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Preface

This book is intended as a text for a core graduate course on quantum physics. Quantum
mechanics started to assume its modern form in a brilliant flash of activity from 1924-1930. In
the subsequent century, there have been many excellent textbooks written on the topic, and one
might well wonder why someone might decide to create another. The short answer is this: I've
attempted to imagine, and then write, the book that would have made me happiest to read, as
a graduate student. Whether my selection of topics, explanations, and derivations works well
for someone else is an entirely different and personal question, of course!

Quantum mechanics is a big subject, and it is not possible to cover everything. So I didn’t.
Even so, there is more material in this book than can be reasonably covered in a typical academic
year of lectures. This is intentional, because every course and every student will have different
priorities. I did consider it essential to include certain modern subjects that are not always
covered in older books at this level, notably the hidden variables alternative, Bell inequalities,
entangled subsystems and open systems, generalized measurements, decoherence, and quantum
information. The instructor will likely have to make some hard choices of what to leave out,
informed by the interests and preparation of the students.

Although this book aims to be a self-contained discussion, starting from the basics, it will
probably be more readily accessible for those who have already taken undergraduate courses
in classical mechanics, electromagnetism, and quantum mechanics, with at least some exposure
to the concepts of wavefunctions, operators, commutators, Schrédinger’s equation, and the
uncertainty principle. It is also assumed that the reader is already familiar with matrices
and linear algebra, multivariable calculus, simple differential equations, the algebra of complex
numbers, and basic concepts of probability.

The exercises at the end of each chapter vary in length and difficulty. For this I make
no apology, since at the wild frontiers of research, problems do not present themselves with
convenient labels saying “I am easy, you can solve me in one line” or “I am challenging, good
luck”. With that said, none of the exercises given here are remotely close to research level, and
each has been chosen to reinforce some concept or method.

I am grateful to the many students who have provided feedback, with special thanks to those
who pointed out corrections to earlier drafts: Sameneh Ahmadinejad, Jared Coles, Matthew
Dudak, William Emark, David Iglesias Tinoco, Abdulrahman Kauther, Spencer Kelham, Mark
Mekosh, Dillon Merenich, Olabisi Olayinka, Zhenghao Pan, Cassandra Phillips, Deeksha Sinha,

Vladimir Tsitrin, and Tasfia Yeashna.

Stephen P. Martin
Northern Illinois University, DeKalb, Illinois, USA
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1 Introduction: the quantum revolution

1.1 Classical instability of charged matter

Quantum mechanics is often portrayed as nonintuitive, weird, or even paradoxical. We begin
with a retort: it is actually classical physics that is conspicuously incompatible with basic
features of the world we live in. Most strikingly, if classical mechanics governed the universe,
then matter made up of charged particles would necessarily be unstable against rapid and
catastrophic collapse.

Consider, for example, a classical model of the hydrogen atom, consisting of a point—likeH

electron and much heavier proton, separated by a distance r. The electric potential energy is

2 2
Vir) = - % _ . (1.1.1)

4megr r
where in SI metric system units, Q, = —1.60218 x 1071 C is the electronic charge and ¢y =

8.85419 x 10712 C? /N - m? is the permittivity of free space. The positive quantity e, which will
appear often in this book, is equal to the proton’s charge in the Gaussian cgs metric system

units. Its square is given numerically by
e = 1.43996 x 1077 eV-m = 2.30708 x 10" % J-m = 2.30708 x 10" Yerg-em.  (1.1.2)

Clearly, classical physics has a serious problem: the potential V(r) is unbounded from below
as r approaches 0, implying that a classical atom should release an arbitrarily large amount of
energy as it shrinks to zero size.

While this may seem dangerous (or possibly useful, depending on your imagination!), it is
certainly not what is observed. One might suppose that a way to achieve safety is to somehow
force the electron to travel in a fixed orbit about the much heavier proton. However, this cannot
work in a classical theory, because of energy conservation. Maxwell’s equations imply that the
classical electron will continuously lose energy in the form of electromagnetic radiation, due to

its centripetal acceleration. For a circular orbit, the acceleration is

v? F e?
- _ = - = _— 1.1.3
“ r Me mer?’ ( )

fThe small size of the electron compared to atoms was understood in 1897 by Joseph J. Thomson from
observations of cathode rays. All experiments to the present day are consistent with the electron having no
substructure. Protons and nuclei are certainly not point-like, as they are now known to be composed of quarks
and gluons. However, the important thing for the following discussion is just that they are tiny (~ 10715
meters) compared to atoms (~ 1071 meters). This had become apparent by 1911, before the development of
the quantum theory, from the results of Ernest Rutherford’s experiments with Hans Geiger and Ernest Marsden
in which alpha particles were observed scattering at large angles off of gold nuclei.



where m, = 9.109390x 1073 kg = 0.510999 MeV /c? is the electron’s mass, with ¢ = 2.99792458 x
10® m/sec, the speed of light in vacuum. The Larmor formula for the radiated power of an
accelerating charge,

dE Qa®  2¢%a?

p- % _ —
dt 6megcd 3c3

(1.1.4)

therefore tells us that the classical electron must lose energy at a rate proportional to 1/r%,
which in turn will decrease its orbit size at an ever-increasing rate.

Just for fun, let us estimate the tragic fate of the electronic orbit in this classical model,
making some simplifying assumptions. If the orbit stays nearly circular, and nonrelativistic, as

it decays, then the energy will be
E=-muw —— = ——. (1.1.5)

Combining eqs. (LI4) and (LIH) gives

3r'— = —-K 1.1.6
where K = 4¢e*/m?c? is a constant. If r = ry at ¢t = 0, this integrates to r* — rj = —Kt, so
r=ro(1—Kt/r})"". (1.1.7)

This shows that the decay of the classical electron’s orbit is even worse than asymptotic; it
collapses all the way to r = 0 in a finite time r3/K, which turns out to be very short (see
Exercise [T to find out just how short). Larger atoms, and crystal structures of electrons and
nuclei, would have similar instabilities if classical physics governed them.

Quantum mechanics addresses this catastrophe, and allows matter composed of charged
particle constituents to be stable, by changing the rules. In the quantum theory, there is no
counterpart to the decaying classical orbit with unbounded negative energy. In particular, there
are no physical quantum states of the hydrogen atom with arbitrarily low energy, corresponding
to a classical electron localized arbitrarily near » = 0. Instead, as we will see, there is a
single state with the lowest possible energy (about 13.6 eV below a state of ionization), which
therefore is stable since there is no lower energy state into which it could decay by emitting
electromagnetic radiation. In this way, quantum mechanics saves the universe. More generally,
in quantum mechanics the energies of bound states turn out to be quantized (discrete). There
are also unbound (ionized) states with a continuum of allowed energies, but those energies are

bounded from below.



1.2 Black-body radiation and Planck’s constant

In the late 19th century, it became apparent that classical physics theory makes a similarly
catastrophic prediction for electromagnetic radiation. Consider a cavity whose walls are as close
as possible to idealized black (a perfect absorber and emitter of electromagnetic radiation),
heated as an oven so that it is kept in thermal equilibrium at temperature 1" with the electro-
magnetic radiation inside it. The spectrum of the electromagnetic radiation is characterized by
the energy density pg, per unit volume V' and per unit frequency v, in terms of which the total

energy inside the cavity is
Total energy = V/ dv pg(v,T). (1.2.1)
0

The function pg(v,T) can be determined experimentally by making a small hole in the walls
of the cavity and measuring the radiation that escapes, analyzed for different frequencies using
diffraction gratings, for example.

To obtain a theoretical prediction for pg(v,T), we first need to quantify the density of
electromagnetic modes per unit frequency. For simplicity, assume that the cavity is a cubic box
of side L, and that the electromagnetic radiation modes satisfy periodic boundary conditions,
with fields proportional to cos(k-7) and sin(k-7), with allowed wavevectors k = (27 /L)#, where

n = Ing + yn, + in, for integers n,, n,, n,. The corresponding wavelengths and frequencies are
A= L/n, v =cn/L, (1.2.2)

where n = |ii| = \/n3 + n2 +nZ. Because the allowed n,, n,, and n. are integers, the number
of modes with frequency between v and v + dv can be enumerated by integrating the volume in

1 space, using radial coordinate n, with

43,

d*n — 4mnidn = vidu. (1.2.3)

3
So, if E is the average energy of a mode with frequency v when in thermal equilibrium with the

walls at temperature 7', then the total energy for frequencies between v and v + dv is

—ArL?

2F Vidv, (1.2.4)

3
where the first factor of 2 accounts for the fact that each electromagnetic mode can have two

transverse polarizations. Setting eq. (LZ4) equal to L3pg dv in accord with eq. (L21), we find

81 5 —
pp(v,T) = C—3V2E. (1.2.5)

10



We next need to evaluate E as a function of temperature.
A fundamental prediction of statistical mechanics is that for an ensemble of identical systems
in thermal equilibrium, the probability for one of the systems to have energy E is proportional

to the Boltzmann factor, named after Ludwig Boltzmann,
P(E) o e F/keT (1.2.6)
where T is the temperature in Kelvin, and Boltzmann’s constant
kp = 1.380649 x 107 J/K = 1.380649 x 10 '%erg/K = 8.617333 x 10 °eV/K (1.2.7)

is the conversion factor between units of temperature and energy. If the allowed energies of
electromagnetic modes are continuous and unrestricted, we therefore have the simple classical

prediction for the average energy,

E = (/ dEe‘E/kBTE) // dE e B/ksT — [pT, (1.2.8)
0 0

independent of v. Plugging this into eq. (L2.0) gives the result
pp(v,T) = StkgTv?/c®. (1.2.9)

This is the Rayleigh—Jeans prediction, developed by John W. Strutt, 3rd Baron Rayleigh, and
James Jeans. Even without consulting experimental data, this formula is clearly problematic,
since it claims that the energy density grows quadratically with frequency. After integrating
fooo dv pp(v,T), we would find an infinite total energy density per unit volume in black-body
radiation. This impossible prediction of classical physics is called the ultraviolet catastrophe.
In order to explain the existing data and avoid the ultraviolet catastrophe, Max Planck
proposed in 1900 that the black-body walls can only emit modes with frequency v if the energy

is equal to an integer multiple of hr, where, using modern data,
h = 4.13567 x 1079 eV-s = 6.62607 x 107** J-s = 6.62607 x 10~*" erg-s (1.2.10)

is known as Planck’s constant. In that case, the integrals in eq. (LZ.8)) are replaced by sums

over only the discrete allowed energies,

o o0 oo hy
_ —nhv/kgT —nhv/kgT __
E = (§ nhy e~""/ks >/§ eIt = T (1.2.11)

11
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For very small hv/kgT, this agrees with eq. (LZS). However, unlike that formula, it depends on
the frequency, and is exponentially suppressed in the ultraviolet limit of large hv/kgT. Putting
eq. (L2I0) into eq. (L23) yield

8mh V3
pE(V> T) = 3 ehv/ksT _ |

(1.2.12)

Figure[.2.Ilcompares Planck’s formula eq. (I.2Z.12)) with the Rayleigh—Jeans prediction eq. (L.2.9]),
for black-body radiation with 7" = 1000K. In the far infrared, the two results agree, but they dif-
fer significantly in the near infrared, and the Planck prediction for pg decreases with frequency
above v = 5.9 x 10 Hz. In the visible range of v between about 4 x 10! and 8 x 10** Hz, the
Planck formula is many orders of magnitude smaller, in accord with observation. Furthermore,
the Planck prediction for the total energy density per unit volume
o0 4

/0 dv pp(v,T) = %, (1.2.13)
is finite, resolving the ultraviolet catastrophe. The agreement of this prediction with observation
established that the electromagnetic radiation modes inside the cavity are quantized in energy

units equal to Planck’s constant multiplied by the frequency.

1.3 Photo-electric effect and particle-like features of light

The photo-electric effect is the ejection of electrons from the surface of a material when light

shines on it. This is observed to occur if the angular frequency w of the light is sufficiently high.

THistorically, Planck’s original proposal of this formula was simply an inspired guess to fit the data, and his
subsequent derivation of it was not particularly compelling by modern standards, but the result was correct.

The origin of eq. (L2I1) from deeper principles is derived in section B see eq. (B5.47]).

12



Figure 1.3.1: Sketch of results for the photoelectric effect. Shin-
" ing electromagnetic radiation on the surface of a metal produces
a current of ejected electrons, but to a good approximation this
occurs only if the angular frequency of the light exceeds a min-
imum value wy,;,. The maximum kinetic energy of the ejected
electrons then rises like Ai(w — wWin)-

\y
6

Kinetic energy of ejected electron

o

('omin

Angular frequency of light @

For w less than a certain threshold value characteristic of the materials used in the experiment,
almost no electrons are ejected, even as the intensity of the light is increased. The threshold
angular frequency wp,;, typically corresponds to visible or ultraviolet light. For w > wy,, the
maximum energy of ejected electrons is observed to rise linearly, as sketched in Figure [[L3.11

This behavior was unexpected when it was first found, because in classical electrodynamics,
the frequencies and energies of electromagnetic waves are continuous and independent of each
other. One might have supposed that increasing the intensity of the light would result in
electrons being ejected for any w, no matter how small. To explain the observations, Albert
Einstein proposed in 1905 that light of a given angular frequency always occurs in chunks, or
quanta, which are now called photons. For each photon, the energy is related to the angular

frequency by the same formula proposed by Planck, which can be rewritten, using w = 27v, as
E = hw, (1.3.1)

where the reduced Planck’s constant (or just “h bar”, when speaking) is defined to be related

to the ordinary Planck’s constant by
h = 2£ = 6.58212 x 107'%eV-s = 1.05457 x 107** J.s = 1.05457 x 10 *"erg-s.  (1.3.2)
T

Einstein’s quantization condition conceptually generalized Planck’s proposal, which was only
intended to apply to electromagnetic modes absorbed and emitted by the black-body cavity.
It follows from special relativity and wave kinematics that the momentum p and the wave-

length A of each photon are related by
p=FE/c=hw/c=2mh/\. (1.3.3)

In the photo-electric effect, the discrete particle-like nature of light explains the existence of

Win, because Awyi, is the minimum energy jump needed for the electron to escape the metal

13



screen detector

intensity Figure 1.3.2: The wave nature of electro-
magnetic radiation causes interference
and diffraction phenomena when light
from a coherent source passes through
holes or slits in a screen.

Ny N

light
source
)

and be collected on another plate when it is struck by a single photonH Experiments reported

by Robert A. Millikan in 1916 later verified, using sodium and lithium as the targets, that the

maximum kinetic energy of the ejected electron indeed behaves like
E = Mw — Wiin)- (1.3.4)

The value of wy,;, depends on the collector plate material as well as the material being illumi-
nated, but the most important result of the experiment is the slope of the line in Figure [L3.1]
which is A. Millikan’s measured value for A was consistent with Planck’s result from black-body
radiation, but was significantly more accurate and precise.

Although light behaves like a particle in the photo-electric effect, it also has interference
properties governed by the wavelength. These effects appear in interference and diffraction
experiments like the double-slit experiment illustrated in Figure Light from a coherent
source passing through holes or slits in a screen yields a pattern of intensity maxima and minima,
where the interference of amplitudes is constructive and destructive, respectively. However, the
interpretation of this effect is slightly different in quantum mechanics than in the corresponding
classical theory. Classically, the intensity is proportional to the magnitude of the time-averaged

Poynting vector,
Classical intensity o |E x B|, (1.3.5)

where E and B are the electric and magnetic fields that each obey superposition and interference
due to the linearity of Maxwell’s equations. In the quantum theory, the real quantity E x B is

replaced by the squared magnitude of a complex quantity v,

Quantum intensity oc [t]* (1.3.6)

fActually, two photons can team up to eject a single electron, as has been observed in experiments with
high-power lasers, but the rate for this is very small except when the intensity is extremely large.

14



Here ¢(z, vy, z,t) is called a wavefunction, and it is a probability density amplitude. This means
that |¢(x,vy, z,t)|? is proportional to the probability to detect a photon at position (z,y, z) at
time t. It is a fundamental feature of quantum mechanics that we must deal with probabilities,
not definite outcomes for individual events, even if the initial conditions of a physical situation

are known as perfectly as possible.

1.4 Electron diffraction and wave-like features of matter

Inspired by the dual wave-particle nature of light exhibited in the photoelectric effect, Louis de
Broglie in his 1924 PhD thesis suggested that matter particles, such as electrons, will also have
wavefunctions ¢ (z, y, z,t) that are subject to interference. He proposed that what is now called
the de Broglie wavelength )\ (and the corresponding wavenumber k) of the wavefunction
should be related to the momentum of a particle in the same way as for light, eq. (L33]). That

is, for a particle with mass m and energy E = \/p?c? + m2c?,
A =2m/k =2mh/p. (1.4.1)

De Broglie’s wave hypothesis for matter was verified by the discovery of electron diffraction in
a series of experiments by Clinton Davisson and Lester Germer from 1923-1928.

In the Davisson-Germer experiments, electrons with controlled energies (of order a few
hundred eV) were made to hit a target made of a crystal of nickel and a detector was used
to observe the intensity of electrons scattered at various fixed angles, as shown schematically in
the first panel of Figure [L4.1l The results as a function of varying incident electron momentum
(proportional to the inverse de Broglie wavelength) are shown in the second panel. They feature
maxima and minima of constructive and destructive interference, depending on the differences
in path lengths of the electrons scattering from the regularly spaced crystal sites, with a distance
between nuclei of order 3.5 x 1071 meters. This interference effect was similar to the previously
known phenomenon of Bragg peaks in x-ray scattering. The electrons’ wavelength corresponded
to the prediction of the de Broglie relation to momentum in eq. (L4J]). This provided the
first direct evidence that matter particles are also described by a wavefunction which can be
interpreted as a probability amplitude, with the crucial feature that this amplitude is subject to
superposition and interference. It also provided another example of the central role of Planck’s
constant in the quantum theory, through the connection between momentum, wavelength, and
hin eq. (CZT).

"Their original motivation was to study the surface of nickel, not to check de Broglie’s idea, which came later.

15
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Figure 1.4.1: Schematic setup for the Davisson-Germer electron diffraction experiments (left),
and some of their data for intensity of electrons scattered at fixed angle, as a function of the
reciprocal of the electron’s de Broglie wavelength (right). Source: C.J. Davisson and L.H. Ger-
mer, “Reflection and refraction of electrons by a crystal of nickel”, Proceedings of the National
Academy of Sciences of the USA, vol. 14, no. 8, p. 619 (1928).

1.5 Spin and the Stern—Gerlach experiment

In classical mechanics, angular momentum takes on continuous values, but in quantum mechan-
ics it always occurs in multiples of a fundamental unit. For angular momentum associated with
the motion of particles, called orbital angular momentum, the fundamental quantum unit is
h, as we will show in section 5.3l However, quantum mechanics also allows for intrinsic angular
momentum, or spin, which has no classical counterpart. The spin of a particle is quantized
in units of h/2, as we will prove in section 8], and has a fixed magnitude that depends only
on the identity of the particle. Electrons, protons, neutrons, muons, tau leptons, neutrinos, and
quarks all carry this type of intrinsic angular momentum. Since their spin angular momentum
is half of the quantized unit for orbital angular momentum, they are called spin-1/2 particles.
Of these, all but the proton and neutron are currently believed to be fundamental (not compos-
ite collections of other particles). But even composite particles like atoms, atomic nuclei, and
mesons and baryons bound together by the strong nuclear force, always have spin that comes
in integer multiples of h/2.

The first experimental hints of the existence of spin came from the otherwise mysterious
doubling of certain spectral lines from atomic transitions. Wolfgang Pauli suggested in 1924
that this was due to the presence of some extra quantum number that could only take on two
values. The following year, Samuel Goudsmit and George Uhlenbeck proposed the intrinsic

angular momentum interpretation that we now know as spin. This idea took some time to gain

16
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Figure 1.5.1: The Stern—Gerlach experiment. Silver atoms are heated in a furnace, and passed
through an inhomogeneous magnetic field, which exerts a force on them proportional to the
Zz component of the atomic magnetic dipole moment. The observed result is that the silver
beam splits into two “spatially quantized” components on the detection screen. In contrast, the
(incorrect) classical prediction is a continuum of deflection magnitudes.

acceptance, and the many doubters famously included Pauli. Part of the problem was that, at
first, the spin was erroneously thought to be due to some kind of internal rotational motion of
the structure of the electron, but nobody could get this idea to work in detail, and it turns out
to be incorrect. Spins of fundamental particles like the electron are now understood to be a
form of angular momentum that is distinct from the mechanical type.

In 1922, Otto Stern and Walter Gerlach reported an experiment which eventually provided
profound insights into spin and the emerging quantum theory. They heated silver atoms in a
furnace to vaporize them. The atoms escaped through a narrow collimating structure to form
a beam, which then moved through a region where they were deflected by an inhomogeneous
magnetic field, and finally were collected on a measurement screen, as shown in Figure [[.5.1]

The total magnetic dipole moment for the silver atom is a vector i whose magnitude p is a
constant, very nearly the same as that of a single electronH which in turn is proportional to the
electron’s spin, although Stern and Gerlach did not know this at the time. The furnace thor-
oughly randomizes the directions of the magnetic moments. As a result of the inhomogeneous

magnetic field B, there is a classical force on the atoms,

— —

F = V(i-B), (1.5.1)

causing them to deflect. For simplicity, suppose the magnetic field in the deflection region has

fThe explanation for this is as follows. Silver atoms have 47 electrons, each of them carrying a magnetic
dipole moment along that electron’s spin direction. However, 46 of the electrons pair up in such a way that their
spins are opposite, and cancel. Furthermore, there is no net orbital angular momentum of the electrons, and the
contribution of the heavy nucleus to the atomic magnetic moment is relatively small.
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a cylindrically symmetric formH

—

Blz,y,2) = By [g:i LA (1 - 2)} (1.5.2)

2a 2a

where the coordinate system has unit vector 2 (up in Figure [L51]) perpendicular to the beam,
and a is a length that is large compared to the size of the region where the magnetic field acts
on the atoms in the beam. The atomic dipole moment experiences a torque, and since i is

proportional to the angular momentum, it obeys an equation of motion of the form

—

Ccll—’: x Jix B. (1.5.3)
The dominant magnetic field component ByZz therefore causes g to rotate rapidly about the
z direction, keeping the magnitude of p. nearly constant but causing the oscillating p, and
{ty components to average to 0 over the time scale in which the atom is moving through the
macroscopic magnetic field region. This implies that p, and p, can be neglected when computing

the deflection of the atom. Since only g, contributes, eq. (L3Il becomes

— = . 0B, X
F = u,VB, = By = —Z(Bo/a) . (1.5.4)

Because the gradient of the vertical magnetic field —By/a is known and fixed, measuring the
deflection of the atom is equivalent to measuring the Z component of its magnetic dipole moment.

Note that in the limit of a homogeneous field (a — oo) there would be no deflection at all.
Thus, the role of the large homogeneous part of the magnetic field 2By is to determine which
component of i will be measured, by washing out the effects of the other components, while the
smaller inhomogeneous part —ZzBy/a provides the force needed to produce the deflection and
actually make the measurement.

Since the magnetic dipole moments of silver atoms emerging from the furnace are random in
direction, classical physics reasoning suggests that the measured values of u, should have equal
likelihood to be anything between —|u| and |u|. This in turn would imply that their deflections
as observed on the screen should form a continuum between two extremes. Instead, they form
two spots with equal numbers of atoms deposited, with a gap in between. The important
and surprising conclusion is that the result of measuring p, for silver atoms can only give two
discrete, quantized values, with equal probabilities.

The amount of deflection can be related to the spin carried by each atom, which in the case

of silver comes mostly from a single unpaired electron. The proportionality between magnetic

iThe # and ¢ components of B play no essential role here, except being necessary for consistency in order
to satisfy the magnetostatic field equations V-B=0and V x B =0. More generally, the field need not be
cylindrically symmetric, but at least one of B, or B, must be non-zero. The B given here has the form that
would result from a dipole magnet fixed at a distance 3a below the beam, to linear order in 1/a.
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moment and spin for an electron is very close to

e —

S, (1.5.5)

=
MeC

The numerical magnitudes of the deflections observed in the Stern—Gerlach experiment imply

that the measurement of S, for an electron can only give the values
measured S, = +h/2. (1.5.6)

There is nothing special about the Z direction, so this also applies to 7 - S for any unit vector n.

The Stern—Gerlach experiment has been performed for other types of atoms and nuclei} in
which the angular momentum (and its relationship to the magnetic moment) can be different,
resulting in more than two spots on the screen. This can be used to reveal the possible angular
momentum properties (“quantum numbers”) of the atom in question. A Stern—Gerlach appa-
ratus can even be used to isolate samples with particular desired angular momentum quantum
numbers. The results of such experiments are always consistent with quantization of the compo-
nents of any angular momentum vector in integer multiples of i/2. The quantum theory must
account for this property, and we will see how in Chapter

One can have more general Stern-Gerlach analyzers (called SGn in the following) with the
inhomogeneous magnetic field element oriented in any chosen unit vector n direction. The result
of analyzing silver atoms fresh from the furnace with SGn is that half of them will be found to
have - S = +h/2 and the other half will have —h/2, for any n. Stern—Gerlach analyzers play a
dual role in further efforts to understand quantum mechanics. First, they are measuring devices,
if the output beams are sent directly to a detection screen. Second, because the outgoing beams
are separated (sometimes called “spatial quantization”), SGn provides a way of preparing a
sample of atoms in which the spin component along 7 is known to be either +h/2 or —h/2.
Instead of impacting a detection screen, one or both of the output beams can be sent off to some
other component of the experiment, which could be another analyzer. Idealized versions of the
Stern—Gerlach deflection analyzers are commonly used as modular components in experiments,
real or imagined, to probe the implications of quantum theory.

For example, consider the sequence of two ideal Stern—Gerlach analyzers shown in Figure
The atoms in the experiment start in a furnace, which is assumed to produce completely
randomized spins. After passing through a first analyzer SGZ, the atoms that had the result
S, = +h/2 are sent into a second analyzer SGZ, while those that had S, = —h/2 are thrown

$However, the Stern—Gerlach setup does not work directly for free electrons, because the necessarily non-zero
B, and/or B, cause a Lorentz force —ev x B on the electron. This produces a large deflection due to the
electron’s small mass, washing out the magnetic moment effect. The Stern—Gerlach setup relies on the deflected
particles either being electrically neutral, or heavy, or both as in the case of silver atoms.
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Figure 1.5.2: An experiment with two sequential Stern—Gerlach analyzers. The first analyzer
prepares a sample of atoms with S, = 4+h/2, which are then fed into the second analyzer, which
again measures S, = +h/2, with probability P = 1 in the idealized case.
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Figure 1.5.3: An experiment with three sequential Stern—Gerlach analyzers. The first analyzer
prepares a sample of atoms with S, = 4+//2, which are then fed into the second analyzer, which
measures S, = +h/2 and —h/2, each with probability 0.5. The atoms with S, = +h/2 are then
sent to the third analyzer, which measures S, = +h/2 and —h/2, each with probability 0.5. The
act of measuring S, restores the possibility of measuring S, = —h/2 at the end, even though
the first analyzer had been used to select only atoms with S, = +54/2.

away. In this case, the prediction of quantum mechanics for the output of the second analyzer
is unlikely to surprise anyone. All of the output atoms on the far right again have S, = +h/2;
the second analyzer simply confirms the measurement made by the first.

A more interesting setup is shown in Figure [[5.3] which differs only by placing a SGz
analyzer between the two SGZ analyzers. As before, the experiment uses the first analyzer to
select a pure sample of atoms with S, = +h/2. However, now the second analyzer separates
the sample by measuring S,. Since the 2z direction has no way of preferring one of £% over the
other, it is no surprise that the output of SGz is 50% for each of S, = +h/2 and —h/2.

The experiment in Figure[[L5.3 then throws away the atoms with S, = —h/2, and feeds those
with S, = +h/2 into a third analyzer SGZ. The final results for S, can then be determined with
a detection screen (not shown). One might perhaps suppose that we should find that the final
atoms will all have S, = +h/2, since the first analyzer already selected only atoms with that
property. However, this is wrong. In reality, an equal number are measured to have S, = +5/2
and —h/2. Inserting the SGZ analyzer in the middle of the chain affects the atoms in such a
way as to restore the possibility of obtaining S, = —h/2.

Another way of thinking about the experiment shows that the restoration of the S, = —h/2

outcomes is a logical necessity, assuming only that the spin is the only thing that makes a

20



difference. (In particular, this assumes that the velocity direction of the atoms has no impact
on the spin measurement, and furthermore that there are no “hidden variables” associated with
the atom that are involved in the measurements in some mysterious way that we do not know
how to take into account.) To see this, cover up everything in Figure except the last
analyzer. Feeding directly into it are atoms with spin known to be aligned in the +2 direction.
By assumption, the +2 direction has no reason to prefer +2 over —Z, or vice versa. So, no
matter what may have occurred earlier, the only possibility is that the final probabilities for
S, = +h/2 and —h/2 are equal.

It is important that this result does mot have anything to do with the fact that we threw
away the atoms that were measured to have S, = —h/2 coming out of the second analyzer. We
could feed those atoms into the final analyzer as well, and they would also be measured to have
probability P = 0.5 for each of S, = +A/2 and —h/2, by the same argument. Evidently, it is
the mere act of measuring S, that causes the restoration of the S, = —h/2 outcomes. When
we give the postulates of quantum mechanics in Chapter Bl the act of measurement will play
a special role in one of them (Postulate 5), consistent with the preceding discussion. This also
carries with it the implication that quantum mechanics, as defined by these postulates, is an
inherently probabilistic, rather than deterministic, theory.

If you are familiar with the behavior of polarizing filters for light, you may recognize that
the preceding example is closely analogous to a similar experiment that is common and easy to
do in optics. Two linear polarization filters arranged with axes of polarization at right angles
will not allow any light to pass through, but a third polarizer inserted between the two, with
axis at a 45° angle with respect to the axes of each of the others, will restore the transmission
of a fraction of the light. This analogy carries over into the quantum regime. In fact, the
most sensitive experiments testing quantum mechanics are often done with the polarization of
photons replacing the role of the spin in Stern—Gerlach type experiments. One famous example

will be discussed in detail in section [4.4]

1.6 Exercises

Exercise 1.1. Estimate the time in seconds needed for a classical hydrogen atom to reach zero
size and infinite binding energy, under the assumptions used to obtain eq. (LIT), and taking

ro = 5 x 107" meters as the initial condition.

Exercise 1.2. The cosmic background radiation is nearly blackbody radiation with a present
temperature of 2.73 Kelvin. Compute the numerical energy per cubic meter in this radiation:
(a) within the visible frequency range, defined here as 4 x 101 Hz < v < 8 x 10! Hz, assuming

eq. (CZ), the classical Rayleigh-Jeans formula. (For comparison, the energy density in starlight
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is roughly 1071 J/m3.)
(b) integrated over all frequencies, as given by eq. (L212), the quantum Planck formula. (Most
of this is in the microwave spectrum; convince yourself that the visible range contribution is

tiny.)

Exercise 1.3. (a) What velocity should an electron have so that its de Broglie wavelength will
be 1 meter? What if its de Broglie wavelength is 4.5 x 10~7 meters (the same as for blue light)?
(b) Electrons are accelerated from rest by a potential difference of 1 volt, and then pass through
a screen with two very narrow long parallel slits. What is the de Broglie wavelength of the
electrons? How far apart must the slits be in order for the first minimum of the interference

pattern at a distant detector to be at an angle # = 0.2° away from the central maximum?

electron | 9 (not to scale)
source '.
1

Exercise 1.4. A coin is a thin disk of 30 grams of pure silver, with radius 2 centimeters. Each

silver atom has one unpaired electron spin with magnitude %/2 and a nucleus that also has spin
magnitude A/2. In the (extraordinarily unlikely) case that all of these spins were lined up in
the same direction, what would be the total intrinsic angular momentum of the (nonrotating)
coin? How does this compare to the ordinary angular momentum that the coin would have if it

rotated once per second about the symmetry axis perpendicular to the disk?
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2 Math tools: states, operators, and representations

From the results of many experiments, physicists have arrived at a set of postulates that govern
quantum theory. These will be given in the next chapter, but first we must introduce the
mathematical language necessary to frame these ideas. This chapter therefore contains many
definitions of key concepts, and some useful theorems. In doing so, we employ Paul A.M. Dirac’s

bra-ket notation, which is the modern standard in quantum mechanics.

2.1 Complex linear vector spaces

Quantum mechanics is based on the algebra of complex numbers. For any complex number
c=a+1b, (2.1.1)
where @ and b are real and i = v/—1, the real and imaginary parts are denoted in this book by
Re[c] = a, Im[c] = b, (2.1.2)
and the complex conjugate is denoted using an asterisk,
¢ = (a+1ib)" = a—ib. (2.1.3)
The magnitude (also known as the modulus) is defined by
lc| = |a+ib| = Veer = Va2 + b2, (2.1.4)

It follows that 1/c = ¢*/|c|* for every nonzero complex number ¢. Any complex number can be

written as a product of its magnitude and a phase factor,
a+ib = |cle’®, with ¢ = arctan(b/a), (2.1.5)
where Euler’s formula says that the unit-magnitude phase factor is
€' = cos ¢ + isin . (2.1.6)

We say that ¢ is the phase of the complex number c.
A complex linear vector space is a set of vectors, also known as kets, denoted for example

as |v), |w),..., such that the following properties hold:
e Additive closure: if |v) and |w) are kets, then so is their sum, or superposition, |v)+ |w).

e Multiplicative closure: if |v) is a ket, then so is the product c|v), where ¢ is any complex

number.
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e There exists a null ket, |Null), with the properties that |v) + |Null) = |v) for every ket
|v), and ¢ |[Null) = |[Null) for every complex number ¢. Multiplying any ket by the complex
number 0 results in the null ket: 0|v) = |Null).

e Addition of kets and multiplication by complex numbers satisfy the usual commutative,
associative, and distributive properties. This means that we have |v)+|w) = |w)+|v), and
(l)+|w)+lz) = [v)+(lw)+]z)), and ¢1(c2 [v)) = (c162) |v), and (e1+¢2) [v) = ¢1 [v)+c2|v),
and c(|v) + |w)) = ¢ |v) + c|w).

In quantum mechanics, the physical state of a system is completely described by a non-null
ket, known as the state ket or state vector, which we will often denote by [¢)). However, one
of the rules is that the ket ¢|v¢) represents the same physical state as [1), provided that ¢ is a
non-zero complex number. This is true even though c¢[i)) and |¢)) are mathematically distinct
members of the vector space; they are identified with each other physically.

