
l + 1/2 +m Y

m+1/2
l

)
, (l = j + 1/2), (27.5.4)

where in each case the upper and lower components have Sz eigenvalues ~/2 and −~/2, and
we have chosen their overall phases for future convenience. Note that m is always half-integer,

and Y
m+1/2
l and Y

m−1/2
l are the usual spherical harmonic functions. For a given j, the spherical

harmonics φ+
jm and φ−jm have l differing by one unit, so they have opposite coordinate parity Πc

eigenvalues (−1)l.
Because the potential has spherical symmetry and we will be using spherical coordinates, it

is useful to consider the operator

σ · r̂ =

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
. (27.5.5)

Remarkably, this acts on the spinor harmonics by turning them into each other,

φ+
jm = σ · r̂ φ−jm, φ−jm = σ · r̂ φ+

jm. (27.5.6)

To prove it, note that as an operator, σ · r̂ commutes with J2 and Jz and has odd parity with

respect to the operator Πc defined in eq. (27.3.13). This implies that σ · r̂ φ−jm must have the

same j and m and opposite parity as φ−jm. The unique spinor harmonic with this property is

φ+
jm, so it must be true that σ·r̂ φ−jm = Cφ+

jm for some constant of proportionality C. To evaluate

C, we can consider the special case θ = 0, so that r̂ = ẑ and σ · ẑ =

(
1 0
0 −1

)
. Now, using

Y m′

l (0, φ) = δm′0

√
2l+1
4π

as found in eq. (8.6.53), we have

φ+
jm =

√
2j + 1

8π

(
δm, 1

2

δm,− 1

2

)
, φ−jm =

√
2j + 1

8π

(
δm, 1

2

−δm,− 1

2

)
(for θ = 0). (27.5.7)

This shows that we must have C = 1, establishing the first part of eq. (27.5.6). The identity

(σ · r̂)2 = I (27.5.8)
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then immediately implies the second part of eq. (27.5.6) from the first.

We seek eigenstates of H that are also eigenstates of J2, Jz, and Π. Given the spinor

harmonic definitions of eqs. (27.5.3) and (27.5.4), and the form of the parity operator Π = Πcβ

defined in eq. (27.3.16), we see that the four-component Dirac spinors

Ψ±jm(r, θ, φ) =
1

r

(
G±jm(r)φ

±
jm

−iF±jm(r)φ∓jm

)
(27.5.9)

have J2, Jz, and Π eigenvalues ~
2j(j + 1), ~m, and (−1)j∓1/2, respectively. The radial wave-

functions G±jm(r) and F
±
jm(r) are to be determined by solving HΨ = EΨ, and the factors of 1/r

and −i are introduced for later convenience.

To evaluate the first term in HΨ, we need to find σ ·∇ acting on our spherical harmonics

multiplied by radial functions f(r). We therefore calculate:

σ ·∇
(
f(r)φ±jm

)
= σ · r̂ σ · r̂ σ ·∇ f(r)φ±jm = σ · r̂

(
r̂ ·∇+

i

r
σ ·(r ×∇)

)
f(r)φ±jm (27.5.10)

= σ · r̂
(
∂

∂r
− 1

r

2

~2
S ·L

)
f(r)φ±jm. (27.5.11)

The first equality used (σ · r̂)2 = I, the second employed the Pauli matrix product identity

(a ·σ)(b ·σ) = a ·b + i(a × b) · σ, and the third used S = ~σ/2 and the position representation

identity L = R× P = r× (−i~∇). Now we use 2S ·L/~2 = j(j + 1)− l(l + 1)− 3/4, which can

in turn be simplified using l = j ∓ 1/2. The result can be written as

σ ·∇
(
f(r)φ±jm

)
=

(
df

dr
+ (1 + κ±)

f

r

)
φ∓jm, (27.5.12)

where, for convenience, we have defined

κ± = ∓(j + 1/2). (27.5.13)

Now plugging eq. (27.5.9) into the Dirac equation (27.5.1) with the Hamiltonian eq. (27.5.2),

and using eqs. (27.5.12) with (27.5.13), gives

(
E −mc2 + Ze2

r

)
G+ ~c

(
d

dr
− κ

r

)
F = 0, (27.5.14)

(
E +mc2 +

Ze2

r

)
F − ~c

(
d

dr
+
κ

r

)
G = 0, (27.5.15)

where each of G, F , and κ has an implicit ±, suppressed along with the subscripts jm from

here on. For further simplicity, define dimensionless quantities

E = E/mc2, s = mcr/~, (27.5.16)
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so that our first-order coupled differential equations become
(
d

ds
− κ

s

)
F −

(
1− E − Zα

s

)
G = 0, (27.5.17)

(
d

ds
+
κ

s

)
G−

(
1 + E + Zα

s

)
F = 0. (27.5.18)

Note that for a bound state, E < mc2, so E < 1.

We now examine the large distance behaviors of G and F . For large s, the terms proportional

to κ and Zα can be neglected, so we get F ′ = (1 − E)G and G′ = (1 + E)F , which imply

G′′ = (1− E2)G and F ′′ = (1− E2)F . The solutions at large s therefore behave like

G,F ∼ e−
√
1−E2s (for large s). (27.5.19)

Conversely, for small s, one finds F ′ = (κF −ZαG)/s and G′ = (−κG+ZαF )/s, which can be

disentangled to give

(
s
d

ds

)2

G = γ2G,

(
s
d

ds

)2

F = γ2F, (27.5.20)

with

γ =
√
κ2 − Z2α2. (27.5.21)

This is solved by a simple power-law behavior

G,F ∼ sγ , (for small s), (27.5.22)

where the possibility s−γ is rejected so that the wavefunction has normalizable behavior near

s = 0. We now factor out these large- and small-distance behaviors by writing

G(s) = sγe−
√
1−E2sg(s), F (s) = sγe−

√
1−E2sf(s). (27.5.23)

This defines new functions g(s) and f(s), which should be finite and non-zero at s = 0, and

should not grow exponentially for large s. Plugging these into eqs. (27.5.17) and (27.5.18) gives

(
d

ds
−
√
1− E2 + γ − κ

s

)
f −

(
1− E − Zα

s

)
g = 0, (27.5.24)

(
d

ds
−
√
1− E2 + γ + κ

s

)
g −

(
1 + E + Zα

s

)
f = 0. (27.5.25)

Since g(s) and f(s) are finite and non-zero at s = 0, we try series solutions

g(s) =

∞∑

q=0

aqs
q, f(s) =

∞∑

q=0

bqs
q. (27.5.26)
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Putting this into eqs. (27.5.24) and (27.5.25) gives the coupled recurrence relations

(1− E)aq−1 +
√
1− E2 bq−1 − Zαaq − (q + γ − κ)bq = 0, (27.5.27)

(1 + E)bq−1 +
√
1− E2 aq−1 + Zαbq − (q + γ + κ)aq = 0. (27.5.28)

Consider first the case q = 0. Since we are assuming a−1 = b−1 = 0, we learn that

b0
a0

=
Zα

κ− γ =
κ + γ

Zα
. (27.5.29)

Note that the last equality is a check on γ in eq. (27.5.21).

For general q, multiply eq. (27.5.27) by
√
1 + E and eq. (27.5.28) by

√
1− E , and then take

the difference. The coefficients of aq−1 and bq−1 both cancel, and we find that the coefficients of

the two series obey the proportionality

bq
aq

=
(q + γ + κ)

√
1− E − Zα

√
1 + E

(q + γ − κ)
√
1 + E + Zα

√
1− E

. (27.5.30)

Using these in eqs. (27.5.27) and (27.5.28), it follows that for large q,

aq
aq−1

≈ bq
bq−1

≈ 2
√
1− E2
q

. (27.5.31)

We can therefore see that both series must terminate. Otherwise, we would find g, f ∼ e2
√
1−E2s,

and thus G,F ∼ e
√
1−E2s, and the wavefunctions would grow exponentially at large distances,

failing to be normalizable.

Therefore, we must have an′+1 = 0 for some non-negative integer n′, and then eq. (27.5.30)

implies that bn′+1 = 0 as well. Then eqs. (27.5.27) and (27.5.28) with q = n′ + 1 tell us

bn′

an′

= −
√

1− E
1 + E . (27.5.32)

Requiring that this is equal to eq. (27.5.30) with q = n′, we find the condition for a normalizable

bound state,

ZαE =
√
1− E2 (n′ + γ). (27.5.33)

This has the positive-energy solution

E =

[
1 +

(
Zα

n′ + γ

)2
]−1/2

, (27.5.34)

or, restoring E, j, and Zα using eqs. (27.5.16), (27.5.21), and then (27.5.13),

E = mc2



1 +
(

Zα

n′ +
√

(j + 1/2)2 − Z2α2

)2



−1/2

. (27.5.35)
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Now let n = n′ + j + 1/2, which is a positive integer, since n′ is non-negative and j + 1/2 is a

positive integer. Then we can rewrite the bound-state energy eigenvalues as

E = mc2
[
1 +

Z2α2

(n+ δj)2

]−1/2
, (27.5.36)

where

δj =
√

(j + 1/2)2 − Z2α2 − (j + 1/2). (27.5.37)

Expanding in small Zα,

E = mc2
[
1− Z2α2

2n2
+
Z4α4

2n3

(
3

4n
− 1

j + 1/2

)
+ · · ·

]
. (27.5.38)

The first term is the electron’s rest energy, and the second term is the usual nonrelativistic energy

eigenvalue −Z2e2/2a0n
2, so we recognize n as the principal quantum number. The third term

is the total fine-structure correction to the energy that we found (with Z = 1) in eq. (17.1.26).

Finally, we should carefully enumerate the valid solutions that we have found. For each j and

m, there are two solutions with the same E, with wavefunctions Ψ±jm in eq. (27.5.9), but with one

exception. The exception is that if n′ = 0, then we have from eqs. (27.5.29) and (27.5.32) that

b0/a0 = −
√

(1− E)/(1 + E) = (κ+γ)/Zα, but this is only possible if κ = ∓(j+1/2) is negative,

because γ and Zα are positive. This means that in the special case n′ = 0 the would-be solution

Ψ−jm in eq. (27.5.9) is not valid. Therefore, for each principal quantum number n = 1, 2, 3, . . .,

there are two bound state solutions Ψ±jm with j = 1/2, 3/2, . . . , n − 3/2, and only one bound

state solution Ψ+
jm with j = n − 1/2. Each of these has further degeneracy 2j + 1 from the m

quantum number. This is in accord with the results found at the end of section 17.1 from the

perturbative approach to the fine structure of the hydrogen atom.

27.6 Exercises

Exercise 27.1. The chiral representation of gamma matrices for the Dirac equation is

γ0 =

(
0 I
I 0

)
, γa =

(
0 σa

−σa 0

)
, (a = 1, 2, 3).. (27.6.1)

Find a unitary matrix U such that γµchiral = UγµDiracU
†, where γµDirac are the matrices in eq. (27.3.20).

Exercise 27.2. In this problem, we will check the Lorentz invariance of the Dirac equation,

and in the process determine the Lorentz transformation rule for Dirac spinors. Suppose that

two coordinate systems are related by a Lorentz transformation x′µ = Lµνx
ν . The Dirac wave-

function Ψ′(x′) as reported by an observer in the primed frame should be related to that in the
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unprimed frame by Ψ′(x′) = ΛΨ(x) where Λ is a 4 × 4 matrix. Now, the Dirac equation in the

unprimed frame is (iγµ ∂
∂xµ
−m)Ψ(x) = 0, and in the primed frame it is (iγµ ∂

∂x′µ
−m)Ψ′(x′) = 0.

(a) Show that these equations are consistent provided that Λ−1γρLρ
µΛ = γµ.

(b) Now suppose that Lµν = δµν + ωµν with ωµν infinitesimal. Prove that the equation found in

part (a) is satisfied if Λ = 1 + ωµν [γµ, γν ]/8.

Exercise 27.3. Consider a Dirac spinor wavefunction Ψ satisfying the Dirac equation (27.4.12)

with electromagnetic potentials. Derive the local conservation of probability,

∂ρ

∂t
= −∇ · J, (27.6.2)

where ρ = Ψ†Ψ is the probability density and you will need to identify the probability current

J . [Hint: you may want to review the strategy used in the nonrelativistic case in section 5.6.]