The null ket, although it is part of the vector space, cannot describe any physical state.
There is also a convenient and obvious notational shortcut: if we want to write down that some

7

expression is equal to the null ket, we will just write “= 0”7 instead of “= |[Null)”. Therefore,
the null ket will not appear explicitly any more, but one should always consider the possibility
that a ket arising in some calculation might actually be the null ket. A warning: it is common
to use the notation |0) for some specific ket that does represent a physical state and must not
be confused with the null ket. For example, depending on the system under consideration, |0)
might represent the lowest energy state of a system, also known as the ground state.

Let us list some examples of complex linear vector spaces, which you can check satisfy the
properties in the definition.

Example 1: The set of complex numbers z.
Example 2: The set of all ordered triples (21, 22, 23), where z1, 23, and z3 are complex numbers.

Example 3: The set of all complex linear combinations ¢; |1) + ¢o |}) of two basic kets |1) and
[4). (This turns out to be the state space for a single spin-1/2 quantum system.)

Example 4: The set of all complex linear combinations of an infinite number of basic kets |0),
|1), ..., |n), ..., in one-to-one correspondence with the non-negative integers. (This turns out
to be a natural notation for the states of fixed energy for a harmonic oscillator in one dimension.)
Example 5: The set of all complex functions of a real variable, f(x), defined on the domain
—00 < & < 00. One can choose to add extra conditions on the functions in a variety of ways, for
example requiring that they are continuous, or that they vanish at certain points or on specified

intervals, or that they satisfy certain integrability conditions.

Intuitively, these vector spaces have different sizes. To make this precise, we define the
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notions of linear independence and dependence, dimension, and basis. A set of kets |¢;) are
linearly independent if the equation } _; ¢; [¢;) = 0 can only be satisfied by taking all ¢; = 0.
In other words, |1);) are linearly independent if we cannot write any of them as a complex linear
combination of the others. Otherwise, the kets are linearly dependent.

A vector space is said to have dimension d if one can choose a set of d, but not more,
linearly independent vectors. The d linearly independent vectors are then said to form a basis
for the vector space. The choice of basis is certainly not unique for d > 1; it is a common
problem that one wants to change the choice of basis, either to make some calculation easier or
to make some result simpler to interpret.

You can now check that for our five examples, the dimensions are:

Example 1 has dimension d = 1.

Example 2 has dimension d = 3.

Example 3 has dimension d = 2.

Example 4 has dimension d = oo (countable, discrete basis).
Example 5 has dimension d = oo (uncountable, continuous basis).

The cardinality (countable vs. uncountable) of the basis for infinite-dimensional vector spaces
involves mathematical issues that we will find it convenient to mostly ignore. In physics, we
are interested in kets that are members of a vector space with the additional structure of a
Hilbert space with an inner product, as discussed in the next section. The requirement that
all physical state vectors must have a finite inner product turns out to imply that the basis is
always countable. Despite this, we will see that it is often a very convenient fiction to include
continuous and uncountable sets of vectors that are not members of the physical state space
but are nevertheless extremely useful, both as idealizations and in practical calculations. The
most common examples are the kets that describe idealized states in which either a particle’s
position or its momentum (but not both!) is perfectly known. These continuous sets of kets
can be chosen to obey the other properties of a basis, so we will often simply call them basis
vectors, as a slight abuse of terminology.
Given a specific basis set {|3;)}, any vector |v) can be expressed as

d

o) = > 16 (2.1.7)

j=1

where the d complex numbers v; are called the components of |v) in that basis. Using the
preceding definitions, one can show that, for a given |v) and a given choice of basis {|3;)}, the
components v; are unique. In writing eq. (2.1.7) as a sum, we have implicitly assumed that the

basis vectors are discrete and countable. If the basis kets are instead continuous)] then the sum

fNotice that we are already engaging in the slight abuse of terminology mentioned in the previous paragraph.
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must be replaced by an integral. For example, if the basis set is {|5,)} where ¢ is a continuous

real variable with domain a < ¢ < b, then we can write any ket |v) as

oy = / dg v(g) |5, (2.18)

Here v(q) are the components, which in this case form a function of ¢. The symbol ¢ might
represent a coordinate on ordinary space, but it could also be a momentum, or an energy, or
some other continuous quantity of interest.

A subspace of a vector space is a subset of the elements that also form a vector space by
themselves. Below, we will often work with subspaces that consist of states with some feature

in common, such as a fixed energy or fixed angular momentum magnitude.

2.2 Inner products, Hilbert spaces, and orthonormal bases

In quantum mechanics, the vector space of states has the additional structure of a Hilbert
space, which implies that the complex linear vector space is endowed with an inner product.
Given a ket |v) and a second ket |w), the inner product (also known as a scalar product)

returns a complex number, denoted (w|v), which must satisfy the following rules:

e The order matters, in such a way that exchanging the two kets gives the complex conjugate,
(vlw) = ({wlv))". (22.1)

It immediately follows that (v|v) is always real. But also. ..
e If |v) is not the null ket, then (v|v) is positive.
o If either |v) or |w) is the null ket, then (v|w) = (w|v) = 0.
e Linearity is satisfied. The inner product of ¢; |[v) + ¢5 |w) and |x), in that order, is

(] (c1 |v) + 2 [w)) = 1 (z|v) + e (z|w) . (2.2.2)

It follows from eqs. (22I) and (Z22) that the inner product of those same kets, but in the

opposite order, must be
¢ (vlz) + ¢ (wlz) = (¢ (v] + & (w]) |z) . (2.2.3)

The inner product should be thought of as similar to the dot product in the familiar three-
dimensional real vector space. However, because quantum mechanics uses complex linear vector
spaces, the inner product treats the two input vectors asymmetrically, and interchanging them

is the same as taking the complex conjugate.
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The norm of a ket |v) is defined by \/(v|v). It follows from the preceding that the norm of

a non-null ket is real and positiveH and it is 0 if |v) is the null ket. It is sometimes written as

I}l = +/(wlv).

Two useful inequalities that govern the inner product follow.

Theorem 2.2.1. (Cauchy—Schwarz inequality) For any two kets |v) and |w),
[@lw) [ < (vlv) (w]w), (2.2.4)

Also, equality holds if and only if |w) and |v) are proportional to each other or one of them is

the null ket.

Proof: If either |v) or |w) is the null ket, then eq. (224 is trivially satisfied with equality.
Therefore, we can assume for the remainder of the proof that neither of them is null. Consider
the ket |2) = ¢ [v) — co|w), where ¢; and ¢y are complex numbers. Since |z) is a ket by the

additive closure property, (z|z) must be non-negative, which gives
(z[z) = leif* (v]o) + |eaf” (w]w) — 165 (w]v) = ciez (v]w) > 0. (2.2.5)
Choosing ¢; = (w|w) and ¢y = (w|v), and using (v|w)" = (wv), eq. Z2ZH) becomes
((w[w))? (v]v) = (wlw) | (v]w) [ > 0 (2.2.6)

Now, since |w) is not null, we can divide by (w|w) to get eq. (22.4)). If the equality condition
holds, then it follows that |z) is the null ket, which implies that |v) and |w) are proportional. O

Theorem 2.2.2. (Triangle inequality) The norms of the kets |v) and |w) and their superpo-

sition |v) + |w) must obey

(o) + )l < [l + )], (2.2.7)

with equality if and only if |lw) and |v) are proportional or one of them is the null ket.

The proof can be obtained from the Cauchy—Schwarz inequality, and is left to Exercise 2.1l The
triangle inequality is similar to the statement in ordinary plane geometry that the sum of the
lengths of two sides of a triangle must exceed that of the third side.

Given a non-null ket |v), one can define a new ket by dividing it by its norm. The result

[v) /v/ (v]v) (2.2.8)

fIn quantum field theories with gauge invariance, it is sometimes useful, as a book-keeping trick, to modify
the rules by allowing some kets to satisfy (v|v) < 0. However, these kets represent fictitious (unphysical) states,
which must decouple from the true physical states. We will not encounter this issue in the present book.
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then has norm 1, and in quantum mechanics it is physically equivalent to the original ket, in
the sense that it represents the same physical state. We say that the ket has been normalized

to unity. This still leaves the freedom to multiply the ket by a complex phase, because
e |v) (2.2.9)

has the same norm as |v), for any real number §. This freedom will appear very often as an
ambiguity in the determination of a ket that has to satisfy some other specified properties. The
resolution of such ambiguities is arbitrary, and equivalent to a choice of convention.

Although the phase of a single ket is not a physically measurable quantity, the relative phases
between different kets can be physically meaningful if one considers their sum, also known as

their superposition. This is because if we multiply two non-null kets by different phases,
lv) — e ), lw) — e |w), (2.2.10)
then their sum is replaced by
W) 4+ w) — € (Jv) + @) ) (2.2.11)
which, by removing the overall phase %, is physically equivalent to
[v) + e =0) ) . (2.2.12)

In general, this is not proportional to, and therefore not physically equivalent to, |v) + |w),

unless |v) and |w) are proportional, or 6, and 0, differ by an integer multiple of 27.

Two kets |v) and |w) are orthogonal (also known as perpendicular) if (w|v) = 0. An
orthonormal basis, which we will call an orthobasis for short, is a basis of kets {|p;)} with

7 =1,2,... that satisfies the additional property

(pilor) = O (2.2.13)

Here ;5. is the Kronecker delta symbol,

1 (for j =k)
i = ’ 2.2.14
i {o (for j # F), (2214)

and is defined only when j and k are labels that take on discrete values.
As noted in the previous section, we will also often want to deal with basis kets labeled by
one or more continuous parameters. In that case, we need a different orthonormality condition,

called Dirac orthonormality, in which the Kronecker delta symbol is replaced by a Dirac
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delta functionH The Dirac orthonormality condition for kets |p,) labeled by a single continuous

real variable ¢ can be taken to be

(palpg) = d(g—4). (2.2.15)
Here ¢ could be, for example, a position coordinate of a particle. The delta function §(z) has
the properties that

() = {go Egi;g; (2.2.16)

and
/ dx o(x) =1, (2.2.17)
or, more generally, for sufficiently well-behaved functions f(x),

/_OO ded(xz —c)f(z) = f(o). (2.2.18)

For most purposes, eq. (2218) can be taken as the practical definition of the delta function.

An important technical note: as we have already warned in the previous section, kets satisfy-
ing the Dirac orthonormality condition eq. (2.2.15]) cannot be physical states, strictly speaking.
This is because they do not have finite norm, due to §(0) = oo. Such kets with continuous labels
are still very useful in practical calculations, where they often represent idealizations with per-
fectly known position, or momentum, or some other continuous quantity. These are sometimes
known as generalized kets or non-normalizable kets, and they act as a basis for the Hilbert
space of physical states, even though they are not themselves part of the Hilbert space. They
are so useful as idealizations that mere non-normalizability is not a good enough reason for us
to eliminate them from our toolbox.

It is often useful to think of §(x) as the “limit” (in a sense that we will not bother to try to
make mathematically precise) of a sequence of increasingly narrow and sharply peaked functions
that have unit area, in various different ways. For example, the sequence of functions can be
taken to be rectangular functions with width A and height 1/A,

, 1/A for x| < A/2,
o = 1 2.2.1
(z) Alino{ 0 for 2] > A/2. (22.19)
Another useful representation of §(z) is
1 [ -
§(x) = — [ dke™. 2.2.2
@ = o [ ke (2.2.20)

!Technically, the Dirac delta function is not a function, but a distribution in mathematical language. But,
this is not a math textbook, so we will not belabor the distinction.
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Figure 2.2.1: The Dirac delta function d(z) can be thought of as the A — 0 “limit” of func-
tions peaked near x = 0 with width of support proportional to A and unit integrated area,
as in the rectangular functions in eq. ([22.19) [left], the Gaussian functions in eq. (22.21])
[center|, or the normalized sine functions in eq. (Z2.22)) [right].

To make better sense of this technically ill-defined expression, we can “cut off” the integration

—k2AZ)2

over k. One way to do this is to insert a convergence factor e into the integrand, and

then take A — 0,

R Y ST . exp(—x?/2A?)
o(z) = lim — [ dke #2772k = ] . 2.2.21
(x) im /_Oo e e lim NorTN ( )

This interprets 6(x) as the A — 0 limit of Gaussian functions with height 1/4/27A and full
width at half maximum (FWHM) equal to 2v/2In2 A ~ 2.3548A. Another way to make sense
of eq. (Z220) is to limit the & integration to a large but finite range —1/A < k < 1/A,

1/A .
§(z) = lim i/ dke*® = lim M. (2.2.22)

—1/A A—0 T

Each of the expressions in eqs. (22.19), ([2.2.21]), and ([2.2.22) has the crucial property of unit
integrated area for all A, even before taking the limit A — 0. This justifies the normalization

factor of 1/27 in eq. (22Z20). They are illustrated in Figure 22211 Each of them, as well as the
formal integral representation of eq. (Z2220]), can be useful, depending on the situation.

The representation of the delta function in eq. ([2:2.20)) is related to the theory of Fourier
transforms. To see how this works, we can use it to write, for any sufficiently well-behaved
function f(x),

[e.e] [ee] 1 [ee) ) ,
flx) = / dr' f(a')o(x —2') = / da’ f(a") <2—/ dk elk(m_w)) . (2.2.23)
— 50 —o0 T J-
By rearranging the order of integrations, this becomes

flx) = L[~ dk e’ /00 da’ e f (). (2.2.24)

2r ) o

—00
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Now, we define the Fourier transform of f(x) by the second integral,

L OO /e—ikw’ I
m/_mdx £, (2.2.25)

for —oo < k < co. Then eq. (Z2:24) becomes

F(k) =

flz) = dk e** F (k), (2.2.26)

2T /
which is the inverse Fourier transform relation.

For a ﬁnite—dimensiona Hilbert space, there is a systematic way to find an orthobasis:

Theorem 2.2.3. Given a finite-dimensional Hilbert space with an inner product and a known
basis {|B;)} that is not necessarily orthonormal, one can always construct an orthobasis {|¢;)}

by a systematic procedure known as the Gram—Schmidt process.

Proof: We prove this constructively, by giving the steps of the Gram—Schmidt process:
Step 1. Choose any ket in the original basis; call it |51). The first member of the orthobasis will
be the re-scaled version of this ket with unit norm, |p1) = [51) //(B1|51)-

Step 2. Choose a second ket |52) from the original basis set. From it, define a new vector |@o) =

|B2) — 1) {(p1]52), which we can describe in words as subtracting off the projection along the
vector |¢1). Thus |@s) is orthogonal to |p;) by construction. Now take |p2) = |@2) //(@2]P2),
which has norm 1. This is the second member of the orthobasis we are constructing.

Step 3. Choose a third ket |33) from the original basis set. From it, define a new vector |@s) =
183) — 1) (p1]83) — |w2) (@2|Ps). In words, we are subtracting off the projections along both of
the vectors |p1) and |psy). Since |@3) is orthogonal to both |¢1) and |¢y) by construction, again
we just need to re-scale it to have unit norm. Therefore, define |p3) = |@3) /1/{(@3]Ps) as the

third member of the orthobasis.

Step n. Take the nth ket |3,,) from the original basis set, and subtract off the projections along
all of the previously found orthobasis kets, by defining

n—1
[Bn) = 18a) = D l93) (il Bn) - (2.2.27)
Jj=1

By construction, this is orthogonal to all of the previously found kets |¢;) with j =1,...,n—1.
It is not null, because of the linear independence of the original basis. So, to include it in the

orthobasis, we only need to re-scale it to also have unit norm,

[on) = |&n) [V (PnlPn)- (2.2.28)

$In the infinite-dimensional case, the Gram-Schmidt algorithm cannot end in a finite number of steps, but
in cases relevant to quantum mechanics a suitable orthobasis is often easy to identify anyway. For example, the
Hilbert space may naturally split into an infinite number of mutually orthogonal finite-dimensional subspaces.
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Continuing in this way, when we are finished with Step d, where d is the dimension of the Hilbert
space, we will have constructed the full orthobasis {|¢,)}. This concludes the proof. O
Suppose that we have chosen an orthobasis {|¢;)}. To obtain the components v; of an

arbitrary ket
o) = > uiles), (2.2.29)
J
we can take the inner product with |pg), resulting in

(prlv) = Z%’ (prlps) = v, (2.2.30)

where the last equality relies on the orthonormality property eq. (Z2.13). Thus, the components

of the ket are simply given by its inner products with the orthobasis vectors.

2.3 Dual vector spaces

Given a Hilbert space of kets with an inner product, it is useful to construct another complex
linear vector space, called the dual vector space. Dual vectors are defined mathematically
as linear maps from the space of kets to the complex numbers. For each ket |v), there is a

corresponding dual vector denoted (v|, and we write the association as

vector dual vector
v) = (v]. (2.3.1)

Specifically, the dual vector (v| is defined to map each ket |w) to the complex number given by

the inner product of the ket |w) with the corresponding ket |v),

W (Jw)) = (vjw). (2.3.2)

A dual vector defined in this way is also called a bra, a silly bit of terminology devised long ago
so that the inner product is a “bra-ket”, or bracket. From the properties of the inner product,
specifically by comparing eqs. (Z2:2) and (Z2.3)), one finds that the bra associated with a linear

combination of kets is

vector dual vector

cav) +ew) — o (v + 5 (w]. (2.3.3)

One must remember to take the complex conjugates of the coefficients.
The bra (v| is also known as the Hermitian adjoint of the corresponding ket |v), and vice

versa. To understand the relation better, it is useful to consider the following linear algebra
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analogy: kets are like complex d-dimensional column vectors, and bras are like complex d-

dimensional row vectors, with

U1
V!

i=| 71, o= (i owh - wh). (2.3.4)
Vq

The fact that a dual vector maps vectors to complex numbers is just expressed as
W'y = Zw,’;vk. (2.3.5)
k

As we will discuss more fully in section 2.5 this is not just an analogy; if one has chosen an
orthobasis {|¢x)}, then vy = (pi|v) are the components of the ket |v), while w; = (w|py) are
the components of the bra (w|. However, the bra-ket notation has the great virtue of being
independent of any particular choice of orthobasis.

According to the dual vector definition, for each ket |v), there is always a unique corre-
sponding bra (v|. If the Hilbert space has a finite dimension, then there is also a unique ket
for every bra, and the correspondence is one-to-one. However, in the infinite-dimensional case
it is possible to construct bras that have no associated ket within the Hilbert space, although
this fact is of little practical consequence. For example, consider the generalized kets like those
that that satisfy the Dirac orthonormality condition eq. (Z2ZTH]); as we have noted, these have
infinite norm and are therefore not part of the physical Hilbert space. The corresponding bras
are nevertheless well-defined maps from the physical Hilbert space to the complex numbers, and
so are perfectly respectable members of the dual vector space.

You may find it useful to think of kets (vectors) as representing possible states of a system,
while bras (dual vectors) represent possible questions that one may ask about the state. For
example, we can interrogate the actual state of a system [¢) about its overlap with another
possible state |y). Then the question that we are asking is associated with the dual vector (x|.
As we will discuss further near the end of section B.2, the answer that one receives is that the
2,

probability of finding the system in the state |x) is nothing other than |(x|v))|?, assuming that

both |¢) and |y) were normalized to 1.

2.4 Operators

An operator A is a map from the space of kets to itself. This means that the result of acting
with A on any ket |v) must be another ket in the Hilbert space, which we can call either |Av), or
equivalently, A|v). As a notational convention, we will usually use capital letters to represent

operators, except when established tradition says otherwise.
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In quantum mechanics, we are almost always interested in linear operators, which obey
Aler[v) + o [w)) = 1 Av) + A |w). (2.4.1)

Because there is a bra associated to each ket, a linear operator also maps the dual space to
itself. Specifically, for each bra (w|, the bra (w| A resulting from the operation of A is defined
by the relation

((wlA) o) = (| (Al))- (2.4.2)
Adopting this definition, it follows that the operation of A on the dual space also obeys linearity,
(c1 (0] + 2 (w])A = ¢ (v] A+ o (w] A (2.4.3)

Because of the equality of the two sides of eq. (Z4.2]), we can define the matrix element of
the operator A between (w| and |v) as their common value (w|A|v), without parentheses.
Addition and subtraction of linear operators and multiplication by complex numbers are

defined in the obvious ways, such that
(aA+B) [v) = Aler|v)) + B(ez|v)). (2.4.4)
The product of two operators A and B is defined by
(AB)|v) = A(B|v)) = AB|v). (2.4.5)

As before, the parentheses make no difference and can be omitted, as indicated in the last

equality. Operators also obey associativity; for any three operators A, B, and C,
(AB)C = A(BC). (2.4.6)

However, the order of operators matters, so that BA and AB are different, in general. One

therefore defines the commutator of A and B as
A, Bl = AB — BA, (2.4.7)
and the anticommutator by
{A,B} = AB + BA. (2.4.8)
The simplest example of a linear operator is the identity operator I, defined by

Iy = |v), (v I = (v (2.4.9)



for every |v). The inverse of an operator A, if it exists, is denoted A™!, and is defined by the

requirement
ATTA =T = AA™Y (2.4.10)

However, it is important to recognize that not all operators have an inverse.
There is an enormously useful way of writing the identity operator, given an orthobasis.
Equations (2.2.29) and (2.2.30) can be combined to write

o) = D leaeslv) - (2.4.11)

J

Since this is true for all |v), one has simply
1= len el (2.4.12)
J

This extraordinarily important identity is known as the completeness relation, or the closure
relation. We will use it very often.

If |v) and |w) are any two kets, then
A = |v)(w] (2.4.13)

is a linear operator, sometimes called the outer product of |v) and (w|. It is defined by its

action on any other ket |x),

Alr) = (owl) [2) = [o) ({w]2)). (2.4.14)

As a useful special case, we can form the projection operator P, onto a ket |v), defined by

P = i) (2.4.15)
If |v) has norm 1, then one can simply write
P, = |v)(v|. (2.4.16)
Projection operators have the property
P? = P, (2.4.17)

fFor a finite dimensional vector space, the last equality in eq. (ZZI0) is redundant, because BA = I can
be shown to imply AB = I as well. However, in an infinite dimensional vector space this is not true. For
example, consider the vector space with general element v = (v1,v2,vs,...), and define the right-shift and
left-shift operators by Rv = (0,v1,v2,vs,...) and Lv = (v2,v3,v4,...). Then LR =1, but RL # I.
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Intuitively, the projection operator P, acts on a ket by throwing away the part orthogonal to
|v), and keeping the rest intact; doing this twice has the same effect as doing it once. As an
aside, this is a good example of an operator that has no inverse (with the trivial exception of
the case that the state space is one-dimensional). The reason is that when P, acts on any ket
|w) that is orthogonal to |v), it yields 0 (the null ket), and then there is no way to resurrect |w)
by acting with another linear operator, the purported inverse.

The completeness relation eq. (2.4.12]) can now be equivalently expressed as the statement

that the identity operator is equal to
I =) P, (2.4.18)
J

which is the sum over the projection operators for all of the members of an orthobasis, spanning
the whole Hilbert space. Similarly, one can project onto a subspace of the Hilbert space, by
summing over projection operators for only a subset of the orthobasis vectors.

For any linear operator A, the Hermitian adjoint (or just adjoint) A" can be defined by

the way that it acts on dual vectors,
(| AT = (Av], (2.4.19)

where (Av| is the bra corresponding to the ket |Av) = A|v). Consider a generic matrix element

involving AT,
(w|AT|v) = (Aw|v) = ((v]Aw))*, (2.4.20)
where the second equality has made use of eq. (ZZT]). This we can restate as the useful relation
(wlAfly) = ({o]Afw))". (2.4.21)

It is not hard to use the definition to show the following facts. The adjoint of the operator
A = |w)(v| is

(jw) (@) = |o) (w]. (2.4.22)

The adjoint of the operator cI, where ¢ is a complex number, is (¢I)" = ¢*I. The adjoint of a

product of operators is
(AB)' = BTAT, (2.4.23)

where the order matters.
It is useful to generalize the concept of taking the adjoint to whole expressions and equalities
involving kets, bras, and operators. Given any expression, define the adjoint of it according to

the following rules:
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Substitute A — A for all operators.

Substitute ¢ — ¢* for all complex numbers.

Substitute |v) <> (v| for all kets and bras.

Reverse the order of kets, bras, and operators within each term.

(Of course, the complex number factors of any term can be written in any desired order.) Then
one can show that the adjoint of any valid equality will also be a valid equality. Equations (2:2.1)),
R421), 24.22) and ([2.4.23)) are examples of this. As a more random example, if one has

ABC |v) (v|lw) + Blz) = c|z), (2.4.24)
where A, B, and C are operators and ¢ is a complex number, then one must also have
(wv) (W|CTBTAT 4 (2| Bt = ¢* (z]. (2.4.25)

An operator A is called Hermitian (or self-adjoint) if it is the same as its adjoint, AT =
A. Hermitian operators are particularly important in quantum mechanics, where they are
associated with physically measurable quantities. An anti-Hermitian operator is one that

satisfies AT = —A. Note that any operator can be written as the sum of a Hermitian part and

4 (AZAT) N (A;AT)_ (2.4.26)

The product of two Hermitian operators is Hermitian if, and only if, they commute. It is also

an anti-Hermitian part,

not hard to show that for two Hermitian operators A and B, the commutator is anti-Hermitian,
so that i[A, B] is Hermitian.

An operator U is unitary if its adjoint is equal to its inverse, so UT = U~!. The product of
two unitary operators is always unitary. In quantum mechanics, unitary operators are associated
with a change of orthobasis, as we will discuss in the next section. They often appear in the
context of defining or exploiting the symmetries of the physical system. The time evolution of
a system will also be associated with a unitary operator.

It is possible to define operators that are functions of other operators. The most common
example of this that we will encounter in quantum mechanics is the exponentiation of an opera-
tor. If A is an operator, then the operator exp(A) can be defined in two different but equivalent

ways, which are useful in different circumstances. Both treat A just as if it were an ordinary
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number, exploiting the facts that it obviously commutes with itself, and no other operators are

involved. First, one can define it as the usual limit,

A N
A _ oy A
e’ = A}l_)II;O (I—I— N) . (2.4.27)

Alternatively, one can define it as a power series expansion:

e = ZA (2.4.28)

n!’
n=0

where of course A° = I. It follows that e? is always invertible, and the inverse is e=4. Taking
A = 1B, where B is Hermitian, we then find:
Theorem 2.4.1. If B is a Hermitian operator, then the operator exp(iB) is unitary.

Some other useful results involving exponentials of operators follow.

Theorem 2.4.2. For any two operators A and B,

ABe = BAABl4 A A B+ A A 4B+ (2429)

Proof: define the operator F()\) = e’ Be™*4, where ) is a variable. Now

dF
L =AF - FA=[A F(\), (2.4.30)

where we have used the fact that %e“‘ = AeM = eMA. Repeating this gives

d*F &PF
oz = A FOIL g = A A [A FOIT, (2.4.31)

etc. Using these to compute the Taylor series expansion for F'(A) about the point A = 0, and
using F'(0) = B, we have

A2 A3

F(X) = B+ A, B] + 5 [A, [A, Bl + 5 [A [A [AB]] + -, (2.4.32)

and eq. (Z4.29) now follows by taking A = 1. O

As a special case application of Theorem 2.4.2] we have:

Theorem 2.4.3. If A and B are operators such that [A, B] = ¢B where ¢ is a number, then
eABe ™ = ¢°B. (2.4.33)

Another useful special case of Theorem [2.4.2] occurs if instead [A, B] commutes with A:
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Theorem 2.4.4. For any two operators A and B such that [A, [A, B]] =0,
[e?,B] = [A, Ble". (2.4.34)
Finally, the following formula is often useful:

Theorem 2.4.5. (Baker—Campbell-Hausdorff, special case) For any two operators A and
B such that [A, B] commutes with both A and B, then

edeB = eAtBealABl (2.4.35)

The proof is left as Exercise 2.6l The previous two theorems hold in particular if the commutator

of A and B is proportional to the identity operator.

2.5 DMatrix representations of operators

Suppose we have selected an orthobasis {|p;)}, and consider two kets |v), |w) given as
) = D viles), w) = w;le;) . (2.5.1)
J j

where v; and w; are their components in the chosen orthobasis. The inner product can be

written as

U1

vy = D Y wiulpslor) = > wivy = (wi -+ wy) ||, (2.5.2)
where the second equality was obtained using the orthonormality property eq. 2213). In
the case of a Hilbert space with finite dimension d, we can therefore consider the bra (w| as

associated with a row vector of complex numbers, and the ket |v) with a column vector,

U1
(w| < (wi - w)), lv) <« . (2.5.3)
Vq
The double-arrow notation is used to indicate that the bra and ket are represented by the
corresponding row and column vectors. However, it is important to remember that while this
representation depends on the choice of basis, the bra and ket themselves exist as abstract
objects independent of the choice of basis.
Given an operator A, one can construct a matrix representation for it corresponding to the
orthobasis {|¢;)}. We start with

Ay = A wvpler) = vAler). (2.5.4)
k k
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Now taking the inner product with a basis ket |p;) gives

(pilAlo) = > (il Alow) vk (2.5.5)
k

We therefore define the d x d complex matrix with elements

Aje = (p5lAler) (2.5.6)
so that the components of
V') = Alv) (2.5.7)
are
vy = (pilv') = ZAijm (2.5.8)
k
or, in matrix form,
vy A - A\ [un
=1 | (2.5.9)
Vg An -+ Aaa) \vd

Thus, we complete the correspondence of eq. (Z5.3) by writing, for any operator A, the matrix

representation

All e Ald
A & : : , (2.5.10)
Adl te Add

with the orthobasis matrix elements given by eq. (2.5.6]).
It is often convenient to dispense with formalities by replacing the <+ symbol in equations
like (Z5.3) and (Z5.1I0) with an = symbol. However, again we emphasize that the kets |v), bras

(w|, and operators A are objects that are conceptually independent of the choice of orthobasis,
1
different if a different orthobasis is used.

while their components v;, w3, and Aj; do depend on the choice of orthobasis, and will be

The matrix representation for a product of operators AB is given by
(AB)jx = ZAjank- (2.5.11)

The proof of this is an almost trivial consequence of the completeness relation eq. (2412,
because it can also be read as (@;|AB|pr) = >, (p;|Alen) (©n|Blek). It is also easy to show

that the orthobasis matrix elements of an operator A and its adjoint A" are related by
(AN = (A)*. (2.5.12)
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Many operator relations and properties are easiest to see by using the matrix representation
associated with an appropriately chosen orthobasis, using the tools of linear algebra. For in-
stance, a Hermitian (or unitary) operator A is represented by a Hermitian (or unitary) matrix
with elements A;. The matrix representation of A~!, if it exists, is equal to the inverse of the
matrix representation of A. It is a standard result in linear algebra that A~! exists if and only

if the determinant of the matrix A is non-zero,
Det(A) # 0. (2.5.13)

In that case, the inverse matrix for A is

-1 _ 1 T
= B (2.5.14)

where cof[A] is the cofactor matrix of A, and 7" denotes the transpose. For a general d x d

matrix A, the cofactor matrix is defined by
(cof[A])je = (=1)"** My, (2.5.15)

where the minor M;, is equal to the determinant of the (d — 1) x (d — 1) submatrix obtained
from A by deleting row j and column k.

A unitary operator U, as defined in the previous section, satisfies
U =UU = 1. (2.5.16)

The components of the matrix representation of U in an orthobasis {|px)},

Un Ui - U
U = U.21 U.22 U.2d : (2.5.17)
Udl Ud2 Udd
obey the rule
Ujr, = jth component of |¢}), (2.5.18)
where
0k = Uler) - (2.5.19)

Now, using eq. (Z5.16]), it is not too difficult to show that the set {|¢})} defined in this way
is another orthobasis. From eqs. (2.5.17) and (2.5.18]), we see that the components of the new

orthobasis element |¢}) are equal to the kth column of the matrix representation of U in the
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original orthobasis. In this sense, a unitary operator U performs a change of orthobasis, which
can be thought of as a complex rotation in the Hilbert space. The operator U' performs the

inverse change of basis,

k) = Ut k) (2.5.20)

and it follows that the bras for the two orthobases are related by

(el = (on|UT, (er] = ()] U (2.5.21)

Conversely, given any two orthonormal bases {|px)} and {|¢})}, the inner products are the

elements of a unitary matrix,

(piler) = (pilUlew) = Ujp. (2.5.22)

To verify directly that U as defined by eq. (2.5.22]) is indeed unitary, one can use the completeness
relation eq. (Z4I2) to show

> UpiUni = G, (2.5.23)
or, rewriting,

D (UY),, Unk = G (2.5.24)

n

This expresses the unitarity of the matrix representation of the operator U, and is equivalent to
the operator equation (25.16]). Also,

[Det(U)| =1, (2.5.25)

follows from the general linear algebra facts that Det(AB) = (DetA)(DetB) and Det(A") =
(DetA)*, for matrices A, B.
An important feature of such a unitary change of basis is that it preserves inner products.

To see this, consider the transformatio

v) — [y =Ulv), (2.5.26)
w) — [w')=Ulw), (2.5.27)

so that we have performed the same complex rotation on both |v) and |w). Then

(wv) — (W) = (w|UTUW) = (w|v), (2.5.28)

tHere, the arrow “—” can be read as “transforms to”.
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so that inner products are unaffected by a change of orthobasis.
We can also see how the unitary change of basis is realized on the matrix elements of any

operator A. For any two kets |v) and |w),
(w'|A|v') = (w|UTAU|v) . (2.5.29)
If we now define a transformation of the operator A according to
A — A = UAUT, (2.5.30)
to go along with egs. (2.5.20) and (2.5.27)), then
(W]A'W) = ((w|UNUATNU |v)) = (w| (UTD)AU'U) [v) = (w|Alv).  (2.5.31)

In words, the matrix element for the transformed states of the transformed operator A’ is the
same as the original matrix element of A.
Functions of operators are often easiest to deal with using their matrix representations. If

the operator A has a matrix representation that is diagonal in some appropriate orthobasis,
A + diag(ay,ag, ..., aq), (2.5.32)

then immediately from the series definition of eq. (2.4.28)), with A replaced by iA, one finds
exp(iA) < diag(e™™, e, ... "), (2.5.33)

Also, if the powers of A obey some recurrence relation, then the series for exp(iA) can often be
resummed in the matrix representation, even if it is not diagonal. As an example, suppose A

has matrix representation

A & a((l) (1)) (2.5.34)

Then we recognize that A? = ¢%I, and so the unitary operator ¢4 has matrix representation,

obtained by separating the even powers of A from the odd powers of A,

> (@ag)' (3 (1)) : i% ((1) (1)) (2:5.35)

or, summing each series,

. cos(a) isin(a)
exp(id) < (z’sin(a) cos(a))' (2.5.36)
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2.6 Eigenvalues and eigenvectors

In quantum mechanics, we will often need to solve eigenvalue problems. If, for some operator

A, we can find a complex number « and a non-null ket |v) such that
Alv) = alv), (2.6.1)

then « is called the eigenvalue and |v) is the corresponding eigenvector or eigenket, associ-
ated to the eigenstate of A. When eq. (2.6.1)) holds, then it follows immediately that

(v| AT = o* (v], (2.6.2)

or, in words, (v is an eigenbra of AT, with eigenvalue a*.

The eigenvalue problem is to find all solutions for both a and |v) as a pair, given A.
Rewriting eq. (2.6.1]) as

(A—al)|vy =0, (2.6.3)

we see that for a solution with a particular « to exist, the operator (A — af)~! must not exist;
otherwise, we could act with it on both sides to discover that |v) could only be the null ket, in
contradiction of the assumption.

If the Hilbert space is finite dimensional, we can go to the matrix representation to find that

a solution for a must satisfy
Det(A—al) = 0. (2.6.4)

This is called the characteristic equation, and the left side is a polynomial of degree d, the
same as the dimension of the Hilbert space. The fundamental theorem of algebra states that
this always has exactly d complex solutions, ag, ..., aq, allowing for the possibility that some of
them may be repeated. The integer number of times a particular eigenvalue «,, is repeated in
the list is called its degeneracy, and we will denote it g, .

After the eigenvalues «,, have been found, for each of them we can then solve
(A—a,I)|v,) = 0 (2.6.5)

for the corresponding eigenket |v,). If a particular eigenvalue «,, has degeneracy g,, , then there
will be a set of g,, linearly independent eigenkets |v,) with that eigenvalue. Sometimes the
solution of eq. (Z6.0) can be done by inspection, sometimes it will require linear algebra, and
in still other cases it will involve solving some differential equation(s). It is often not feasible to

solve it exactly, which makes life interesting and necessitates approximation methods. In any
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case, note that if |v,) satisfies the equation, then so does c|v,) for every complex constant c.
That constant can always be chosen, for each eigenket, to normalize it as desired. Even after
doing so, the complex phase of each eigenket remains an arbitrary choice.

The most trivial example is the case that A = I, the identity operator. Since I |v) = |v),
every non-null ket |v) is an eigenket, and the corresponding eigenvalue is 1.

Another simple case is the projection operator for a ket |w), as introduced in eq. (ZZIH):

|w) {w]
P, o (2.6.6)
Then the equation P, |v) = «|v) becomes
o)
() lw)y = alv). (2.6.7)

There are two ways that this eigenvalue equation can be satisfied. If (w|v) # 0, then |v) must
be proportional to |w). Indeed, any |v) = ¢|w), where ¢ is any non-zero complex number, is a
solution, and the corresponding eigenvalue is a« = 1. The second way to satisfy the equation is
if (w|v) = 0, which then implies & = 0. So, any ket |v) orthogonal to |w) is an eigenket, with
a = 0 as the eigenvalue. These are the only solutions to the eigenvalue problem for P,.

As another example, take a Hilbert space that is spanned by an orthobasis of three kets,
which we will call |a), |b), and |c). Consider an operator Ry, which depends on a continuous

parameter 6, and is defined by

Ryla) = cosf |a) +sinb |b), (2.6.8)
Ry |b) = —sinf |a) + cosf |b), (2.6.9)
Ry lc) = |c). (2.6.10)

Because we have specified how Ry acts on each member of the orthobasis, it is completely

defined. We can now adopt a representation associated with this orthobasis, so that

1 0 0
la) < [ 0], B) < (1], )+ (0], (2.6.11)
0 0 1
and
(a] > (1 0 0), (b +» (0 1 0), (c|+> (0 0 1). (2.6.12)

The matrix representation of Ry in this orthobasis isH by applying egs. (2.5.6]) and (2.5.10),

cos —sinf 0
Ry <« |sinf cosf O0]. (2.6.13)
0 0 1

"Beware of a common mistake: it is tempting to scan the form of eqs. (2:6.8)([2.6.10) and incorrectly write
down the transpose of the matrix representation eq. (Z.6.13). For similar examples, see eqs. (Z.6.33]) and (Z.6.56]).
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This is a unitary matrix, and R, 1= Rg = R_y = R}, where the last equality follows because it
is a real matrix. The change of basis produced by Ry is a rotation in the |a) , |b) subspace.

To find the eigenvalues and eigenkets, first note that the characteristic equation is
Det(Ry —al) = (1 —2acosf+a?)(1—a) = 0, (2.6.14)
which has eigenvalue solutions
a=c¢" e 1. (2.6.15)

These are non-degenerate, and it is not hard to solve (Ry — [a) |V) = 0 in matrix form for the

corresponding eigenvectors. The results are

—1 —1’ — —1 (la) —i|b)) f = e (2.6.16)

NG OZ 73 a)—1 or a = e", 6.
—1 — —1 (la) +1i1b)) f = (2.6.17)
NG NG a)+1 or a =e ", .6.

o) for a = 1. (2.6.18)

We have chosen the multiplicative constants in front of these so that each eigenket has norm 1.
There remains a freedom to choose each of the phases of the eigenkets; this can only be resolved
by arbitrary choice.

We will now discuss several theorems regarding eigenvalues and eigenkets that are important

for quantum mechanics.

Theorem 2.6.1. (Superposition principle) If a linear operator A has some eigenkets |v,)
with a common eigenvalue o, then any complex linear combination of them, Y ¢, |v,), is also

an eigenket of A, with the same eigenvalue o, unless it is the null ket.
The proof is an immediate consequence of the definitions, including the assumed linearity of A.

Theorem 2.6.2. (Common eigenvectors for commuting operators) If operators A and
B commute, and |v) is an eigenket of A with eigenvalue «v, then (i) B |v) is also an eigenket of

A with the same eigenvalue o, and (ii) if a is non-degenerate, then |v) is also an eigenket of B.

Proof: To establish (i) takes only one line,
A(B|v)) = AB |v) = BA|v) = Ba/|v) = o(B |v)). (2.6.19)
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The second equality is where we used that A and B commute. To prove (ii), note that the
assumption that « is non-degenerate simply means that the corresponding eigenket is unique up
to a multiplicative constant. So, from (i), B|v) = (|v) for some constant [, which is therefore

the eigenvalue of B for |v). O
Theorem 2.6.3. All eigenvalues o of a Hermitian operator A are real.

Proof: Let A |v) = a|v). Taking the inner product with |v), we have (v|A|v) = «a (v|v) . However,
we also have (v|Alv) = (v]|AT|v) = ((v]|Alv))* = a* (v|v), where the first equality made use of
the assumption that A is Hermitian, and the second employs eq. (Z4.21]). Combining these

expressions gives
(v — ™) (v|v) =0, (2.6.20)

which establishes that a = a*, because |v), being an eigenket, is not null. O
In general, a selection rule is a statement that some matrix element vanishes under certain

specified conditions. The following theorem is an example.

Theorem 2.6.4. (Matrix element selection rule) If A is a Hermitian operator and B is
an operator that commutes with A, and A has eigenkets |v1) and |vy) with respective eigenvalues
ay # g, then (vy|Blug) = 0.

Proof: Since A and B commute, AB and BA are the same operator, so
(v1]ABlvg) — (v1|BAJvg) = 0. (2.6.21)

Now we can use A |vg) = ap |vg) on the second term, and use eq. (2.6.2), which says (v;| A =

aj (v1], on the first term, to get
(Oél - 042) <U1‘B|’U2> = 0, (2622)

where we have also used Theorem [2.6.3 which implies o] = a1, since A is Hermitian. Now, since

a1 # ap by assumption, the matrix element (vq|B|vy) must vanish. O

Theorem 2.6.5. (Inner product selection rule) If A is a Hermitian operator with eigenkets

|v1) and |vy) with different eigenvalues oy # i, then the eigenkets are orthogonal, (v|ve) = 0.

The proof follows immediately as a special case of Theorem 2.6.4], by taking B = I.
The next result establishes a useful connection between a Hermitian operator and a corre-

sponding orthobasis for the Hilbert space:
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Theorem 2.6.6. (Orthobasis of eigenkets of a Hermitian operator) If A is a Hermitian
operator on a Hilbert space with finite dimension d, then one can find a set of its eigenkets
that form an orthobasis. The resulting orthobasis elements corresponding to non-degenerate

eigenvalues of A are unique (up to multiplication by complex phases).

Proof: The characteristic equation for the eigenvalue problem for A (using its matrix repre-
sentation in any orthobasis) has d solutions, according to the fundamental theorem of algebra.
The eigenkets corresponding to non-degenerate eigenvalues are orthogonal (according to The-
orem 2.6.7)) and non-null (from the definition of an eigenket), and so can be normalized to be
orthonormal. For each eigenvalue a with degeneracy g, > 1, one can use the Gram—Schmidt
process to construct (non-uniquely) a set of orthonormal kets which have the same eigenvalue
« due to the linearity of the eigenvalue problem, and which are all orthogonal to the kets cor-
responding to the other eigenvalues (again using Theorem 2.6.5). The union of all of the kets
found in this way are orthonormal with each other, and there are d of them, so they form an
orthobasis for the whole Hilbert space. O

Let us make some important comments on Theorem First, it is often convenient to
adopt a notation such that the orthobasis eigenkets of A are named by using the corresponding
eigenvalue as a label. However, if the eigenvalue « is degenerate, then we need to introduce
another label u,, which we refer to as a degeneracy label, to distinguish the orthobasis kets
that have the same «. Thus, the eigenkets can be called |, u,), and the eigenvalue equation is

written as
(A—al)|a,u,) = 0, (2.6.23)
while the orthonormality condition reads
(o jupg|lo,ug) = Oaar Ougur, - (2.6.24)

In the orthobasis of eigenkets of A, the matrix representation of A will be diagonal, as follows
immediately from eq. ([2.6.23)), so that

a, 0 --- 0
0 Q . 0

A o Agg=|. (2.6.25)
0 0 Qq

in that basis.
Another useful comment on Theorem 2.6.6 is that if we form the matrix whose columns are
the components of the orthobasis eigenkets of A, then the result is a unitary matrix U. This

follows from the general discussion surrounding eqs. (Z5.I7)—(25.24), if in that discussion we
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let {|¢x)} be the “original” basis we are working in, and let the set {|¢})} = {|a, u,)} be the
orthobasis of eigenkets of A. Thus, we define the components of the matrix U according to the

rule that, in the original basis,

Ui = (pilUler) = (#ilon)
= jth component of (kth orthonormal eigenvector of A). (2.6.26)

The eigenvalue equation (2.6.23)) can then be written as, by taking the inner product with {(p,|,

Z AniUje = oUni = Z Upi(ducu), (2.6.27)
J l

or, in index-free matrix notation,
AU = U Aqiag. (2.6.28)
Now, multiplying from the left by UT, we obtain

Theorem 2.6.7. (Diagonalization of Hermitian operators) The matriz representation of

a Hermitian operator A in an arbitrary orthobasis {|pk)} is diagonalized by the unitary matriz
U specified in eq. (26.28), according to

UTAU = Agiag, (2.6.29)

where Agiag is the matriz representation of the operator A in the new orthobasis {|¢},)} consisting

of its eigenvectors.

Let us do an extended example to illustrate some of the preceding results. Consider a Hilbert

space of dimension 3 with an operator A defined by its action on an orthobasis {|p1), |©2), |¢3)},

Alpr) = 3le), (2.6.30)
Alpa) = 4lp2) —ilps), (2.6.31)
Alps) = ilpa) +4]ps). (2.6.32)

The matrix representation of A in this original orthobasis is, using eqs. (2.5.6) and (2.5.10),

0 0
4 . (2.6.33)

3
A < |0
0 — 4

Since the matrix representation is Hermitian, A is a Hermitian operator. The characteristic
equation for its eigenvalues is Det(A — af) = (3 — a)(15 — 8a + a?) = 0, which yields
a=3,3,5. (2.6.34)
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These eigenvalues are real, as guaranteed by Theorem [2.6.3] For the non-degenerate eigen-
value a = 5, the solution of the matrix equation for the corresponding eigenvector gives, after
normalization and choice of an arbitrary phase, and conversion to ket language,
1 .
5) = = (len) = i) (2:6.35)
Note that we have named the eigenket after its eigenvalue. For the eigenvalue a@ = 3, the

degeneracy is 2, so there are two linearly independent eigenkets, which can be chosen to be

3.1) = %(Wzﬂ-ﬂs@s)% (2.6.36)
3,2) = le1). (2.6.37)

The second entry (1 or 2) on each o = 3 ket is a degeneracy label. These kets are automatically
orthogonal to |5), as promised by Theorem [2Z.6.5] but we had to make a choice of linear combina-
tion to make them orthonormal, since arbitrary linear combinations of |3, 1) and |3, 2) would not
be orthogonal to each other and would not have norm 1. In this example, the linear combination
that makes an orthobasis is not hard to find, but given any other (non-orthonormal) basis for
the degenerate eigenvalue subspace, the Gram—Schmidt procedure of Theorem 2.2.3] can be used
to construct an orthobasis.

Our orthobasis of eigenkets of A is related to the original orthobasis by a unitary transfor-

mation. Let us define an operator U by

Ulgr) = 15), (2.6.38)
Ulps) = [3,2). (2.6.40)

Now using eqs. [2:6.35)-(2.6.3T), and applying the operator-matrix correspondence rules of
egs. (Z5.6) and ([Z5.10) again, one finds the matrix representation of U in the {|p1) , |©2), [ps)}

basis,

0 0 1
U < | 1/vV2 1/v2 of, (2.6.41)
—i/V2  ifV2 0

which is indeed a unitary matrix.
Acting on eqs. (Z6.38)-(26.40) with UT, and using UTU = I, we get

UT|5> = |901> = |3’2>a (2'6'42)
UT3,1) = [p2) = (I5) +13,1)) /V2, (2.6.43)
UT13,2) = [ps) = i(|5) —13,1))/V2. (2.6.44)
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The second equality in each of these equations follows by inverting eqs. (Z.6.35)—(2.6.37) to solve
for [p1), |¢2), and |¢s). Equations (Z6.22)-(2.6.44) provide the matrix representation of U in
the orthobasis {|5), [3,1), [3,2)},

0 1/vV2 i/V2
Ut < o 1/v2 —i/v2]. (2.6.45)
1 0 0

As a check, this matrix is indeed equal to the transpose conjugate of eq. (2.6.40]). As promised

by Theorem 2.6.7 on diagonalization of Hermitian operators,

UTAU = Aging = (2.6.46)

S O Ut
O w O
w O O

where A, U, and U on the left side are taken to be the matrices given by eqs. (2.6.33)), [2.6.41]),
and (2.6.45)), respectively. Note that Agae on the right side is the matrix representation of the
operator A in the orthobasis {|5), |3,1), [3,2)}.

The choice of orthobasis made in eqs. (Z6.30)—(2.6.37) is not the unique one composed of
eigenkets of A, due to the superposition principle of Theorem 2.6.1l The most general orthonor-
mal pair of basis kets with A eigenvalue o = 3 is obtained using the freedom to do unitary
transformations within the degenerate eigenvalue subspace, and so is parameterized by two

complex numbers ¢, s, subject to the constraint |c|? + |s]* = 1,

13,1 = ¢|3,1) +53,2), (2.6.47)
13,2y = —s*13,1) +"|3,2). (2.6.48)
These kets have new degeneracy labels (1’, 2’) to distinguish this orthobasis from the unprimed

one with ¢ = 1, s = 0. The change in orthobasis is brought about by another unitary operator
V', defined by

V[5) = [5), (2.6.49)
V3,1 = [3,1), (2.6.50)
Vi3,2) = [3,2), (2.6.51)

or, in a matrix representation in the basis {|5), |3,1), [3,2)},

1 0 O
Vi (0 ¢ =5, (15), 13,1), [3,2) basis). (2.6.52)
0 s

*

C
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By combining the information in eqs. (Z6.35)(Z6.37) and ([26.47)-([2.E351), one also finds

* *

Vig) = C*|801>—7|802>—iﬁ|¢3>> (2.6.53)
Vie) = —le+ 1<1+c>\¢2>+§<c—1>w3> (2654
Vie = —idelen+5(1=)len) +5(1+0) ). (26.55)

so that the matrix representation of V' in the original orthobasis is

c* s/\/§ —is/x/?
V < —s*/vV/2 (14+¢)/2 i(1-¢)/2], (le1), |@2), |ps) basis). (2.6.56)
—is*/v/2 ilc—1)/2 (1+¢)/2

The comparison of eqgs. ([2.6.52)) and (2.6.50) illustrates the point that even though V' is unam-
biguous as a Hilbert space operator, its matrix representation looks very different depending on
the orthobasis used.

The trace of an operator in a finite-dimensional Hilbert space can be defined to be equal

to the trace of its matrix representation. For an operator A and any orthobasis {|px)},

Tr(A) = ) (eulAlpr) = ZAkk (2.6.57)

k

It is left as Exercise 2.4 to show that the trace of an operator is independent of the choice of

orthobasis, and in particular is equal to the sum of its eigenvalues, and that

Tr(AB) = Tr(BA), (2.6.58)
Te(o) (w]) = (wl), (2.6.59)

which can be proved very quickly using completeness of the orthobasis.
We conclude this section by stating two useful theorems involving unitary operators, omitting
the proofs (which are not too difficult).

Theorem 2.6.8. The eigenvalues of a unitary operator U have magnitude 1.
Note that eq. ([ZE.I5) illustrates this.

Theorem 2.6.9. If an operator A has eigenvectors |a,,) with eigenvalues a,,, and U is a unitary

operator, then UAUT has eigenvectors U |av,) with the same eigenvalues .

This implies the important result that the eigenvalues of an operator do not depend on the

choice of basis we use to calculate them.

52



2.7 Observables

An operator A is an observable if it is Hermitian and its eigenkets form an orthobasis |o, u,,),

which satisfies the orthonormality relation eq. (2.6.24]) and the completeness relation

Z Z |a,ua>(0z,ua| = I (271)

Here, o are the eigenvalues with degeneracies g,, and u, are the degeneracy labels. For a
Hilbert space of finite dimension, the completeness part of this definition is redundant, following
automatically from Theorem However it is not automatic for a Hermitian operator in an
infinite-dimensional Hilbert space; that is one reason why it must be included in the definition
here. The other reason is that we will later find it convenient to slightly generalize our definition
of an observable to include ordered sets of Hermitian operators, so that its eigenvalues can be
not just numbers, but ordered sets of numbers. (An example is the vector position operator in
three-dimensional space, which is really an ordered triple of three Hermitian operators X, Y,
and Z.) In such cases, eq. (Z77.)) is again certainly not automatic. From a physical point of
view, the crucial requirement we are ensuring with eq. (271 is that if A is really supposed
to be an observable, then every state in the Hilbert space can always be expressed as a linear
combination of its eigenstates.

The way that eq. (2771)) is written assumes that the eigenvalues of A are countable and dis-
crete. If instead they are uncountable and continuous, then the orthonormality and completeness

conditions are of the Dirac type [compare to eq. (Z2.15)],
(o uylosu,) = 6(a—a') oy ur,, (2.7.2)

/da Zﬂ la, ug)(a,u,| = I, (2.7.3)

U, =1
where the integral is over the range or ranges of o that occur as eigenvalues. Similarly, it is
also possible for the degeneracy labels u,, to be continuous, in which case the Kronecker d,_.r,
Ja
is replaced by a Dirac delta function é(u, — u!,) and Z is replaced by / du,,.

u,=1

It is even possible for the eigenvalues o or the degeneracy labels u, to have a spectrum that
includes both discrete (countable) and continuous (uncountable) components. In that case, the
orthonormality relations will include both Kronecker and Dirac deltas, and the completeness
relation will include both a sum and an integral. We will see an example of this when we study
the bound and unbound states of the hydrogen atom, in eqs. (IT2I1))-(I1.2.13) and (I1.2.22)).

A particularly useful consequence of completeness follows from acting with A on both sides

of eq. (271). Then, evaluating A = a when acting on its eigenkets, we obtain the spectral
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decomposition of an observable operator A,

A=) Z oo, ug) (o, g (2.7.4)

o ua=1
with an obvious counterpart for continuous eigenvalues by replacing summation with integra-
tion. Solving problems in quantum mechanics is often the art of turning expressions involving
operators into numbers. The spectral decomposition idea allows us to do this in a systematic
way. When we see an observable operator A appearing in a matrix element, a standard trick is
to insert a completeness sum directly before or after it, so as to replace A by a sum (or integral)
over its eigenvalues, as in eq. (Z74]). Of course, a prerequisite for using this trick is to solve the
eigenvalue problem for A.

At the end of section 2.4 we mentioned that it is possible to define functions of operators,
and gave the most common example, that of an exponential of an operator. If we have solved
the eigenvalue problem for an observable A, completeness now gives us yet another way to define
a completely general function of it, F'(A). For the case of discrete eigenvalues «, the spectral
decomposition of F'(A) is

9o

F(A) = > ) F(a) |a,u,){o,u,l, (2.7.5)

a u,=1
again with an obvious counterpart for the continuous case involving integration rather than
summation.
We next state a very useful theorem about commuting observables, which we will prove only

in the case of a Hilbert space of finite dimension.

Theorem 2.7.1. (Compatible Observables) If A and B are observables, and [A, B] = 0,
then there exists an orthobasis of kets that are eigenkets of both A and B. In other words, for
commuting observables A and B, there is an orthobasis in which their matriz representations

are both diagonal.

Proof: From the definition of an observable, we already know that we can find an orthobasis

of kets |a, u,) that are eigenkets of A. Furthermore, since [A, B] = 0, we know from Theorem
2.6.4 that whenever a # o/,

(o ul,|Bla,u,) = 0. (2.7.6)
Therefore, the matrix representation of B has a block-diagonal form,
B,, 0 o - 0
0 By, 0O -+ 0

0 0 Ba -+ 0 (2.7.7)

n
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where n < d is the number of distinct eigenvalues a; of A, and the blocks B,,; along the diagonal
represent the possibly non-zero entries, which are confined to the subspaces of the Hilbert space
that have the same eigenvalues ;. Each B,, is a Hermitian g,; X g,, matrix, where g, is the

degeneracylll of o, and has entries

(g, ug, | Blay, ug,) (Ug sty =1,..., 0a,)- (2.7.8)

o o

Therefore, according to Theorem R.6.7, each of the matrices B,; can be diagonalized by a change
of basis corresponding to a unitary operator. Each of these unitary operators acts non-trivially
only within the corresponding B, block, and is the identity operator outside of that block.
After doing these basis transformations, we will be left in an orthobasis in which the operators

A and B are represented by diagonal matrices of the form

A =diag(ay,...,a1,09, ..., 00, Qpy e, O (2.7.9)
oy ?c,imes oo :crimes o, times
and
B = diag(ﬁal,la s 7Ba1,ga1 ) 5&2,17 s 75&2,9(127 e 750%,17 s 7Ban,gan>7 (271())
where the 84, x with k = 1,..., g,, are the eigenvalues of the B,; sub-matrix. This is the desired

orthobasis that achieves the requirements of the theorem. O

Even with two observables A and B, there can be unresolved degeneracies, by which we mean
that there can be more than one orthobasis ket with the same eigenvalues a and 5. This raises the
question of how to tell apart the corresponding degenerate states. From a physics perspective, if
two states are genuinely distinct, then there must be some observable that distinguishes them.
This leads to the important concept of a Complete Set of Commuting Observables, called a
CSCO from here on. For any Hilbert space of states, a CSCO is a set of observables A, B, C, . ..
that all commute with each other, and whose common eigenkets form an orthobasis with no

degeneracies. Thus, we can write

Ala, B,7v,...) = ala,B,7,...), (2.7.11)
Bla,B,7v,...) = Bla,B,7,...), (2.7.12)
C|a7677>"'> = ’7|Oé,6,’}/,...>, (2713)

etc., where each of the eigenkets |a, 3,7,...) is uniquely determined by specifying its CSCO

eigenvalues. The eigenvalues of a CSCO are sometimes known as good quantum numbers,

n
"Note that j = 1,...,n, and Zgaj = d is the dimension of the Hilbert space.
Jj=1
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especially if one of them is the energy. For each one of the eigenvalue labels a or § or 7 etc.,
the others can be viewed as degeneracy labels.

If we have a set of commuting observables, but the degeneracy in the eigenkets is not fully
eliminated, it means that we have not actually found a CSCO yet, and at least one more
observable (commuting with all of the others) can be found to add to the list. Conversely, if the
degeneracy has been fully eliminated by a list of commuting observables, then we have a CSCO;
there is no need to add more observables to the list, even if it is easy to find more observables
that commute with all of the others. As we will see in many examples, the number of observables
needed to form a CSCO is always finite and typically not enormous for quantum systems with
a fixed number of particles, even if the Hilbert space is infinite dimensional.

For a given quantum system, the choice of which operators to include in a CSCO is not
unique. For example, even in the case of a spinless free particle moving in 3 dimensions, there
are an infinite number of different choices we can make for the CSCO, all of which have 3
members. One CSCO choice turns out to be just the three spatial coordinates that specify the
position of the particle. Another CSCO choice consists of the three momentum components
of the particle. In some cases (those with rotational symmetry about some choice of origin),
still another CSCO choice is the Hamiltonian (total energy) of the particle together with two
operators associated with its angular momentum with respect to the origin. In general, the best
choice of CSCO depends on what physics questions we would like to answer. Furthermore, it is
often useful to be able to translate between the orthobases defined by different CSCOs.

Note that the word “complete” in CSCO does not have the same meaning as in the com-
pleteness relation. For a CSCO it is the operators that are complete, while for the completeness
relation it is the orthobasis that is complete. Also, the second C in CSCO can equivalently be
interpreted as standing for the word “compatible”. Observables are called compatible if they

commute with each other, and are called incompatible if they have a non-zero commutator.

2.8 Wavefunctions

In the preceding, we have been mainly concerned with matrix representations in a finite di-
mensional Hilbert space. Let us now consider in more detail the case of an observable with
a continuous spectrum of eigenvalues. A quintessential example is the position coordinate op-
erator X for a particle moving in one dimension. The eigenvalues and eigenkets of X will be

labeled as x and |z), respectively, so that the eigenvalue equation is
Xl|z) = z|z). (2.8.1)

The physical interpretation is that if the state is |x), then the position of the particle is known

to be x, possibly because it has just been measured to be there. The allowed values of x form an
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uncountable, continuous set, perhaps —co < x < oo, or a < x < b if the particle is confined to
that range. In the following, we will assume the latter, in order to be more general, and reserve
the option to take a — —oo and b — oo.

Since a particle measured to be at position x is not at any other position 2’ at that precise
moment, the states |r) and |z’) are orthogonal. Furthermore, a measurement of the particle’s

position must return one of the allowed values. These two statements are made precise as a

special case of eqs. (2.7.2)) and (Z.7.3)),
(x|z") = o(x—2), (2.8.2)
b
/ do o) x| = I. (2.8.3)

To check that this is consistent, and that 0(x — ) in eq. (2.8.2]) should really be the Dirac delta

function, consider an arbitrary ket |¢)) in the Hilbert space. Then we define

U(x) = (z[¥) (2.8.4)

to be the position wavefunction. The wavefunction 1 (z) can also be viewed as comprising

the components of the ket |¢) in the position representation. Using completeness, we have

vle) = falo) = [ a Gl wle) = [ o' st —a) v (2.85)

The fact that this should hold for every function ¢(z) is just the definition of the Dirac delta
function d(x — 2’); see eq. (Z2IF)).

The kets |2) do not have finite norm, since (z|x) = 6(0) is not finite. This means that they are
really generalized kets in the sense defined earlier [see the paragraph after eq. (2.2.18)], and are
not associated with physical states in the Hilbert space, strictly speaking. However, eqs. (2.8.3)—
[(285) show that they do satisfy the requirements of orthonormality and completeness in the
Dirac sense. Therefore, we will refer to the uncountable continuous set {|x)} as the position
eigenstate orthobasis, despite the fact that they are only idealized limits of physical states.

The inner product of two kets can be written in terms of an integral of the wavefunctions,

using the completeness relation, as

Ol = / d (g)z) () = / d ¢ (z) (2). (2.8.6)

a

In particular, the squared norm of a state can be written in the manifestly non-negative form

W) = / dr ()| (28.7)
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For valid physical states, both of eqs. (Z.8.0]) and (Z8.7) should be finite, and the latter must be
non-zero. In other words, physical states correspond to wavefunctions that are normalizable.
This set of functions forms a Hilbert space. However, for physics purposes, there is a further
constraint that the wavefunctions must also be continuous. The reason for this is as follows.
The norm of a ket is not physically significant, but it is often most convenient to choose the
normalization of it so that it has norm 1. In particular, if the wavefunction for a single particle
is chosen to have unit norm, f; dx |¢(x)|? = 1, then [1)(x)|* can be interpreted as the probability
density, in the sense that the probability to find the particle between x and x + dx is

dP(x) = |(x)|*dw. (2.8.8)

This is known as the Born rule for the probabilistic interpretation of the wavefunction, after

Max Born. On physical grounds, the probability density [¢)(x)[* can in principle be measured,

and therefore must be unambiguous, so it must be the same for any limiting approach to a given
point x, implying continuity.
There is a one-to-one correspondence between kets |¢)) and their wavefunctions ¢ (x) = (z|¢).

Now consider the ket corresponding to the derivative of the wavefunction, diy/dz. Let us write

|dy/dz) = D), (2.8.9)

which defines a linear operator D on the space of kets. We then have
(x|D|y) = (x|dy/dx) = dip/dx. (2.8.10)

Using completeness gives a condition satisfied by the position-eigenket matrix elements of D,

b b
dy/dx = /dx' (x| D|2"Y{(2'|¢) = / dx' (z|D|x"y (). (2.8.11)

We also have

dy/dr = % ( / bdx'w(x')é(x—x')) - / bd:c’qﬁ(:c’)%é(:c—x'). (2.8.12)

a

Comparison of egs. (2811 and ([28I2) implies

(z|DJa’) = %5(35—:5'). (2.8.13)

To see this, plug in ¢(z') = §(z’ — 2”), do the integrations, and then relabel 2”7 — 2.

We now see that D cannot be an observable, because it is certainly not Hermitian, since

(| Df|z) = ((:c|D|x’>)* - %5(35—;5/) - —%5(35'—:6) = —(|Dlz).  (2.8.14)
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Although D is not Hermitian, the minus sign at the end of eq. (Z8I4) suggests that it is
anti-Hermitian, and we can simply multiply by a factor of ¢ or —i to make an observable. We

therefore defind!| the momentum operator,
P = —ihD, (2.8.15)

which could be Hermitian and thus a candidate to be an observable. However, since this is an
infinite-dimensional Hilbert space, and eq. (2.8.14]) was derived using the technically ill-defined
derivatives of the Dirac delta function, it is prudent to be suspicious about the Hermiticity of
P. So, let us check.

From eq. (2.8.9),

Ply) = —ih|dy/dz). (2.8.16)

Therefore, given any two kets |f) and |g), with wavefunctions (z|f) = f(z) and (z|g) = g(x),

b b d
WIPIf) = [ do lgloialPl) = ~in [ degla) 3 5(e), (2817)
where the first equality used completeness. Interchanging the roles of f and g, we also have
b d

(71Plg) = =it [ ds f(2) T (o). (2818)

Therefore, the difference between P and P, in an arbitrary matrix element, is

(fIPYg) = (fIPlg) = ((g|P|f)" = (fIPlg) (2.8.19)
b b
= zh/ dxg(a:)%f(x)* +z’h/ dx f(:z)*%g(x) (2.8.20)
b
= zh/ dx%[f(:c)*g(:c)] (2.8.21)
= h[f(0)"g(b) — f(a)g(a)]. (2.8.22)

So, for P to be a Hermitian operator, we must have

f(0)7g(b) = f(a)g(a). (2.8.23)

This can be considered a condition on allowed wavefunctions (and their corresponding kets) in
the physical Hilbert space of states if P is to be an observable.

For example, for a particle confined to a box with impenetrable walls at + = a and x = b,
eq. ([2:8.23)) is satisfied because all wavefunctions are required to obey ¥ (a) = 1 (b) = 0. It is also

TThe sign and the /A normalization in the definition of P are mysteriously arbitrary at this point, but will
be justified in what follows; see the discussions following eq. (2.839) and surrounding eqs. (3 4.17) and [B.4I8]).
For now, note that the presence of i at least has the correct units to make P a momentum.
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satisfied if all wavefunctions satisfy the weaker condition ¢(b) = e*(a), where ¢ is any fixed
constant. This can occur if X is interpreted to be some kind of periodic or angular coordinate
0, defined for example on the interval 0 < 6 < 27; then ¢ = 0 implies that wavefunctions are
single-valued at the point # = 0, which is identified with § = 2.

If the domain of x is infinite, with a = —oo and b = oo, then things are trickier. In practical
solutions for wavefunctions, one sometimes finds that the condition i(x) — 0 at large spatial
distances is naturally satisfied. States with this property are called bound states. If either |f)
or |g) is one of these, then eq. (Z8.23)) is satisfied. However, there may also be other solutions
that do not obey this property, called unbound states or scattering states. These are very
useful idealized solutions to simple problems, but strictly speaking they are generalized ket
states rather than physical ones, since they cannot have finite norm. In fact, finiteness of the
norms for true physical states |f) and |g) ensures that f(x) and g(x) must approach 0 for large
|z|. One resolution is that in a more precise formulation that maintains Hermiticity of P, the
idealized unbound or scattering states should be replaced by more complicated states whose
wavefunctions are required to vanish only at very large distances, say, outside of a box with
sides of length L = several light-years, to be safe. Another possibility is to impose periodic
boundary conditions on the wavefunctions in the large box, so that they need not vanish even
at large distances, but rather obey i (x — L/2) = ¢ (x + L/2). For |z| < L/2, the unbound
state wavefunctions of interest will be closely approximated by a linear combination of these
periodic wavefunctions, for which eq. ([2.8.23]) holds. These modifications will have a completely
negligible effect on physical questions about phenomena localized far from the edges of the box,
and in practice one can use the idealized unbound states with impunity in most cases.