Exercise 27.4. What is the next order (α6) contribution to the hydrogen atom stationary state

energies in eq. (27.5.38)? Assess its numerical impact for the n = 1 and n = 2 levels with Z = 1.
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28 Feynman path integral approach

28.1 Propagators

Consider a quantum system with a complete set of commuting observables Qa, where a is an

index 1, . . . , n. For example, for a single spinless particle moving in three-dimensional space,

we have n = 3, and the Qa with a = 1, 2, 3 could be chosen to be the components of the

position coordinate vector R. Alternatively, we could choose the Qa to be the components of

the momentum vector P . For simplicity, we will often suppress the index a, and let the whole

set of CSCO eigenvalues be represented simply as the generic symbol q. We do this to make

room for other subscript labels that will distinguish the values of the q’s at various times. Given

the state ket |ψ〉 of the system, we can then write a wavefunction

ψ(q, t) = 〈q|ψ(t)〉 , (28.1.1)

where |q〉 are the CSCO eigenstates in which each of the observables Qa is known to be equal

to the corresponding eigenvalue qa.

Recall, from section 3.4, that if the state of the system at time t0 was |ψ(t0)〉, then the state

at time t is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (28.1.2)

where U(t, t0) is the unitary time evolution operator. Using completeness of the Q eigenstates

at some initial time t0, the wavefunction at any later time t is

ψ(q, t) =

∫
dq0 〈q|U(t, t0)|q0〉 〈q0|ψ(t0)〉 . (28.1.3)

It is now useful to define the propagator (or kernel, or transition amplitude) as the function

obtained as the relevant matrix element of the unitary time-evolution operator,

U(q, t; q0, t0) ≡ 〈q|U(t, t0)|q0〉 , (28.1.4)

so that

ψ(q, t) =

∫
dq0 U(q, t; q0, t0)ψ(q0, t0). (28.1.5)

The utility of the propagator is that, given the wavefunction ψ(q0, t0) at an initial time t0, the

wavefunction at any other time t can be obtained by doing this integration over q0.

The propagator is the solution to a differential equation, which follows from eq. (3.4.2),

i~
∂

∂t
U(q, t; q0, t0) = i~ 〈q| ∂

∂t
U(t, t0)|q0〉 = 〈q|HU(t, t0)|q0〉 . (28.1.6)
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Consider the special case of a spinless particle moving in three dimensions in a potential V ,

so that the Hamiltonian is H = P 2/2m + V (R). Interpreting q as the position r, eq. (28.1.5)

becomes

ψ(r, t) =

∫
d3r0 U(r, t; r0, t0)ψ(r0, t). (28.1.7)

where eq. (28.1.6) tells us that

[
i~
∂

∂t
+

~
2∇2

2m
− V (r)

]
U(r, t; r0, t0) = 0. (28.1.8)

Since this is a first-order differential equation in t, in principle it can be solved given the boundary

condition at t = t0, which is U(r, t0; r0, t0) = δ(3)(r−r0). In practice, this might be quite difficult,

depending on the choice of potential.

Returning to the general case, suppose that the Hamiltonian does not depend explicitly on

time, so that U(t, t0) = e−i(t−t0)H/~, from eq. (3.4.3). If we know all of the H eigenstates |n〉,
with energies En, then using completeness we get the spectral decomposition

U(q, t; q0, t0) =
∑

n

e−i(t−t0)En/~ 〈q|n〉 〈n|q0〉 =
∑

n

e−i(t−t0)En/~ψn(q)ψn(q0)
∗, (28.1.9)

where ψn(q) = 〈q|n〉 are the wavefunctions of the orthonormal Hamiltonian eigenstates with

energies En. Thus, the propagator can be evaluated as a sum over products of energy eigenstate

wavefunctions, weighted by phases that vary linearly with time.

As a simple example, consider the propagator for a free particle of mass m, moving in one

dimension, with the position x playing the role of q in the preceding. We have already done the

work for this case, in section 6.2, and the result of eq. (6.2.14) can be rewritten as

U(x, t; x0, t0) =

[
m

2πi~(t− t0)

]1/2
exp

[
im(x− x0)2
2~(t− t0)

]
. (28.1.10)

Repeating the procedure for a spinless free particle moving in three dimensions gives

U(r, t; r0, t0) =

[
m

2πi~(t− t0)

]3/2
exp

[
im|r − r0|2
2~(t− t0)

]
(28.1.11)

for the position-representation propagator.

For a somewhat more involved example, consider the one-dimensional harmonic oscillator,

with the familiar Hamiltonian H = P 2/2m+mω2X2/2. One way of writing the propagator is

to use the spectral decomposition as in eq. (28.1.9), which says

U(x, t; x0, t0) =
∞∑

n=0

ψn(x)ψn(x0)
∗e−iω(t−t0)(n+1/2), (28.1.12)
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where ψn(x) are the stationary state wavefunctions of eq. (7.2.31), involving Hermite polynomi-

als. It may therefore come as a surprise that the propagator can be written in a nice form that

does not involve Hermite polynomials or an infinite sum,

U(x, t; x0, t0) =

[
mω

2πi~ sin(ω(t− t0))

]1/2
exp (iScl[x, t; x0, t0]/~) , (28.1.13)

where, for general initial and final positions and times,

Scl[xf , tf ; xi, ti] =
mω

2 sin(ω(tf − ti))
{
(x2f + x2i ) cos(ω(tf − ti))− 2xixf

}
. (28.1.14)

Remarkably, this is the action for the classical trajectory that starts at xi at time ti, and ends

at xf at time tf . Recall that in general the action is defined by

S =

∫ tf

ti

dt L(x, ẋ), (28.1.15)

where L(x, ẋ) is the Lagrangian. In the present case, L = 1
2
mẋ2 − 1

2
mω2x2, and you can check

that eq. (28.1.14) follows from

xcl(t) =
xf sin(ω(t− ti))− xi sin(ω(t− tf ))

sin(ω(tf − ti))
, (28.1.16)

which is the classical trajectory that satisfies the equation of motion ẍ = −ω2x and the initial

and final boundary conditions.

The quantum harmonic oscillator propagator claimed in eq. (28.1.13) is somewhat non-trivial

to derive from scratch, but once it has been written down, it is not too hard to verify. This

consists of checking that it obeys the first-order (in time) differential equation

(
i~
∂

∂t
+

~
2

2m

∂2

∂x2
− 1

2
mω2x2

)
U(x, t; x0, t0) = 0, (28.1.17)

as in eq. (28.1.8), and that it satisfies the correct boundary condition

U(x, t0; x0, t0) = δ(x− x0), (28.1.18)

which follows from taking the t→ t0 limit of eq. (28.1.13), with the help of eq. (2.2.21).

The propagator for the oscillator in eq. (28.1.13) has several features worthy of note. First,

it is manifestly periodic in time, with the same period 2π/ω as the classical oscillator. Second,

one recovers the free particle propagator of eq. (28.1.10) by taking the limit ω → 0. Finally, it

is intriguing that the only dependence of the quantum propagator on the starting and ending

positions x and x0 comes through the eiS/~ factor for the classical trajectory that connects them.

This is a suggestive clue for the developments in the next section.
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28.2 Summing over paths

An alternative way of computing the propagator for a quantum system uses the Feynman sum

over paths or sum over histories, developed by Richard P. Feynman in his 1942 PhD thesis.

Let us write, very schematically for now,

U(qf , tf ; qi, ti) ∼
∑

paths

(something). (28.2.1)

In this section, we will denote the initial and final CSCO eigenvalue variables and time by (qi, ti)

and (qf , tf) respectively, in order to distinguish them from intermediate times t and positions q

in the following discussion. The “paths” here are all trajectories q(t) starting from qi at time

ti and ending with qf at time tf . In the case of a spinless particle in three dimensions, a path

could be a trajectory given by a function r(t), but by a different choice of CSCO it could just

as easily be instead a function p(t) for the momentum vector of the particle. After choosing the

CSCO eigenvalue variables, these paths are arbitrary, in the sense that all trajectories (not just

those satisfying the classical equations of motion!) are included as long as they obey the initial

and final boundary conditions.

The task before us now is to make eq. (28.2.1), including its mysterious summand, more

precise. To motivate this form, first note that

U(qf , tf ; qi, ti) = 〈qf |U(tf , t1)U(t1, ti)|qi〉 =
∫
dq1 〈qf |U(tf , t1)|q1〉〈q1|U(t1, ti)|qi〉 , (28.2.2)

where we have chosen an arbitrary time t1 between ti and tf , divided the unitary time evolution

operator accordingly using eq. (3.4.30), and then used completeness of the eigenstates |q1〉. This
can be rewritten as a composition rule for propagators,

U(qf , tf ; qi, ti) =

∫
dq1 U(qf , tf ; q1, t1)U(q1, t1; qi, ti). (28.2.3)

In words, to propagate from time ti to time tf , we can integrate over all of the ways to propagate

from ti to t1, and then from t1 to tf , as indicated in Figure 28.2.1.

There is an intuitive analogy, Feynman’s disappearing screen, for the preceding mathe-

matical derivation of eq. (28.2.3) and Figure 28.2.1. Consider particles whose vertical positions

are described by q. The particles are emitted at a source point qi, and detected at a point qf ,

which can be varied by moving the detector. The probability of detection is proportional to

the square of the complex propagator amplitude. Now if we place a large impenetrable screen

between the source and the detector, then the amplitude will certainly vanish. But suppose

that we then drill a small hole in the screen at a single point q1. In that case, the only non-zero

contribution corresponds to the particle first moving from qi to q1, and then from q1 to qf , so
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qi

qf

ti tf

=

∫
dq1

ti tft1

qi

q1
qf

Figure 28.2.1: Diagrammatic representation of the composition law eq. (28.2.3). Each
line between dots represents a propagator. The propagator U(qf , tf ; qi, ti) is equal to the
integral (or sum, if the allowed values are discrete) over all possible q1 of the product
U(qf , tf ; q1, t1)U(q1, t1; qi, ti), for any choice of intermediate time t1.

the propagator amplitude is the product of two separate amplitudes. If we drill a second hole at

a different q1, then the total amplitude will be the sum of two such product amplitudes, which

interfere to give a diffraction pattern of maxima and minima as we vary qf . Drilling more holes

in the screen will just add more product amplitudes to the superposition, corresponding to more

intermediate points q1. In the limit that we have drilled through every point on the screen, it

will have completely disappeared. So the amplitude for no screen at all must be proportional to

the superposition of all amplitudes for all possible points q1, as on the right side of eq. (28.2.3)

and its pictorial version in Figure 28.2.1.†

We now extend the same idea to subdivide the time interval from ti to tf into N time

steps instead of just two, with intermediate times t1, t2, . . . , tN−1, as shown in Figure 28.2.2. At

each time step, we integrate (or sum, if the allowed values are discrete) over all possible qj for

j = 1, 2, . . . , N − 1 , using completeness of the states |qj〉 at each step. The result is

U(qf , tf ; qi, ti) =

∫
dq1

∫
dq2 · · ·

∫
dqN−1 U(qf , tf ; qN−1, tN−1)U(qN−1, tN−1; qN−2, tN−2) · · ·

U(q2, t2; q1, t1)U(q1, t1; qi, ti). (28.2.4)

Although this is not the ultimate expression of the sum over paths idea, it already illustrates

the basic concept that we can find the propagator by adding up all possible ways to get from qi

at time ti to qf at time tf .

Feynman’s sum over paths can be thought of as the continuum limit of the discretized picture

in Figure 28.2.2. He proposed that the propagator U(qf , tf ; qi, ti) can be computed as a sum over

all possible space-time paths of a phase determined by the classical action for that path, fulfilling

an inspiring but less concrete suggestion made earlier by Dirac. The paths to be summed over

are functions q(t) defined for ti ≤ t ≤ tf and constrained to obey the boundary conditions

q(ti) = qi, q(tf ) = qf . (28.2.5)

†A slight imperfection in the simple pictorial version of the analogy is that the line containing q1 in Figure
28.2.1 represents a fixed time, while the vanishing screen instead occupies a fixed horizontal position.
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ti = t0 tf = tNt1 t2 t3 tN−1

qi

qf

Figure 28.2.2: One possible trajectory, or path, q(t) with initial boundary condition qi at time ti
and final boundary condition qf at time tf . Time increases moving to the right in the figure, and
is divided into equal slices, with variables q1, q2, . . . , qN−1 at intermediate times t1, t2, . . . , tN−1.
Each short line between dots represents a propagator. The path integral is obtained by taking
the limit of N → ∞ time steps with infinitesimal time intervals ǫ = tj − tj−1 = (tf − ti)/N ,
and integrating over all q1, q2, . . . , qN−1.

The action for a given path is

S[q(t)] =

∫ tf

ti

dt L(q, q̇, t), (28.2.6)

where L(q, q̇, t) is the classical Lagrangian for the system, often the kinetic energy minus the

potential energy. For example, for a spinless particle moving in three dimensions, the position

vector r(t) plays the role of q(t), and the Lagrangian is

L(r, ṙ, t) =
1

2
mṙ

2 − V (r). (28.2.7)

The action is an example of a functional, an object that takes as its input a function [here the

path q(t)] and returns a number. Feynman therefore proposed that eq. (28.2.1) should be

U(qf , tf ; qi, ti) ∝
∑

paths q(t)

eiS[q(t)]/~, (28.2.8)

following a suggestion by Dirac.

Because the number of paths is continuously infinite, it makes more sense to think of in-

tegrating over all paths rather than summing them. This suggests the arguably better names

Feynman path integral or functional integral, and the notational change
∑

paths q(t)

eiS[q(t)]/~ →
∫
d[q(t)] eiS[q(t)]/~. (28.2.9)

Just as ordinary definite integration takes a function and returns a number, a functional integral

takes a functional (in this case, the action) and returns a number. The constant of proportion-

ality implied in eq. (28.2.8) can then be absorbed into the normalization for the functional

differential, denoted by d[q(t)].
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In summary, the following can now be taken as an alternative to the Schrödinger equation

Postulate 6 of section 3.1:

Postulate 6′: Time evolution as a sum over paths. For a system with eigenvalues q for a

complete set of commuting observables, the propagator is

U(qf , tf ; qi, ti) =

∫
d[q(t)] exp (iS[q(t)]/~) . (28.2.10)

where S[q(t)] =
∫ tf
ti
dt L(q, q̇) is the action functional, and the functional integral is over all

paths satisfying q(ti) = qi and q(t) = qf . Equivalently, the wavefunction satisfies

ψ(qf , tf) =

∫
d[q(t)] exp (iS[q(t)]/~)ψ(qi, ti), (28.2.11)

but now the functional integral is over all paths satisfying q(tf ) = qf , but with no constraint on

q(ti), since those initial values are being integrated over, as in eq. (28.1.5).

Note that while the Schrödinger version of Postulate 6 requires us to specify the Hamiltonian,

the Feynman version Postulate 6′ instead requires that the Lagrangian is the object to be

specified to determine the dynamics of the system.

Although path integration has proved to be a very useful tool, especially in quantum field

theory, it is not as straightforward to define as the Schrödinger differential equation. Physicists

often simply ignore the associated problems of mathematical precision and rigor. One way

to define the functional integral, inspired by the composition rule for the propagator as in

eq. (28.2.4) and Figure 28.2.2, is to discretize the path into steps, integrate over the values of q

on each step, and then take the limit in which the number of steps is infinitely large.

As a specific example, consider the case of a spinless particle moving in a potential V (r) in

three dimensions, with the coordinates r playing the role of q. To compute the path integral,

we partition the time interval (ti, tf) into N equal steps of duration

ǫ = (tf − ti)/N, (28.2.12)

so that

tj = ti + jǫ, (j = 0, 1, 2, . . . , N), (28.2.13)

with ti = t0 and tf = tN . We then define the discretized version of a path from ri to rf by

positions rj for each tj for j = 1, . . . , N − 1, with r0 = ri and rN = rf . The velocity of the

particle in the interval between times tj−1 and tj is v = (rj − rj−1)/ǫ, so the kinetic energy is
1
2
mv2 = 1

2
m(|rj − rj−1|/ǫ)2. Therefore, we can write the discretized version of the action for the

path as

S[path] = S(ri, r1, r2, . . . , rN−1, rf) = ǫ

N∑

j=1

[
m|rj − rj−1|2

2ǫ2
− V (rj)

]
. (28.2.14)
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In the limit ǫ→ 0 with N = (tf − ti)/ǫ→∞, this will give the action for the continuous path.

We now write eq. (28.2.10) as

ψ(rf , tf ) = lim
N→∞

∫
d3r0
a3

∫
d3r1
a3

∫
d3r2
a3
· · ·
∫
d3rN−1
a3

exp
[
iS[path]/~

]
ψ(r0, t0), (28.2.15)

where a is a normalization factor, with units of [length], to be found soon. So, removing the

integration over r0 and the initial wavefunction ψ(r0, t0),

U(rf , tf ; ri, ti) = lim
N→∞

1

a3

∫
d3r1
a3

∫
d3r2
a3
· · ·
∫
d3rN−1
a3

exp
[
iS[path]/~

]
, (28.2.16)

in which it is important that there is one more factor of 1/a3 than the remaining number of

integrations, in accord with the fact that the propagator has dimension 1/[length]3. Equation

(28.2.16) is one possible meaning of the notation

U(rf , tf ; ri, ti) =

∫
d[r(t)] exp (iS[r(t)]/~) (28.2.17)

for the path integral.

Let us now show that the preceding proposal is indeed equivalent to the Schrödinger equation.

It is sufficient to consider only time evolution over a single infinitesimal time interval, since longer

time intervals can be obtained using the composition law eq. (28.2.3). For simplicity, we write

ti = t0 = t, and after one infinitesimal time step, tf = t + ǫ. Then, using the N = 1 version of

eq. (28.2.15), the wavefunction at the final time in terms of the initial wavefunction is

ψ(r, t + ǫ) =

∫
d3r0
a3

eiS(~r, ~r0)/~ψ(r0, t). (28.2.18)

Expanding the left side in small ǫ gives

LS of (28.2.18) = ψ(r, t+ ǫ) = ψ(r, t) + ǫ
∂

∂t
ψ(r, t) + · · · . (28.2.19)

The right side of eq. (28.2.18) is

RS of (28.2.18) =

∫
d3r0
a3

exp

(
i

~

[
m|r − r0|2

2ǫ
− ǫV (r)

])
ψ(r0, t), (28.2.20)

or, expanding the exponential part involving V (r) to order ǫ, and then shifting the integration

variable according to r0 → r0 + r,

RS of (28.2.18) =
[
1− i ǫ

~
V (r)

] ∫ d3r0
a3

eimr
2
0/2~ǫψ(r + r0, t). (28.2.21)

Now, in the limit of small ǫ, there will be almost complete cancellation from the rapidly varying

phase inside the integral. The only region that contributes as ǫ → 0 is where r20 ≈ 0, so that

the phase factor eimr
2
0
/2~ǫ is close to 1. Therefore, we can use the expansion for small r0,

ψ(r + r0, t) = ψ(r, t) + r0 · ∇ψ(r, t) +
1

2
(r0 · ∇)2ψ(r, t) + · · · . (28.2.22)
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Inside the integration over r0, this can be simplified because the part odd under (x0, y0, z0) →
−(x0, y0, z0) will cancel. Thus, the linear term does not contribute at all, and using rectangular

coordinates and the spherical symmetry of the integrand you can check that inside the integral

the last term can be replaced according to (r0 · ∇)2 → 1
3
r20∇2. So, we have

∫
d3r0 e

imr2
0
/2~ǫψ(r + r0, t) = ψ(r, t)

∫
d3r0 e

imr2
0
/2~ǫ +

1

6
∇2ψ(r, t)

∫
d3r0 r

2
0e
imr2

0
/2~ǫ + · · · ,

(28.2.23)

in which the neglected terms have higher powers of r20, and so can be checked to contribute only

at higher order in ǫ. Using

∫
d3r0 e

imr20/2~ǫ = 4π

∫ ∞

0

dr0 r
2
0 e

imr20/2~ǫ =

(
2πi~ǫ

m

)3/2

, (28.2.24)

∫
d3r0 r

2
0 e

imr20/2~ǫ = 4π

∫ ∞

0

dr0 r
4
0 e

imr20/2~ǫ = i
3~ǫ

m

(
2πi~ǫ

m

)3/2

, (28.2.25)

and plugging into eq. (28.2.21) gives

RS of (28.2.18) =
1

a3

(
2πi~ǫ

m

)3/2 [
1 + i

ǫ

~

(
~
2∇2

2m
− V (r)

)
+O(ǫ2)

]
ψ(r, t). (28.2.26)

Now compare eqs. (28.2.19) and (28.2.26). Matching at leading order in ǫ just informs us that

the normalization factor is

a =

(
2πi~ǫ

m

)1/2

. (28.2.27)

Then, matching the terms at first order in ǫ gives

i~
∂

∂t
ψ(r, t) =

[
−~

2∇2

2m
+ V (r)

]
ψ(r, t), (28.2.28)

which is the Schrödinger equation in the position wavefunction representation. This completes

the demonstration that the Feynman sum over paths formulation is equivalent to the Schrödinger

equation time evolution.

28.3 Evaluation of the path integral for the harmonic oscillator

In the previous section we demonstrated the equivalence of the path integral formulation and

the Schrödinger equation, but this is not the same as actually computing a useful result directly

in terms of the path integral. We will now show how to arrive at the propagator for the one-

dimensional harmonic oscillator, already given in eq. (28.1.13), in the path integral approach.
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Consider the propagator as a path integral, starting at time t = 0 and ending at time t = T ,

U(xf , T ; xi, 0) =

∫
d[x(t)] eiS[x(t)]/~. (28.3.1)

In the case of the harmonic oscillator, we have a great advantage, that there is a unique classical

trajectory, given by eq. (28.1.16) with tf = T and ti = 0. Accordingly, it will help us greatly to

do a change of variables

x(t) = xcl(t) + y(t), (28.3.2)

where the new coordinate y(t) can be interpreted as the quantum fluctuation. It satisfies the

boundary conditions

y(0) = y(T ) = 0. (28.3.3)

Now we can evaluate the action functional, with the result

S[x(t)] = S[xcl(t)] +
m

2

∫ T

0

dt
(
ẏ2 − ω2y2

)
, (28.3.4)

where the cross-terms involving both xcl and y have conveniently canceled. To see this cancel-

lation, note that those cross-terms are

m

∫ T

0

dt
(
ẋclẏ − ω2xcly

)
= −m

∫ T

0

dt
(
ẍcl + ω2xcl

)
y, (28.3.5)

where we have integrated by parts, making use of the vanishing of the boundary terms from

eq. (28.3.3). The last expression vanishes due to the equation of motion satisfied by xcl.

Now, since S[xcl(t)] is a constant with respect to the new functional integration variable y(t),

we can pull it out of the path integral, to get

U(xf , T ; xi, 0) = I eiS[xcl(t)]/~, (28.3.6)

where it remains to evaluate the function integral over y(t),

I ≡
∫
d[y(t)] exp

[
im

2~

∫ T

0

dt
(
ẏ2 − ω2y2

)]
. (28.3.7)

We have already made good progress, since we have successfully obtained the correct eiS[xcl(t)]/~

factor in eq. (28.1.13). Indeed, from its definition, the remaining factor I clearly has no depen-

dence on xf or xi. Our remaining task is to show that, in accord with eq. (28.1.13),

I =

(
mω

2πi~ sin(ωT )

)1/2

. (28.3.8)
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We will do the path integral to get I in two different ways.

First, we use the discretization of the same type used in eq. (28.2.16),

I = lim
N→∞

1

a

(
N−1∏

j=1

∫ ∞

−∞

dyj
a

)
exp

(
im

2~ǫ

N∑

k=1

[
(yk − yk−1)2 − ǫ2ω2y2k

]
)
, (28.3.9)

where ǫ = T/N , and we have already obtained the normalization a in eq. (28.2.27). Then,

letting zj = yj/a and assembling z1, z2, . . . , zN−1 into an (N −1)-dimensional vector z, we have

I = lim
N→∞

1

a

∫
dN−1z exp

(
−πzTBNz

)
(28.3.10)

where BN is an (N−1)× (N−1) matrix, which takes the form

BN =




2− δ −1 0 0 · · · 0
−1 2− δ −1 0 · · · 0
0 −1 2− δ −1 · · · 0
0 0 −1 2− δ · · · 0
...