Next, consider the eigenvalue problem for the momentum operator. The eigenkets with

definite and constant momentum p, corresponding to a free particle, satisfy

Plp) = plp). (2.8.24)

Similarly to the case of position eigenstates, these are taken to obey Dirac orthonormality and

completeness conditions, again as a special case of eqs. (227.2) and [2.7.3)),

(plp") = dolp—1), (2.8.25)
| el =1 (2.8.26)

Here the allowed range of continuous p is taken to be from —oo to co. As should now be familiar,
the generalized kets |p) are, strictly speaking, not associated with physical states, because they
do not have finite norm, but are still very useful as idealizations, because they satisfy the

properties of an orthobasis in the Dirac sense. For any ket [¢), we define the momentum
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wavefunction

v(p) = (plv), (2.8.27)

which can be viewed as the components of the ket |¢)) in the momentum representation.

Using the completeness relation eq. (Z.8.20)), the inner product of any two states can be written

o) = [ d ) 3. (2.8.8)
If one has chosen the ket |¢)) to have norm 1, then
/_Z dp[p(p))* = 1, (2.8.29)
and we can interpret
dP(p) = [d(p)Pdp (2.8.30)

as the probability for the particle in the state |¢)) to have momentum between p and p + dp.

Consider the position wavefunctions of the free-particle momentum eigenstates, defined by

Pp(x) = (z|p). (2.8.31)

Now we have

(z[Plp) = p(zlp) = popla), (2.8.32)

but also, using the completeness relation for position eigenkets,

(|Plp) = /_ : dz' (z|P|2') (' |p) = / Z dz’ (—z’h%é(m—x’))%(x’) (2.8.33)

_ _ad ( / " e 8z — :L")gbp(x')) - —m%%(x). (2.8.34)

dr \ J_o

Comparing this to eq. (2.8.32)), we see that the momentum eigenvalue equation in the position

representation is a linear first-order differential equation,

d D
with the solution
op(x) = ceh (2.8.36)

where ¢, is a non-zero complex number. To fix the magnitude of ¢,, we use completeness in z,

Pp) = /_ dx (p'|x)(x|p) :/_ dzx ¢y (z) ¢p(x) :c;,cp/_ dx PP/ (2.8.37)
= |ep*27hé(p — '), (2.8.38)
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where the last equality used the delta function expression eq. (22Z20). So, in order to enforce
the Dirac orthonormality condition of eq. ([2:825]), we choose ¢, = 1/v27h, and so

() = dplz) = ﬁ/ (2.8.39)

up to an unavoidably arbitrary choice of constant phase. From the physical consideration that
the wavefunctions ¢,(z) should not blow up at large |z|, p must be real, as appropriate for the
eigenvalue of a Hermitian operator P. The position dependence of the momentum eigenstate is
seen to have the form of a plane wave, with wavenumber p/h, and therefore wavelength 27h/p.
Comparison with de Broglie’s eq. (L4.1]) confirms that we made the correct choice of magnitude
of normalization of the momentum operator P in eq. (Z.815]).

As a further check of the completeness condition for momentum eigenkets in eq. (2820]),
take the matrix element of it between two arbitrary position eigenkets,

/ > ! 1 > ip(x'—x /
Wt = [ do@lpole) = 5 [ dpen O = e ) (2840)

In particular, this confirms that we must integrate over the whole range —oo < p < 0o in the
momentum completeness relation eq. (2.8.20]).
We can also use completeness to find formulas that convert between the momentum wave-

function and the position wavefunction. Using completeness in x,

Io) = () = /_Oodx (o) (alos) = m% /_oodxe—ipx/w). (2.8.41)

Conversely, given J(p), we can reconstruct ¢ (x) using completeness in p,

b(z) = (aj) = / " dp (alp)pl) = ﬁ /_°° Qe ). (2.842)

In words, the position and momentum wavefunctions are Fourier transforms of each other, with

some h’s included. It is also easy to check that
d
(@ Xp) = au(a), (el PlY) = —ih—(), (2.8.43)

WP = o), wIX ) = z’hd%zﬂp). (2.8.44)

These are analogous to matrix representations of observables in a finite dimensional Hilbert
space. If one works in the position representation, with wavefunctions of x, then the observable
X is represented by x and the observable P is represented by —ihd/dz. Inner products are
accomplished by integration over all x, with complex conjugation for the wavefunction of the

bra vector. If, instead, one works in the momentum representation with wavefunctions J(p),
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Representation |4) (V| X P (V1]1h2)
position U(x) (x)* x —ih% /d:)s Uy () o ()
momentum »(p) J(p)* iﬁ% D /dp o (p)*% ()

Table 2.8.1: Summary of the position and momentum representations for a particle moving
in one dimension. The position and momentum wavefunctions are related to each other as

in eqs. (Z841) and (Z8.42).

then P is represented by p and X is represented by ihid/dp, and inner products are done by
integration over all p. These results are summarized in Table Z81l For example,

lXle) = [ devi@r vt = [y (g )hm). (2849

[e.e] -

WPl = [ drnr (<)) = [ ddo)rphe). (2840

00 dx 00

The position representation provides a convenient way to find the commutator of X and P.

First we evaluate

(2| XPly) = x(—m%)w(x) - —z’hx%, (2.8.47)
(x|PX|¢Y) = —ih% (z(z)) = —ihx% — il (z). (2.8.48)
Therefore, for every ket [¢)),
(@|[X, Pllv) = ih(z[y), (2.8.49)
so we can conclude that
[X, P] = ih, (2.8.50)

where the identity operator on the right side is understood. This position-momentum commuta-
tion relation was derived after defining the operator P by its action on the orthobasis of position
eigenkets, but one could just as easily have worked in the other direction, taking eq. (Z8350) to
be the fundamental definition, and then deriving the operation of P on the kets.

The preceding can all be generalized in a straightforward way to three position and three
momentum observables. We define position and momentum operators that are vectors in real

space (not the Hilbert vector space, in which they are Hermitian operators), by

R = X +jY +22, (2.8.51)

—

P = &P, +§P,+2P.. (2.8.52)
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They satisfy commutation relations:
(X, P, = ih, Y, P, = ih, [Z, P, = ih, (2.8.53)

with all other relevant commutators vanishing. It is convenient to adopt a notation in which
the components of R and P are given an index a = 1,2, 3 corresponding to x,y, z respectively,
sothat By = X, Ry =Y, Rg = Z, and P, = P,, P, = P;, P; = P,. Then the commutation

relations take the form
R, Py| = ihdap, (R, Ry] = 0, P, B) = 0. (2.8.54)

The operators K and P have eigenkets |) and |p) WithH eigenvalues 7 = Zx + yy + 2z and
D = Tpy + Ypy + £p., so that

R[7) =7[7), P [p) =pp). (2.8.55)
These eigenkets satisfy completeness relations
[ = / & )7 (2.8.56)
1= [ ml. (2857)
and have inner products realizing Dirac orthonormality,
(#|7) = 6 (F -7, @) = 69 (B —p'). (2.8.58)
Here the three-dimensional delta function is given in rectangular coordinates by
SOFE -7 = Sz —a)o(y—vy)o(z—2), (2.8.59)
and in spherical coordinates by
SO 7 = ;2 5(r— 1) 5(6 — ') 6(cos 0 — cos ), (2.8.60)

with a practical definition that, when integrating over a volume V|

r if 7* is inside the volume V/
& ) sOF —ry = L0 ’ 2.8.61
/V L) O =) 0 it 7 is outside the volume V. ( )
The wavefunction for a free particle with momentum eigenvalue p is a plane wave,
- 1 i
Fp) = Wep /R, (2.8.62)

tHere we have stretched the previous notion of eigenvalue slightly, as foreshadowed after eq. (Z7.1), because
our eigenvalues here are actually not just numbers, but vectors in real space, or equivalently ordered triples of
numbers (x,y, z) or (pg, Py, P-). This was a sneaky thing to do, but it is convenient, and is perfectly valid if the
components are compatible observables, as here. This will be discussed further in section
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The position and momentum wavefunctions for a general state |¢) are

OF) = ([),  9E) = @), (2:8.63)
and they are related by Fourier transforms,

U(p) = W/d%ﬁ e Py (7), (2.8.64)

V) = G | BTG, (2865

which follows from eq. (Z8.62) and the completeness relations (2:850]) and ([2Z-8.57). The squared

norm of a state can be written in terms of either the position or momentum wavefunction, as

(W) = / &7 () = / 5 5P (2.8.66)

The interpretation of the integrands is that the probability for the particle described by the

state 1) to be found in an infinitesimal volume d®7 near 7 is given by the Born rule,
dP(F) = &7 (@), (2.8.67)
while the probability for it to have momentum in a volume d*p in momentum space near p is
dP(p) = & [b(p) (2.8.68)

The last claims are based on postulates that will be stated more generally in section B.11

We also note, for future reference, that in the position representation, P is represented by
—ihﬁ, where V is the gradient, and the momentum squared operator P? = P-Pis represented
by —h?V?, where V? is the Laplacian. The rules for the position and momentum representations

for a particle in three dimensions are summarized in Table 2.8.2]

Representation [4) (Y] R P P? (1[1h2)
Position I M A A (R T
Momentum " (P) J (p)* ih@ D P / d’p lzl (]3)*1;2 (P)

Table 2.8.2: Summary of the position and momentum representations for a particle moving in
three dimensions. The position and momentum wavefunctions are related as in eqs. (2.8.64))
and (2.865]). In rectangular coordinates, V,, = 20/0p, + yd/0p, + 20/0p..
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2.9 Tensor product Hilbert spaces

We will often want to consider state spaces that are combinations of simpler state spaces. For
example, consider a particle moving in three dimensions. In the previous subsection, we worked
with a Hilbert space spanned by an orthobasis of kets that are eigenkets of all three position
coordinates. An equivalent way to proceed is to first define three separate Hilbert spaces that
only describe the z, y, and z degrees of freedom, and then combine them to form the Hilbert
space that describes all three degrees of freedom. As another example, a Hilbert space for a
system of two particles can be constructed from the Hilbert spaces of the two particles separately.

The formal construction of Hilbert spaces from simpler components is called a tensor prod-
uct Hilbert space. Consider two distinct Hilbert spaces H; and Hs, spanned respectively by
orthobases {|¢;)} with dimension d; and {|v;)} with dimension dy. Then the tensor product
Hilbert space H = H; ® Ho is defined to be a complex linear vector space with inner product

with the following properties:

e There is an orthobasis for H denoted |¢;) ® |vg) for j =1,...,dy and k =1,...,dy. Thus,
‘H has dimension d = d;ds, and any ket in H can be written in a unique way as a linear

combination of the d kets |¢;) ® |v).

e Tensor product kets satisfy linearity and distributive properties. This means that if |®)
and |U) are any kets in Hy, and |V) and |W) are kets in H,, and a, b, ¢, d are complex

numbers, then
(@|®)+b|9)) @ (c|V)+d|W)) = ac|®)@|V)+ad|P) @ |[W)
+bc |¥) @ |V) +bd |¥) @ |W) . (2.9.1)
e The dual tensor product Hilbert space has an orthobasis (p;| @ (vg|.

e The inner product of orthobasis kets in H is inherited from the inner products of the H;

and Hs orthobasis kets, according to
(sl @ (wel) (ler) ® [vm)) = 671 O (2.9.2)

e Given an operator A that acts on H; and an operator B that acts on H,, the tensor

product operator A ® B is defined to act on ‘H according to
(A B)(V) @ |V)) = (Al¥)) @ (B[V)), (2.9.3)

for any kets |¥) in H; and |V) in Hs. In the very common case that B is the identity
operator, we simply write A instead of A ® I. Thus, if it is understood that the operator
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A acts non-trivially only on H;, then we write A(|¥) ® |[V)) = (A|¥)) ® |V). Similarly, if
A is the identity operator, then we simply write B instead of [ ® B.

Even though an orthobasis of kets for H can be chosen so that their elements are tensor
products |¢;) @ |vg), not all kets in H are tensor products. Only special kets, called separable,

can be written as a tensor product of kets,
|P) @ |[W) . (2.9.4)

A ket in a tensor product Hilbert space that cannot be written in this form, for any choice of |®)
and |WW), is said to be an entangled state, a concept first highlighted by Erwin Schrédinger
in 1935. Because H is defined to be a vector space, all linear combinations of its elements must

also be included in it. Therefore, for example,
[U1) @ [V1) + [Ws) ® [V2) (2.9.5)

is certainly an element of H. However, it cannot be written as a tensor product of kets |®) @ |[W)
unless either |U;) = ¢|Wy) or |V}) = ¢|V3) for some complex constant ¢. We will have much
more to say about the properties of entangled states in Chapters [14] 24] 25 and 20

One of the common uses of the tensor product formalism is as a divide-and-conquer strategy
for solving problems. This includes situations where we can make use of an already-solved
problem for one or more components of the tensor product. As a simple example, the Hilbert
space ‘H for a free particle moving in three dimensions can be written as a tensor product
of Hilbert spaces that would describe a particle moving in the three rectangular coordinates

separately,
H = H,QH, QH.. (2.9.6)
An orthobasis for this Hilbert space is
7) = lz) @ ly) @12, (2.9.7)

where |x) describes a state in which a particle is known to have X eigenvalue x. In this example,
as in many other cases, the tensor product notation |r) ® |y) ® |z) has no real advantage over

just writing the typographically cleaner
7) =lz,y,2), (2.9.8)

so that is what we will do from now on. Then, X |z,y, 2) = x|z,y,2) and Y |z, y, 2) = y |z, v, 2),
and Z |z,y,z) = Z|x,y,z). This is similar to the separation-of-variables strategy for solving

partial differential equations problems with several independent variables.
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In the following, we will study the orbital angular momentum eigenvalue problem by isolating
only the relevant angular (6, ¢) component of the three-dimensional particle Hilbert space, and
then apply the results more generally to the whole Hilbert space. Schematically, this relies on

using an orthobasis that is a tensor product of the form
[radial part) ® |angular momentum part) , (2.9.9)

although it is not necessarily notationally convenient to write it that way explicitly. This will

be made more precise in section after we develop the theory of angular momentum.
Another important use of tensor product spaces is to describe systems of more than one

particle. For example, we can construct a Hilbert space that describes two distinct spinless

particles labeled 1 and 2, with an orthobasis of kets
|71, 7) = [F1) @ [Fa) - (2.9.10)

Here, each |7,,) is the Hilbert space for just one particle n = 1,2 moving in three dimensions.
This construction can naturally be generalized to a tensor product Hilbert space for N spinless

particles with orthobasis kets

|?1,...,FN> = |’I"1>®®|’I7’N> (2911)
However, when the particles have spin (intrinsic angular momentum) or are identical, things are
more complicated, as we will discuss in Chapter [I8

2.10 Exercises

Exercise 2.1. Use the Cauchy—Schwarz inequality (Z24) to prove the triangle inequality
(227), and show that equality holds if and only if |w) = n|v) where n is a non-negative
real number. (Hint: start with [|(|v) 4+ |w))|* = |((v] + (w])(Jv) + (w])|, and use the property of

complex numbers Re(z) < |z].)

Exercise 2.2. Use the definition of the adjoint to show that (Jw) (v])' = |v) (w| and that
(AB)' = Bt AT.

Exercise 2.3. Suppose that U is a unitary operator.
(a) Show that if A is a Hermitian operator, then UTAU is also Hermitian.
(b) Show that if V' is another unitary operator, then VU and UTVU are each also unitary.

Exercise 2.4. Consider the trace of an operator A defined in terms of an orthobasis |pg) by

eq. (2.6.57).
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(a) Show that Tr(A) does not depend on the choice of orthonormal basis. To do this, consider
any other orthobasis of kets |x,), and show that Tr(A) is also equal to > (xq|A|xg)-

(b) Show that Tr(AB) = Tr(BA).

(¢) Show that the trace of the outer product is the inner product, Tr(|v) (w]) = (w|v).

Exercise 2.5. Suppose A, B, and C are operators.

(a) Show that [A, BC| = [A, B|C' + B[A, C].

(b) Prove the Jacobi identity, [A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0.

(c) If [[A, B], B] = 0, show that [4, B"] = n[A, B]B""!. (Hint: do this by mathematical

induction, by showing that if it is true for some n, then it is also true for n + 1.)

Exercise 2.6. Prove Theorem 247 (Hints: define F()\) = eMA+B)e=2Be=A  Then show that

dF/d\ = cA\[A, B]F(\) where ¢ is a number that you will find. You may use the fact that

d X
€

function, and the result of Exercise 2.H(c). Then solve the differential equation for F'(\) using

= XeM = M X for any operator X, and the power series expansion for the exponential

the boundary condition at A = 0, and plug in the value A = 1 to get the desired result.)

Exercise 2.7. Consider a a vector space spanned by three orthobasis kets |1), |2), and |3), and

a Hermitian operator A defined by
All) =511)+1i|2), A2y = —i|1) +5|2), Al3) =413). (2.10.1)

(a) Write down the 3 x 3 matrix representation of A in this basis.

(b) Find the eigenvalues of A. Two of them should be equal (degenerate).

(c) For the non-degenerate eigenvalue, show that the most general form of the eigenvector is, in
ket form, ¢(|1) +4]2)), where ¢ is an arbitrary complex number.

(d) For the degenerate eigenvalue, find the most general form for a single eigenvector; you should
write it in terms of two arbitrary complex numbers. Write your answer both in three-component

column vector and ket forms. Check that this vector is orthogonal to the result in part (c).

Exercise 2.8. Consider a state space spanned by an orthobasis consisting of three kets [1), |2),

and |3). Let two Hermitian operators A and B be defined by

A =2a|) +al3), A2 =al2), A3 =all)+2a]3),  (2.10.2)
Bl1)=b1)+2b[3), B2)=o0, BI3)=2b[1)+b[3),  (2.10.3)

where a and b are constant real numbers. The orthobasis kets can be represented by vectors

1 0 0
Deowu=[0], 2eoun=[1], Beouvu=|[0]. (2.10.4)
0 0 1
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(a) What are the 3 x 3 matrix representations of the operators A and B in this basis?

(b) Show that [A, B] = 0, which implies that A and B can be simultaneously diagonalized.

(c) Find the eigenvalues of A and the eigenvalues of B. (One of them has non-degenerate
eigenvalues; you would be wise to use this to plan your strategy for the next part.)

(d) Find an orthonormal basis v}, v}, and v} of vectors that are eigenvectors of both A and B.
For each of them, give their eigenvalues with respect to each of A and B.

(e) Write the matrix U that transforms the original orthobasis into the one you found in the
previous part. This means that v] = Uv; and vy, = Uvy and vj = Uws. Check by direct
computation that U is unitary.

(f) Check that U diagonalizes the matrices A and B, by computing UTAU and UTBU. Note
that this is an illustration of Theorem 2.6.7

Exercise 2.9. Find expressions for the following matrix elements, where X and P are the
position and momentum operators for a particle moving in 1 dimension, with eigenkets |z) and
|p) respectively, with the Dirac normalizations (z'|x) = §(z — 2’) and (p'|p) = é(p — p').
(a) (z[XIp),  (b) (pIPlz),  (¢) (x|PX]Ip),  (d) (pIPX]|z), () (x|P*X?[p).
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3 The core principles of quantum mechanics

3.1 The basic postulates

We are now ready to present the six basic postulates that define quantum mechanics. Although
they are not postulates in the traditional formal and rigorous mathematical sense, they constitute
the key principles that should govern all quantum systems and can be used to make physical
predictions. Some sources give versions that differ from the ones presented here, by combining
two or all three of Postulates 2, 3, and 4, or by leaving out the controversial Postulate 5, or by
including a requirement that the state space of a composite system is always the tensor product
of its subsystems. Others include a postulate governing identical particles, which we do not

include for reasons discussed in Chapter

Postulate 1: States. The state of a quantum system is specified by a non-null ket [¢), a
vector in a Hilbert space (a complex linear vector space with an inner product). For a physical
state, the norm (1|1)) is real and positive and finite, but is not otherwise physically significant;

two state kets [¢0) and c|¢)) are physically equivalent if ¢ is any non-zero complex number.

Postulate 2: Observables. Physically measurable quantities, called observables, correspond
to Hermitian operators whose eigenstates can be chosen to be a complete orthonormal basis
(orthobasis) of the state space. This means that for an observable A there is a basis |, u,)
satisfying A |o,u,) = |, u,), where o are the eigenvalues, and u, are the degeneracy labels

for each «, with
(o uglosu,) = daar Ou,ur, s (3.1.1)

and the completeness relation
I = Z Z la,ug,) (o, u, - (3.1.2)

The preceding assumes that o and u,, have discrete values. If instead a has continuous values,
then Dirac orthonormality and completeness are used: 0, is replaced by d(av — ') and )" is
replaced by a definite integral [ do over the range of allowed «. Similarly, if u, is continuous,
then d,_,, is replaced by 0 (u,, —u.,), and Zua is replaced by a definite integral [ du,. In some
cases a and/or u, can have both some discrete and some continuous values, which are then

summed and integrated over the possible values.

Postulate 3: Allowed results of measurements. The result of the measurement of an
observable A is always one of its eigenvalues, . This rule is sensible and consistent because the
eigenvalues of a Hermitian operator are always real, and do not depend on the arbitrary choice

of orthobasis used to calculate them, as we observed following Theorem 2.6.9.
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Postulate 4: Probabilities of results of measurements. If a system is in a state given by
a ket |¢)) which has been normalized so that (1 |¢)) = 1, and an observable A is measured, then

the probability of getting a particular discrete result « is

Pla) = > Nonu ) = (W|Palv), (3.1.3)

where |o, u,) are normalized as in eq. ([BI1), and
Poo= > lou,) {0, (3.1.4)

is the projection operator to the subspace of states with eigenvalue o for A. If instead « is

continuous, then the probability of getting a result between a and « + da is
dP(a) = da Y [ ug o) = da (] Palth) . (3.1.5)

This postulate generalizes the Born rule for the probabilistic interpretation of the position
wavefunction, eq. (Z.8.67), and the corresponding rule for momentum, eq. (Z8.68). Note that
eq. (B13) ensures that the probabilities are always positive,

P(a) > 0, (3.1.6)

and the completeness relation ([3.1.2]) ensures that the sum of the probabilities for all possible

outcomes for a measurement must be unity,
> Pla) = 1. (3.1.7)

Thus, these important consistency requirements demanded by any sensible theory of probability

are built into the postulates of quantum mechanics.

Postulate 5: Collapse of the state due to measurement. If a system is in a state [¢) and
an observable A is measured and found to have the value «, then the state immediately after

the measurement will be an eigenstate of A with eigenvalue «, specifically,

Pol), (3.1.8)

where P, is the projection operator given by eq. (8.I.4]). This ket has a norm that is typically
less than 1; in fact, from eq. (B.1.3)) and the projection operator rules P! = P, and P? = P,, we
see that the squared norm is simply equal to the probability P(«). Therefore, one can divide

the ket (B8] by its norm, to obtain the normalized state after the measurement,

Pul)  _ Ralt) (3.1.9)

(1 Palth) P(e)
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There is a nice shortcut in the special case that the eigenvalue « is not degenerate, because then
this post-measurement state is simply the corresponding eigenstate |«), up to an unobservable

phase. More generally, it is always a linear combination of the states |« ).

Postulate 6: Time evolution of the quantum state. Between measurements described by

Postulate 5, the time dependence of a state obeys the Schrodinger differential equation,

() = H(). (3.1.10)

where H is a Hermitian observable operator, called the Hamiltonian, whose eigenvalues are

the allowed energies of the system.

3.2 Valid and invalid questions

Scientific advances often reveal not just how to answer certain difficult questions, but that other
seemingly sensible questions do not need to be answered or even considered. From the theory of
special relativity, we learn that it makes no sense to ask questions about collisions of particles
with relative speed larger than the speed of light in vacuum c¢; these are not valid questions
because the very structure of the theory implies that such collisions do not occur. One also learns
not to ask questions concerning spatially separated events that are supposedly simultaneous in
two different reference frames that are moving with respect to each other, because this also is
not meaningful in special relativity. Even though our experience with nonrelativistic systems
might make such questions seem legitimate, they are in fact invalid.

Similarly, in quantum mechanics, there are questions that have no good answer because they
are not valid to begin with. A prominent example is “what are the position and momentum of
this particle at time ¢7”. In classical mechanics this question makes perfect sense, and we learn
to calculate the answer given some initial conditions and the equations of motion. However, in
quantum mechanics, even in the most idealized case, we can only ask for the probability that the
measurement of an observable has a specific result from among the allowed list of eigenvalues.
In any particular measurement, that observable could be the position of a particle, or it could
be the momentum, but it cannot be both.

To see why, suppose we attempt to define a clever new multi-component operator
Q = (R, P), (3.2.1)

which is the ordered pair whose components are the position and momentum vectors of a par-
ticle. If one could measure €2, the result would be the answer to the simultaneous position and
momentum of a particle. Since R and P are each Hermitian, {2 may indeed be defined as a

Hermitian operator. However, it is not an observable, because it fails the part of the definition
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that calls for the eigenstates to form an orthobasis that satisfies the completeness relation. In
fact, 2 has no eigenstates at all; this is directly related to the fact that R and P do not commute.
Notice that if they had a vanishing commutator, then Theorem 2.7.1] says that they would have
had a whole orthobasis of simultaneous eigenstates, and so would €2, which could therefore have
been an acceptable observable. But, as things are, {2 is not an observable, and the postulates
of quantum mechanics do not allow for its measurement.

More generally, we can ask whether a set of observables can be measured simultaneously
(as a multi-component operator), and whether it makes sense to ask what the results of such a
measurement are. This depends on the commutation relations of the observable operators.

First, suppose that the operators A, B, C, ... all commute with each other (are compatible).
Then the simultaneous measurement can be performed, and can be defined as a sequence
of consecutive measurements, performed immediately after one another so that there is no time
for the system to evolve between the measurements. It is left to Exercise Bl to show, using
Postulates 4 and 5, that for compatible observables the final results for the probabilities of the
different outcomes (a, 3,7, ...) and for the corresponding final state do not depend on which
order one performs the measurements, as long as they are all performed with no intervening
time delay, so that Postulate 6 does not come into play.

Next, suppose that two of the operators are incompatible, with a commutator [A, B] that is an
operator with no vanishing eigenvalues. This includes the case that [A, B] is a non-zero multiple
of the identity operator, notably if A and B are a position operator and the corresponding
momentum. In this case, Postulate 5 tells us that after measuring B the system will be left in
some state |3) that is an eigenstate of B, but it is definitely not an eigenstate of A. (Otherwise,
it would be an eigenstate of [A, B] with eigenvalue 0, which we are assuming does not exist.)
Similarly, if A is measured, the system will be left in a state that is definitely not an eigenstate
of B. Therefore, the order of making the measurements certainly makes a difference, and one
cannot define their simultaneous measurement.

A third possibility is that [A, B] is an operator that has some vanishing but also some non-
vanishing eigenvalues. In this case, one might measure A, and find a result that leaves the state
in an eigenstate of B, but this will not always happen. The same is true if B is measured first.
An evaluation using Postulates 4 and 5 will be necessary on a case-by-case basis to decide what
the outcomes are that might leave A and B simultaneously determined in the final state.

Consider a classical observable, for example f(a,b,c,...) where a, b, c, ... are quantities that
have quantum observable counterparts A, B, C,.... Then, there is always at least one quantum
operator F'(A, B, C,...) which is also an observable. However, one must be careful in defining it if

A, B,C,...donot all commute, due to quantum ordering ambiguities. For example, if f(z,p) =
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xp where x and p are the position and momentum of a particle moving in one dimension,
we could try quantum operator versions F(X,P) = XP or F(X,P) = PX or F(X,P) =
(XP + PX)/2. The first two of these are not Hermitian. However, the last is Hermitian, and
is an observable. More generally, by completely symmetrizing each term of F(A, B,C,...), we
can always systematically construct a Hermitian version of it, as can easily be proved using
eq. (Z423).

For the converse, there can be quantum observables that have no classical counterpart; the
quintessential example of this is spin, or intrinsic angular momentum. The magnitude of the
spin of a particle is a fixed multiple of /2. In particular, unlike ordinary angular momentum,
there are no states in which it can take on classical values arbitrarily large compared to h.

A perhaps unexpected example of a valid question in quantum mechanics is: “Given a system
in a state |¢), what is the probability of finding it in another state |x)?”. (Such a question has
a valid counterpart in classical physics, but there it is somewhat trivial since all information
about the state of a classical system is, in principle, more directly accessible.) The observable

corresponding to this question is the projection operator

P = Dodxl (3.2.2)

It is Hermitian, and has eigenvalues 1 (with eigenstate |y)) and 0 (with eigenstates consisting
of all states orthogonal to |x)). The result of the measurement of P, will therefore always be
either 1 (“yes, we are in the state |x)”) or 0 (“no, we are not in the state |x)”), even though
the state [¢)) before the measurement need not have had either of these definite attributes. The
probability of obtaining the result 1 is |{x|¢)|?, assuming both kets are normalized. If we do
measure P, and obtain the result 1, then the state after the measurement will be P, |¢), which
is simply the same as |y), up to normalization. If we obtain the result 0, then the state after
the measurement will be (I — P,) [¢), which is orthogonal to |x). A crucial feature of quantum
mechanics, as embodied in the collapse Postulate 5, is that making the measurement changes
the state; it is not the same after the measurement as it was before, unless the system was
already in an eigenstate of P,.

One can also construct an observable that generalizes eq. (8:22) in a natural way to a
weighted sum of projection operators for any orthobasis {|p,)} with n = 1,...,d, where d is
the dimension of the Hilbert space. Such an observable is associated with the valid question
“Given a state [¢), what are the probabilities of finding it in each of these orthobasis states?”

For example, consider the Hermitian operator
d
Q=Y nP, (3.2.3)
n=1
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Figure 3.2.1: A meter for the ) observable of eq. (B2Z3]), for
a system with d = 6, showing the result after measurement of
@ has resolved the quantum system with initial state |¢) into
the orthobasis state |p3) from among the possibilities |¢,) with
n=1,2,3,4,5,6. The probability of this outcome is | (@3]} |*.

where P, = |¢,) (©n| are the orthobasis state projection operators. The eigenstates of ) are the

orthobasis states |p,), and the corresponding eigenvalues are the coefficients of the orthogonal

projection operators, namely the integers n = 1,...,d. Therefore, the possible outcomes of
measuring (Q aren = 1,...,d, as visualized in Figure[3.2.1l The probabilities for these outcomes
are P(n) = | (pn|1) [, assuming that the ket |1)) has norm 1. After the measurement outcome

n, the system will be left in the state |¢, ). Thus, measuring the observable () changes the state

by resolving it into one of the given orthobasis states, and the outcome n tells you which one.

3.3 Expectation values and uncertainties

In addition to the quantities directly associated to single measurements of an observable, there
are statistical quantities that result from making many measurements. Consider an idealized
situation in which we have access to an arbitrarily large number N of copies of a system in the
same state [1). This mythical group of identical and independent quantum systems is called
a pure ensemble. The expectation value of an operator A in the state |¢) is defined to
be the average value obtained by measuring A in these independent experiments, as N — oo.
According to the frequentist interpretation of probabilities, this is the same as the sum of the
possible outcomes for each experiment multiplied by their respective probabilities, which can be

evaluated using Postulate 4 as
> aP ZZ& (th|er, ua) (v, ua|th) = ZZ (] Aler, ug) v, ug|th) = (Y| Al) . (3.3.1)

Here, the first equality used eq. (B.13]) and assumed that [¢)) is normalized to unity, the second
equality used the fact that |, u,) are eigenstates of A with eigenvalue «, and the completeness
relation was used to get the last equality. In cases where the state |¢) is understood by context,

it is customary to denote the expectation value by

(4) = WlAlp), (3.3.2)

still assuming that |) is normalized to unity. If that is not convenient for some reason, one has

the more general relation

_ (WIAlY)
(4) = o (3.3.3)
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The expectation value of an observable is easily shown to be a real number.
Another quantity defined through measurements on a large pure ensemble of identical states
|1) is the uncertainty of an observable A, which we will denote by AA. Here again the notation

assumes that [¢) is understood by context. It is defined by

(A4)? = ((A—(4)") = WI(A— @IA[)*[¥) . (3.3.4)

Intuitively, the uncertainty tells us how much the measurement of the observable is expected to
fluctuate about its expectation value, over the course of many independent measurements, each
performed starting in the same state [¢)). It is the same as the concept of standard deviation
in statistics. By expanding eq. (3.3.4)), one obtains the equivalent form that is most commonly

used in practical calculations,

(AA)? = (| A%) — ((V]A]v))?, (3.3.5)

which again assumes (¥|¢) = 1.
There is a fundamental obstacle to the existence of states with arbitrarily small uncertainties
for incompatible observables, imposed by the following result due to Howard P. Robertson and

Schrodinger:

Theorem 3.3.1. (Uncertainty relation) In any state 1)), the uncertainties of two observables
A and B obey

(AA)(AB) > 1\([/1, B))|. (3.3.6)

[\

Proof: Define observables A = A — (A) and B = B — (B). These are Hermitian, because (A)

and (B) are real numbers. It follows from the definition of uncertainty that

(AAZ(AB)? = (@A) (0| B2y) = (Av|Ap) (By|By) > [(Ap|BY)|’,  (3.3.7)

where the Cauchy—Schwarz inequality eq. (2.2.4]) was used at the end. Therefore, we have

2

(AP (ABY > [WIABI)| = |5 WIA Bllw) + 5 WHABYw)| . (338)

Using the Hermiticity of A and B yet again, <w|[ﬁ, §]|w) is a pure imaginary number and
<¢\{AV, §}|¢) is a pure real number. Therefore, the squared magnitude of the sum is equal to

the sum of the square magnitudes, so

(AAY (ABY > LWIIA B + 7wl (A By (3.3.9)
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Now, because the last term is certainly non-negative, we can drop it without affecting the validity
of the inequality. Furthermore, [AV, E] is just equal to [A, B]. So, eq. (B330) follows from taking
the square root of both sides of eq. (8.:3.9]). O

A famous special case is obtained by taking A = X and B = P for a particle moving in
one dimension. Because [X, P] = i, the uncertainties must satisfy the Heisenberg position-
momentum uncertainty relation, named after Werner Heisenberg (who originally proposed
a weaker version of it) and derived rigorously first by Earle H. Kennard and shortly after by

Hermann Weyl,
(AX)(AP) > h/2, (3.3.10)

in any state. It might seem that an even stronger version might be possible, since we simply
discarded the non-negative last term in eq. (B39). However, for the case of position and
momentum, we will show later, in section [6.1], that there do exist states (those with Gaussian
wavefunctions), in which eq. (B3I0) is saturated, in other words equality holds. The same
wavefunctions will reappear in section [[4l So, eq. (B3I0) is the strongest possible general
version of the position-momentum uncertainty relation.