...
...

...
. . . −1

0 0 0 0 −1 2− δ




, (28.3.11)

where for convenience we have defined

δ ≡ ǫ2ω2 = ω2T 2/N2. (28.3.12)

Now, since B is a real symmetric matrix, we can do a rotation in the (N−1)-dimensional space

to new coordinates u = Oz, where O is an orthogonal matrix, in such a way that the rotated

matrix B̃N = OBNO
T is diagonal. Since a real symmetric matrix is just a special kind of

Hermitian matrix, and an orthogonal matrix is just a special kind of unitary matrix, Theorems

2.6.7 and 2.6.9 apply to tell us that the diagonal entries of B̃N are the same as the eigenvalues

of BN . Calling those eigenvalues λj,

I = lim
N→∞

1

a

N−1∏

j=1

∫ ∞

−∞
duj e

−πλju2j . (28.3.13)

Now each of the uj integrals can be done separately, using
∫∞
−∞ du e

−πλu2 = λ−1/2, giving

I = lim
N→∞

1

a

N−1∏

j=1

(λj)
−1/2 = lim

N→∞

1

a
(detBN)

−1/2 (28.3.14)

where we have used the fact from matrix algebra that the determinant of BN is equal to the

product of its eigenvalues.
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Let us now find the determinant of the (N −1)× (N −1) matrix BN , temporarily taking δ

to be general even though in our case it depends on N through eq. (28.3.12). We have

detB2 = 2− δ, (28.3.15)

detB3 = (2− δ)2 − 1, (28.3.16)

and for larger N we can evaluate detBN in terms of its minors for the two non-zero entries

in the first row. Conveniently, these involve determinants of versions of the same matrix with

dimension smaller by 1 and 2. This gives the recurrence relation

detBN = (2− δ)detBN−1 − detBN−2, (N = 4, 5, 6, . . .). (28.3.17)

It is possible to solve this recurrence relation systematically, but we will take the shortcut of

writing down the answer and checking that it works. To do so, we define numbers β1,2 by

β1 + β2 = 2− δ, β1β2 = 1. (28.3.18)

Then we claim that

detBN =
βN1 − βN2
β1 − β2

. (28.3.19)

This is easily checked to work for N = 2 and 3, and then for the recurrence relation eq. (28.3.17),

by direct substitution.

We are now ready to take the large N limit. First, solving eq. (28.3.18), we find that

β1,2 = 1− δ

2
± i
√
δ − δ2/4 = 1± iωT/N + . . . , (28.3.20)

where the ellipses involves terms of higher order in 1/N . Therefore, for large N ,

detBN =
(1 + iωT/N)N − (1− iωT/N)N

2iωT/N
=

eiωT − e−iωT
2iωT/N

=
N sin(ωT )

ωT
, (28.3.21)

where the definition of the exponential function, ex = limN→∞(1 + x/N)N , was used to get the

second equality. Using this in eq. (28.3.14) along with a = (2πi~T/mN)1/2, we find

I = lim
N→∞

(
mN

2πi~T

)1/2(
ωT

N sin(ωT )

)1/2

=

(
mω

2πi~ sin(ωT )

)1/2

, (28.3.22)

which agrees with the result found before.

Greedy for more insight, let us now consider a second way to calculate I, using a different

realization of the path integral. Instead of enumerating the possible paths by discretizing in
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time, we write the quantum fluctuation as a general Fourier series expansion of terms that

satisfy the boundary conditions y(0) = y(T ) = 0,

y(t) =
∞∑

n=1

yn sin(nπt/T ). (28.3.23)

We then interpret the path integral in eq. (28.3.7) as an integration over all of the Fourier

coefficients yn,

I =
1

c

( ∞∏

n=1

∫ ∞

−∞

dyn
bn

)
exp

[
im

2~

∫ T

0

dt
(
ẏ2 − ω2y2

)]
(28.3.24)

where we have introduced normalization factors c and bn with dimensions of [length]. Now the

action integral over t in the exponent can be easily computed, yielding

I =
1

c

( ∞∏

n=1

∫ ∞

−∞

dyn
bn

)
exp

[
−
∞∑

n=1

imT

4~

(
ω2 − n2π2/T 2

)
y2n

]
. (28.3.25)

This nicely separates into one-dimensional integrals over the yn, as

I =
1

c

∞∏

n=1

(∫ ∞

−∞

dyn
bn

exp

[
−imT

4~

(
ω2 − n2π2/T 2

)
y2n

])
. (28.3.26)

Doing the individual Gaussian integrals,

I =
1

c

∞∏

n=1

1

bn

(
4πi~

mT (n2π2/T 2 − ω2)

)1/2

. (28.3.27)

To make further progress, we make use of a famous formula due to Euler,

∞∏

n=1

(
1− x2

n2π2

)
=

sin(x)

x
, (28.3.28)

with x = ωT in our present case, to obtain

I =
1

c

(
ωT

sin(ωT )

)1/2 ∞∏

n=1

1

bn

(
4i~T

n2πm

)1/2

(28.3.29)

Comparing with eq. (28.3.22), we see that we have correctly obtained the ω dependence, and

that the whole formula for I is correct provided that the normalization factors are

bn =

(
4i~T

n2πm

)1/2

, c =

(
2πi~T

m

)1/2

. (28.3.30)

The advantage of this Fourier expansion method for the harmonic oscillator path integral is

that the separation into individual integrals was automatic. The disadvantage is that the ω-

independent normalization factors 1/c and 1/bn associated with the path integral had to be
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obtained by comparison to the known result for I. In the discretized version of the path integral,

the normalization factor 1/a was known already from the case of infinitesimal T in section 28.2.

The case of a free particle can be obtained from the ω → 0 limit. In the preceding, we were

able to make use of a very special property of the free particle and the harmonic oscillator,

namely that the action is quadratic in the configuration variable(s) and its time derivatives,

leading to Gaussian integrations in either eq. (28.3.13) or eq. (28.3.26), which we were there-

fore able to do analytically. Another simple application is given in the next section. For other

problems in nonrelativistic quantum mechanics, the path integral method is only rarely efficient

compared to methods based on the Schrödinger equation. However, the path integral approach

is still extremely valuable, for in addition to the beautiful conceptual understanding it brings, it

turns out to provide a practically useful way of systematically organizing certain approximation

methods. In quantum field theories, this includes both Feynman rules for perturbative calcula-

tions, and stochastic methods for non-perturbative calculations, topics beyond the scope of this

book.

28.4 The Ehrenberg–Siday and Aharonov–Bohm effect

The classical trajectory of a charged particle in an electromagnetic field is determined uniquely

by its initial conditions and the electromagnetic fields E and B that it encounters locally. In

quantum mechanics, things are different. The Hamiltonian in the Schrödinger equation, and

the Lagrangian in the path integral approach, depend on the gauge-dependent potentials Φ and

A. These potentials contain global information that is gauge invariant, but not accessible to

an observer on a classical trajectory making only local measurements of E and B. As a result,

there can be observable consequences of electromagnetic fields even if the particle is absolutely

forbidden to enter the region where E and B are nonzero!

The simplest example of this purely quantum phenomenon is most commonly known as the

Aharonov–Bohm effect, after a 1959 paper by Yakir Aharonov and David Bohm, although it

was actually proposed a decade earlier by Werner Ehrenberg and Raymond Siday. Consider

a spinless charged particle with coordinates r(t) subject to a static but non-uniform magnetic

field B = ∇× A. By specializing eq. (4.3.11), the Lagrangian is

L =
1

2
m

(
dr

dt

)2

+
q

c

dr

dt
· A(r). (28.4.1)

The path integral expression for the propagator,

U(rf , tf ; ri, ti) =

∫
d[r(t)] exp

(
i

~
Spath[r(t)]

)
, (28.4.2)
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ri

rfpath 2

path 1

Φm =
∫
da ·B

Figure 28.4.1: The dependence of the difference in actions for
two alternative paths for a charged spinless particle on a static
magnetic field is proportional to the magnetic flux Φm through
an area subtended by the two paths.

therefore naturally divides into two parts, according to

Spath = S
~A=0
path +∆Spath (28.4.3)

where the first term is the free-particle action, and the remaining part can be rewritten as a line

integral along the path specified from ri to rf by r(t),

∆Spath =
q

c

∫ tf

ti

dt
dr

dt
· A(r) =

q

c

∫ ~rf

~ri
path

dr · A(r). (28.4.4)

Thus each path contributes with a phase whose dependence on the magnetic field is proportional

to the line integral of A along the path.

When evaluating the probability of detecting the particle at rf at time tf , we need the

relative phases between different paths. Consider any two paths contributing to the propagator,

call them “path 1” and “path 2”. (See Figure 28.4.1.) Then the dependence on A of the relative

phase between their contributions to the propagator is

∆ϕ ≡ (∆Spath 1 −∆Spath 2)/~ =
q

~c

(∫ ~rf

~ri
path 1

dr · A(r)−
∫ ~rf

~ri
path 2

dr · A(r)
)
. (28.4.5)

Using the minus sign to reverse the direction of the line integral over path 2, we can combine

the two paths into a single closed path P . Then applying Stokes’ Theorem gives the key result

∆ϕ =
q

~c

∮

P

dr · A =
q

~c

∫

area
da ·

(
∇× A

)
=

q

~c

∫

area
da · B =

qΦm
~c

. (28.4.6)

Here Φm is the magnetic field flux through a surface area subtending the two paths, obtained

following the right-hand rule. As usual when applying Stokes’ Theorem, the surface is not

unique; any such area subtending the two paths must† give the same result.

A two-slit interference version of the Ehrenberg–Siday–Aharonov–Bohm effect is de-

picted in Figure 28.4.2. A source of electrons is separated from a flat detection screen by a

†This relies on the standard assumption that magnetic monopoles do not exist, so that the magnetic flux
through any closed surface is 0. For the possibility that magnetic monopoles do exist, see section 28.5.

634



source

diffraction screen
detection
screen

B

Figure 28.4.2: The Ehrenberg–Siday–
Aharonov–Bohm effect for a two-slit in-
terference experiment for electrons. The
shaded circle represents the cross-section of a
solenoid, carrying a magnetic field out of the
plane. The presence of the magnetic field in
the solenoid affects the interference pattern
visible on the detection screen, even though
the electrons are absolutely forbidden to enter
the region with non-zero B.

diffraction screen with two small holes. Behind the diffraction screen is a solenoid (or perhaps a

permanent magnet), which carries in its interior a magnetic field B coming out of the plane of

the page. The solenoid is tightly wound and long enough so that the magnetic field B outside

of it can be neglected, and is shielded so that electrons cannot enter it. Therefore, classically

the presence of the magnetic field inside the solenoid can have no effect on the electrons.

In quantum mechanical reality, it is important that the vector potential outside of the

solenoid is necessarily non-zero. For example, in terms of cylindrical coordinates (r, φ, z) coaxial

with a solenoid of radius R, the magnetic field has the form

B =

{
Bẑ (for r < R),

0 (for r > R),
(28.4.7)

and the associated vector potential can be chosen to be

A =

{
(Br/2)φ̂ (for r ≤ R),

(BR2/2r)φ̂ (for r ≥ R).
(28.4.8)

The resulting magnetic flux for any closed path encircling the solenoid once is Φm = πR2B.

Accordingly, the phase difference, for electrons going on any path below the solenoid compared

to those going on any path above the solenoid, due to the existence of the magnetic field, is,

from eq. (28.4.6) with q = −e,

∆ϕ = −2πΦm/Φ0, (28.4.9)

where we have defined the relevant quantum unit of magnetic flux,‡

Φ0 = 2π~c/e = 4.13567× 10−7 gauss · cm2. (28.4.10)

To observe the effect, start with the solenoid turned off, and consider a reference point at the

center of the detection screen where the interference is maximally constructive, with paths from

‡This same quantity also appeared in eq. (9.3.45), in the discussion of Landau levels.
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both holes contributing equally to the peak intensity I0. Now when the magnetic field is turned

on, the intensity at that point will be changed to
∣∣∣∣
1

2
+

1

2
ei∆ϕ

∣∣∣∣
2

I0 =
1

4

∣∣1 + e−2πiΦm/Φ0

∣∣2 I0, (28.4.11)

where the two terms in the first expression correspond to the contributions from all paths

through the top hole and all paths through the bottom hole, respectively. So, if the magnetic

field strength B is adjusted so that Φm = (n+1/2)Φ0 where n is any integer, the interference will

become completely destructive, and the intensity will vanish at the reference point. If Φm = nΦ0,

the interference will be maximally constructive again. This effect has been confirmed in many

increasingly sophisticated experiments.

One can interpret the effect as illustrating that the vector potential A contains genuine

physical information that is not apparent through local interaction of the charge with the field

B. This is the meaning of the first term in ∆ϕ in eq. (28.4.6). However, the effect can also

be described entirely in terms of the non-trivial magnetic flux, Φm, in the last expression in

eq. (28.4.6), which depends only on the gauge-invariant magnetic field B. This dependence of

interference on the flux is a topological one, in the sense that it occurs because the allowed paths

of the charged particle cannot be deformed into each other without crossing into the region with

nonzero B. In the path integral approach, we understand this in terms of the particle’s ability

(in fact, obligation) to coherently sample phases from all available paths, even though none of

those paths actually encounters the non-zero B field.

28.5 Dirac quantization condition for magnetic monopoles

The Ehrenberg–Siday–Aharonov–Bohm effect is an experimentally well-established phenomenon.

The key result leading to it, eq. (28.4.6), can also be applied to learn something quite non-trivial

about a more speculative hypothesis, the possibility of magnetic monopoles. Dirac showed that

the extension of Maxwell’s electrodynamics to include magnetic monopoles is only consistent

with quantum mechanics if both magnetic and electric charges are quantized. There are several

different ways to derive Dirac’s result. In this section we will do it using eq. (28.4.6).

The standard assumption that magnetic monopoles do not exist is one of the four Maxwell

equations, ∇ · B = 0. To include magnetic monopoles in the theory, one generalizes this to

∇ · B = 4πρm, (28.5.1)

where ρm is the density of magnetic charge. A point monopole with magnetic charge qm, fixed

at the origin, would then give rise to a magnetic field

B = qmr̂/r
2 (28.5.2)
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qmri

rf

paths 1

paths 2

qm

da

da

Φ
(I)
m = 2πqm

Φ
(II)
m = −2πqm

Figure 28.5.1: A monopole of magnetic charge qm is fixed at the origin, and a particle with
electric charge q is restricted to a circle of fixed radius around it. As shown in the left
panel, there are contributions to the propagator path integral from trajectories with net
counterclockwise direction (paths 1) and net clockwise direction (paths 2). The presence of
the monopole affects the relative phase between these classes of paths through ∆ϕ, which
can be obtained from the first expression in eq. (28.4.6) as a line integral of the vector
potential around the closed circle. Alternatively, it can be obtained from the magnetic flux
through either the upper hemisphere or the lower hemisphere, as depicted in the right panel.

in spherical coordinates. Equations (28.5.1) and (28.5.2) are the hypothetical analogs of, re-

spectively, Gauss’ Law ∇ · E = 4πρ and E = qr̂/r2, for ordinary electric charge density ρ and

a point electric charge q. This similarity between electric and magnetic charges is one reason

to take magnetic monopoles seriously as a hypothesis. Another is that they can be shown to

be necessarily present in some extensions of the Standard Model of particle physics that may

be motivated for other reasons, notably Grand Unified Theories. Although magnetic monopoles

have not been observed despite extensive searches, it is possible that this is because they are

extremely rare in the present universe. For example, they could be too heavy to produce with

collision energies available today, and the cosmological inflation that is believed (for other rea-

sons) to have occurred in the early universe would have diluted the density of them left over

from the Big Bang to a level that makes it extremely unlikely for us to encounter one.

Suppose that there is a magnetic monopole qm at rest at the origin, with B as given in

eq. (28.5.2). Consider the quantum mechanics of an ordinary particle with charge q, which is

assumed to be restricted to a circle of radius R in the xy plane with its center at the origin, as

shown in the left panel of Figure 28.5.1. The propagator for the particle to start at some point

ri at time ti and end up at rf at time tf can be written as a sum over contributions from paths

that wind around the circle in different ways. Thus we can write

U(ri, ti; rf , tf ) =

∫

paths 1

d[r(t)] exp

(
i

~
S[r(t)]

)
+

∫

paths 2

d[r(t)] exp

(
i

~
S[r(t)]

)
. (28.5.3)

The “paths 1” contribution is from paths that have a net counterclockwise direction in the figure,
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while “paths 2” have a net clockwise direction; of course, these paths r(t) need not be monotonic

in direction around the circle. (We neglect contributions from paths that wind around the circle

more than once. This is not essential to the following argument.) The propagator can now be

written in the form

U(ri, ti; rf , tf) = eiα
(
ei∆ϕc1 + c2

)
, (28.5.4)

where c1 and c2 are the contributions from paths 1 and paths 2 that would be present if the

magnetic monopole were absent, eiα is a common phase factor due to the magnetic monopole,

and ei∆ϕ is the relative phase between the two classes of paths due to the magnetic monopole,

as given in eq. (28.4.6). If the particle was known to be at ri at time ti, then the probability

that it will be found at rf at time tf is

P =
∣∣ei∆ϕc1 + c2

∣∣2 . (28.5.5)

Since the initial and final boundary conditions are arbitrary, and other potentials felt by the

charge q are not specified, c1 and c2 can be considered arbitrary complex numbers. Now ∆ϕ

can be evaluated in two distinct ways, either of which leads to the Dirac quantization condition.

First, one can evaluate ∆ϕ using the first equality in eq. (28.4.6), the line integral of A

around the full circle in the xy plane at radius R from the origin. However, there is a problem

associated with the vector potential, because the equation ∇ × A = B assumes no magnetic

monopoles, since the vector calculus identity ∇· (∇×A) = 0 implies ∇·B = 0. This shows that

it is impossible to write down a consistent A in any volume that includes the origin. Fortunately,

this difficulty can be evaded by recognizing that to compute ∆ϕ, we only need A on the path

arcs at r = R with θ = π/2. Accordingly, working in spherical coordinate, we can take either

AI =
qm
r

(
sin θ

1 + cos θ

)
φ̂, or AII = −

qm
r

(
sin θ

1− cos θ

)
φ̂. (28.5.6)

These both give ∇×A = qmr̂/r
2, except at the origin, and on the negative z axis for AI and on

the positive z axis for AII, where the respective denominators vanish. Since we only need r = R

and θ = π/2 to evaluate the line integral, AI and AII are both equally valid for our purposes.

However, they give two different results for ∆ϕ,

∆ϕI = −∆ϕII =
q

~c

∫ 2π

0

Rdφ
qm
R

=
2πqqm
~c

. (28.5.7)

To avoid an unacceptable inconsistency in the physical prediction for the probability |ei∆ϕc1+c2|2

following from the two equally valid choices for A, we must have

ei∆ϕI = ei∆ϕII, (28.5.8)
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since c1 and c2 are arbitrary complex numbers. This is equivalently 4πqqm/~c = 2πn for some

integer n, or simply

2qqm
~c

= n, (n = integer). (28.5.9)

This is the Dirac quantization condition for magnetic monopole charges.

The second (alternative) way to evaluate ∆ϕ avoids any mention of the vector potential by

using the last equality of eq. (28.4.6). So we have

∆ϕ =
qqm
~c

∫

area

da · r̂
r2

=
qΦm
~c

. (28.5.10)

Here we must confront the issue that there are actually two equally good choices of area sub-

tended by the circle in the xy plane, one above the origin and one below. For simplicity of

computation, it is convenient to take these to be the upper and lower hemispheres of radius

R, labeled I and II in the second panel of Figure 28.5.1. The directions of their area elements

point outward and inward, respectively, as dictated by the orientation of the closed circular path

and the right-hand rule in Stokes’ Theorem. Therefore, the magnetic fluxes through them are

opposite in sign, and we have the two equally valid choices

Φ(I)
m = −Φ(II)

m = (2πR2)(qm/R
2) = 2πqm. (28.5.11)

Using these two choices in eq. (28.5.10) immediately gives exactly the same ambiguity as in

eq. (28.5.7), with the same resolution: the Dirac quantization condition eq. (28.5.9) must hold.

Since we can pick q to be the proton charge e or the electron charge −e, we learn from Dirac’s

result that magnetic charges qm must be quantized in integer multiples of a fundamental unit

qDirac
m =

~c

2e
= 3.29106× 10−16 Tesla ·meters2. (28.5.12)

Conversely, if even one magnetic monopole with charge qDirac
m = ~c/2e exists, anywhere in the

universe, then electric charges must be integer multiples of e. Thus magnetic monopoles, if they

exist, would give a compelling reason for the observed quantization of electric charge.

There is a subtlety here, because quarks and antiquarks exist with charges that are integer

multiples of e/3. Therefore, one might naively think that the fundamental quantum of magnetic

charge should actually be 3 times qDirac
m . However, quarks are confined inside hadrons by quan-

tum chromodynamics (QCD), also known as the strong force. The QCD gauge potentials also

contribute to the path integral, and it turns out (although showing it in detail is well beyond

our scope here) that one can still have magnetic monopoles with charge qDirac
m , provided that

they also carry magnetic-QCD charges, and are likewise confined. Thus Dirac’s qDirac
m is the true

quantum of magnetic charge, even though he did not know about quarks or QCD.
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qi

qf

q

ti tf t

Figure 28.6.1: A path q(t) (solid line), and a nearby path
q(t)+δq(t) (dashed line), subject to the boundary conditions
q(ti) = qi and q(tf) = qf and δq(ti) = δq(tf) = 0. The path
is a stationary path if the change in the action δS vanishes
for every infinitesimal change in path δq(t).

28.6 Classical limit from the sum over paths

In this section, we will show how the equations of motion for classical physics can be derived as

an appropriate limit of quantum mechanics in the path integral formulation.

Consider a path q(t) subject to the boundary conditions q(ti) = qi and q(tf) = qf , and

suppose we make a small change δq(t) to it,

q(t)→ q(t) + δq(t), (28.6.1)

as illustrated in Figure 28.6.1. This will result in a change in the action, which we write as

S[q(t)]→ S[q(t)] + δS. (28.6.2)

Because we must maintain the boundary conditions at t = ti and t = tf when computing the

propagator, we must also require

δq(ti) = δq(tf ) = 0. (28.6.3)

In general, if δS is non-zero, then the integrand of the path integral will acquire an additional

phase eiδS/~ compared to the result from the original path. If we take ~→ 0, which we associate

with the classical limit, this additional phase varies rapidly as δS changes, leading to very

efficient cancellation between the contributions for nearby paths.

Therefore, in the classical limit, the propagator is dominated by stationary paths, defined

to be those for which δS = 0 for every δq(t) that satisfies the boundary conditions eq. (28.6.3).

The point is that those are the only paths that do not suffer efficient cancellations from the

neighboring paths, with cancellation becoming perfectly efficient in the ~→ 0 limit. So, we can

write the condition for a stationary path q(t) as the vanishing of the functional derivative,

δS[q(t)]

δq(t)
≡ lim

δq(t)→0

S[q(t) + δq(t)]− S[q(t)]
δq(t)

= 0. (28.6.4)
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In quantum mechanics, the path integral samples all paths, but in the classical limit ~ → 0,

only stationary paths contribute non-negligibly.