For a particle moving in three dimensions, one finds in the same way that each of (AX)(AP,)
and (AY)(AP,) and (AZ)(AP,) cannot be less than i/2. However, since X and P, commute,
there is no uncertainty relation for the product (AX)(AP,). This means that, in principle, one
could simultaneously specify the exact values of a particle’s coordinate along some direction and

the momentum component in an orthogonal direction.

3.4 How states change

According to Postulate 6, the time evolution of a quantum state obeys a linear first-order
differential equation, the Schrédinger equation. Let the initial condition for the state at time
t = tog be |¥(tg)). We then define the time-evolution operator U (t,ty) such that the state ket

at time ¢ is

() = Ult,to) [v(to)) - (3.4.1)

It follows from this definition, and Schrédinger’s eq. (B1I0), that the operator U(t, ) satisfies

ih%U(t, t) = HU(t ). (3.4.2)

Our goal is to solve this differential equation for U(t,ty) as a function of ¢, subject to the

boundary condition U(ty,ty) = I. As we will see, it is a unitary operator if H(¢) is Hermitian.
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First, consider the case that the Hamiltonian does not have any dependence on ¢. In that

case, the solution is simply
Ult—ty) = Ult,ty) = ettt/ (3.4.3)

which only depends on the time difference t — ¢y, not the individual times. To check this claim,

note that it clearly satisfies the initial condition at t = ty, and that

L d L d —i(t—to)H o . —i(t—to)H
S () = i [ I ()] = in [(—iH /R O [ (1)

= HIy(t)) (3.4.4)

recovers the Schrédinger equation, as required. It is crucial in the preceding derivation that
the operator H does not depend on time, so that it can be treated just like a number in the
exponential, as it obviously commutes with itself.

The unitarity of U(t —ty) in eq. (B.4.3)) is simple to prove, given that H is Hermitian. From

the rules for taking adjoints,
Ut —to) = [e—z‘(t—to)H/h]T _ ilt=t)HT /. _ i(t—to)H/h _ Ult —to)™ = Ulto —t). (3.4.5)

The last equality is a bonus, which shows that evolving a state backward in time is the inverse
operation of evolving it forward in time by the same amount, as one might expect. Since U (t—ty)
is a unitary operator, time evolution can be regarded as equivalent to a change of orthobasis.
While eq. (B43]) is a neat formal solution of the Schrédinger equation, in practice it leaves
more to do, because the exponential of an operator as an infinite series can be non-trivial to
evaluate in matrix elements. To make further progress, we can apply the spectral decomposi-
tion trick of eq. (Z.7.3]) to the operator U(t — ty) as given by eq. (B.43). To accomplish this,
first consider the eigenvalue problem for the Hamiltonian, which we are still assuming is Hermi-
tian and does not depend on time. This eigenvalue equation is called the time-independent

Schrodinger equation, and is written as

Hlyg) = Elg), (3.4.6)

where [1)g) does not depend on t. Suppose that this equation has been solved completely for all
energy eigenvalues F and all corresponding orthobasis eigenstates |¢g) = |E, ug), where ug is

a degeneracy label. Then, using completeness of the energy orthobasis,

Ult—to) = > Y e OB wp) (B, upl, (3.4.7)
E ugp
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where we have turned the operator H into the number E when acting on each of its eigenstates.
Applying this to eq. 34T gives

(W) = D) e OB up)(E, upld(t)) (3.4.8)

the spectral decomposition of the state with respect to energy.

Finding solutions of the time-independent Schrodinger equation is one of the main problems
of quantum mechanics. This often amounts to solving a matrix eigenvalue equation and/or
a differential equation for the wavefunction. As an example of the latter, suppose that the
Hamiltonian is that of a particle moving in a potential V' in one dimension, with

1
H = %PZ +V(X), (3.4.9)
where P and X are the momentum and position operators. Taking the inner product of
eq. (B4.0) with the position eigenstate |x), and using the toolbox of Table 28 so that X — =
and P — —ihd/dx and |¢g) — ¥g(z), we obtain
h? d?
(—%@ + Vi(x) — E) Yep(r) = 0 (3.4.10)
in the position representation. Similarly, for a spinless particle moving in a potential V(7) in

three dimensions, the time-independent Schrodinger differential equation is
h2
(—%W + V(#) - E) Vp(?) = 0, (3.4.11)

to be solved simultaneously for E and ¢g(7). The cases of multiple particles, and particles
coupled to an electromagnetic field, will be discussed in sections and

Note that the unitary time-evolution operator in eq. (347 is nontrivial only because the
phases are different for the eigenstates with different energies. As a special case, acting on
an initial state ket |¢g(ty)) that happens to be an eigenstate of energy, time evolution just
multiplies by a global phase (that is, a single phase that multiplies the whole state ket),

(t=t0)E/h - Because such a global phase is not physically significant, the state has not

namely e~
really changed. For this reason, a Hamiltonian eigenstate is also known as a stationary state.

To illustrate this, consider the time evolution of a stationary state, starting from t = 0,

() = e "M p(0)) (3.4.12)

and suppose that at time ¢t we measure some observable A, which is assumed to have no explicit

time dependence built into itH Recall from Postulate 4 that the probability of getting a particular

"By “explicit time dependence”, we just mean an explicit appearance of ¢ in the definition of the operator.
For example, the position operator X has no explicit time dependence, but the operator A = X sin(wt) does
depend explicitly on time, which we express as 0A/0t = wX cos(wt).
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measurement result « is

Pla,t) = Z\ o, Ua|tp(t) Zle‘”m o, Ua|tE(0) Z\ a, ua|p(0)) [*
= P(a,O). (3.4.13)

In a stationary state, the probability of measuring each particular possible result a stays the
same for all time, as long as the time evolution is not interrupted by a measurement.
Returning to the case of a general state |¢(¢)) and a general observable A, the time depen-

dence of the expectation value obeys

G Wil = wia (5] + (5 W) AW+ wig, (3.414)

where 0A/0t is the derivative of the explicit time dependence of A. Applying Schrodinger’s
equation and its Hermitian conjugate to the first two terms on the right, respectively, gives

d

o WAl = == WA H][¢) + (¥ | |w> (3.4.15)

or, in the more compact notation of expectation values, just

d 8A>.

(A = (AH) + (57 (3.4.16)

This general result is known as Ehrenfest’s Theorem, after Paul Ehrenfest.

In the special case that |1)) is a stationary state, H [¢)) = F'|¢)) and (| H = E (1|, so ([A, H])
evaluates to (E — E) (A) = 0. In that case, £ (4) = (Z}). The change in an expectation value
in a stationary state is due only to the explicit time dependence of the observable operator.

Suppose that the Hamiltonian is that of a particle moving in a constant potential in one
dimension, eq. ([349), and consider A = P, the momentum operator. The operator P has no
explicit time dependence, so dP/0t = 0. Also, [P, H] = [P,V (X)] = —ihdV/dX. Therefore, the

expectation values in a general state obey

%(p> _ _<Z_§>, (3.4.17)

which is the quantum mechanical version of Newton’s second law. Similarly, for A = X, using
0X/0t =0 and [X, H| = [X, P?]/2m = ihP/m, we get

2 (x) = (P)/m. (3.4.18)

This generalizes in a straightforward way to a particle moving in three dimensions. Ehrenfest’s

Theorem says that the momentum and position expectation values in quantum mechanics obey
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the same equations of motion as the corresponding quantities in classical mechanics. Equa-
tions (B.417) and (B4I])) therefore confirm the choices of sign and magnitude in our definition
of the momentum operator P in eq. (2.8.15).

As another application of Ehrenfest’s Theorem, apply eq. (8:4.10) to the time-independent
observable A = %(X P + PX). Evaluating the commutator with the same Hamiltonian, one
finds that for expectation values in a general time-dependent state, the Virial Theorem holds:

d 1
o (A) = — (P% — (XV'(X)). (3.4.19)
For the special case of a stationary state, since we proved that all expectation values are inde-

pendent of time, the left side vanishes and the Virial Theorem becomes

% (P?) = (XV'(X)) (in a stationary state). (3.4.20)

Specializing further to the case of a power-law potential V(X) = kX", this becomes
2(T)y =n(V), (in a stationary state, if V' oc X™), (3.4.21)

where T' = P?/2m is the kinetic energy operator. The generalization of the Virial Theorem to
a particle moving in three dimensions is straightforward, and left to Exercise

We now turn to the more difficult case that the Hamiltonian operator depends on time.
First, consider time evolution over an infinitesimal interval from time ¢, to time ¢y + At. Then,
from the Schrodinger equation,

W(to + AL)) = {1—%&}1@0)} [ (t0)) - (3.4.22)

Note that because At is infinitesimal, it does not matter here whether we use H(t¢), or H(t), or
H evaluated at some intermediate time, because the difference will be higher order in At. Up

to terms of order (At)?, we can rewrite this as an exponential,

Wty + AL)) = exp[—%AtH(to)] (ko)) - (3.4.23)

An advantage of writing it this way is that the exponential is a unitary operator if H(ty) is
Hermitian, so that |¢(typ + At)) has the same norm as |¢)(t)). Now, if we evolve the state

further from time ¢ty + A to ¢ty + 2At in the same way, we have
1 1
W(to + 2A8)) = exp [—ﬁm H(to + At)} exp [—ﬁAtH(to)} (ko). (3.4.24)

Here, the exponentials cannot easily be combined into a single exponential, because H (g + At)

and H (to) are different operators, and need not commute. Continuing in this way,

n=0

W(ty + NAL)) = (f[exp [—%Atﬂ(t0+nm)])|¢(to)>, (3.4.25)
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where it is important that the terms in the product, are understood to be arranged from higher
to lower n, reading from left to right. Since each of the terms in the product is a unitary

operator, the whole product is a unitary operator as well. Now we can take

N = (t —t9)/At — o0, (3.4.26)
to obtain
[0(t)) = Ult,to) [v(to)) (3.4.27)
where the unitary time-evolution operator is
N-1 ;
Ult.ty) = lim L[O exp [—ﬁAtH(to + nAt)]. (3.4.28)
From its construction, it satisfies
[U(ty, )] = [U(ta, t1)] " = Ulty, ta), (3.4.29)
Ults, t2)U(to,t1) = Ults, t1). (3.4.30)

This time-evolution operator can depend on both arguments separately; in general U(t,ty) #
U(t — ty) if the Hamiltonian depends on time.
Formally, one can also write for eq. (3.2.28)
1

Ut ty) = Texp[—ﬁ / tdt’H(t')}, (3.4.31)

to
where the T is a time-ordering symbol, an instruction to rearrange the Hamiltonians in the

expansion of the exponential so that each H(¢;) appears to the right of H(;) whenever ¢; < t.

More explicitly, it takes the form of a Dyson series, named after Freeman J. Dyson,

0 NNt tN to
U(t,to) = I+ Z (—%) / dtN/ dtn_q - / dty H(tN)H(tN_l) . -H(tl), (3.4.32)
N=1 to to to

where each t integration has lower limit ¢y and upper limit ¢;., for k = 1,... N, with ¢ty
interpreted as t. Note that the nested upper limits of integration have neatly removed the need
for the 1/N! usually present in the series expansion of the exponential function. You can also
check directly that eq. (B-432]) satisfies the differential equation ([B.4.2]), by plugging it in.

In eq. (34.32) the ordering of the Hamiltonians is important because in general they do not
commute at different times. In the special case that they do all commute, one can write

0

Ult,ty) = exp [—ﬁ [ tdt’H(t’)], (3.4.33)
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which agrees with the result eq. (8:43]) when H does not depend on time at all. Another Dyson
series, based on the interaction picture of quantum mechanics and useful for time-dependent
perturbation theory, will be discussed in section

We have seen that there are two very different ways that a state can change in quantum
mechanics: Schrodinger time evolution governed by the Hamiltonian, and collapse of the state
ket due to measurement. It is natural to ask whether the latter might be a special case of
the former. At least within the standard formulation of quantum mechanics, as given by the
postulates listed in section B.I], the answer is “No!”. Hamiltonian time evolution is accomplished
by multiplying the state by a unitary operator, while collapse of the state due to measurement
is associated with multiplying by a projection operator, which is instead Hermaitian. Thus, there
is a fundamental difference between Hamiltonian time evolution and measurement collapse.

The time evolution due to the Hamiltonian is perfectly causal and deterministic; the state
at a given time is uniquely determined by the state at earlier times, just as in classical physics,
provided that a measurement of the type described in Postulates 4 and 5 has not taken place
in the interim. In contrast, the collapse of the wavefunction associated with measurement is
inherently probabilistic, rather than deterministic. This means that, unlike in classical physics,
it is not possible, even in principle, to predict the future. But the situation is actually worse
than that: we cannot even predict the past. Given complete knowledge of the present state of
a quantum system, the state before the most recent measurement cannot be known, because
Postulate 5 says that the act of measurement changes the state in a way that destroys informa-
tion, in an irreversible way. If you measured an observable A and got a result «, leaving the
system in a state |«), then this tells you that the state of the system |¢) before the measurement
must have had a non-zero matrix element («|¢), but that is all. This is clearly very incomplete
information.

The insistence on a fundamental distinction between the measuring agent and the quantum
system being measured, as required by Postulate 5, was developed and promoted by Niels Bohr
and collaborators, and is often referred to as the Copenhagen interpretation of quantum
mechanics. According to the Copenhagen interpretation, the measuring agent apparently can
be thought of in classical terms, or at least we do not ask questions about its quantum behavior.
This seems troubling, as one can always imagine treating any particular measuring apparatus as
itself a quantum system undergoing unitary time evolution. For this reason, many people have
advocated modifying the postulates of quantum mechanics to modify or completely eliminate
Postulate 5 dealing with the collapse of the state due to measurement.

In particular, Hugh Everett, in his 1957 PhD thesis, proposed that the state ket always

undergoes unitary time evolution, so that collapse of the state due to measurement is an illusion
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of limited human powers of discernment. In this Everett interpretation of quantum me-
chanics, all possible alternatives for every measurement outcome are actually realized, through
superposition, in some parts of the great state ket of the universe. This can be imagined as
a continuous branching of possibilities that has inspired the alternative name many-worlds
interpretation, and many science fiction story ideas. It is an observed fact that parts of
the Everett superposition corresponding to non-classical-like outcomes for macroscopic systems
seem to have negligible amplitudes. This can be explained by a phenomenon called decoherence,
discussed in Chapter 23] which involves entanglement correlations between subsystems.

It is difficult not to be sympathetic to the no-collapse view. Indeed, we could draw a big
sphere of radius several hundred light years around the Earth, and think of the contents (includ-
ing us, all other observers who might be able to communicate with us, and all of our measuring
devices) as one big quantum system evolving strictly according to unitary time evolution. In
any case, there seems to be no reasonable scientific principle that could tell us exactly where we
should put the boundary separating the quantum system from the measuring apparatus that
supposedly undergoes collapse.

However, from a practical point of view, Postulate 5 is indispensable, because it provides a
straightforward, consistent, and reliable way of making predictions for the actual experiments
that we do in the real world. No matter how philosophically compelling it might be to discard the
measurement collapse of the wavefunction, it is not scientifically necessary, with the exception
of some interesting and ambitious proposals to treat the quantum dynamics of the universe as
a whole. So far, the postulates of quantum mechanics as given in section B.I] have stood the
test of time, successfully providing accurate predictions of every experimental phenomenon with

which they have been confronted.

3.5 Mixed ensembles and the density matrix operator

The expectation value and uncertainty for an operator were defined for a single quantum state in
section [3.3], using the concept of a pure ensemble. However, it is often more realistic to suppose
that in a large ensemble of quantum systems of the same type, some fraction of them p; will
be in a state [1;), a fraction ps will be in a different state [i), etc. Such a large collection of
systems of the same type, but in different states, is called a mixed ensemble. If we choose one
of the systems at random from a mixed ensemble, there is a probability p; that it will be in the
state |¢r), with p; > 0 for each I, and

> pr=1 (3.5.1)
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The kets [¢);) are assumed to have unit norm in the following, but there is no reason why they
must be linearly independent or orthogonal to each other. There is not even any constraint on
the number of distinct states |¢);) that are found in the ensemble, and it could be larger than the
dimension of the state space. The mixed ensemble generalizes the concept of a pure ensemble,
for which one of the p; is equal to 1 and all others are 0.

Suppose we choose one system of the mixed ensemble at random, and measure an observable
A with eigenvalues o and orthonormal eigenstates |a,u,). Then, the probability of getting a
particular result « is equal to the sum over |¢);) of the product of the probability of choosing a
system in that state and the probability that a measurement in that state will give a. Applying
Postulate 4 to evaluate the latter probability,

P(@mixed = D01 Y| {0 waltr) . (3.5.2)

We can similarly compute the average result obtained by measuring the observable A many

times on systems chosen at random from the mixed ensemble,
A =) pr(iAlr) . (3.5.3)
I

We use an overline notation to denote this mixed ensemble average, to distinguish it from
the expectation value associated with measuring A in a single state in a pure ensemble.

There are two very different types of probabilities at work in eqs. (8.5.2)) and (B.5.3). First,
there are the ensemble probabilities p;, which simply reflect the fact that the mixed ensemble
is populated by different states. These ensemble probabilities would exist even if our systems
were classical. Second, we have the probabilities associated with the inherently non-deterministic

> and in

nature of measurement in quantum systems, which are manifested in ) | {a, ua|vr)
the expectation value (1;|A|1;). The results for P(a)mixea and A incorporate both types of
probabilities.

One should not confuse the concepts of a pure ensemble based on a superposition of quantum
states and a mixed ensemble containing a population of the same quantum states. A simple
example will illustrate the distinction. Consider a state space with two orthobasis kets |1) and

|2). Suppose that initially we have a pure ensemble, with all systems in the superposition state
) = all)+el2), (3.5.4)

where ¢; and ¢y are complex numbers subject to the normalization condition |c;|? + |ca|* = 1.
Now we can conduct a measurement to ask if a system is in the state |1). The probability of
finding the result 1 (yes) is |c;|?, and the probability of finding the result 0 (no) is |co|?. If we

do this measurement on each and every system in the pure ensemble, we will afterwards have a
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mixed ensemble, with p; = |¢;|? for the state |1), and py = |c|? for the state |2). This illustrates
that one way to prepare a mixed ensemble is to conduct measurements on the members of a
pure ensemble.

Continuing with this example, if we now make the same measurement again on the mixed
ensemble, we will get the same results as for the pure ensemble; the probability is still |c;]? to
find the state |1). But now consider instead the probability that measurement of some other
observable A will yield the result o, with corresponding eigenket |a)). For the pure ensemble
with state [¢), this is

2
P(@)pue = [al)* = |ei(all) + e (al2)[, (3.5.5)

but for the mixed ensemble, we find instead, from eq. (352,
P(@)mixed = e KD + Jeaf*[{r]2) (3.5.6)

The key difference is that in the pure ensemble result there are interference terms that do not
appear in the mixed ensemble result. There is relative phase information present in the pure
ensemble that is absent in the mixed ensemble.

A standard realization of this same example is found in the double-slit diffraction experiment.
Suppose that we have a source of particles that can impact on a plane detection screen, after
having passed through one of two very narrow slits in a diffraction screen, as shown in Figure
1.3.2] The source of particles is said to be coherent if we can describe the state of a given
particle as a superposition like eq. ([B5.4]), where |1) represents the state in which the particle
travels through slit 1, and |2) represents the state in which it travels through slit 2. If we
let the operator A in the above discussion be the position operator X on the detection screen
perpendicular to the slit directions, then the probability to find the particle between positions
z and x + dx is given by the continuous version of eq. (3.5.5]),

dP(z) = |ewn(z) + cao ()| da. (3.5.7)

The individual wavefunctions for the different slit contributions interfere destructively or con-
structively, depending on z, to produce an interference pattern as shown in Figure But,
now suppose that there are detectors that measure whether the particle goes through slit 1 or
slit 2. This measurement results in a mixed ensemble of particles at the detection screen, and

we will have instead the continuous version of eq. ([B.5.6]),
@P@) = (leaPlva(@) + ool (x)2 ) da, (3.5.8)

in which the interference terms (also known as coherences) are absent. The act of measuring
which slit each particle goes through destroys the interference pattern. This “which-slit” mea-

surement might effectively be done by the environment in which the experiment takes place,
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rather than an official detector monitored by a certified experimentalist. This reduction of a
pure ensemble of coherent superpositions to a mixed ensemble of populations is an example of
decoherence, which will be discussed further in Chapter 25

All of the physical information about a mixed ensemble is encoded in an elegant way in the
density matrix operator, or just the density operator, due to John von Neumann. It is

defined in terms of the ensemble states and probabilities by
> prlin) (Wl (3.5.9)
I

In the special case of a pure ensemble, p is simply the projection operator for the state |¢).
More generally, it is a sum of projection operators weighted by the frequencies of occurrence of
states within the ensemble. In terms of the density operator, the result of eq. (3.5.2) for the

probability of getting the result « for a single measurement of A can be written as

P(Wensemble = > (o] pla, ta) . (3.5.10)
We can rewrite this by choosing an arbitrary orthobasis of kets {|¢x)}, and then using com-

pleteness followed by a rearrangement,

d d
7D(Oé)ensemble - Z<aaua| <Z|¢k> <¢k|)p|aaua Z ¢k PP |¢k — TT[PRx], (3511)
k=1 k=1

U

where P, is the projection operator for the result a, defined in eq. (8:1.4]), and at the end we used
the definition of the trace of an operator in eq. (2.6.57)). Recall that the trace is independent of
the choice of orthobasis.

The average of the results of many measurements of A in a mixed ensemble, as computed in
eq. (353), can also be re-expressed in terms of the density operator. Again using completeness

followed by a rearrangement,

d

> m <wI|A(Z|¢k> <¢kl) ) = D (eelpAlgr) = Tr[pA]. (3.5.12)

k=1

As a special case,
Tr[p] = 1, (3.5.13)

which simply re-expresses the conservation of probability from eq. (B5.1). It is also straightfor-
ward to show Tr[p?] < 1, with equality only in the special case that the ensemble is a pure one,

in which case one also has p? = p.
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From its definition in eq. (859, p is clearly a Hermitian operator. So, according to Theorem
[2.6.0] one can find a special orthobasis consisting of its eigenkets, call them |¢y), with eigenvalues
pr. that are real because of Theorem Therefore, no matter what states |¢;) were involved
in the original preparation of the mixed ensemble, or how many such states there were, we can

always rewrite the density operator as

d
po= Y pelen) (el (3.5.14)
k=1

which is very similar in appearance to eq. (85.9), but with the important difference that the
index k now takes on a limited number of values up to the dimension d of the state space. The
pr can be interpreted as the ensemble probabilities for the orthobasis. This illustrates the more
general fact that the density operator is not tied to any specific set of states [¢;), even if we used
one when preparing the mixed ensemble. The density operator can also be used to summarize
our (incomplete) information about a single system chosen at random from the mixed ensemble,
called a mixed state.

A pure ensemble is one extreme special case of a mixed ensemble, in which all systems are
in the same state. The opposite extreme is the completely random ensemble, which we can

define by choosing any orthobasis |y ), and writing

p= o lelerd (35.15)

Here 1/d is the ensemble probability for each of the orthobasis states. This density operator is
proportional to the identity operator, so it is actually independent of the choice of orthobasis,
and is the unique one associated with maximum randomness of states in the ensemble.

The extent to which an ensemble of quantum systems is randomized can more generally be

quantified by the von Neumann entropy

d
o = —Tr[plnp = —Zpklnpk, (3.5.16)
k=1

where the final result is in terms of the orthobasis ensemble probabilities in eq. (3.5.14]), which
are defined to be the eigenvalues of p. When p; = 0, one should interpret py Inp; as 0. The von
Neumann entropy is the quantum mechanical analog of the Shannon entropy introduced (two
decades later!) by Claude E. Shannon in the study of classical information and communication

theory, but the Shannon entropy has different properties when combining classical subsystems.

TMany sources replace the natural logarithm in eq. (3.5.16) by the logarithm base 2, which is especially
convenient for quantum information applications where the systems of interest have 2-state orthobases. This
simply changes the normalization of the entropy by a multiplicative factor 1/1In(2), since logy(z) = In(z)/ In(2).
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It also has the same form, up to a multiplicative factor, as the Gibbs entropy defined by Josiah

Willard Gibbs in classical statistical mechanics and thermodynamics,

d
S = —kg Y prlnps, (3.5.17)
k=1

where kg is Boltzmann’s constant, and in this case the p, are interpreted as the probabilities

for microstates |¢y) to occur in the fluctuations of a system.

In our two extreme cases,

o =0 (pure ensemble), (3.5.18)

1
o = —-n [E ln(l/n)} = In(n) (completely random ensemble), (3.5.19)

where n is the number of orthobasis states available to the systems in the ensemble, usually
the same as the dimension d of the state space. In the case of a mixed state, the entropy is
a measure of our ignorance, and it is always between 0 and In(n). The result S = kgln(n)
obtained for the special case of the completely random ensemble is the Boltzmann entropy.

In general, the density operator for a mixed state or a mixed ensemble depends on time.

From the general form in eq. (3.5.9), we have
d
- X (S b)) Gl + by (5 4wl | (3.5.20)

and evaluating the time derivatives using the Schrodinger equation, we obtain

— _lm ) (3.5.21)
ar . pthPr o
Note that this vanishes in the special case of a completely random ensemble; random ensembles
stay random. It also vanishes in the case of a pure ensemble if the state is an energy eigenstate,
but not if it is a superposition of states with different energies. The historical reason for the
name “density operator” is that this equation is analogous to Liouville’s Theorem in classical

mechanics, which says that for an ensemble of classical systems, the phase-space density peiassical

(the number of classical ensemble members per unit position and momentum) obeys

dpclassical

dt {H7 pclassical}PB7 (3522)

which has the classical Poisson bracket (and removal of the factor of —i/h) on the right-hand
side replacing the commutator. This is an example of the classical-quantum correspondence

principle to be discussed further in section [4.11
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Equation (3521 gives the instantaneous change in the density operator as the ensemble
of systems undergoes time evolution. More generally, in terms of the unitary time evolution
operator that we defined in eq. (B.4.1]),

p(t) = Ult,to) plto) U(t, to)T, (3.5.23)

with a short proof left as an exercise. Since p(t) and p(to) are related by a unitary transformation,
they have the same eigenvalues, according to Theorem [2.6.9. It follows that under time evolution,
a pure state stays pure, and a mixed state remains mixed. Furthermore, from the expression

for the entropy in eq. (B5.10]) in terms of the eigenvalues py,
o(t) = o(to) (unitary time evolution), (3.5.24)

in the absence of external measurements or other influences. So, we have found that the entropy
of a closed system does not change with time.

Let us now work out what the density operator will be after a measurement on a mixed state.
Suppose we have a density operator p as given in eq. (B.5.14) in terms of orthobasis states |¢y)
with ensemble probabilities pi, and we make a measurement on a randomly chosen ensemble
state of an observable A and obtain the result . For each of the ensemble states |y ), Postulate

5 tells us that the state after the measurement will be

Po |or)

Ve Palor)

where P, is the projection operator for the result a. Therefore, we can write the post-measurement

(3.5.25)

density operator as

S ol [ FPalew) (] Po
e ;P(M )< <80k|Pa|80k>) <V<90k‘Pa‘90k>>7 (3520

where P(k|a) is the conditional probability that the state selected from the ensemble was |¢y),
given that the result a was obtained for A. To evaluate this, we use Bayes’ Theorem, the

fundamental result in the theory of conditional probabilities, which says

P(alk) p
Pk . 3.5.27
Here, as given by Postulate 4,
Plalk) = (plPuler) (3.5.28)

is the conditional probability that the result of a measurement of A is a;, assuming that the state
was |¢r), while P(a) = Tr[pP,] is the probability, obtained in eq. (B:5.I1), that a measurement
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of A in the ensemble resulted in . Putting these results together, eq. (B5.20]) for the density

operator after the measurement becomes
PopP,  PypP,
Pla)  Tr[pP.]

This is the density operator version of Postulate 5. Note that it obeys pl, = p, and Tr[p,] = 1,

Po = (3.5.29)

so that the post-measurement density operator is still Hermitian and has trace 1.

We have now succeeded in finding the rules for measurement probabilities and averages,
post-measurement collapse, and time evolution for a mixed state in terms of the density matrix
operator p, in eqs. (B5.11), B.512), B521), B.5.23), and (B5.29). Since each of these results
only depends on p, and not on the individual ensemble states or probabilities, we have justi-
fied the assertion that all of the physical properties of the mixed ensemble or mixed state are
contained in the density operator.

A common situation is that a measurement of A has been made, but we do not know the
result. Perhaps we were not looking, or we lost the data, or the measurement was made by
something or someone else who is unwilling or unable to communicate with us. In that case,

the density operator describing the mixed state after the measurement will be
p= Y P(@)pa = > PapPa. (3.5.30)

We will now show that the entropy always increases when this occurs, except in the trivial
special case p' = p, which happens only if all states in the ensemble were eigenstates of A with
the same eigenvalue. To do so, we will use the following fact from linear algebra about traces

of functions of matrices, due to Oskar Klein, the proof of which is omitted.

Theorem 3.5.1. (Klein’s inequality, general) Suppose that the function f(x) is differentiable
and strictly convex (f"(x) > 0) for all 0 < x < 00, and that A and B are Hermitian matrices

with non-negative eigenvalues. Then
TY[f(A) - F(B) + (B — A)f(B)] = 0, (3.5.31)
with equality iof and only if A = B.

We now apply this to the case f(x) = xlnz, and let A = p and B = p/ be any two density
operators; we are not yet assuming the special form of eq. (3530). Then, using Tr[p| = Tr[p/] =

1, we obtain:

Theorem 3.5.2. (Klein’s inequality for density operators) Suppose that p and p' are any

two density operators on a common state space. Then
Tr[p(Inp —1Inp')] > 0, (3.5.32)

with equality if and only if p = p'.
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Now consider the case of p’ given by eq. (85.30), which arose from having made a mea-
surement of A on a mixed state described by p, with unknown result. The entropy after the

measurement is
= —Tr[p Inp'] = ZTr [P,pP,Inp'| = ZTr pP,Inp'P,], (3.5.33)

where the cyclic property of the trace was used at the end. Since P? = 1, eq. (3.5.30) shows that
P, commutes with p/, which implies that P, also commutes with In p’. Therefore, P, Inp P, =

P%lnp' = P,Inp'. Then, using completeness in the form > P, = I, we obtain
o = —Tr[plnp']. (3.5.34)
Using 0 = —Tr[pln p| and Klein’s inequality (8.5.32)), we finally obtain the claimed result,
o > o (3.5.35)

The entropy increases whenever a non-trivial measurement is made but the result is unknown.

Note that this increase of the von Neumann entropy does not apply to a situation in which
we made a measurement on a single mixed state and the result is known. In fact, if the known
result of the measurement « is a non-degenerate eigenvalue, then the resulting density operator
describing the system will be that of a pure state, with vanishing entropy.

As an important example, consider an ensemble consisting of a bottle of, say, ~ 10** gas
molecules, each of which can be in states characterized by energy eigenvalues E and degeneracy
labels uj. The molecules interact with each other and with the bottle walls, but weakly enough
that they can be considered an ensemble of independent quantum states of the same type.
Intuitively, each interaction can be thought of as a sort of external measurement on the gas
molecule, but the results of these measurements remain unknown, so that eq. ([3.5.35) applies so
as to make the entropy as large as it can be, subject to the constraint of energy conservation.
Thus, when the molecules reach thermal equilibrium, the ensemble probability to find one of
them in a particular orthobasis state |E, uz) can be determined by the statistical principle that
the entropy should be maximized, subject to the constraint, due to energy conservation, that
the ensemble average energy has a fixed value E.

To see the implications of this, we write the density operator in the form
p=>> pulBug)(E ug. (3.5.36)
E up

Here, we have already implemented the idea that maximizing the entropy will require the density
operator to correspond to complete randomization within each subspace of fixed energy eigen-

value E, but the relative probabilities p, for each energy level remain to be found. Equation
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B530) gives

o ==Y gpprnpg, (3.5.37)
E

where ¢, is the degeneracy of the energy eigenvalue E. Now, to maximize o subject to the
constraints 1 = Tr[p] = Y., gppp and fixed E = " gpppF, it is simplest to use the method

of Lagrange multipliers. The function to be extremized is
fpg. . B) = = gppenpg + a(l - ZngE) + 6@ - ZngEE>> (3.5.38)
E E E

where v and 8 are the Lagrange multipliers for the trace constraint and the energy constraint,
respectively, and E is fixed. We then obtain, for each E,

af

0 =
opg

= —gp(lnpg +1) —agp — Bypk, (3.5.39)
which has the solution
pp = e Tl (3.5.40)

The e~ (@ factor is independent of E, and so can be absorbed into a common normalization
factor; the important point is that we have derived that the canonical ensemble probabilities

that maximize the entropy must be proportional to the Boltzmann factor,
pp o< e PE (3.5.41)

The Lagrange multiplier § is related to temperature by the definition

1

ST T

(3.5.42)

Since ( has units of 1/energy, this definition shows that Boltzmann’s constant is really just a
conversion factor between energy and temperature. If we agreed to measure temperature in
units of energy, then Boltzmann’s constant would be 1.

The result of eq. [3.5.36) with pgp o< e ?F is called the canonical ensemble, with density

operator
1
_ -BE
p=z EE E e " |E ug)(E, ugl|, (3.5.43)
Up

where the normalization factor Z is called the partition function. Thus, the canonical en-

semble is completely randomized at each fixed energy level E, but with relative probabilities
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between energy levels determined by the Boltzmann factor. The partition function can be

computed using the requirement Tr[p] = 1, which gives
Z = ZZ@‘BE = ZgE e PE, (3.5.44)
E up E

Equation ([8.5.43) can be recognized as the spectral decomposition form [see eq. (Z7.H)] of

1
p = Ze—ﬁH. (3.5.45)

This obviously commutes with H, so according to eq. (8.5.21]), p is constant in time. For any

observable A defined for each molecule, the canonical ensemble average is, from eq. (3.5.12),

_ 1 1
A= T [ePHA] = 7 SN e PPUE uglAIE, up) . (3.5.46)
E ug
In particular, the average energy for states in the canonical ensemble is
7 - L Y gpEe ™ = Iz (3.5.47)
7 £ B

It is left as an exercise to check that, with the entropy definition S = kgo,
E—-TS = —BInZ = F, (3.5.48)

where F' is called the Helmholtz free energy after Hermann von Helmholtz. Let us stop
our discussion of the canonical ensemble here, before this book accidentally turns into one on
statistical mechanics.