Suppose we are given a Lagrangian L(q, q̇, t) for a system, so that

S[q(t)] =

∫ tf

ti

dt L(q, q̇, t). (28.6.5)

The change in the action due to the change in path δq(t) can be written as

δS =

∫ tf

ti

dt

[
δq(t)

∂L

∂q
+ δq̇(t)

∂L

∂q̇

]
, (28.6.6)

or, using δq̇(t) = d
dt
δq(t),

δS =

∫ tf

ti

dt

[
δq(t)

∂L

∂q
+
d

dt
δq(t)

∂L

∂q̇

]
. (28.6.7)

Integrating the second term by parts, we have

δS =

∫ tf

ti

dt δq(t)

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
+

(
δq(t)

∂L

∂q̇

) ∣∣∣∣
tf

ti

. (28.6.8)

The last surface term is 0 because of the boundary conditions eq. (28.6.3). In order to have

δS = 0 for all small variations δq(t), we conclude that the integrand in eq. (28.6.8) must vanish,

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (28.6.9)

This is the Lagrangian equation of motion familiar from classical mechanics. More generally, if

there are multiple variables qa with a = 1, . . . , N , with a Lagrangian L(qa, q̇a, t), then one can

show by the same argument that the classical limit implies the equations of motion

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0 (28.6.10)

for each a. Thus we have derived classical mechanics from the ~ → 0 limit of Feynman’s path

integral formulation of quantum mechanics.

In the case of a single spinless particle moving in three dimensions, we could of course take

our CSCO eigenvalues to be (q1, q2, q3)→ r. However, in more general situations, we often need

to describe processes that change the number of particles. Such processes include decays of

one particle into two or more particles, like the decay of a Higgs boson into a quark-antiquark

pair, or two gluons, or two photons. They also include the joining of two particles to make

particles of a different type, for example the annihilation of an electron and positron pair to

make a Z boson, which then turns into a quark-antiquark pair. In such cases, the way we have
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been treating quantum mechanics is hopelessly clumsy, because even the number of coordinates

needed to describe the positions or momenta of the particles changes depending on the state; in

other words, they are not a good CSCO.

Furthermore, special relativity teaches us that time and space are on the same footing,

while we have been treating spatial coordinates as operators, but using the time coordinate

as a parameter, not an operator. This is particularly embarrassing when we realize that the

symmetries of special relativity mix space and time coordinates.

The simultaneous resolution of these issues is that instead of associating the position coor-

dinates r with operators, they are taken to be labels, just like the time t. In other words, there

are different operators

Φ(r, t) (28.6.11)

for each label (r, t). The operators Φ(r, t), called quantum fields. They are associated with

the different types of particles in the theory, and can also carry indices associated with their

spin and other quantum numbers. The field operators can act on a vacuum state |0〉 (which
describes empty space with no particles, and is the lowest energy state) to give other states that

have any number of particles and antiparticles. In the path integral formulation, the classical

action functional looks schematically like

S[φ(r, t)] =

∫ tf

ti

dt

∫
d3r L(φ, φ̇,∇φ), (28.6.12)

where L is called the classical Lagrangian density, and φ is the classical field corresponding to

the quantum field Φ.

The resulting type of theory, which also obeys the other postulates of section 3.1, is called

a quantum field theory. Relativistic quantum field theories have the important property

that energies can be bounded from below, which is not the case in relativistic one-particle

quantum mechanics, as we saw in Chapter 27. In quantum field theory, the Schrödinger equation

formulation is valid, but often less useful than the equivalent path integral formulation, which

provides elegant methods for both conceptual understanding and practical calculations, using

both perturbative and non-perturbative methods. But that’s another story. . .

28.7 Exercises

Exercise 28.1. Consider the general spectral decomposition of the propagator in eq. (28.1.9).

Compare it to the specific result for the harmonic oscillator, in eqs. (28.1.13) and (28.1.14)

with T = t − t0, to deduce the known result En = ~ω(n + 1/2) for n = 0, 1, 2, . . ., and check

the known wavefunctions for n = 0 and n = 1. [Hint: write cos(ωT ) = (1/z + z)/2 and

sin(ωT ) = (1/z − z)/2i, where z = e−iωT . Then do a formal expansion in small z.]
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absorption spectrum, hydrogen atom, 261
action, 98, 622
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Bayes’ Theorem, 91
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position (3-dimensional), 64
spherical harmonics, 201
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electric dipole approximation, 472–473

differential, 486
photo-electric effect, 482–484
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scattering, 486
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Darwin term, 365–366, 368
from Dirac equation, 613

Davisson–Germer experiments, 15–16
de Broglie wavelength, 15

thermal, 570
decay of unstable states, 130–131
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and error correction, 588–594
Schrödinger’s cat, 557–559
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3-dimensional harmonic oscillator, 181–182
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energy eigenstates, 455
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destruction operator (harmonic oscillator), 169
detailed balance, 459, 471
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and decoherence, 87–88
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and Fourier transforms, 30
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Dirac equation, 366, 368, 603–618
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dual vector space, 32–33
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amplitude damping example, 538–540
conditions for, 541–543
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Dyson series, 83
interaction picture, 443–444
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effective potential, 229, 242, 518
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for neutron-proton scattering, 524–525
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identity operator, 45
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projection operator, 45
unitary operator, 52
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Einstein A and B coefficients, 469–471
Einstein’s energy quantization for photons, 13
Einstein–Podolsky–Rosen (EPR) problem, 304–

309
electric dipole (long wavelength) approximation,

471–475
selection rules, 474–475

electric quadrupole (E2) transitions, 476–479
selection rules, 478–479

electromagnetic energy density, 103
electromagnetic potentials, 103

four-vector, 609
electromagnetic wave, 463–464

absorption, 464–468
electric dipole approximation, 472–473

emission, 468–471
electric dipole approximation, 473

electron
charge, 8, 103
g-factor, 105, 612
mass, 9
spin, 16

electron configuration for multi-electron atom,
400–404

elliptical coordinates, 420–421
emission (general harmonic time-dependent per-

turbation), 458–461
emission of light, 468–471

electric dipole approximation, 473
induced (stimulated), 468–469
spontaneous, 469–471

encoding, redundant, 585
energy conservation from time translation sym-

metry, 111
energy density, electromagnetic, 103
ensemble

average over, 86
completely random, 89
mixed, 85–95
probabilities, 86, 89
pure, 76

entanglement, 67
and subsystems, 532–536
Bell states, 579
dense coding, 582–583
entropy, 535
nonlocal, 305
Schmidt (singular value) decomposition, 534–

535
teleportation, 579–582, 596

entropy, 89–90
entanglement, 535
for a qubit, 573

environment, 532
EPR problem, 304–309

reduced density operator, 532–533
EPR protocol for private key distribution, 586–

587
EPRB (Einstein–Podolosky–Rosen–Bohm) states,

579
epsilon symbol ǫabc, 116
equal-time commutation relations, 440
equations of motion

Hamiltonian, 99
Lagrangian, 98
Lagrangian, derived, 641

error correction, 588–594
Shor 9-qubit encoding, 593–594, 596

Euler angles, 198
Everett, Hugh, 84
exchange degeneracy, 385–386
exchange density, 393
exclusion principle for identical fermions, 272,

386–388, 391, 401
expectation value, 76, 86
explicit time dependence, 80
exponentiation of operator, 37–39, 43

Fermi’s golden rule, 456–457
harmonic perturbations, 458–459

Fermi–Dirac statistics, 285, 385–386, 393, 396,
401
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fermion, 272
Feynman sum over paths (path integral), 623–

642
classical limit, 640–641
discretized version, 626–627
equivalence to Schrödinger equation, 627–

628
Feynman’s disappearing screen, 623–624
fiction, convenient, 25
fine structure

from Dirac equation, 613, 617–618
of hydrogen atom, 365–369, 375
of multi-electron atoms, 404–406

fine structure constant α, 259–260
finite range scattering potential, 489, 511–514
flux of particles

in 1-dimensional scattering, 148
in 3-dimensional scattering, 486

forbidden transitions involving light, 475
four-momentum, 597
four-vector, 597–599
Fourier transform, 30–31

3-dimensional, 65
momentum and position wavefunctions, 62

Fourier transform (quantum gate), 578
free energy, Helmholtz, 95
free particle

in 1 dimension, 60, 134–137
wavefunction, 61–62

in 3 dimensions, 64
in spherical coordinates, 229–236
time evolution, 136, 621

frequency, Planck–Einstein relation to photon
energy, 11, 13

full width at half maximum
Breit–Wigner (Lorentzian) lineshape, 468,

517
Gaussian, 30, 132

functional, 625
functional derivative, 640
functional integral, 625–628

for harmonic oscillator, 628–633
functions of operators, 37–39

spectral decomposition, 54
fundamental (l = 3 in spectroscopic notation),

252

fundamental theorem of algebra, 44, 48
fundamental theorem of calculus, 139, 148

g-factor
electron, 105
from Dirac equation, 612

Landé
hydrogen atom, 377
multi-electron atom, 410

neutron, 105
proton, 105, 369

Γ(z) (Gamma function), 244–245
gamma matrices (for Dirac equation), 605–606
Γ (for unstable states), 130
Γ (width in resonant scattering), 516–517
gate, 574
gauge transformation, 103

in quantum mechanics, 124–125
Lorentz covariant, 609

gauge-invariant observable, 125–127
Gaussian wavefunction, 132–137

full width at half maximum, 132
momentum, 133
time evolution for free particle, 136, 137
uncertainty relation for, 134

generalized (non-normalizable) kets, 29, 33, 57
generalized (Robertson–Schrödinger) uncertainty

relation, 77–78
generalized measurement, 545–551

photon detection example, 549
positive operator-valued measure (POVM),

548–549
state distinguishing example, 550–551

generator
of symmetry, 109–111
of transformation, 108–109
rotations (with spin), 120
rotations (without spin), 116–117
translations, 113

Gibbs entropy, 90
giraffes hiding in kitchens, 252
global phase, 80
gluon, 8, 105, 210, 386, 608, 641
golden rule, 456–457

harmonic perturbations, 458–459
good quantum number, 56
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Gorini, Vittorio, 555
Gram–Schmidt process, 31–32
Grand Unified Theories, 103
graphical solution

1-dimensional square well, 144
particle confined to a sphere, 237–238

Green function for 3-d scattering, 497–499
Greenberger–Horne–Zeilinger–Mermin state, 313–

314
grotesque (silly name for l = 4 in spectroscopic

notation), 252
ground state, 24
group velocity

of Gaussian wavepacket, 137
vs. phase velocity, 134–135

Grover search algorithm, 579
gyromagnetic ratio, 105

and spin precession, 212–215

~, 13
H2O molecule, 435–437
H+

2 ion molecule, 419–422
Hadamard transformation (gate), 575
half-life, 474
Hall effect, 225
Hamiltonian, 73

classical, 98
Dirac equation, 603, 610
equations of motion, 99
free-particle, 134
harmonic oscillator, 1-d, 162
harmonic oscillator, 3-d isotropic, 240
hydrogen-like atoms, 248
non-Hermitian, 130–131
particle in electromagnetic field, 106–107
time-dependent, 82–84

Hankel functions, spherical, 232–233, 512
hard-sphere scattering

classical, 487–488
quantum, 519–521

harmonic oscillator, 159–182, 240–245
algebraic method, 169–174
anisotropic 3-d, 180–181
coherent states, 174–180, 561–564
differential equation method, 162–169
energy representation, 169–174

ground-state wavefunction, 166–167
Hamiltonian, 162
isotropic 3-d, 181–182, 240–245
momentum representation, 168–169
number operator, 171
path integral approach, 628–633
position representation, 162–168
positivity of energy eigenvalues, 162
propagator, 621–622
stationary state wavefunctions, 166–168

Heisenberg equation of motion, 440
Heisenberg picture, 438–441
Heisenberg uncertainty relation, 78
helium atom

excited states, 396–398
ground state
and spin, 395–396
first-order perturbation theory, 332–334
variational method, 361–363

Hamiltonian, 332
hyperfine structure, 397
para (total spin 0) and ortho (total spin 1),

396–398
Helmholtz free energy, 95
Hermite polynomials, 165–166

algebraic derivation, 173
Hermitian adjoint, 32, 36–37
Hermitian operator, 37

constraint for infinite-dimensional Hilbert
space, 59

corresponding orthobasis, 47–48
heteronuclear diatomic molecules, 430–431
hidden variables, 21, 309–319

demise of, 315–319
Hilbert space, 26, 71
hole (absence of electron), 409, 608
homonuclear diatomic molecules, 431–434
horrendous (silly name for l = 5 in spectro-

scopic notation), 252
Humphreys series, 261
Hund’s rules, 406–409
hydrogen atom, 248–261

absorption spectrum, 261
classical instability, 8–9
Dirac equation, 613–618
energy spectrum and degeneracy, 250–251
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expectation values of powers of R, 256–258,
341–342

fine structure, 365–369, 375, 613–618
hyperfine structure, 271, 369–375
impact of proton radius, 330–331
in external magnetic field, 375–381
Paschen–Back effect, 378–381
polarizability, 346
relativistic corrections, 260, 365–369
Stark effect, 343–348
stationary state wavefunctions, 252–256
unbound states, 261–264
wavefunction at the origin, 254, 331
Zeeman effect, 375–381

hyperfine structure
helium atom, 397
hydrogen atom, 271, 369–375

identical particles, 271–272, 383–412
and spin, 391–395
constraint on Hamiltonian, 385
constraint on observables, 384
constraint on states, 385–386
factor of 1/2 for cross-section, 528
nuclei in diatomic molecules, 431–433
pair-exchange operators, 384–385
permutation operators, 386–387
scattering, 526–528

identity operator, 34–35
impact parameter, 486–487
improper Lorentz transformation, 599
incoherent superposition of harmonic perturba-

tions, 459–460
incompatible operators, 56, 73–74
index relabeling trick, 164, 242, 286, 300
index summation convention, 116, 160
induced (stimulated) emission, 468–469

electric dipole approximation, 473
inelastic photon scattering (Raman effect), 433–

434
inert (noble) gases, 402, 407

electron scattering, 152–153, 523
inertial reference frame, 597
infinite-dimensional vector space, 25
infinite-range scattering potential, 488
information, 571–596

inner product, 26
in terms of wavefunctions, 57, 61, 63, 65
matrix representation, 39
preserved by unitary transformation, 42–43

instability of charged matter in classical me-
chanics, 8–9

intensity and photon occupation numbers, 467
interaction picture (Dirac picture), 441–445

Dyson series solution, 443–444
interference, 14–15
interval rule, Landé, 405–406
intrinsic angular momentum, 16–17, 119, 191
intrinsic parity, 209–210
inverse Fourier transform, 31
inverse metric tensor (gµν), 598
inverse of an operator, 35
inverse of matrix, 41
ionization energy

first, multi-electron atoms, 402–403
hydrogen (Rydberg), 251
total, helium, 334, 363

irreducible representation of rotation group, 195
irreducible tensor operator, 291–295, 299–303
isometric operator, 495

Jacobi coordinates, 102
Jacobi identity, 69
jj coupling approximation, 411–412
jump (Lindblad) operators for open system, 555

K-shell electrons, 484
kernel, 620
ket, 23

generalized (non-normalizable), 29, 33, 57
null, 24

kinetic (mechanical) momentum, 104
operator, 106–107, 125–126, 129
vs. canonical momentum, 104

Klein’s inequality, 92
Klein-Gordon equation, 601–602
Kossakowski, Andrzej, 555
Kramers–Pasternack recurrence relation, 257–

258
Kraus operators, 537–538

as measurement operators, 545–548
non-uniqueness, 540–541

Kronecker delta symbol, 28
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ladder operator
angular momentum, 187
harmonic oscillator, 169

Lagrangian, 98, 625, 641
Laguerre polynomials, associated, 244–245

differential equation, 245
explicit form, 245
for 3-d harmonic oscillator, 244–245
for hydrogen atom, 252–253
orthogonality
for 3-d harmonic oscillator, 245
for hydrogen atom, 253

Lamb shift, 374–375, 380, 381
Landé g-factor

hydrogen atom, 377
multi-electron atom, 410

Landé interval rule, 405–406
Landé projection formula, 297–298, 301, 372
Landau levels, 218–227
Laplacian and angular momentum, 199–200, 206
Larmor formula for radiated power, 9
Larmor precession frequency, 212
Legendre functions, associated, 203
Legendre polynomials, 203, 203
level repulsion, 349, 350
Levi-Civita symbol ǫabc, 116
Lie algebras and groups, 108–109
lifetime due to spontaneous emission, 474
light

absorption, 464–468
electric dipole approximation, 472–473

and hydrogen transitions, 260, 261
emission, 468–471
electric dipole approximation, 473

interference, 14–15
Planck–Einstein energy-frequency relation,

11, 13
quanta (photons), 13

Lindblad equation, 555
damped harmonic oscillator, 561–562
simple decoherence example, 560

line broadening, 467–468
linear (in)dependence of vectors, 25
linear operator, 33–34
linear potential, 153–156
linear rigid rotor, 429

linear Stark effect, 346–347
linearity property of inner product, 26
Liouville’s Theorem, 90
Liouvillian superoperator, 553

Lindblad form, 555
Lippmann–Schwinger equation, 494, 497–500
local conservation of charge, 103

Lorentz covariant, 610
local conservation of probability, 128–131
local realism, 309–310

demise of, 315–319
logical qubit, 585
Lorentz force law, 103
Lorentz tensor, 600–601
Lorentz transformation, 597–600

Dirac spinor, 606–607
proper, 600

Lorentzian (Breit–Wigner) lineshape, 468, 517
lowering operator

angular momentum, 187
harmonic oscillator, 169

LS coupling scheme, 404–409
Lyman series, 260–261
Lyman-alpha line, 261

magnetic dipole (M1) transitions, 476–478
selection rules, 477–478

magnetic field and Landau levels, 218–227
magnetic flux quantum, 224, 635
magnetic length, 222
magnetic moment

and spin, 18–19, 104–105
deuteron, 524
electron, 18–19, 105, 366
multi-electron atom, 410
neutron, 105–106
proton, 105–106, 369–370

magnetic monopoles, 636–639
magnetic quantum number m, 119, 378
magnetic spin resonance, 215–218
magneton, Bohr (µB) and nuclear (µN), 106
magnitude of a complex number, 23
many-worlds (Everett) interpretation, 84–85
Markovian approximation, 553
matrix element of an operator, 34
matrix element, reduced, 296, 298, 301–302
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matrix inversion, 41
matrix representation in an orthobasis, 39–40
Maxwell’s equations, 102

Lorentz-covariant form, 609–610
measurement

allowed results, 71
and collapse of state, 72–73
controversy and unease, 84–85
for mixed ensembles, 91–92

and decoherence, 564–567
and probability, 72
for mixed ensembles, 88

generalized, 545–551
destructive, 549–550

measurement operators, 545–548
mechanical (kinetic) momentum, 104

operator, 106–107, 125–126, 129
vs. canonical momentum, 104

methane, 428
metric tensor, 598
microwave ovens, 437
Millikan photo-electric effect experiment, 14
mixed ensemble, 85–95
mixed state, 89
modified spherical Bessel functions, 233
modulus (magnitude) of a complex number, 23
molecules, 415–437
moments of inertia, 426–428
momentum, 59

3-dimensional, 63
4-dimensional, 597
as generator of translations, 113, 114
canonical, 98–99, 104, 114
conservation and translation symmetry, 113–

115
eigenstates, 60–65
Hermiticity, 59
kinetic (mechanical), 104, 106–107, 125–

126, 129
uncertainty in Gaussian wavefunction, 134

momentum wavefunction and representation, 60–
61, 65

monopole, magnetic, 636–639
Morse potential, 423–426

energy spectrum, 426, 435
parameters for common diatomic molecules,

430
parameters for H2O molecule, 436

multi-electron atoms, 398–412
multiplet of angular momentum, 190
multipole expansion for absorption and emis-

sion of light, 475–479
multipole moment operator, 294–295
muonic hydrogen, 331
Moller operators, 493–496

Neumann functions, spherical, 231–232
neutron

magnetic moment, 105–106
mass, 523

neutron-proton scattering, 523–526
no-cloning theorem, 584–585
noble (inert) gases, 402, 407

electron scattering, 152–153, 523
Noether’s principle, 110–111
non-normalizable (generalized) kets, 29, 33, 57
nonlocality, 309
norm, 26–27

in terms of wavefunction, 57, 65
normal ordering, 169
nuclear magnetic resonance, 218
nuclear magneton (µN), 106
nuclear size, 8, 330–331
null ket, 24
number operator (harmonic oscillator), 171

observable, 53, 71
completeness of orthobasis, 53
gauge-invariant, 125–127
quantum counterpart of classical, 74–75

occupation numbers, 389
of atomic electrons in subshells, 401
photons, 467

on-shell condition, 601
open systems, 532

rules summarized, 551–552
operator, 33

multi-component, 64, 73–74
operator order ambiguities, 74–75
operator-sum form of dynamical map, 537–538,

541–543
Optical Theorem, 501–502
orbital angular momentum, 115
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orbital states, 400
Orion nebula, 261
ortho- and para-

diatomic molecules, 432–433
helium, 396–397

orthobasis (orthonormal basis), 28–29
corresponding to a CSCO, 55
corresponding to Hermitian operator, 47–

48
Gram–Schmidt construction, 31–32

orthogonal kets, 28
orthonormality, 28–29

angular momentum eigenstates, 186, 190
Dirac, 28–29, 33, 53, 71
momentum eigenstates, 60, 64
position eigenstates, 57, 64
spherical coordinate eigenstates, 200

Hermite polynomials, 166
Legendre polynomials, 203
spherical Bessel functions, 233
spherical harmonics, 201

outer product, 35

pair-exchange operators for identical particles,
384–385

para- and ortho-
diatomic molecules, 432–433
helium, 396–397

paradox, instantaneous communication, 308
parallelism, 574–575
parity, 121–123

Dirac spinors, 605
eigenvalues, 121
angular momentum eigenstates, 208–210
composite particle, 209–210
intrinsic, 209–210
multi-electron atom, 209, 406

of operators, 122
angular momentum, 123, 478
position and momentum, 122

violation in weak interactions, 210, 600
parity selection rule, 123
partial trace, 533
partial wave expansion, 507–511
particle-wave duality, 13–15
partition function, 94–95

Paschen series, 261
Paschen–Back effect

hydrogen atom, 378–381
multi-electron atoms, 410–411

path integral, 623–628, 642
for harmonic oscillator, 628–633

Pauli exclusion principle for identical fermions,
272, 386–388, 391, 401

Pauli matrices, 191–192
periodic boundary condition, 10, 60, 226
periodic table of elements, 402, 406–409
permutation operators for identical particles,

386–387
perpendicular kets, 28
perturbation theory

stationary-state (time-independent), 321–
352

almost-degenerate, 348–352
Brillouin–Wigner, 334–335
Dalgarno–Lewis method, 335–337
degenerate, 337–342
non-degenerate, 321–334

time-dependent, 448–457
harmonic, 457–461

Pfund series, 261
phase

ambiguity, 28, 45, 111
global and relative, 28, 80

phase damping of a spin, 564
phase shift (scattering), 510–511
phase velocity vs. group velocity, 134–135
phase-space coordinates, 98
photo-electric effect, 12–14

for atoms, 479–484
photon, 13

generalized measurement example, 549
pictures of quantum mechanics

Heisenberg, 438–441
interaction (Dirac), 441–445
Schrödinger, 438

Planck’s constant (h), 11
reduced (~), 13

Planck’s formula for black-body radiation, 12
plane wave

in 1 dimension, 61–62
in 3 dimensions, 64
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relation to spherical wave, 234–236
Poincaré recurrence, 569
pointer states, 558
Poisson bracket, 90, 99
Poisson distribution (coherent state), 175–176
polarizability of hydrogen atom, 346
polarization vector for light, 463–464
pole in scattering amplitude

bound state, 514–516, 518, 519
resonance, 516–519

populations, 558
position operator

in 1 dimension, 56
in 3 dimensions, 63–64

position wavefunction and representation, 57,
65

positive map, 541–545
not completely positive example, 544–545

positive operator, 534
positive operator-valued measure (POVM), 548–

549
positivity of inner product, 26
positron, 608
positronium, 290
postulates of quantum mechanics, 71–73

collapse (controversy and unease), 84–85
Feynman’s alternative for time evolution,