In all of the preceding, we have assumed for notational simplicity that the states |1);) appear-
ing in the ensemble are discrete and countable. As usual, one can also consider a continuum of
states, which entails turning summations into integrals. If the ensemble states |1),) are labeled

by some continuous parameter u (instead of the discrete label I), then the density operator is

) = / du plu) [} (], (3.5.49)

where the probability density p(u) must satisfy the constraint [ dup(u) = 1.

3.6 Exercises

Exercise 3.1. Consider compatible observables A and B, whose (possibly degenerate) eigenval-
ues include « and 3, respectively. Suppose that they are both measured, with a negligible time
delay so that Schrodinger time evolution does not come into play. Show that the probability of
obtaining («, ) for (A, B) does not depend on the order in which they are measured.
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Exercise 3.2. Show that if the position-space wave function () = (¥|¢)) is real, then the
expectation value of the momentum operator P must vanish: (]3) = 0. This helps to explain

why the states for quantum mechanics must form a complex vector space.

Exercise 3.3. Consider a state [¢) with position wave function (7|¢)) = ¥ (7) and momentum
expectation value (1| P|i)) = p. Show that the state with position-space wave function eiE'Fw(F)

must have momentum expectation value p + hik.

Exercise 3.4. Consider observables A and B with the following matrix representations on a

state space with dimension 3,

10 0 L (0 =i 0
A= (00 0], B=-— i 0 —i]. (3.6.1)
00 —1 V2\o i o

These matrices are representations of the operators in an orthonormal basis |1), |0), |[—1), which
are labeled by the non-degenerate eigenvalues of A, which we can therefore call “the A basis”.
(a) Find the eigenvalues and the corresponding normalized eigenkets of B (in the A basis).

(b) In the state |—1), calculate the expectation value (B) and the uncertainty AB.

(c) If the particle is in the state with A = 1, and B is measured, what are the possible outcomes
and their probabilities?

(d) If the particle is in the state with B = 0, and A is measured, what are the possible outcomes
and their probabilities?

(e) Consider the state [¢)) = —=[1) +% 0) —i—% |—1). If the operator A? is measured and a result
+1 is obtained, what is the normalized state ket immediately after the measurement? What
was the probability of this result? If A is then immediately measured, what are the possible

outcomes and their respective probabilities?

Exercise 3.5. Consider a particle free to move throughout all space in 3-d. Suppose that its
wavefunction in spherical coordinates is 1)(7") = Ce™"/, where C' and a are constants.

(a) If the wavefunction is normalized to unity, what is the magnitude of the constant C'?

(b) What is the probability that the particle will be found to be farther from the origin than a?
(c) What are the expectation value and uncertainty of the radial coordinate operator R?
(

d) What are the expectation value and uncertainty of the momentum squared operator P??

Exercise 3.6. Consider a particle moving in three dimensions, governed by the Hamiltonian

—

1
H=—P’+V(R .6.2

where P? = P - P = P? + P? + P2. Apply Ehrenfest’s Theorem eq. (B.4.I0) to the observable
A= %(ﬁ . P+ P-R) to obtain the 3-d version of the Virial Theorem. You should find that
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for a general state,

d 1 — —
— (A = —(PY_(R. .6.
S(A) = —(P) - (B-TV), (3.6.3)
so that for a stationary state,
1 —
—(P*) = (R-VV), (in a stationary state), (3.6.4)
m

and for the special case of a spherically symmetric power-law potential
2(Ty = n(V), (in a stationary state, if V oc R"), (3.6.5)
where T = P?/2m is the kinetic energy operator.

Exercise 3.7. Consider a particle of mass m moving in a 1-d potential, with Hamiltonian
H = P%/2m+ V(X). Suppose that the eigenstates and energy eigenvalues of H are denoted by
|1,) and E,,, where n is a discrete label, so that H|y,) = E,|¢y,).

(a) Show that (¢, |P|r) = a(t,|X|¢k), where a is a quantity that you will determine, which
depends on the difference between E,, and Ej. (Hint: consider the commutator [X, H].)

(b) From the result of the previous part, show that

(G| P?[thn) = B> (B — Ey)*[{thn] X [th3) [, (3.6.6)
k

where 3 is a constant quantity that you will find. (Hint: completeness is your friend.)
(c) How does this rule generalize to cases with some continuous energy eigenvalues?

(d) Derive the corresponding results for a particle moving in three dimensions.
Exercise 3.8. Prove eq.([3.5.23)) for the unitary time evolution of the density operator.

Exercise 3.9. Consider a quantum system with a state space of dimension d.
(a) Show that to specify a general pure state of the system requires 2d — 2 real parameters.
(b) Show that to specify the density matrix for a general mixed state of the system requires

d? — 1 real parameters.

Exercise 3.10. A spin-1/2 system with Hamiltonian H = wS, has energy eigenstates |1) and
|4) with S, eigenvalues h/2 and —h/2 respectively. For the canonical ensemble of a large number
of such spins at temperature 7', what are the density operator p and the partition function Z7?

What is the Gibbs entropy? What is the average result for a measurement of S.7
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4 Canonical variables and the Hamiltonian

4.1 Quantum observables from classical dynamics

The postulates of quantum mechanics refer to observable operators with time evolution governed
by a Hamiltonian, but do not specifically identify these objects. This is intentional, in order to
be general. In many physical situations, one can determine the appropriate Hamiltonian and
observables by considering a classical version, but this is not always true. Indeed, one should
think of classical physics as an approximate limit obtained from quantum mechanics, and not
the reverse. Still, in favorable circumstances the classical-limit properties of a system can be
used to infer the basic observable operators, including the Hamiltonian, and their algebraic
commutator properties in the quantum theory.

In the Lagrangian formulation of classical mechanics, one starts with some dynamical vari-
ables q,, often called generalized coordinates, which we will label by an index n. The Lagrangian

is a function of the g, and their first time derivatives ¢, = dg,/dt,

L(gn, n: 1)- (4.1.1)

The classical equations of motion for the system are then

oL d OL

o0, = W (4.1.2)
for each n. A short calculation, found in any good classical physics textbook, shows that this
follows from a variational principle involving the action obtained by integrating the Lagrangian
with respect to time. However, we will postpone our own discussion of that until section
The reason for doing so is that rather than accept the variational principle as a postulate of
classical mechanics, we will be able to derive it as a consequence of the path integral formulation
of quantum mechanics.

The Hamiltonian formulation of classical mechanics recasts the Lagrangian formulation by

defining a canonical momentum conjugate to each generalized coordinate,

oL
n = - 4.1.3
Prn = B (4.1.3)
Now one defines the Hamiltonian as

where it is important that the ¢, are to be completely eliminated in favor of the p, using
eq. (@I3). Thus H is a function only of the generalized coordinates and their canonical conju-
gate momenta, and not their time derivatives. The ¢, and p,, are collectively called the phase-

space coordinates. As shown in the same good classical mechanics textbook, the Lagrangian
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equations of motion eq. (A I2]) are equivalent to the Hamiltonian equations of motion,

_ O0H .o _oH
T

The generalized coordinates g, need not be the rectangular coordinates of a particle, but rather

dn (4.1.5)

could be any quantities that fully specify the classical state of the system at a given time.
Likewise, the canonical momenta need not coincide with mechanical momenta (equal to the
product of mass and velocity for particles).
Consider any quantity a(gq,, pn, t), built out of the generalized coordinates and their conjugate
momenta. According to the same good classical physics textbook, the time evolution of a is
% = {a,H},,+ %, (4.1.6)

where the Poisson bracket for any two functions on phase space a and b is defined as
da Ob 0b Oa
{ab),, = S (2o 0bduy (4.1.7)
—~ \9G, Opn 9y Opy,
Dirac noted that the Poisson brackets {a, b}PB of classical mechanics are closely analogous
to the commutators [A, B] for the corresponding observables in the quantum theory. Both are
antisymmetric under interchange of the observables, and at least for the position and momentum
observables, one has the exact correspondence

classical quantum
{Gprtpg =0 < [Qu, P] = R0y (4.1.8)

Commutators obtained in this way are called canonical commutation relations. Further-
more, eq. ([AI6) has a striking resemblance to Ehrenfest’s Theorem in quantum mechanics,
which we found in eq. (B410]). Indeed, one finds from the latter equation that

d OH d OH

200,y = , Lipy = _< > 4.1.9

dt (@n) <8Pn> dt (Fu) 0Qn ( )

directly analogous to the Hamiltonian equations of motion ({I1.H]).

For a single particle of mass m moving in three dimensions in a potential V', it is natural to
choose the ), to be the usual rectangular coordinate operators X = R,, Y = R,, and Z = R..

Their conjugate canonical momenta F,, P,, and P,, satisfy the commutation relations already
given in eq. (Z8.54),
[Ra, Py = ihdgp, (R, Ry] =0, [P, b)) =0, (4.1.10)

for a,b = z,y, . Writing P2 = P - P, the Hamiltonian operator is then
P2

H= —+ V(R). (4.1.11)
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The connection between classical and quantum physics just described is often called the
correspondence principle, but it has some weaknesses. First, there are some quantum ob-
servables that do not have a classical counterpart at all, for example spin, also known as intrinsic
angular momentum. Second, there is no guarantee that every generalized coordinate and its
momentum will obey a canonical commutation relation. Although it is true for the rectangular
coordinates of a particle, or a collection of particles, in other cases one might encounter correc-
tions higher order in h, or ambiguities in connecting the classical observables to the quantum
ones. This is why we preferred to derive the position-momentum commutation relations by the
method given in section Z8 More generally, the most logical (but perhaps not the simplest)
way to make the connection is to derive the classical theory as an approximation to the quantum

theory, as we will do using the Feynman sum-over-paths approach in section 28.6]

4.2 The two-body problem

An important special case is that of two particles that are free except for a potential energy of
interaction that depends only on their separation. This occurs, for example, in the hydrogen
atom to be treated in Chapter [[Il where the two particles are the electron and the (much
heavier) proton. Another example is neutron-proton scattering, to be studied in section 23.8]
where the masses are almost the same.

In general, the two-body Hamiltonian has the form

P2 P2 . .
H= -1 +_-"2 + V(R — 4.2.1
o+ oy V(R = o), (4.2.1)

where we allow for the possibility that the potential energy depends on the vector displacement
(not just its magnitude), and the two particles have masses m; and ms and canonical position
and momentum operators (R, P) and (R,, P,). The components of these observables satisfy
commutation relations [Ry,, Pip] = hde and [Rag, Py = ihde, for a,b = x,y, z, with other
combinations vanishing. In particular, each of the observables for particle 1 commutes with
those of particle 2. As an orthobasis, one can choose the tensor product of the eigenkets of R,
and ﬁg,

71, 72) = [T1) ® [F2), (4.2.2)
defined to satisfy the eigenvalue equations
R, |71, 7a) = 71|71, 72), Ry |71, 72) = To |11, 7). (4.2.3)

However, the solution of the Hamiltonian eigenvalue problem is complicated by the fact that

the potential couples the two particle degrees of freedom together.
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Fortunately, as in classical mechanics, such cases can be reduced to a simpler problem that is
effectively the same as for two decoupled particles, by making a change of variables to separate
the relative motion from that of the center of mass. The relative motion is described by

m2ﬁ 1 m1ﬁ2

R=R —-R p=-21 12 4.2.4
R Rl R27 m1+m2 ) ( )

and the motion of the center of mass by

= mi Ry +moR = = =
Roy = —————2, P = P+ P, (4.2.5)
mi + Mo
It is a short exercise to show that the pairs (R, P) and (Re, Piot) cach satisfy canonical com-
mutation relations, and do not interfere with each other. Furthermore, if one defines the total

mass M and the reduced mass p according to

m1Mme
M = my + my, - T2 4.2.6
m 2 K my + Mo ( )

then the Hamiltonian eq. (21]) can be rewritten in the decoupled form

P2, P
H = Hy + Hy. H,, — Lot Hoy = — + V(B 1.9,
+ Hrel o0 L= 5, TVIR) (4.2.7)

The center-of-mass degrees of freedom have the same Hamiltonian as that of a completely free
particle with mass M, whose eigenvalue problem is easy to solve (plane waves). The dynamics
of H,. are the same as for a single particle with mass equal to p, moving in the potential V(ﬁ)

One can now choose a new orthobasis as the tensor product of eigenkets of R and ﬁcm,
|7, Pem) = |7) @ [Pem) (4.2.8)

and look for stationary-state wavefunction solutions of the form

1

Z'Etot"?cm s
W@ w('f’), (429)

V(P Tem) = (F,Fem|V) =

where Pt = hEtot is the eigenvalue of Rot, and the relative coordinate wavefunction satisfies

(—ZZ +V(F) - E) Y(F) =0, (4.2.10)

and the total energy eigenvalue is F + h?k2, /2M. We can then solve the eigenvalue problem in

eq. (A2.10) for £ and ¥(7) as if it were a single particle. If one of the particles is much heavier
than the other, as in the case of electrons compared to atomic nuclei, then p is equal to the

mass of the lighter particle, to a good approximation.
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If the number of particles NV is three or more, and fixed, then one can construct appropriate
Jacobi coordinates, and their canonical momenta, by iteration. First, choose two of the
particles and define their relative and center-of-mass coordinates and momenta, just as in the
preceding. The two-particle center-of-mass coordinates and momenta are then combined in the
same way with those of a third particle, to give another relative coordinate/momentum pair
and a three-particle center-of-mass coordinate and momentum. The three-particle center-of-
mass coordinate and momentum are combined with those of a fourth particle, etc. In the end
one will have a single center-of-mass coordinate and momentum for the whole system with total

mass M = S m;,
X N
B = M;miR"’ Py — ;B, (4.2.11)

and N — 1 translation-invariant coordinate/momentum pairs, each satisfying canonical commu-
tation relations. The kinetic energy terms for these momenta are all decoupled from each other,
but with the complication that they have different effective masses even if the particle masses
m; are all the same. If there are no external forces, so that the potential energy is invariant
under translations, then R, will not appear in the Hamiltonian at all. The energy eigenstates
will therefore have the form of a tensor product, of plane-wave free particle eigenstates of Prot
and P2, /2M, and eigenstates of the remaining, more complicated, part of the Hamiltonian.

In the case of multi-electron atoms, where one of the particles is a nucleus that is much more
massive than the electrons, it is much more common to make the simple and good approximation
that the nucleus is infinitely massive and fixed at the origin in the center-of-mass frame, and

the remaining coordinates and momenta are (very close to) those of the individual electrons.

4.3 Charged particle in external electromagnetic fields

We now turn our attention to the dynamics of charged particles in external electromagnetic
fields. We will follow the example of most quantum mechanics books by using Gaussian cgs
unit normalizations for electrodynamics quantities, rather than the SI units that you may be
more familiar with. This means that Maxwell’s equations for the electric and magnetic fields

are (with the SI versions indicated parenthetically, for comparison)

V-E = 4d7mp (SL: p/eo), (4.3.1)
V-B =0 (SL: 0), (4.3.2)
= = 10B OB
S 10E 4w~ 1 0E .
VXB = -5+ —) (SI: EE—FMM)- (4.3.4)
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It follows that the charge density p and the current density j obey local charge conservation,

— ap

Vj+ = =0 4.3.5
I+ 5 (4.3.5)
The electromagnetic energy density and Poynting vector (power per unit area) are
1 €0 1
= —(E*+ B? SI: —E*+_—B 4.3.6
URM 871'( + B%) ( 9 + 2 ) ( )
~ . 1 —  —
S = “ExB (S —E x B). (4.3.7)
47 Ho

The electromagnetic fields are obtained as derivatives of the scalar and vector potentials,

—

E = -V - (4.3.8)

cot’
B = VxA (4.3.9)
The fields E and B remain unchanged if one makes a simultaneous change in ® and A, called

a gauge transformation,

d — @—3%—?, A = A+ VA, (4.3.10)
C

where A(7,t) is an arbitrary function of position and time.
In classical electrodynamics, the Lagrangian for a nonrelativistic particle with mass m and

chargd!| ¢ and position 7(¢), moving in the potentials ¢ and A, is

PR LA L A 1) — q®(7, 1) (4.3.11)
= —m J— _—. — . ..
2" \ar) Tear VY TR
The equation of motion resulting from applying eq. ([{I1.2]) is the Lorentz force law,
d*r — ldr =
— = E+-—xDB|. 4.3.12
e T ( YT ) (4:3.12)

The motion of a classica]H charged particle is thus determined only by the local values of E

and B. Although the Lagrangian is written in terms of the potentials ® and A, they are not

fThe convention in this book is that the electric charge for a particle is given by ¢ = Qe, where @ is a
dimensionless number, while e is the proton’s charge, numerically given by eq. (ILIZ), and positive. (Some other
sources define e to be negative, referring to the electron.) Thus, for the electron, @ = —1 and ¢ = —e, and for the
proton, @ =1 and ¢ = e. All known particles have @ equal to integer multiples of 1/3, and the ones unconfined
by the strong nuclear force have integer Q). For example, Q = 2/3 for up, charm, and top quarks, and Q = —1/3
for down, strange, and bottom quarks, and ) = —1 for the electron, muon, and tau lepton. Within the assumed
structure of the Standard Model of particle physics, this remarkable charge quantization can be understood as a
requirement of anomaly cancellation, a consistency constraint on quantum field theories with gauge interactions.
Grand Unified Theories (based on non-Abelian gauge groups like SU(5), SO(10), or Eg) go further, elegantly
explaining why all particles, known or unknown, must have integer values of 3@, but it is not presently known
if these theories are correct.

In quantum mechanics, the potentials ® and A affect charged particles in ways that are not encoded locally
in the fields E and B. This is demonstrated by the Aharonov-Bohm effect, discussed in section 28.4]
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physical observables, because the physics is equally well described if they are modified by any
gauge transformation of the form eq. (£3.10).
Applying the procedure in section E1] to eq. (£3.11]), the classical canonical momentum

conjugate to 7 is

dr  q—
D =m—+ A 4.3.1
P mdt + A (4.3.13)
and the classical Hamiltonian is
H = L(ﬂ_ﬂz@ t))2+ ) (4.3.14)
= 5 . 7, q®(7,t). 3.

Like the Lagrangian, the Hamiltonian and canonical momentum are not written directly in
terms of the fields E and B, but rather in terms of the potentials ® and A, even though the
latter are gauge-dependent. One must be careful to distinguish the canonical momentum p of
the particle from the kinetic momentum (also known as mechanical momentum), defined

as the product of mass and velocity,

dr q—
T=m—=7p—=A. 4.3.15
T=mo =P ( )

The kinetic momentum 7 is a gauge-invariant observable, since d7*/dt can be calculated from the
observed trajectory of the particle, and so cannot depend on the choice of gauge. In contrast,
the canonical momentum p is not a gauge-invariant observable, due to the appearance of Ain
eq. (AE3I3).

In quantum mechanics, we promote the classical position 7 and canonical momentum p to
operators, and thus the electromagnetic potentials become operators @(ﬁ, t) and Z(ﬁ, t) that

are functions of R. So, naively, the quantum Hamiltonian should be

0= o (P-TYA@En) + R ) (4.3.16)
2m C ) q ) ) M

where R and P satisfy the usual canonical commutation relations of eq. (Z854). This implies

that in the position representation, these canonical operators are represented by
R & 7 P < —ihV, (4.3.17)

as in Table 282 One must be careful with the ordering of P and A, so that [P — %Z(ﬁ, t)]? is
interpreted as the symmetrized form P2 — 4(P- A+ A-P) + Z—;AQ, in order that H is Hermitian.
However, eq. (£3.10)) is still not complete, because it does not include the (purely quantum)
effect of intrinsic angular momentum, or spin.

We will discuss spin more thoroughly in 8.2 but for the present discussion we only need to

know that the spin for a particle is an observable vector operator S. The intrinsic magnetic
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moment of a particle is always proportional to its spin (because, in the rest frame of the particle,

there is no other special direction in which it could point):
i = 7S (4.3.18)

The constant of proportionality ~ is a property of the particle type, called the gyromagnetic

ratio. For the electron, the gyromagnetic ratio is often written as

ge€
)
2mec

b = - (4.3.19)

where the dimensionless quantity g. is called the g-factor of the electron. The Dirac equation
of relativistic quantum mechanics predicts g. = 2, as shown in section 27.4] but there are small
corrections to this coming from the quantum field theory of relativistic quantum electrodynamics
(QED). It has been predicted very precisely by calculations in perturbation theory in QED, and

measured experimentally with comparable accuracy, with the results

ge = 2.00231930436321(46) (QED prediction, 5th-order perturbation theory), (4.3.20)
ge = 2.00231930436182(52) (experiment), (4.3.21)

a famous agreement of better than 12 significant digits between theory and experiment. The
quantity (g. —2)/2 is called the anomalous magnetic moment of the electron. In this book,
we will usually simply use the approximation g, = 2.

For the proton and the neutron, the gyromagnetic ratios are often written as

9p€
= 4.3.22
Y (4.3.22)
gn€
y = , 4.3.23
7 2mpc ( )

which again define dimensionless g-factors. Note that the neutron has a magnetic moment,
even though it has no net charge, because it is a composite particle with charged constituents
(quarks). The conventional definition of g, for the neutron in eq. (£3.23) uses the proton’s

charge and mass. The nucleon g-factors are also very accurately known experimentally,

gy = b5.5856946893(16), (4.3.24)
gn = —3.82608545(90), (4.3.25)

but the theoretical predictions of these quantities are not nearly as accurate. The reason is
that, unlike the electron, the proton and neutron are complicated composite particles made up

of quarks and gluons (and virtual quark/antiquark pairs) held together by the strong nuclear
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force, (quantum chromodynamics, or QCD) for which perturbation theory does not converge,
and non-perturbative methods are highly advanced but limited by finite computing power.

For electrons, protons, and neutrons, the magnitude of S is always the same, h/2. The
magnitude of the electron’s intrinsic magnetic moment is within about 0.1% of the Bohr mag-

neton,

h
iy = =P 5 7ss38 % 1052 997401 x 10-2 T

Mec esla gauss’

(4.3.26)

and the proton and neutron have magnetic moment magnitudes equal to about 2.79 and 1.91

times the nuclear magneton,

h \Y
Uy = 315245 x 1078 = 5.05078 x 10724 28>
2myc Tesla gauss

(4.3.27)

Because pp/puy = my/me. ~ 1836 is a large number, the magnetic moments of atoms with
unpaired electrons are typically 3 orders of magnitude larger than nuclear magnetic moments.
The classical energy of interaction of a magnetic moment g with an external magnetic field

is —i - B. So, we add this to the quantum Hamiltonian for a nonrelativistic particle, to get

—

B R N S 3
H = %<P—EA(R,1£)) +q®(B,t) — 7S B, (4.3.28)

where ¢ is the electric charge and ~ is the appropriate gyromagnetic ratio for the particle. Even
this Hamiltonian is not complete, for it does not include relativistic effects suppressed by further
powers of 1/c. These will be discussed when needed for the fine and hyperfine contributions to
the hydrogen atom, in sections [I7.1l and [I7.2] and derived in a more fundamental way from the
Dirac equation in sections and 2751

If the Hamiltonian eq. (3:28) is written in terms of the kinetic momentum operator
II=P— =4, (4.3.29)

it will appear simpler, since it then does not depend on the vector potential E,

—

1 - -
H = %W +q®(R,t) —~S - B. (4.3.30)

However, it is important that the kinetic momentum does not obey canonical commutation

relations. In the position representation, P <> —ihV, so that II <> —ihV — %Z(F), and
[Ro, Iy = ihdg, (a,b=x,y,2), (4.3.31)

just as for the canonical momentum, but

qh

[Ha, Hb] = z?(VaAb — VbAa). (4332)
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Rewriting this directly in terms of the magnetic field,

qh qh qh

I, 11| = i—B,, (1L, 11| = i—B,, I, 11,] =i—B,. (4.3.33)
c c c

This should be contrasted with the canonical commutator [F,, P,] = 0. If one chooses to write the
Hamiltonian in terms of the kinetic momentum, the simplicity comes with a cost; the information
about the vector potential and the magnetic field is hidden in the commutation relations for the
components of II with each other. Since II is the product of mass and velocity for the particle,
we see that in the presence of a magnetic field one cannot simultaneously specify the three
components of the velocity of a charged particle, because they are not compatible observables.

The freedom to make gauge transformations as in eq. ([L3.10) always allows us to select

Coulomb gauge (also known as transverse gauge), defined by
V-4 =0. (4.3.34)

Since P is given in the position representation by —ihV acting on everything to its right, the
Coulomb gauge condition implies P-A = AP, with the consequent advantage that (unlike
other gauge choices) there is no operator ordering issue with the cross-terms in the Hamiltonian,
of the type mentioned after eq. (£3.17). Thus, in Coulomb gauge, one is free to write

P2 g ¢

_ P agp
2m  mec +2m02

A? 4+ q® —~S - B. (4.3.35)

This form will be useful to us when we discuss absorption and emission of light, in Chapter

4.4 Exercises

Exercise 4.1. The purpose of this problem is to illustrate the possible ambiguities in connect-
ing classical observables to their quantum counterparts due to operator ordering. Consider a
particle moving in one dimension with position x and momentum p.

(a) Consider the classical quantity z?p*. The quantum operator X?P? is not Hermitian, but
two versions of it that are symmetrized in different ways to obtain Hermitian operators are
A=3(X?P?+ P?2X?) and B = 1(XP + PX)? Show that A and B differ by a certain rational
multiple of A?I that you will find.

(b) Similarly, consider the classical quantity z3p? and two candidate quantum Hermitian oper-
ator versions of it, C' = (X3P + P?X®) and D = {(XP + PX)3 Show that these differ by
an observable that you will discover. Simplify it and show that it is not proportional to the

identity.
Exercise 4.2. Show that the pairs (R, P) and (Rem, Piot) defined in eqs. [@24) and [@2H)

satisfy canonical commutation relations. Then check that the Hamiltonian of eq. (A2.1]) decom-
poses into H.,, and H,q as claimed in eq. ({L2.7).
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5 Transformations, symmetries, and conservation laws

5.1 Continuous unitary transformations, symmetries, and Noether’s
principle

As we saw in section [2.5] a unitary operator can be viewed as implementing a change of orthobasis
for the space of states. Certain unitary operators also have the interpretation of physical changes,
or transformations, on a system. Notable examples include translations, rotations, inversion
of the coordinate system, and displacements in time.

If a transformation leaves the Hamiltonian unchanged, then we say, as a definition, that
the transformation is a symmetry of the quantum system. In this section we will show, in
a general way, that there is always a conserved quantity corresponding to each continuous
symmetry. As special cases, we will see that the conserved quantities associated with time
translation, spatial translation, and rotation symmetries are, respectively, energy, momentum,
and angular momentum.

Consider the unitary transformation operator
Ula) = exp (—ia,G,), (5.1.1)

where the G, are a set of N Hermitian operators, typically observables without explicit time
dependence, called the generators of the transformations, and the «, are N real numbers that
parameterize the transformations. Here, and in the following, repeated indices a = 1,..., N are
implicitly summed over. Theorem 2.4.1] confirms that since o, G, is Hermitian, U(«) is a unitary
operator. Following the discussion surrounding egs. (2.5.20)-(2.5.31]), the transformations for
the state ket and all observables A are defined by

) — W) =Ul), (5.1.2)
A — A =UAUT, (5.1.3)

so that matrix elements are invariant under the transformation, because UTU = I. The inverse

of the transformation parameterized by «, is parameterized by —ay,,
Ul) = U(a)™ = U(-a). (5.1.4)

The closure property says that the combination of two transformations «, and [, should always

be another transformation, parameterized by some set of real numbers ,,

Up)U(a) = U®). (5.1.5)

A continuous set of transformations obeying these properties has the structure of a Lie group,

named after the mathematician Marius Sophus Lie.
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Consider the following sequence of unitary transformations that are infinitesimally close to
the identity,

UUOU()UG) = (I —ie,Gq+--- )T —i6Gp+ )T +i€.Ge+ - VI +i0Gq+ )
= I —€,6[Ga, Gy + -+, (5.1.6)

where terms of higher order in either ¢, or 9, have been dropped. The closure property implies
that this must also be a unitary transformation infinitesimally close to the identity, so [G,, Gy

must be a linear combination of generators. Therefore, we can write
[Gaa Gb] = ifachc (517)

for some set of numbers f,., called the structure constants of the Lie group of transformations.
Equation (BI7) is called the Lie algebra of the group. Since the commutator of any two
Hermitian operators [G,, Gy] is anti-Hermitian, and the G. are Hermitian, the quantities fu.
must all be real. This is the reason for the conventional factor of 7 in eq. (BLT). If the numbers
fave are all 0, so that the generators all commute, then the group is said to be Abelian, otherwise
it is non-Abelian. The mathematical study and classification of Lie groups is a rich and beautiful
subject that we will not delve into further here.

For the remainder of this section, let us consider unitary transformations that are symmetries

of a quantum system. According to our definition, this means that H does not change, so

eq. (B3] gives
Ula)HU ()" = H. (5.1.8)
Taking the special case that the parameters a, = ¢, are infinitesimal, we have
(I —ie,Go+ -+ )H (I +ie,Gpy+---) = H, (5.1.9)
which implies €,[H, G,] = 0. Since this is supposed to hold for any ¢,, we learn that
[H,G,] = 0. (5.1.10)

It follows from Theorem [2.7.1] that an orthobasis of energy eigenstates can also be chosen to be
eigenstates of any subset of the symmetry generators GG, that are mutually commuting. (If this
subset is maximal, it is called a Cartan subalgebra, after mathematician Elie Cartan).
Consider an eigenstate |g,) of one of the symmetry generators G, labeled by its eigenvalue
Ja- Since the symmetry generators GG, commute with the Hamiltonian, |g,) will remain an

eigenstate of GG, at later times, because
Ga (e—itH/h |ga>) _ e—itH/hGa |ga> S (e—itH/h |ga>) ) (5111>
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This holds even if the Hamiltonian depends on time, provided that [H (t), G,] = 0 for all ¢, as one
can see by replacing the factors e /" by the time-evolution operator U(t,ty) from eq. (B.232).
Furthermore, the symmetry generators G, are conserved quantities, also known as con-

stants of the motion. The precise meaning of this is given by the following result.

Theorem 5.1.1. (Noether’s principle) Suppose that an observable G, has no explicit time
dependence, and that it commutes with the Hamiltonian, which may be time-dependent. Then,
for an arbitrary state, the probability of each possible outcome g, for a measurement of G, is

independent of time.

Proof: The key point is that [H(t), G,] = 0 implies that, for any particular time ¢ = ¢y, one can
find an orthobasis of common eigenkets |g,, E, u), defined such that G, |ga, £, u) = g4 |94, E, )
and H(to) [ga, E,u) = E|ga, E,u). Here u = u, p are possible degeneracy labels for g, and
E, with the subscripts dropped for typographical simplicity. These orthobasis kets are fixed,
determined by the Hamiltonian at the time ¢5. Now, Postulate 4 tells us that if the system is in

a state [1(t)), then the probability of measuring G, at time ¢ and getting the result g, is

Pgart) = D (ga B ulto()) ((t)]gas B, ). (5.1.12)

E,u
Here FE and u are summed over, as the degeneracy labels for g,. Taking the time derivative,
and then using the time-dependent Schrodinger equation % |y = —% (t)|v) and its adjoint
g (Ul = 5 (W H(t), we get

d

P00 t) = =5 3 ({00 Bl HOW) (0l Eo

— (gs B ult (1) (B(0) H (D] gus B ) ). (5.1.13)

Since H(tg) |ga, F,u)y = Elgq, E,u) and (g, F,u| H(ty) = E (ga, F,u|, the two terms on the
right side of eq. (B.II3]) simply cancel if we evaluate them at t = t,. Thus, we obtain

%P(ga,t) =0 (5.1.14)
This shows that, for an arbitrary state, P(g,,t) has a vanishing time derivative at any given
t = ty, so it must be constant in time, as claimed. O
The expectation value of an operator in a state is the sum of its measurement outcomes
weighted by the probabilities; see eq. ([B.3.I). Therefore, Theorem [B.I.1] immediately implies
a weaker but still interesting and important result, that the expectation value of a symmetry
generator GG, in an arbitrary state does not depend on time:

d

7 (G,) = 0. (5.1.15)
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This also follows directly from Ehrenfest’s Theorem eq. (B4.10) with G, playing the role of A.
Theorem BTl and eq. (5.1I5) are quantum mechanical versions of Emmy Noether’s celebrated
1918 theorem in classical mechanics, that every continuous symmetry implies a conservation law.
The observables G, that generate the symmetries of the Hamiltonian are conserved quantities.

The most straightforward special case is that of time translation symmetry, for which the
generator is the Hamiltonian itself, as expressed by the Schrédinger equation (B.I.10) in Postulate
6. If the Hamiltonian does not depend explicitly on time, then the energy is a conserved quantity,
since [H, H| = 0 is trivially satisfied. In that case, for any state the probability of measuring
the energy to be any particular value is independent of time, and the expectation value of the

energy does not change in time.

5.2 Translations

For a particle moving in one dimension with position operator X and momentum operator P,

consider the operator
T(a) = e F/h (5.2.1)

where a is a constant length. Because P is Hermitian, Theorem 24T tells us that 7'(a) is a

unitary operator,
T(a)' = T(a)™' = T(—a). (5.2.2)
Using [X, P] = ih, one can apply Theorem [2.4.4] to obtain the commutator
(X, T(a)] = aT(a). (5.2.3)
From this we get, acting on a position eigenstate |z),
X (T(a)|x)) = T(a)(X +a)lx) = (x+a)(T(a)|z)), (5.2.4)

This shows that T'(a) |z) is an eigenstate of X with eigenvalue x + a, which means that it must
be equal to |z + a) up to a multiplicative constant. If |x) is normalized according to the Dirac
condition, then so will be T'(a) |z), since T'(a) is unitary. Therefore, the constant is just a phase,
and T'(a) |z) = € |x + a) for some 6. The only way to resolve the ambiguity represented by 6

is to arbitrarily choose a value for it, and 6 = 0 is as good as any, so we define
|z +a) = T(a)l|z). (5.2.5)

In words, T'(a) operates by changing a state in which the particle is known to be at x into a

state where it is known to be at x + a. We therefore call T'(a) a translation operator.
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Together, egs. (B2ZH) and (BZ2) imply
(x|T(a) = (x—al, (5.2.6)
so that for any state [¢), the wavefunction obeys

P(x—a) = (2[T(a)|y). (5.2.7)

This can be interpreted as shifting the particle’s position to the right by a (the “active view”),
or equivalently as leaving the particle’s position unchanged but shifting the coordinate system
to the left by a (the “passive view”).