626
for open systems, 551–552
in terms of density matrix operator, 85–92
spin-statistics for identical particles, 385

potentials, electromagnetic, 103
Poynting vector, 103
precession of spin in magnetic field, 212–215
principal (l = 1 in spectroscopic notation), 252
principal axes of rigid body, 426–428
principal quantum number n (hydrogen), 250
private keys, 586–588
probability

current, 128–130
density, 58, 65
in momentum space, 61, 65

local conservation, 128–131
of a measurement result, 72
for mixed ensembles, 88

product basis, addition of angular momenta,

266
projection formula, Landé, 297–298, 301, 372
projection operator, 35–36, 72

and collapse of state, 72–73
and measurement probability, 72
as observable, 75
eigenvalues, 45

projective measurement, 545
as special case of generalized measurement,

548
propagator, 620–624

composition rule, 623–624
free particle, 621
harmonic oscillator, 621–622

proper distance, 598
proper Lorentz transformation, 600
proton

charge, 8, 103
magnetic moment, 105–106, 369–370
mass, 369, 523
size, 8
impact on hydrogen energy, 330–331

spin, 16, 271
proton-neutron scattering, 523–526
pure ensemble, 76

quadratic Stark effect, 343–346
quadrupole moment operator, 294–295, 477
quantum field theory, 389, 608, 642
quantum tunneling, 151–152
quark, 8, 103, 105
quasi-bound state (resonance), 516–519
qubit

logical (synthetic), 585
qubits, 571–573

Rabi oscillations, 215–218
radial wavefunction, 228–229

3-d isotropic oscillator, 244–245
finiteness at r = 0, 228–229
hydrogen atom, 252–254

radius of proton, 330–331
raising operator

angular momentum, 187
harmonic oscillator, 169

Raman effect, 433–434
Ramsauer–Townsend effect, 152–153, 522–523
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Rayleigh–Jeans formula for black-body radia-
tion, 11–12

Rayleigh–Ritz variational method, 355–363
examples, 358–363
for excited states, 356–358
example, 360

forgiving nature, 355–356
helium atom ground state, 361–363

reduced Compton wavelength, 259
reduced density (matrix) operator, 533
reduced mass (in 2-body problem), 101

hydrogen-like atoms, 248
neutron-proton scattering, 523

reduced matrix element, 296, 298, 301–302
reduced Planck’s constant ~, 13
reducible tensor operator, 294
redundant encoding, 585
reflection and transmission ratios R, T , 148
register of qubits, 573–574
relabeling summation index trick, 164, 242, 286,

300
relative phase, 28
relativity, 73, 259, 597–618

Dirac equation, 603–618
Klein-Gordon equation, 601–602

repeated index summation convention, 116, 160
representation

angular momentum, coordinate, 199–208
angular momentum, matrix, 190–194
momentum, 60–62, 65
of operator in an orthobasis, 39–40
of rotation operators, 195–198
position, 57, 65
spin, 190–192

resonance
1-d scattering, 151–152
3-d scattering, 516–519
magnetic spin, 215–218

rigid bodies, 426–434
asymmetric top, 428, 436–437
diatomic molecule, 429
Hamiltonian, 427
linear rotor, 429
spherical top, 428
symmetric top, 428–429

Robertson–Schrödinger uncertainty relation, 77–
78

robust states, 558
rotation operator, unitary, 117–118, 195

matrix representations, 195–198
rotation symmetry and angular momentum con-

servation, 120–121
rotation transformations, 115–121
rotational excitations of molecules, 426–431
Russell–Saunders coupling approximation, 404–

409
Rutherford scattering, 488
Rutherford–Geiger–Marsden experiment, 8
Rydberg (unit of energy), 251, 259
Rydberg formula for hydrogen spectrum, 260

S-matrix, 491–493, 496–497
scalar operator, 292

selection rules, 296
scalar product, 26
scattering, 146, 486

Born approximation, 502–507
hard-sphere
classical, 487–488
quantum, 519–521

identical particles, 526–528
in 1 dimension, 146–153
rectangular barrier potential, 149–151
rectangular well potential, 151–153
step-function potential, 148–149

neutron-proton, 523–526
Rutherford, 488
spherical potential well, 521–523
Yukawa (screened Coulomb) potential, 504–

505
scattering amplitude, 489–490
scattering cross-section, 486
scattering length, 513–514

for neutron-proton scattering, 524–525
for spherical well, 523

scattering resonance
in 1 dimension, 151–152
in 3 dimensions, 516–519

scattering states, 60, 146
Schmidt decomposition of entangled state, 534–

535
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Schrödinger equation, 73, 78–79
time-independent, 79
differential equation in 1 dimension, 138
differential equation in 3 dimensions, 228

Schrödinger picture, 438
Schrödinger’s cat, 1, 557–559
screened Coulomb (Yukawa) potential, 364, 504–

505
selection rules, 47

J = 0 to J = 0 forbidden, 475
Clebsch–Gordan coefficients, 276, 288, 302–

303
dipole, 298–299
electric dipole transitions, 474–475
electric quadrupole transitions, 478–479
general multipole transitions, 479
inner product, 47
magnetic dipole transitions, 477–478
matrix element, 47
parity, 123
tensor operator, 302–303
time-dependent perturbation theory, 453–

454
vector operator, 299

self-adjoint operator, 37
separable (not entangled) states, 67
Shannon entropy, 89
sharp (l = 0 in spectroscopic notation), 252
shell model for multi-electron atom, 400–404
Shor, Peter

9-qubit encoding, 593–594, 596
factoring algorithm, 578

short-time approximation, 446–447
simultaneous measurement of compatible ob-

servables, 74
singlet state of two spins, 269–271
singular value decomposition, 534–535
Slater determinant, 387–389
solid angle differential, dΩ, 200, 486
space inversion (parity), 121–123
special relativity, 73, 259, 597–618

Dirac equation, 603–618
Klein-Gordon equation, 601–602

spectral decomposition, 53–54
of propagator, 621
of time-evolution operator, 79–80

spectroscopic notation, 251–252, 284–285, 406–
409

speed of light in vacuum (c), 9
spherical Bessel functions, 231–232

modified, 233
spherical Hankel functions, 232–233, 512
spherical harmonics, 201–205

addition formula, 206–208
and parity, 208–209
combinations and products, 285–288
non-existence for half-integer angular mo-

menta, 197
spherical Neumann functions, 231–232
spherical potential well

bound states, 239–240
scattering, 521–523

spherical tensor operator, 291–295, 299–303
spherical top, 428
spin, 16–17, 119, 191

combination of two, 268–270
combination with orbital angular momen-

tum, 272–275
matrix representation, 190–192
precession in magnetic field, 212–215

spin resonance, magnetic, 215–218
spin-orbit interaction, 365–366, 369, 399

from Dirac equation, 613
spin-statistics principle, 385–386

identical nuclei in diatomic molecules, 431–
433

spinor, 192
Dirac, 603

spinor harmonics, 613–615
spinor operator, 292
spontaneous emission of light, 469–471

electric dipole approximation, 473
spooky action at a distance, 307
square-well potential (1-d)

bound states, 142–146
scattering, 151–153

standard deviation and uncertainty, 77
Stark effect

linear, 346–347
quadratic, 343–346

state vector (or state ket), 24, 71
stationary paths, 640–641
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stationary state, 80
stationary-state perturbation theory, 321–352

almost-degenerate, 348–352
Brillouin–Wigner, 334–335
Dalgarno–Lewis method, 335–337
degenerate, 337–342
non-degenerate, 321–326
examples, 326–334

Stern–Gerlach experiment, 17–21
analogy with photon polarization, 21
sequential, 19–21

stimulated (induced) emission, 468–469
electric dipole approximation, 473

structure constants of Lie algebra, 109
subspace of a vector space, 26
Sudarshan, E.C. George, 555
sudden approximation, 447–448
summation convention for indices, 116, 160
superdense coding, 582–583
superdeterminism, 319
superoperator, 537
superposition, 23, 28

principle, 46
symmetric (triplet) spin combination, 269–271
symmetries and conserved quantities, 108–111

general (Noether’s principle), 110
rotations and angular momentum, 120–121
time translation and energy, 111
translations and momentum, 113–115

synthetic qubit, 585

teleportation, 579–582, 596
temperature, 94
tensor operator

Cartesian, 294
irreducible, 291–295, 299–303
reducible, 294

tensor product of Hilbert spaces, 66–68
and entanglement, 67

term symbol (spectroscopic notation), 406–409
thermal de Broglie wavelength, 570
Thomas precession, 366

from Dirac equation, 613
Thomson, Joseph J., 8
time evolution of states, 73, 78–79, 82–84

in terms of density matrix operator, 90–91

time ordering of operators, 83, 444
time reversal (Lorentz transformation), 600
time translation symmetry and energy conser-

vation, 111
time-dependent perturbation theory, 448–457

harmonic, 457–461
time-evolution operator, 78–79, 83–84

spectral decomposition, 79
time-independent Schrödinger equation, 79
time-independent perturbation theory, 321–352

almost-degenerate, 348–352
Brillouin–Wigner, 334–335
Dalgarno–Lewis method, 335–337
degenerate, 337–342
non-degenerate, 321–326
examples, 326–334

total angular momentum, 120
total angular momentum basis, 266–267
trace of operator, 52
transformation, 108

as unitary operator, 108
generator, 108–109
rotation, 115–121
space inversion (parity), 121–123
time translation, 111
translation, 111–115

transition amplitude, 444, 620–624
diagrammatic representation, 451–452
perturbative expansion, 449–452
propagator, 620–624

transition operator (scattering), 492, 497–500
translation operator, 111–115

3-dimensional, 114–115
translation symmetry and momentum conser-

vation, 113–115
transmission and reflection ratios T , R, 148
transparency in potential scattering, 151–153,

522–523
transverse (Coulomb) gauge, 107, 463
trial state for the variational method, 355
triangle inequality, 27
trick

completing the square, 132–133, 136
dot product of angular momenta, 267–268,

270–271, 367, 377
dots and lines, 182
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evaluation of 1/R and 1/R2 expectation val-
ues of hydrogen atom, 341–342

evaluation of matrix element using Hamil-
tonian commutator, 472, 476

hole as absence of electron, 409, 608
periodic boundary conditions, 226
relabeling of summation index, 164, 242,

286, 300
spectral decomposition of operator, 53–54

triplet state of two spins, 269–271
tritium decay, 448
tunneling, 151–152
21 centimeter line (from hyperfine splitting of

hydrogen), 271, 372, 478
two-body problem, 100–101

angular momentum, 120

ultraviolet catastrophe, 11–12
unbound states, 60, 146
uncertainty, 77
uncertainty relation, 77–78

for Gaussian wavefunction, 134
position-momentum, 78
Robertson–Schrödinger, 77–78

unitary operator, 37, 41
and time evolution, 78–79, 83–84
as a change of basis, 42–43
as a transformation, 108
construction from action on subspace, 543–

544
eigenvalues, 52
matrix, construction from orthobasis com-

ponents, 41, 49
units conventions, 8, 11, 13, 102–103
unstable states, 130–131

valence electrons, 406
variational method, 355–363

examples, 358–363
for excited states, 356–358
example, 360

forgiving nature, 355–356
H+

2 ion, 419–422
helium atom ground state, 361–363

vector operator, 292–293
projection formula, 296–298
selection rules, 299

vector space, complex linear, 23–24
basis and dimension, 25
dual, 32–33
examples, 24
subspace, 26

velocity
group vs. phase, 134–135
of electrons in hydrogen, 259
of light in vacuum (c), 9

vibrational excitations of molecules, 422–426,
429–431, 435–436

Virial Theorem
in 1-d, 82
in 3-d, 96–97

virtual bound state, 526
von Neumann entropy, 89

for a qubit, 573

water molecule, 435–437
wave-particle duality, 13–15
wavefunction, 14–15, 57

continuity, 139
momentum, 1-dimensional, 60–61
momentum, 3-dimensional, 65
position, 1-dimensional, 57
position, 3-dimensional, 65

width (Γ) in resonant scattering, 516–517
Wigner functions (for rotations), 195–198

general formula, 198
Wigner–Eckart theorem, 299–303

and selection rules, 302–303
for spherical harmonics, 288

Yukawa (screened Coulomb) potential, 364, 504–
505

Z2 discrete group, 121
Zeeman effect

hydrogen atom, 375–381
multi-electron atoms, 409–411

Zeh, H. Dieter, 558
zero-point energy (harmonic oscillator), 168
Zurek, Wojciech, 558
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