If we do a translation on any normalized state [i)),

) = T(a)|e), (5.2.8)
then the expectation value of the position is changed according to
WIX[Y) — @IT(@)'XT(a)lY) = (WX +a)l¢) = WIX|¢) +a. (5.2.9)
The effect of T'(a) on momentum eigenstates is just to multiply by a phase,
T(a)|p) = e """ |p), (5.2.10)
and the expectation value of momentum is unaffected by the transformation,
WIPlY) — WIT(a)'PT(a)ld) = (W[PY). (5.2.11)

Following the general example of a unitary transformation of an operator in eq. (BL3), we
can also define for an arbitrary observable A the translated version A’ = T'(a)AT (a)!. Now if

we do a simultaneous transformation of both states and operators,

W) — [¥)=T(a)[¥), (5.2.12)

A — A =T(a)AT(a), (5.2.13)

then matrix elements will be unchanged. Using [X,7(a)] = aT'(a), the translated position
operator is

X' =T(a)XT(a)! = X —a, (5.2.14)

while [P, T'(a)] = 0 implies that the momentum operator does not change,
P’ = T(a)PT(a) = P. (5.2.15)
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From the rule T'(a) |z) = |z + a) found in eq. (5:23]), it follows that translations simply add,
T(a)T(b) = T(a+Db). (5.2.16)

One consequence of this is that any finite translation can be viewed as the combination of many
infinitesimal translations. For an infinitesimal translation, the exponential can be truncated to
linear order,

T(e) = 1 z’i—ZP. (5.2.17)

This is described in words by saying that the momentum operator is the generator of translations.
Since the momentum operator commutes with itself, in the general language of section [5.1] where

T'(a) plays the role of U(a)) and P plays the role of G,, the Lie algebra for translations is simply
[P, P] = 0. (5.2.18)

This is an Abelian algebra; the antisymmetric structure constants defined in general by eq. (5.171)
trivially vanish in this case, because there is only one generator, P.

Now suppose that a quantum mechanical system has translations as a symmetry, by which
we mean that the Hamiltonian is invariant. In particular, for infinitesimal translations, we
require T'(e)HT (¢)" = H, from which it follows that

_ ;£ p) _ _ ;£ 2
(1 th) H (1 n th> H = im[H P|+O() (5.2.19)
must vanish, so

[H, P] =0. (5.2.20)

In general, this requires the potential V' to have no dependence on X. The Hamiltonian could
be that of a free particle with H = P?/2m, but it could also have some extra terms that may
involve other functions of P or other degrees of freedom (for example, spin), but not X. In any
case, eq. (B2Z20) implies that there must be an orthobasis of common eigenstates of P and H.

An eigenstate of P with momentum p remains so at later times, since
P (e ™M p)) = p (e "1/ p)) . (5.2.21)

Also, Ehrenfest’s Theorem eq. (34I6) says

d

Z(P) =0, (5.2.22)

and Theorem [B.1.] says even more, that the probability to measure the momentum within

any given range will be constant in time. Note that these statements are true for any state,
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including an arbitrary superposition of free particle eigenstates with different momenta, provided
that [H, P] = 0. A non-trivial illustration will be provided at the end of section
For a particle moving in three dimensions, the preceding discussion can be adapted in a

straightforward way. The translation operator for a vector distance a is

T(@) = e @P/, (5.2.23)

and it satisfies
T@T0h) = T(@+b), (5.2.24)
T@™" = 7T@" = T(-a). (5.2.25)

The operation on position and momentum eigenkets is

@) = |F+a, F|T@) = 7 -1, (5.2.26)
T@)p) = e ““7"p), (Bl T(@) = 7" (p|, (5.2.27)

and the remaining discussion for the one-dimensional case likewise follows through for the three-
dimensional case with P replaced by P. Although there are now three generators P,, P,, and
P., they all commute with each other, so the structure constants are all 0, and the Lie group
is Abelian. Note that in the case of a charged particle moving in an electromagnetic field as
discussed in section 3] it is the canonical momentum P that generates translations, not the
kinetic momentum II.

Consider a quantum system describing two distinguishable particles labeled 1 and 2. Then
one can have translation invariance even with a non-zero potential, provided that the Hamilto-

nian has the form considered in our discussion of the two-body problem in section [£2]

H—P—12+P—22+V(T%—§) (5.2.28)
_2m1 2m2 ! 2 o

The individual translation operators for particles 1 and 2 are
T(@) = eidP/n Ty(@) = e id-Po/h (5.2.29)

These are not symmetries of the Hamiltonian unless the potential V(ﬁl — ﬁg) is neglected.
However, defining the total momentum operator ]3,501; = ]31 + ]32 as in section 4.2 one can check

that each component of ﬁtot commutes with each component of ﬁl — §2, SO
[H, P] = 0. (5.2.30)
Therefore, the total translation operator
T@) = T1(@)T3(@) = exp [—z’&-ﬁwt/h] (5.2.31)
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leaves the full Hamiltonian eq. (B.2:28) invariant,
T@HT(@)" = H, (5.2.32)

and is therefore a symmetry of the system. [Note that this would not be true if one added
individual potentials Vi(R;) or Va(R,) to the Hamiltonian.] Equation (5.232) simply reflects
the feature that the total translation moves both particles 1 and 2 by the same amount, and so
does not change the separation between them, nor either of their momenta. It follows that one
can find an orthonormal basis of simultaneous eigenstates of H and ]3,501; = ]31 + 132, and that
an eigenstate of P, remains so at later times, and that in an arbitrary state the probability of

measuring a given result for P, does not change in time, and its expectation value is conserved.

5.3 Rotations

In this section, we will explore the connection between rotations and the angular momentum
operators that generate them. Classically, the angular momentum of a particle about the point

chosen as the coordinate system origin is defined by
=7 xp. (5.3.1)

In quantum mechanics, we promote this to a vector operator, and define the orbital angular

momentum operator for a particle as

L =iLy+9L,+2L, = Rx P, (5.3.2)
where the components

L,=YP.—ZP,  L,= ZP,—XP., L.=XP,—YP, (5.3.3)

are each observables. There is no problem with operator ordering to worry about here, because
Y,P,|=[Z,P)=[Z,P)=[X.P,]=[X,P,]=1[Y,P] =0.

The commutator algebra for the angular momentum components L,, L,, and L, can be
computed using the commutators of the position and momentum operators that they are built

out of. For example,
L., L,| = [YP,,ZP,) + [ZP,, X P,] = —ihY P, +ihXP, = ihL,. (5.3.4)
Similarly,

[L,,L.] = ihL,, [L.,L,] = ihL,. (5.3.5)
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The last three equations can be summarized asH
[La, Ly] = iheapeLe, (a,b,c=x,y, 2). (5.3.6)
Here, €4 is the totally antisymmetric Levi-Civita symbol, with
€xyr = Eyzg = €xay = 1, €roy = €yar = Exyw = —1, (5.3.7)

and all other components €,,. = 0. It obeys the identities

€abc€dec — 5adébe - 5aeébd7 (538>
€abc€dbe = 25ada (539)
€abc€abe = 6. (5310)

In the general language of section 511 the role of the generators G, is taken by L, /A for rotations,
as we are about to show. Comparing eq. (0.3.0) to eq. (B.IT), we see that the Lie algebra of
angular momentum operators is non-Abelian, with structure constants fu. = €we. Note that
there is always an arbitrary normalization in the definition of the generators; it was convenient
to include the factor of 1/h here so that the structure constants are dimensionless.

Rotations are defined by the property that, as changes in coordinates, they leave invariant
the distances of points from the origin. The composition of two rotations is another rotation;
in mathematical language, rotations correspond to the Lie group called SO(3). In quantum
mechanics, we can think of rotations as a unitary change of basis corresponding to the change in
coordinates; a rotation by an angle o about the axis defined by a unit vector 7 is implemented
by a unitary operator U(a), where @ = na. The fact that rotations form a group means that
for any @ and B,

UpU@) = U®F), (5.3.11)
for some 7. In particular, arbitrary finite rotations can be constructed from the limit of a large
number of infinitesimal rotations.

Let us now show that (for the case of a single spinless particle) L, is the generator of rotations
about the z-axis (analogously to how P, is the generator of translations along the z direction).

For such a rotation by an angle «, the coordinates transform as

x cosae —sina 0 T
y| — |sina cosa O] |y]. (5.3.12)
z 0 0 1 z

THere, and from now on, we use the repeated index summation convention, which says that repeated
indices are implicitly summed over, except when they appear on both sides of an equation. Thus, in eq. (5.3.6)),
¢ is summed over, but a and b are not.
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If a = € is infinitesimal, then this becomes © — x — ey and y — y + ex, and of course z — z. We

therefore define an infinitesimal unitary rotation operator by its action on the position eigenkets,
UeZ) |z, y, z) = |v—ey, y+er, 2), (5.3.13)
which implies
(x,9,2|U(2) = (zv—ey, y+ex, 2|, (5.3.14)
with U(e2)" = U(e2)™' = U(—€2). It follows that, for any state [1),
(r,y,2|U(e2)[Y) = (z+ey,y—ex, 2lp) = (z+ey,y—ex,z)

0 0
= ¢(.§lf,y,2) +€y%¢(%yaz) _‘ng_yw(x,y,z), (5315)

where the last equality is the result of the Taylor series expansion to linear order in €. Now,

since 0/0x <> iP,/h and 0/0y <> iP,/h in the position representation, we have
N i
(0 AV = (y.2l [T ce(XP,~YP)| [ (5.3.16)

for every state |1), so comparing with the definition of L, in eq. (5:3.3)), we find

l

Ulez) = I— ?_LGLZ. (5.3.17)
This establishes that L. generates rotations about the z axis, and that
0 0
L, —th|r— —y— 5.3.18
=i <x o Y 01’) ( )

in the position wavefunction representation.
There is nothing special about the z-axis in the preceding discussion, so repeating the pre-
ceding process for infinitesimal rotations about the x and y axes, one obtains

{ {

Ulex) = I — ﬁeLx, Uley) = I — ?_LeLy, (5.3.19)
with L, and L, given by egs. (5.3.3]), and position representations
0 0 0 0
L, ¢ —ih(y2 -2 L, & —in (2L -2 2. 5.3.20
=i <y8z Z@y) y & —i <Z8:E x@z) ( )

Thus L,, L,, and L, are generators for rotations about the z, y, and z axes, respectively
(assuming that there is no intrinsic angular momentum).
The unitary rotation operator for a non-infinitesimal angle v can be built from the limit of

a large number N of infinitesimal operators with € = o/, acting sequentially, so

. N .
Ulaz) = A}l_I)IlOO ([ - %%Lz) = exp (—%aLz) , (5.3.21)
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where we have used the definition of the exponential of an operator in eq. (Z2227). For a rotation

by an angle a about an arbitrary axis n, this generalizes to
Ulan) = exp (—%a : E) , (5.3.22)

where @ = na.

For the position representation, we could also use cylindrical or spherical coordinates instead
of rectangular coordinates, so that the position eigenkets are |r, ¢, z) or |r,0, ¢), respectively.
For spherical coordinates in particular, this has the advantage that one of the coordinates, r,
is not involved in the differential operators that represent the angular momenta. In spherical
coordinates, eq. (B.3.15]) becomes

0
(r,0,0|U(ez)|v) = ¢(r,0,9) +€a—¢¢(7¥9, 9), (5.3.23)
so that as an equivalent to eq. (B.3.1I3),
L. —z’ha%. (5.3.24)

For the special case of rotations about the z axis, this also holds in cylindrical coordinates.
Let us now solve the eigenvalue problem for the operator L., using the position representa-
tion. Because eq. (5324 only involves the coordinate ¢, the following derivation works equally

well in spherical or cylindrical coordinates. We start with
L.|l,) = L], (5.3.25)

where [, is the eigenvalue, also used as a label for the eigenstate, and we have suppressed any

degeneracy labels. In the position representation, this becomes

L0
—Zha—¢¢(¢) = L.Y(9), (5.3.26)

also suppressing the dependence on other coordinates. The solutions are
U() = cem, (5.3.27)

where c is a non-zero normalization constant. The range of ¢ is the continuous interval 0 < ¢ <
2m. Therefore, for L, to be a Hermitian operator, by following exactly the same derivation that
led to eq. (2.8:23) with P replaced by L., we find that for any wavefunctions ¢ and 1)y

[ (2m)]"pa(2m) = [11(0)]"12(0) (5.3.28)

must hold. A sufficient condition for this to be satisfied is that all wavefunctions obey ¥ (27) =

¥(0), and more generally (¢ + 2m) = (). It is necessary to impose this periodic boundary
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condition anyway, in order for the wavefunction to have a unique expansion in terms of position

il.2m/h

eigenstate kets. It follows that e = 1, which requires that

I, = hm, (5.3.29)

where m is an integer. The use of the letter m is traditional in this role, and it is sometimes
called the magnetic quantum number. We therefore use it as a label for the corresponding

eigenstates of L., and write, from now on,
L.lm) = hm|m). (5.3.30)

All of the preceding was derived with the assumption that the angular momentum was
associated with the motion of a single particle. More generally, a Hilbert space can describe
more than one particle. Furthermore, each of the particles may also have an intrinsic angular
momentum, or spin, which has no classical counterpart, and is not associated at all with the
quantum mechanical position wavefunction of the particle. These distinct types of angular
momenta can also be combined to form new angular momenta.

In general, we define an angular momentum operator
J = aJ, + 0, + 2. (5.3.31)

to be one that satisfies a commutator algebra that has the same form as for orbital angular

momentum. Specifically,
[z, Jy] = ihJ, [Jy, J.| = th, (., Jy] = ihJy, (5.3.32)
or equivalently
[Ja, Jo] = theape .. (5.3.33)

Because the components of an angular momentum operator J do not commute with each other,
they are not compatible, and one cannot find a complete orthobasis of J eigenstates. The only
solution to the eigenvalue equation .J I7) = 717) has j = 0. Thus, an angular momentum vector
J is not an observable, although each of its components is. If we choose eigenstates of .J,, they
cannot also be eigenstates of J, or .J,, except in the very special case that all of the eigenvalues

are 0. However, you can check that the angular momentum squared operator
J =T+ I+l (5.3.34)

does commute with .J,. This means that J? and J, have common eigenkets and can be part of

a CSCO. The simultaneous eigenvalue problem for J? and .J, will be worked out in Chapter
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For each particle, the intrinsic angular momentum, or spin §, is a special case of J defined
by the property that it has fixed magnitude, in the sense that all particles of a given type have
the same eigenvalue of S?, which can never change. For any single particle, the total angular
momentum operator is simply the sum of the orbital and spin parts, J = L + S. (Note that
we use the same symbol J as for a generic angular momentum operator defined in the previous
paragraph.)

For the two-body problem of section [£.2] you can check that the total orbital angular mo-

mentum operator (not including the spins) can be written in two equivalent ways as

Lot = Li+Ly = L+ Ly, (5.3.35)

—

where Zl = ﬁl X 131 and Zz = Ry x ]32 for the individual particles, and

l

L=RxP, Lewm = Rem X Py, (5.3.36)

define the relative and center-of-mass contributions to the angular momenta. It is often sensible
to restrict to the subspace of states with vanishing total momentum in the center-of-mass frame,
consisting of eigenstates of ﬁmt with eigenvalue 0. If we do so, then Ecm vanishes identically,
and the relative angular momentum L is equal to the total angular momentum ftot.

More generally, for a given choice of origin, every three-dimensional physical system has a
total angular momentum operator J, which adds both orbital and spin angular momentum
contributions for all of the particles that are present. By definition, J is the operator that acts

on the full Hilbert space of states to generate rotations about any axis n by any angle «, with
U@) = exp (—iaﬁ : j/h) : (5.3.37)
where @ = na. To rotate a state [¢), the unitary transformation is
W) — [¥) = U@)[y). (5.3.38)
We also define rotated operators
A — A =U@AU@), (5.3.39)

so that, due to the unitarity of U(a), matrix elements of the rotated operators between rotated
states are the same as the original matrix elements, (\'|A'|¢") = (x|A|¢Y).

Suppose that the Hamiltonian for a system has the symmetry of invariance under rotations
generated by an angular momentum component 7 - J, so that rotations about the unit vector

axis n are a symmetry of the system, and

H, n-J] = 0. (5.3.40)



(It is traditional to choose the coordinate system so that n = Z, unless there is a good reason not
to, but let us be more general.) One can then choose an orthobasis of simultaneous eigenstates
of H and 7 - J, and as shown on general grounds in section 5. 7 - J is a conserved quantity:.
This means that eigenstates of 7 - J will remain so under time evolution, and for an arbitrary

state the probability to obtain a given outcome for a measurement of n - J is constant, and

% (h-J) = 0. (5.3.41)

If the Hamiltonian is invariant under all rotations, it is convenient to choose a CSCO to include

H, J?, J., since these observables commute with each other.

5.4 Parity

Another kind of coordinate transformation is parity (also known as space inversion), defined
as the replacement of each rectangular position coordinate by minus itself. Unlike translations
and rotations, parity is a discrete group known as Zs; acting twice with parity gives back the
identity operation, and there are no infinitesimal parity transformations.

Let us start by defining the parity operator II for a particle moving in one dimension by

giving its action on the position-eigenstate orthobasis kets,
[Iz)y = |—z). (5.4.1)

(Note that |—z) is the ket that describes a particle known to be at the point —z, and is not at
all the same thing as —|z), which still describes a particle known to be at the point x.) Since

IT(IT |z)) = |z}, we have TTTI = I, so that parity is its own inverse,
nt = IL (5.4.2)
Also, taking the Hermitian adjoint of eq. (5.41)) gives (z| [T = (—z]|, so
(Z|lz) = (=2|z) = 6(x+2) = (2| —x) = (&|1|z). (5.4.3)
Since this is true for every |z) and |2') in the position orthobasis, it must be that
I = 10 (5.4.4)

Comparing eqs. (5.4.2]) and (.44, we see that the parity operator is both unitary (an invertible
map from an orthobasis to another orthobasis) and Hermitian (an observable). Since all Hermi-
tian operators have real eigenvalues, and all unitary operators have eigenvalues with magnitude

1, the only possible eigenvalues of Il are 1 and —1.
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Given a wavefunction (z|¢)) = ¢(z) for an arbitrary state |¢), we have

(z[l]yp) = (=z|¢) = ¥(-=). (5.4.5)
Applying this to the case of a momentum eigenstate,

(@lllp) = (~alp) = <=/ = (s] =), (5:4.6)

from which we learn that

I|p)

| —p). (5.4.7)
Similarly, it is easy to show that
[XII = —-X, [IPII = —P, (5.4.8)

so that the position and momentum operators are both said to be odd under parity. More

generally, one defines the parity of an operator A as
4= +1, if TIAIl = £A. (5.4.9)

However, not all operators have definite parity in this sense.

If A is even under parity, m4 = +1, it follows that
ITA — AIl = 0, (5.4.10)

so that IT and A are compatible operators, and can have common eigenstates. For example, the
Hamiltonian H = P?/2m + V(X)) is parity-even if, and only if, V(X) is an even function of X.

In the special case of a free particle with V' = 0, the simultaneous eigenstates of H and II are

B, +1) = %um Flp).  IE 1) = %um ~-p), (5.4.11)

where p = v2mE /h. However, since P does not commute with I, one cannot find simultaneous
eigenstates of them, and indeed the parity eigenstates |E, £1) are not eigenstates of momentum.

Just as for translations, parity generalizes straightforwardly to three dimensions. Define
7 = |-7), (5.4.12)
from which it follows that

|p) = |-p), (5.4.13)
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and position and momentum operators carry odd parity,

— —

IR = —R, [IPIl = —P. (5.4.14)

Angular momentum operators, as defined in the previous section, always have even parity,

—

I = J (5.4.15)

In the case of orbital angular momentum, IILII = L follows directly from the definition of the
components of L in eq. (E33). For more general angular momentum operators (including spin),
the even parity can be inferred from the general commutator algebra structure in eq. (£3.33).
If the potential energy depends only on the radial coordinate, so that the Hamiltonian has the
form H = P?/2m+V (R), then this H commutes not only with L? and L., but also with II. Such
a system therefore admits simultaneous eigenstates of all four operators. In that case, parity is
a symmetry of the system, and eigenstates of parity will remain so under time evolution.

A powerful application of parity is to the identification of selection rules for matrix elements.
Suppose that an operator A has definite parity 74 as defined by eq. (5.4.9]), and that the states

|Y) and |¢) are parity eigenstates with eigenvalues 7, and 7y, respectively. Now we note that

(0lA[Y) = ma (QIIATI|Y) = mamsmy (G[A[Y) . (5.4.16)

The product mamemy, is either +1 or —1. In the former case, eq. (5.4.16)) tells us nothing, but in

the latter case, we obtain:

Theorem 5.4.1. (Parity selection rule) If states |¢) and |¢) and an operator A all have

definite parities, and Tamymy = —1, then the matriz element (¢|A|) must vanish.

This result has many practical applications, including neatly explaining the absence of certain
atomic transitions. Before investing your valuable time in calculating a quantity, it is always a

good idea to consider first whether it must vanish due to a matrix element selection rule.

5.5 Gauge transformations

Physical systems that involve electromagnetic interactions with charged particles can be formu-
lated in terms of potentials, subject to gauge transformations

10A

b & - A AL VA 5.1
— ot — A+ VA, (5.5.1)

where A(7, t) is an arbitrary function. As discussed in section[4.3] the physical situation described
by a pair of potentials (P, Z) is equally well described by any pair (¢, A ) related to them by a

gauge transformation.

123



Before proceeding, we pause to emphasize that gauge transformations have a completely
different character than the other transformations discussed in the preceding sections. If we
do a translation or rotation on a system, we have transformed the system into a physically
distinct one. A particle that has been translated by 1 centimeter is in a different place, clearly
distinguishable by experiment. To say that a system has translation symmetry means that we
can physically move the whole system in an experimentally measurable way without changing
the Hamiltonian that describes its time evolution. In contrast, the whole point of gauge trans-
formations is that although they do change the Hamiltonian, they do so without changing the
actual physical situation at all. There is no way an experiment can tell whether or not we have
chosen to write the Hamiltonian in Coulomb gauge! Although it is common to refer to “gauge
symmetries”, gauge transformations really are not symmetries in the same way that translations
or rotations can be. Instead, they are a manifestation of the fact that the potentials have an
arbitrariness, in the form of redundancies in our description that can be eliminated by fixing
the gauge.

Consider a classical charged particle in an electromagnetic field. Clearly, if we do a gauge
transformation the position and the velocity of the charged particle are unaffected, since they
can be measured experimentally. However, the classical canonical momentum p defined in
eq. (L3TI3) does change with a gauge transformation, because it involves not just the velocity
but also the gauge-dependent potential A.

In the quantum description, the state ket used to describe the system is similarly gauge-
dependent. Naively, this might seem like a problem, but it is not, because the state ket by
itself is not a physically measurable observable. For example, we already have pointed out that
multiplying a ket by a constant complex phase does not change probabilities. In the following,
we will show that the gauge transformation of the ket describing a single particle of charge ¢ is

realized as a unitary transformation
Upn = exp [Z%A(ﬁ, t)] : (5.5.2)
c

which imparts a position-dependent complex phase to the state ket,

) — W) =Ualy), (5.5.3)

and which must be accompanied by changes in the electromagnetic potentials,
B(B.1) — B(Bt) — d(R.1) - %%A(ﬁ, P, (5.5.4)
AR,t) — A(R,t) = AR, t)+ VA(R.t). (5.5.5)

Thus, a gauge transformation in quantum mechanics is defined as the simultaneous changes in
egs. (B53)—-(E50) with the same A. Primes are used to indicate the state ket and operators
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after the gauge transformation. For any operator €2, the definition of the gauge transformation
QO - o (5.5.6)

is obtained by applying eq. (B54) and (B.50) to the potentials appearing explicitly in the
definition of 2. We now show that physical predictions are unaffected by such a transformation.
We start by noting that a prerequisite for an operator €2 to be a gauge-invariant observ-

able is that its expectation values should be the same before and after the gauge transformation,

@IQp) = @), (5.5.7)

Requiring this to be true for all state kets [¢)), and using eq. (B5.3), we obtain the defining

property of a gauge-invariant observable,
Q = UQUL. (5.5.8)

Not all Hermitian operators that would otherwise satisfy the requirements of being an observable
will have this property.
For example, consider the canonical operators R and P. Since they do not depend explicitly

on the potentials, we have
R =R, P =P (5.5.9)
Meanwhile, using the definition of Uy in eq. (55.2]), we find

U\RU! =
U\PU| =

R, (5.5.10)
ﬁ—%ﬁA (5.5.11)

The first equation is an immediate consequence of the fact that U, involves only R and not 18,
and the second follows from applying Theorem 2.4.4 Comparison of eqs. (B.5.9)-(E.5.11) with
eq. (B.5.8]) shows that Risa gauge-invariant observable, but the canonical momentum operator
P is not. In contrast, it follows from eq. (5.5.5) that the gauge transformation of the kinetic

momentum

=724 (5.5.12)
c
isIl' =P — %(E + ﬁA) =1 — %ﬁ/\. Using eq. (.5.17)), this can be rewritten as
' = U\IU]. (5.5.13)

This establishes that the kinetic momentum II is a gauge-invariant observable, according to our

defining requirement of eq. (B.5.8)).
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Since this was perhaps a bit tricky and unexpected, we reiterate. Even though the canonical
momentum operator P does not change when we do a gauge transformation, its expectation
values do change, so it is not a gauge-invariant observable. And, although the kinetic momentum
operator Il changes when we do a gauge transformation, its expectation values do not, so it is a
gauge-invariant observable. These are the quantum versions of the statements made about the
gauge dependences of the classical quantities p and 7 following eq. ([L3.15).

The Hamiltonian operator in eq. (£3.28) certainly changes when we do a gauge transforma-
tion, since it depends explicitly on the potentials ® and A. Using eqs. (5.5.4) and (5.5.5) gives

the gauge transformation of H,

H — H/:i(?—gz—?ﬁ/\yw@————ﬁﬁ (5.5.14)
2m c c c ot ' o
Equations (5.5.10) and (5.5.11)) allow us to rewrite this in the convenient form
H' = U\HU} +ih (a{%) Ul (5.5.15)
Now, given the Schrodinger equation
d
= [9(t) = Hy(t), (5.5.16)
it is straightforward to use |¢(t)") = Upxle(t)) and eq. (B5.10) to obtain
o d
ih [0(t)) = H'[()). (5.5.17)

This shows the key result that the Schrodinger equation for time evolution is also satisfied if H
and [1(t)) are replaced by their gauge-transformed counterparts.

Another consequence of eq. (5T0) is that the Hamiltonian in eq. (328 is not, in general,
a gauge-invariant observable, due to the presence of the last term. However, the requirement
H = U\H ij is satisfied for the subset of gauge transformations such that 0A/dt = 0. Thus,
if we limit the gauge transformations to those that do not depend explicitly on time, then H
is a gauge-invariant observable in that restricted sense. Also, if the potentials ® and A do
not depend on time, then according to the results at the end of section .1l H is a conserved
quantity, the total energy of the particle.

If the gauge non-invariance of H for time-dependent A bothers you, note that a A that
is linear in time and independent of position just adds a constant term to ® and thus to H.
This corresponds to the classical freedom to add a constant to the energy without affecting the
equations of motion at all.

The defining requirement for gauge-invariant observables, eq. (5.5.8)), was obtained by requir-

ing that expectation values do not depend on the choice of gauge. Now we will use eq. (L.5.8) to
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prove the stronger result that all probabilities for measurements of such observables are gauge
independent. Consider a gauge-invariant observable 2, and choose an orthobasis of its eigenkets

with degeneracy labels u,,, so that
Qw,u,) = wlw,uy). (5.5.18)

According to Postulates 3 and 4, the probabilities for allowed results of the measurement of €2

in a state [¢) are
= > lwul). (5.5.19)

Now, we observe that
Q' Up|w, up) = UrQUL Unlw, 1) = UpQw, 1) = wly|w, uy), (5.5.20)

which shows that the states Up|w, u,) are eigenkets of {2, with the same eigenvalues w and the
same degeneracies. Therefore, we can compute the probability to obtain the result w from a

measurement of ' in the gauge-transformed description as
Z| (w, u | UL |2 Z| (w, u,| UL U [0) |2 Z| (w,ug|V)|? = P(w).  (5.5.21)

Thus, we have succeeded in our goal of showing that the predictions for measurements of gauge-
invariant observables are not changed by the gauge transformation. This is in accord with
the general principle that gauge transformations affect our equations in intermediate steps of
calculations, but do not change the final results that reflect physical reality.

For simplicity, in the preceding we have treated the case of a single particle with charge q.
In the case of more than one particle, with charges ¢, and masses m,,, the same discussion goes

through, with Hamiltonian

H = Z (2m [P - %X(Rn,t)]z + ¢u® (B, t) — Y0 S - B(Rn,t)) : (5.5.22)

subject to gauge transformations as given by egs. (B.5.3)—([E5.4), but with

7 —
Uy = — WA (R, t 5.5.23
e 5523)
The gauge transformation of the wavefunction in the position representation, (7,...,7,) =
(T1,. .., a|t), is therefore given by
S S i S S S
w(rla s 7rn) — €xXp [% ; an(rna t)] ,lvb(/rla s 7rn)' (5524)
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This consists of multiplication by a phase that may depend on time and the particle positions.
Thus, gauge invariance can be viewed as the statement that multiplying the wavefunction for a
system of charged particles by a phase of this special form can be compensated by a redefinition
of the electromagnetic potentials. In practice, one may avoid this redundancy in the description
of the physical system by fixing the gauge. This just means that one chooses a specific form of
the potentials, or at least imposes some condition on them that will not be satisfied if one does
an arbitrary gauge transformation.

It is also possible to turn things around, and view the gauge transformations as the starting
point that determines the interactions. In quantum mechanics, the physics is always indepen-
dent of a change in the conventional choice of global phase of the wavefunction. If we generalize
this to a local change in phase, as in eq. (5.5.24)), then we are led to introduce the electromag-
netic potentials to compensate, and thus to the necessity of interactions of charged particles
with electromagnetic fields. Although it is beyond our scope here, this approach allows the
interactions of the strong and weak nuclear forces to be determined by their non-Abelian gauge

transformation groups, SU(3) and SU(2) x U(1), respectively.

5.6 Currents and local conservation of probability

From Postulate 4, and the completeness of position eigenstates, we know that the probability

to find a particle within an infinitesimal volume d37 is given by the Born rule,
dP = p(7.t) d°7, (5.6.1)
where the probability density per unit volume is

p(Ft) = [(Flv()]* = [ . (5.6.2)

Assuming the total probability of finding the particle somewhere is fixed and equal to 1, there

must be a law of conservation of probability. The local form of this law is a differential equation
dp = =
— = -V J 5.6.3
g (5.6.3)
where J is a probability current density. The left side of this equation is the rate at which
probability density is accumulating at a point, which the right side tells us is the negative of a
source for the vector field .J.
To prove eq. (B.63)), and identify the current density, start with the Schrodinger equation in

the position representation with wavefunction 1, and multiply by —iy* /A,

0

N .
W = gV = SV (5.6.4)
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Adding this to its complex conjugate, we get

9p ih 2 2
— = — (V'VY —yYVY), 5.6.5
00— v pvry) (5:65)
in which the contribution proportional to V' (7) has canceled due to the fact that the potential
is real. Now if we define the probability current density by

—

= — (Ww — w) : (5.6.6)
then we have

= = _ th 2% a2

V-J = % (@DV Y =PtV @D) , (5.6.7)

where two terms proportional to Vio* - Vib have canceled. Comparison of egs. (5.6.5) and (5.6.7)
establishes the local conservation of probability, eq. (5.6.3).
In the case of a charged particle, an important modification is needed if the vector potential

A is non-zero. Starting with the Hamiltonian in eq. (#328)), one can show by steps similar to
those followed in eqs. (5:6.4)—(56.7) that the current density satisfying V - J = —dp/dt is

J = %Re [w* (—iiﬁ . %Z) w] , (5.6.8)

generalizing eq. (5.6.0). Here, —ihV — %Z is the position representation of the kinetic momentum
operator, ﬁ, which was introduced in eq. ([£.3.29) of section A3l This expression for J is invariant
under gauge transformations, and is related to the electric current density j by j = qj, where
q is the electric charge of the particle.

As an example, consider a free particle in a plane-wave simultaneous eigenstate of momentum

and energy with eigenvalues p = ik and E = h2k?/2m,
Y(Ft) = CekriEn, (5.6.9)

In terms of the complex normalization constant C, the probability and current densities are just

constants in both time and position,
-~ ih, - - p
=|CP, J = —(—ik —ik)|C]> = =p. 5.6.10
p=lc - (=iF —Bler = £y (56.10)
If the domain of the particle is all space, then the wavefunction is not normalizable to unity
for any finite C, but at least the ratio of the current density to the probability density is well-
defined and equal to the velocity eigenvalue of the particle. Although the probability density is

constant, it is constantly flowing in the direction of ¥ = p/m. So, in the case of a free particle,

dp = =
5 =0 _V-J =0, (5.6.11)
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satisfying the local conservation of probability in the most trivial possible way.

In the case of one-dimensional problems, the probability density and current are

_ 2 _ Gh (00 00
R R Ly (T (5:6.12)
and the statement of local conservation of probability is
ap oJ
N - AL 6.1
ot Ox (5.6.13)

The current density vector is just a number in the one-dimensional case, and is positive for
probability density flowing to the right, and negative for flow to the left.

A key ingredient in establishing conservation of probability was the reality of the potential
V' in the position representation, or more generally the hermiticity of the Hamiltonian operator.
This is also directly related to the unitarity of the time evolution operator U(t,t) that we
studied in section B4l However, in some situations, one can think of probability as not being
conserved. For example, suppose that we are using quantum mechanics to model the behavior
of an unstable particle. If our Hilbert space only describes the unstable particle, and not the
other particles that it decays into, then we should expect that the total integrated probability
to find it somewhere should decrease with time. To describe situations like this, we can break
the law for a good cause, by taking the Hamiltonian to be non-Hermitian.

To see how this works, suppose that we defy the authority of Postulate 6 by taking H to

have complex eigenvalues, with corresponding normalized eigenkets |¢,,), so that

H¢n) = (En — 11'0n/2) @), (5.6.14)

where E,, and I, are real numbers. Of course, this is only possible if H is not Hermitian, due
to Theorem 2.6.3 If the state of the system at time ¢ = 0 is one of them, [¢)(0)) = |¢,), with

unit norm, then the time evolution predicted by the Schrodinger equation will be non-unitary,
[h(t)) = e " EnmiTn/2Uh 4y (5.6.15)
The norm of this ket as a function of time is therefore

WD) = e (5.6.16)

We can then interpret the squared norm of the ket as the probability that the particle exists at
time ¢ > 0, given that it existed at time ¢ = 0. [Compare to eq. (3I13]) with P, = I.] The mean
lifetime of our unstable state |¢,) is thus 7 = A/, where I';, /2 is the negative of the imaginary

part of the Hamiltonian eigenvalue.
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The unstable states could correspond to particles that undergo spontaneous decay, such as
the neutron, the muon, or many atomic nuclei. The non-Hermitian-Hamiltonian formalism could
also be applied to a set of atomic states, if our quantum treatment does not include the complete
set of states to which they could decay, including photons released in the process. It could even
apply in a description of a single absolutely stable particle like the electron, if it can be removed
from the system under discussion by a process like electron-capture inverse beta decay, which
in some nuclei occurs as e~ p — vn. This would correspond to an effective potential V (7) with
negative imaginary parts localized at the nuclei. By repeating the steps of egs. (£.6.4)-(5.6.7),
one can see that, in the case of a non-Hermitian potential, the equation that governs the local
probability density and current is

o = = S
5 = \Y J—l—hlm[V(r)]p. (5.6.17)

In all such cases of particles decaying to other particles, or interacting in such a way as to
change their numbers, the use of a non-Hermitian Hamiltonian is really a sign of an incomplete
description. There is always a more fundamental description in which the complete Hamiltonian
will be Hermitian. Quantum field theories provide the natural way to incorporate processes that
change the numbers of particles, in such a way that the postulates of quantum mechanics hold,

including unitary time evolution as predicted by Postulate 6.

5.7 Exercises

Exercise 5.1. Show that the components of the position, momentum, and angular momentum

operators for a particle satisfy
[La, Rb] = 'éhEabcRc, [La, Pb] = ’ihEabcPC, (571)

for all a,b,c =1,2,3, where Ry = X, R, =Y, and R3 = Z, and P, = P,, P, = P,, and P; = P..
Use these results, and eq. (B13]), to obtain the transformed position and momentum operators

R’ and P’ resulting from a rotation U = e~#L=/" to first order in a.

Exercise 5.2. For a system of two particles labeled 1 and 2 as discussed in section .2 show
that the total angular momentum can be written in the way claimed in eq. (£335]) in terms of
L and Loy defined in eq. (53.36). Show that L and Ly each obey the defining requirement of

an angular momentum operator in eq. (5.3.33)).

Exercise 5.3. Derive eq. (5.6.8)), the probability current density J in the presence of electro-

magnetic potentials ® and A. Show that it is invariant under gauge transformations.
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6 Particle moving in one dimension

6.1 Gaussian wavefunctions

Consider a particle moving in one dimension in the domain —co < x < co. Suppose that at

some moment in time, the position wavefunction has a Gaussian form,

(z|v) = Y(z) = Nexp [—(z —a)’/407]. (6.1.1)

Here a and o are constants with units of [length], corresponding respectively to the center and
the width of the probability density |¢(x)[?. More precisely, the full width at half maximum
(FWHM) of the Gaussian peak of the probability density is 2v/21n 20 ~ 2.350. The factor N is

a normalization. If we require the ket [¢)) to have unit norm, we need

- |N|2/_OO dz exp [~(z — a)%/20%] = |NPV2ro, (6.1.2)

[e.9]

so we can choose N = ¢ /(2m0?)Y/*, where 0 is any phase. If @ is a constant, then it is a global
phase and has no physical significance at all, so let us choose the next simplest possibility, that

0 depends linearly on x. The Gaussian wavefunction that we choose to study is thus

1

P(x) = 2ro?)i/i e exp [—(z — a)? /40| (6.1.3)

for some constant k, whose interpretation will become clear soon. We will not need to assume
anything in particular about the Hamiltonian of the system in this section.

According to Postulate 4, the probability of finding the particle between x and x + dx is

dP(z) = [(z|y)]*dz =

\/21_7“7 exp [—(z — a)*/207] da. (6.1.4)

Therefore, the probability of finding the particle in a range b < x < ¢ is

1

2ro

Pb<zx<c) = /bc dz exp [—(z — a)?/207] . (6.1.5)

We can also find the expectation value of X in the state |1},

(X) = (WX = /w da X (al) = [ " de (@)

B 217TU /_oo dr v exp [_(‘T o a)2/202} = \/21—7TU /_OO du (u + a) exp [—u2/202}
- (6.1.6)

The second equality uses the completeness relation, the third uses X|x) = z|x), and the fourth

uses the common trick of “completing the square”, which means that we define a new integration
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variable u so that the exponential in the integrand depends only on u? (with no linear term in

u). Here, the change of variable was x = u + a. Similarly, we have

(X% = \/21_7ra /_Oo du (u+ a)*exp [—u?/20%] = a® + 0”. (6.1.7)

Therefore, the uncertainty of X for this state is
AX =/(X2) — (X)* =0. (6.1.8)

So far, the constant k& has not made any difference at all.
The momentum wavefunction for the same state is
*° 1

i) = o) = [ e i) = S

where we have used the complex conjugate of eq. (2.839). We now use the completing-the-

)1/4 / dx e—ipx/heikxe—(x—a)2/402’ (619)

square trick again; this time the appropriate change of variables is = u + b, where we choose
b=a+i20%(k — p/h), so

/00 dz e~ P heikre=(e=0)/40%  _  (BP—a?)/40? /OO due 17" = 2\/rg ¥ =9/ (6.1.10)

It follows that

The last factor shows that a state with a Gaussian position wavefunction also has a Gaussian
momentum wavefunction, centered at p = hk. The momentum wavefunction also contains a
phase that depends on p; this factor encodes the information about the center of the position
wavefunction Gaussian peak, a.

It is now clear that our state depends on three physically significant parameters: the average
momentum hk, the position center a, and the position width o, which is also the uncertainty in
X. There is a duality between the position and momentum wavefunctions, for if one of them
has a Gaussian magnitude with a linear phase, then so does the other, with parameters that
are related by comparing eqs. (6L3) and (EII1). In particular, the widths of the position and
momentum Gaussian wavefunctions are inversely proportional.

Using eq. (6.I.11]), one can now obtain

(P) = (IPIY) = /mdp ([P (pld) = /Oodppm'(p)ﬁ:hk. (6.1.12)

Similarly,
(P?) = / dpp*|0(p)]? = R2(k* + 1/40?). (6.1.13)
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It follows that the momentum uncertainty in the state with a Gaussian position wavefunction is
AP = \/(P?) — (P)* = h/20, (6.1.14)

and so the product of the position and momentum uncertainties is
(AX)(AP) = h/2. (6.1.15)

This result does not depend on the center of the Gaussian a, or its width o, or its average
momentum hk. Thus, Gaussian wavefunctions always realize the minimum possible product of

uncertainties consistent with the general position-momentum uncertainty relation, eq. (B3.10).

6.2 Time evolution of free-particle state in one dimension

For a free particle with mass m moving in one dimension, the Schrodinger equation is

d P?
Zha ) =H |¢) = D V), (6.2.1)

where P is the momentum operator. Since [H, P] = 0, we know that there is an orthobasis
of stationary states that are also eigenstates of P with eigenvalue p. Acting on such states,
E = P?/2m = p*/2m. Therefore, for a given E there are exactly two solutions, p = +v/2mFE,

and the plane-wave stationary states can be labeled

where R, L is a degeneracy label that tells us whether the particle is moving right or left.
The time-dependent wavefunction for a stationary state with momentum p is, combining

eq. (2839) with the time-evolution phase factor e *#* gives

1 e
Gy, t) = —me’(’“ Y, (6.2.3)

where k = p/h and w = E/h. The position of constant phase is © = wt/k = Et/p = pt/2m, so

the phase velocity of one of these waves is
Uphase = W/k = p/2m, (6.2.4)

which is half of the classical velocity p/m.

To understand the classical speed of propagation, one must consider the group velocity for
wavepacket superpositions of states with a continuous distribution of k. It is a general feature
of wave kinematics that, in the presence of dispersion (that is, w depending nonlinearly on k),

the velocity for a wavepacket is not w/k, but instead
Vgroup = Ow/0k. (6.2.5)
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Let us pause from our discussion of the free particle to see how this arises in a general context.

Consider a packet of waves described by the wavefunction
Y(x,t) = / dk a(k) e'@t=Fo) (6.2.6)

where, in general, the angular frequency w(k) and the amplitude function a(k) both depend on
the wavenumber in some arbitrary way. Now suppose that a(k) is such that only a narrow range

of k near ko contribute appreciably, so that we can write k = ko + Ak and

_ Ow 2
w(k) = wo + Al{:a—k k:ko—l-(’)(Ak) : (6.2.7)

where wy = w(kg). Then eq. (6.2.0) can be rewritten in the form
Y(x,t) = elwot=ko2) A(g 1), (6.2.8)

which is the product of a global phase and a factor describing the shape of the magnitude of

the wavepacket,

Az, ) = / d(AR) alko + Ak) exp {z (g—:t _ g;) Ak +-- } | (6.2.9)

Here the partial derivative is understood to be evaluated at k = ky. In this approximation, the

magnitude |¢(z,t)| = |A(x,t)| depends on position and time only through the combination

ow
—t—u, 6.2.10
ok ( )
which immediately implies that the velocity of the wavepacket is indeed vgponp = Ow/0k.
Applying this to the special case of a free particle, with w = E/h, we have
0 [ hk?

Vgroup = 5 <%) = hk/m =p/m, (6.2.11)
which is the classical value. For wavepackets in quantum mechanics with momentum sharply
peaked near p, this group velocity corresponds to the motion of the expectation value of the
position, as can be seen in general from eq. (B.41I8]). Before the end of this section, we will verify
this for the particular case of a Gaussian superposition of plane waves.

Using eq. (3.4.7), the unitary time evolution operator is
vy = [ dplo)iple (6.2.12)
The matrix element of this operator between different position eigenstates is therefore

- -1 m 1 > ip(x—a’ —i m
@UOR) = [ dp el platy e = L [ e 6212

—00
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This integral is again done by the completing-the-square trick, this time by changing the inte-

gration variable to p’ = p — m(x — 2’)/t, with the result

/2 /
U@y = (2;7;w,t) gim(a—a')? /20t (6.2.14)

By now applying the completeness relation, the time dependence of the wavefunction for a free

particle reduces to an integral involving the wavefunction at time ¢ = 0,

Vat) = G@lul) = WUOWO) = [ @U@
= (2:;%)1/2 /_OO dx/eim(x—x’)Z/Zﬁt¢($/’O). (6.2.15)

In principle, the time evolution of an arbitrary free-particle state has therefore been solved.

As a good example for which the integral can be done analytically, consider the motion and
spreading with time of the wavefunction of a Gaussian wavepacket state. We start at time ¢t = 0
with a state [¢/(0)) that has

]_ ivoz’ —x'2 /452
¢($/,O) = Wepo /he /4 y (6216)

which as we saw in the previous section can be interpreted as having center at 2’ = 0, width o,
and average momentum py. At time ¢, eq. (G.215) gives
2

B mo\1/2 1 ~ x m(z— ) pox’
vet) = (3 (2m2)1/4/00d”3 P [_472“ w0240

By the usual completing-the-square integration variable change trick, this becomes, after some

algebraic manipulation,

W(r,t) = \/\/%(o—imt/zmo—) exp {—%} exp [z% (x - g—;i)] ., (6.2.18)

or, after further rearrangement,

eié)(m,t) (:l? _ pot/m)2
1) = — 6.2.19
vt \/\/ 27(o + ikt /2mo) ! [ do* + hztz/mz(ﬂ} ’ | )
where
Po Pol ht(x — pot/m)*
O(z,t) = —|(x—— . 6.2.20
(z,2) h (ZE 2m) i 2m(40? + h2t2/m?) ( )
The probability density at time ¢ is therefore
1 (x — pot/m)?
H> = — 6.2.21
iz )] V/2m(0? + R2t2 [4m20?) - { 2(0? + 1?2 /4m2o?) ( )
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This is a Gaussian function of x whose peak moves to the right at exactly the constant speed
po/m of naive classical expectation, but whose width grows with time ¢. Using the results of

the previous section, we obtain

(X) = pot/m, (6.2.22)
AX = /o2 + 22 /4m202. (6.2.23)

The speed at which the expectation value (X) moves is also the group velocity vgonp = Ow/0k.
At large t, AX =~ ht/2mo grows linearly with time, and ironically is larger for smaller o; the
more we try to confine the wavefunction initially, the more spread out the particle’s probability
density support will be at late times. The explanation is that, due to the uncertainty relation
eq. (B3I0), a highly constrained particle position has larger amplitudes for momenta that
deviate from the central value.

One can also compute the momentum wavefunction as a function of time, by applying
eq. (2841)) to eq. (G.2Z.I8). After another integration and more algebraic juggling, one finds

~ 20’2 174 P2
Y(p,t) = <7T—h2) exp [—0*(p — po)?/ 7] €” t/2hm (6.2.24)

This is remarkably simple; the time dependence is entirely in the complex phase, so

D(p, )| = \/g% exp [—20%(p — po)* /%] . (6.2.25)

This does not depend on time at all, despite the fact that the width of the support of the position
wavefunction grows with time. This is an illustration of Theorem [B.I.T} because the momentum
is a conserved quantity for a free particle Hamiltonian, the probability density to measure the

momentum between p and p + dp is a constant in time.

6.3 Properties of stationary states in one-dimensional potentials
Consider a particle moving in one dimension in a potential that is given classically by V' (z), so
that the Hamiltonian operator is

H = % + V(X). (6.3.1)

In general, we want to find stationary states,

Hlvp) = Elvg). (6.3.2)

To accomplish this, we use the position representation, in which X — z and P — —ihd/dz,

by multiplying on the left by (x|. Then the wavefunction ¢ g(x) = (z|1)g) obeys the eigenvalue
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differential equation

d? 2m
Tave(r) = S5 V() - Elve(). (6.3.3)

This is the time-independent Schrodinger equation for a spinless particle in one dimension.
Before exploring some special cases, it is helpful to make some general statements about this
problem. First, consider a range of positions = over which the potential V' (z) is less than the
energy eigenvalue E. This is called a classically allowed range, because in classical mechanics
the kinetic energy contribution is always positive, so that £ > V(z). In a classically allowed
range, the wavefunction is oscillatory provided that V' (z) varies sufficiently smoothly with x.
To illustrate this, consider the case of a nearly constant V', and define the wavenumber k =
\/m /h. Then, within that range, the Schrédinger equation becomes (dropping the

subscript E on the wavefunction from here on) " ~ —k?%y, which has the general solution
Y~ ae*® 4 b, (for nearly constant k* = 2m(E — V) /h? > 0), (6.3.4)

where a and b are constants.
Conversely, classically forbidden ranges of = are those in which £ < V(z). If V is nearly
constant, we can define a real quantity k = \/2m(V — E)/h, and the Schrédinger equation

becomes 1" ~ k%1). The corresponding general solution is a sum of real exponentials,
Y~ ae”"™ + be", (for nearly constant k? = 2m(V — E)/h? > 0). (6.3.5)

If the classically forbidden range includes z = oo, then one must have b = 0 in order to have a
sensible wavefunction without exponential growth at large distances. If the classically forbidden
range instead includes © = —oo, then one must have a = 0 for the same reason.

It is often the case that the potential approaches a constant at large distances. Unbound
states are those that have E > V(z), and therefore oscillatory behavior, at either x = oo,
or x = —oo, or both. Bound state are those that have £ < V(x) at both = 400, implying
exponentially falling wavefunctions at large distances.

A stationary state with energy E may have both classically allowed and classically forbidden
ranges of z, depending on the potential. The points x with V(z) = E that separate them are
called classical turning points, because the corresponding classical trajectory for a particle must
turn back at those points.

It is also possible that V' (z) has some special points where it may not be smooth, or may
even diverge. We would like to know what can be said about the behavior of the wavefunction
1 (x) at such special points. Consider a particular special point xy. Integrating eq. (6.3.3]) with
respect to x over a small neighborhood of that point gives

/ Wedxi(@) — Wt - —e) = 2 [ de V) - Flo@), (636)

e dr \ dx T vo—c
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where the first equality follows from the fundamental theorem of calculus.

Suppose that V(x) is bounded near x = xy. Then the right side of eq. (6.3.6) tends to 0 as
e — 0, so we can conclude that the first derivative of ¢)(z) must be continuous at xy. Note that
this holds even if V() is discontinuous, as long as it stays finite in the neighborhood of x = x.
It follows that v (z) itself is also continuous at x = z.

Another possibility is that V(z) = Cd(x — zo) + - - -, where C is a constant, and the ellipses

represent a contribution that is possibly discontinuous but bounded near x = xy. In that case,
eq. ([63.6]) reveals that

i [0/ (0 -+ €) = V(e = O] = CU(o). (6:5.7)

so that the derivative of the wavefunction at xy is discontinuous by an amount that we now
know. Equation (6.3.7) is consistent with ¢'(z) being bounded in a neighborhood of x = xy,
even if it is not continuous. Then, integrating f;f)o_f dx)'(x), we obtain the continuity of the

wavefunction,

lim [¢(xg +€) — (g —€)] = 0. (6.3.8)

e—0
More generally, continuity of the wavefunction is a requirement that we always impose on
physically sensible states. The idea is that because |1 (x)|* represents the probability density, its
value at x = x( has a unique physical meaning and so must not depend on whether x approaches
xo from above or below.
Yet another possibility is that V' (z) = oo for a whole range x < x( but it is finite for = > .
In that case, the particle is forbidden to enter the region of infinite potential, and so ¥ (z) = 0
for x < 5. Now, continuity of the probability density tells us that ¥ (xy) = 0, which acts as a
boundary condition for ¢(z) in the range x > xy. Of course, the same holds if the inequalities
are reversed: if V(z) = oo for > xy but it is finite for # < xy, then ¢(z) = 0 for x > x.
Bound states in one-dimensional potentials in quantum mechanics never have degenerate
energy eigenvalues. To prove it, suppose there are two states [¢;) and |iy) with the same

energy eigenvalue E. In the position representation, the wavefunctions satisfy

h? h?
ol Vi = B, — UL+ Vi = By, (6.3.9)

Multiplying the first equation by w5 and the second by 7 and taking the difference gives
PYab — P1ihy =0, or

d
77 et — i) =0, (6.3.10)

so that integrating with respect to x gives
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where ¢ is a constant of integration. Now, by definition the bound states have 1 = ¥y = 0

when x = +o00. So, evaluating eq. (G3.11]) at © = oo in particular, we learn that ¢ must be 0.
Therefore 9] /11 = by /1y, or

d d
() = —(Iney), (6.3.12)

which integrates to

In(¢y) =1In(y2) +C (6.3.13)

where C' is another constant of integration. So, ¥, = €1}, and since e“

is a non-zero constant,
11 and 1y are proportional and therefore represent the same state. Note that in this proof it is
crucial that we are working in one dimension. In two or three dimensions, bound states certainly

can have degenerate energies, as we will see by finding examples in Chapter

6.4 Particle in a one-dimensional box

Consider a particle of mass m confined to a box of length L, so that its potential energy as a
function of x is

Vig) — 0 for |z| < L/2, 641
(z) = oo for |z| > L/2. (6-4.1)

Since this is an even function of x, we know from the discussion in section 5.4 that there must
be simultaneous eigenstates of energy and parity. Let us find them.
In the region |z| < L/2, eq. (63.3) becomes

2mE

w// — _ h2

1. (6.4.2)
The general solution to this differential equation is
Y(z) = Ae*®  Be™**, (6.4.3)
where A and B are constants and
k= 2mE/h. (6.4.4)

Because the particle is completely confined to the box region, one must have ¢ (x) = 0 for
|z| > L/2, and so by continuity of the wavefunction, (L/2) = 0 and ¢(—L/2) =0, or

Ae*L/2 4 Be L2 — ), (6.4.5)
Aem™RL/2 L BetkL/2 =, (6.4.6)
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This system of equations will have a non-trivial solution for A and B if and only if the matrix

oikL/2 o —ikL/2
M = (6—ikL/2 eikL/2 ) (6-4-7)
is not invertible, which means Det(M) = e — ¢=*L = 2jsin(kL) = 0. The solutions to the
particle-in-a-box eigenvalue problem therefore must have k = nx/L, where n is an integer. It
follows that B = —e*'A = (—1)" "1 A.

For odd n, we have B = A, and so for —L/2 < x < L/2,

p(x) = 2Acos(nmzx/L). (6.4.8)

To normalize the states to unity, we require

00 L/2
1 :/ dz [, (2)]* = 4|A|2/ dx cos?(nmx/L) = 2|A]*L, (6.4.9)

—L)2

—00

and so we can choose A = 1/v/2L, yielding the even-parity solutions

U (x) = \/%cos(nms/[/) (n=1,3,5,...). (6.4.10)

Note that we do not need to include negative n, because those just have the same wavefunction
up to a physically irrelevant sign, and are therefore the same states. Similarly, for even n, one

finds the odd-parity solutions

Un(x) = \/%sin(mr:z/L) (n=2,4,6,...). (6.4.11)

Here, not only do we not need negative n, but also the case n = 0 is excluded, because it would
result in ¢y(z) = 0, which would correspond to the null ket, which is not a physical state. For
both odd and even n, eq. ([6.4.4]) gives the allowed energy levels:

h?m2n?

These are non-degenerate and discrete, as is true for any bound-state solutions in one dimension.

The ground state energy for the particle in a box, E; = h*r?/2mL?, becomes very large
as the confining box is taken smaller (L — 0). This can be seen to be in accord with the
uncertainty relation eq. ([B.3.10), as follows. First, note that (P) = 0 for each of the stationary
states; this can be obtained either by direct computation in terms of the wavefunction, or seen

as a consequence of the parity selection rule discussed at the end of section [5.4l It follows that

(H) = 5 (P) = 5

=5 (AP)?. (6.4.13)

- 2m
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Now the uncertainty relation eq. (B3.10) says that (AP)? > (h/2AX)?, and it is also clear that
(X) = 0, again either by direct computation or as a consequence of the parity selection rule.
Therefore, (AX)? = (X?), and we have a bound

(H) > Smfm (6.4.14)

Since the particle is confined to a box of length L, a crude, conservative estimate valid for any
state is that (X?) < (L/2)%. Using this to compare our estimate of the lower bound on (H)
from the uncertainty relation to eq. (G.4.12) with n = 1, we see that the latter is a factor of 7

larger. For the ground state, a much better estimate of (X?) comes from actually computing it,
with the result

(X?) =1 < ! i) (6.4.15)

12 272
SO
22 3
H) > . 4.1
() = 2mL? <7r2 —6) (6.4.16)

Comparing again with eq. (€412) with n = 1, we see that the ground state energy is a factor of
72/3 — 2, or about 1.29, larger than the estimate eq. (G416 of its lower bound following from

the uncertainty relation.

6.5 Bound states for the one-dimensional square well

As a generalization of the previous section, consider a particle of mass m in a finite square-well

potential with linear width L and energy depth Vj:

Vo fora<—L/2 (region I),
V(iz)=<¢ 0 for —L/2 <x < L/2 (region II), (6.5.1)
Vo foraxz>1L/2 (region III).

Before proceeding, we note that the special case V) — oo should give the results of the previous
section. Again, we expect to find energy eigenstate solutions with definite parity, because the
potential is invariant under z — —x.

The strategy for finding the stationary states is to first solve the differential equation (6.3.3))
separately in each of the three regions I, II, and III, and then stitch these solutions together
using egs. (6371) and (G3.8)) as boundary conditions at the points © = +1/2.

In region II, the differential equation is exactly the same as for the particle in a box,

2mFE

Y= _7¢’ (6.5.2)
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and so the general solution is an arbitrary linear combination of ¢*** and e~ where k =
V2mE /h, as before. So, we can write
Yu(xz) = Acos(kz) + Bsin(kz). (6.5.3)
In regions I and III, the differential equation is
' o= Ww. (6.5.4)
Assume that E < Vj, so that we will have a bound state. Then, defining
k=+/2m(Vy — E)/h, (6.5.5)
the general solutions in regions I and III are
Yi(z) = Ce™ + De ™™, (6.5.6)
Ym(z) = Fe™ 4+ Ge ™", (6.5.7)

The coefficient D must be 0, because otherwise 1;(x) would blow up for + — —oo, giving a
non-normalizable unphysical solution. Similarly, from requiring () to be well-behaved at
xr — oo, we get F' = 0. It remains to solve for A, B, C', and G, using the boundary conditions
at the points © = —L/2 and L/2.

Let us first look for wavefunction solutions that are even under the parity transformation

x — —ux. It follows that B =0 and G = C', and they must have the form

Cer™ for x < —L/2,
W(r) = Acos(kx) for —L/2 <2 < L/2, (6.5.8)
Cere for . > L/2.

Now we can apply the requirements that the wavefunction and its first derivatives are both

continuous at x = L/2, as proved on general grounds in egs. (63.7) and (€.3.8). In the present
case, these conditions amount to

Acos(kL/2) = Ce "2 (6.5.9)

—Aksin(kL/2) = —Cre "2, (6.5.10)

By taking the ratio of these equations, one obtains ktan(kL/2) = k. It is convenient to define
dimensionless quantities X = kL/2 and Y = kL/2, so that

XtanX =Y, (even parity), (6.5.11)
X2+Y? = mVL?/2R° (6.5.12)
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Figure 6.5.1: Graphical solutions for the
bound energy eigenstates of a particle of
mass m in a 1-d square well potential with
depth Vy and width L. The dashed cir-
cles are X? +Y? = R? = mV,L*/2h?, for
sample values R = 1.4, 4, and 8. Even-
parity solutions are the intersections with
Y = X tan X (darker, green curves) and odd-
parity solutions are the intersections with
Y = —Xcot X (lighter, red, curves). The
energy eigenvalues for each solution are £ =
212 X?/mL* The cases R = 1.4, 4, and 8 are
seen to have 1, 3, and 6 bound state solutions,
respectively.

N W~ 1O N 00 ©
T

where eq. (G512) follows from eq. (65.5) and E = h2k?/2m.

It is not possible to solve the simultaneous transcendental equations (E5IT]) and (G5T12)
analytically, but one can use graphical methods to understand the solutions and then obtain
numerical results. In Figure we graph in the XY plane the curves Y = X tan X (darker
solid curves) and the circle eq. (65.12) (dashed), for some sample values (1.4, 4, and 8) of the
dimensionless radius R = \/m. For a given value of R, the intersections provide the
numerical eigenvalue solutions for X and Y, and thus for £ and x. We only need to consider
positive X and Y, because k is positive, and k£ can be taken positive without loss of generality.

The graphical approach makes clear that there is always at least one bound-state solution,
no matter how small V; (and thus R) is. The ground state, which we will call |¢);) with energy
eigenvalue Fy, is the solution with smallest X, which always has even parity and occurs for
0<X<m/2,or0<k<m/L,and so

0 < By < h*n?/2mL>. (6.5.13)

The lower bound corresponds to small R, which means the limit of small V, < h?/mL?. Con-
versely, the upper bound is relevant for large R and thus V; > h?/mL?, the limit of the particle
completely confined to a box as treated in the previous section. As V; is increased (for fixed
m, L), the radius of the dashed circle grows, so the number of solutions increases, but for any
finite V) the number of bound state solutions is always finite.

Consider the lone bound state solution in the limit of small V;, which means X and Y are

also very small. By expanding X tan X to quadratic order in X?, and solving eqs. (G.5.11]) and
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(E5.12) in that limit, we obtain

h2k? mVyL?
Bi= NVO<1— - +) (6.5.14)

Because this energy is only slightly lower than V{, the state is very weakly bound, but it always
exists, no matter how small 1 is.
Now consider the stationary states that are odd under parity (r — —x), with wavefunctions

that are therefore of the form

—Ce"® for v < —L/2,
W(r) = Bsin(kx)  for —L/2 <z < L/2, (6.5.15)
Cere for x > L/2.

The continuity of the wavefunction and its derivative give

Bsin(kL/2) = Ce "F/2 (6.5.16)
Bkcos(kL/2) = —Cre "L/, (6.5.17)

Defining X and Y in exactly the same way as before, we now have
—XcotX =Y, (odd parity) (6.5.18)

in place of eq. (-5.I8), with the same equation for X2+Y?2 = R?. The graph of Y = —X cot X is
shown in Figure[6.5.T] as the lighter solid lines. This time, we see that if Vj is small enough, there
will not be any odd-parity bound-state solution. In order for there to exist at least one bound-

state solution with an odd wavefunction, the dashed circle must have a large enough radius to

intersect with the curve Y = —X cot X for positive X and Y, specifically, 4/ m;gfz > /2,
so that Vo > 7w2h%*/2mL? 1In this case, the first excited state will have 7/2 < X < 7, so
Rr?/2mL? < By < 2hm?/2mL2.

Combining the information for even and odd parity states (which have odd and even n,
respectively) from Figure we can see that the energy levels alternate between even and
odd parity, and the bound state |¢,) exists if and only if the potential well is deep enough,

which requires that R? is sufficiently large,

mVoL? w2

— > —(n—-1)% b1
TR (n—1) (6.5.19)
If |4,,) does exist as a bound state, then w(n — 1)/2 < X,, < 7mn/2, which implies
R*r?(n —1)2 h2mn?
prT— ) g, ~1,2.3,..). 5.2
S~ <En <5 5 (n 3,...) (6.5.20)

Here E,, will approach its upper bound in the limit of large V4, in agreement with the result
found in section [6.41
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The square well potential also has a continuum of unbound states with energies £ > V),
with wavefunctions whose magnitudes approach a constant for large distances |z|. These are also
known as scattering states. We will discuss the problem of scattering from the one-dimensional

square well in section

6.6 Scattering problems in one dimension

Scattering theory deals with unbound quantum states with continuous energy eigenvalues.
The particles described by these states can be thought of as originating far away, in a measured
or controlled configuration, typically a superposition of free plane waves moving in a common
direction. In a localized region of space, the particles then interact with a potential, or with
another group of particles, after which they escape to large distances again where they can be
measured. In practice, one can learn about the potential, or interactions between particles, by
studying the asymptotic forms of the unbound states. In this section we will consider poten-
tial scattering problems in the simplified realm of one dimension, and turn to the problem of
scattering in three dimensions in Chapter 23l

Consider two asymptotic regions I and II with constant potentials, and an intermediate

region [II where the potential can be arbitrary, so

0 region I (z < a),
Vz) = U(x)  region III (a <z < b), (6.6.1)
Vo region Il (z > b),

as illustrated in Figure[6.6.1l The constant potential in region I, which will contain the incident
particles, is taken to be 0, by subtraction from V() if necessary. This entails no loss of generality,
because as usual the effect of a constant contribution to the energy can be absorbed into a global
phase that is the same for all states. The potential V[ in region II can be either positive or
negative. We will be interested only in unbound states with energy £ > 0, although there may
also be bound states if the potential U(z) in region III goes negative for some z.

The stationary states for this potential have wavefunctions that might be complicated in

region III, but they are definitely simple in regions I and II. Assuming that E > 1}, one class

V(x) A
Figure 6.6.1: A generic one-
'\/\ Vo dimensional scattering potential
/ of the type in eq. (G.G.I). The
< — I - potential Vj in region II on the
a \/ b far right can be either positive or
negative.

region I region III region II
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of such stationary states is

Wz, t) = (Ae™ + Be ') e, (region I), (6.6.2)
Y(x,t) = Cekze BN (region II). (6.6.3)

Here the component A corresponds to an initial beam of particles moving to the right in region
I from x = —o0, and B corresponds to a reflected component going back to x = —oo. In region
II, there is only a transmitted component moving to the right; as a boundary condition we are
imposing that there is no left-moving component that would correspond to incident particles
arriving from x = +00. Note that in 1-d scattering problems, we are not interested in eigenstates
of parity; the symmetry is broken because the incident particles are coming from the left.
Now, for a given energy E and normalization A treated as known inputs characteristic of
the incident beam of particles, we can solve for k, k¥’ and then, in principle, for B and C. The

easy part is that from the Schrodinger equation,

ﬁ2]€2 h2/{3/2

To solve for B and C requires the scattering potential U(x) to be specified. Once B and C' are
known, eq. (B.6.12]) can be used to find the probability and current densities in each region. In
region I, the probability density is

p = |A]* +|B|* + 2Re[A* B] cos(2kx) + 2Im[A* B] sin(2kx). (6.6.5)

The last two terms will each give 0 after averaging over a range of x that is large compared to

1/k. The current density in region I is
hk
J o= (AP = BP), (6.6.6)

where the cross-terms between A and B canceled completely, even without doing any averaging.

Meanwhile, in region II, the probability density and current are

= |C?, (6.6.7)
hk!

J = —|C)% (6.6.8)
m

The interpretation of the probability densities of eqs. ([G.6.0]) and (G6.6.7) is

incident | A|?
density of particles in reflected | beam = | |BJ* |, (6.6.9)
transmitted |C|?
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while the interpretation of the current densities of eqs. (6.6.6) and (6.6.8) is

incident hk| A2 /m Ja
flux = particles/time in reflected | beam = | —hk|B)?/m | =|Js|. (6.6.10)
transmitted hEk'|C)?/m Jo

The effect of the scattering potential on the incident mono-energetic beam can therefore be

given in terms of reflection and transmission ratios, reminiscent of quantities in classical optics,

Vel _ KICP?
T~ HAR

sl _ |BF

R — T A9
[Jal AP

T

(6.6.11)

In specific problems, we can always set A = 1 at the beginning, since only the ratios B/A and
C'/A are needed, and B and C will always be proportional to A due to the linearity of the
wavefunction in the Schrodinger equation.

To find R or T' we must specify the scattering potential V' (x). However, in general, probability

conservation implies that they are related by
R+T=1. (6.6.12)

To prove this, we note that for a stationary state,

8. dp 0 0 etV B
B = o = @ P = gl t)e RN <o, (6.6.13)

so, by the fundamental theorem of calculus,

< aJ
0 = /ood:z% = J(o0) — J(—00). (6.6.14)

This can be rewritten as
Jo = |Ja| — |JB|, (6.6.15)

from which eq. ([CGI2]) follows immediately. Since R and T are manifestly positive, they must
also be between 0 and 1, inclusive, with the extremes reached only in very special cases. This
probabilistic situation is in contrast to classical mechanics, where T is always exactly either 1
or 0, depending on whether or not the particle has enough energy to overcome the potential
barrier set by the maximum value of the potential.

To find R and T in specific examples, it is necessary to solve the Schrodinger equation in
region III and to apply boundary conditions in the form of continuity of the wavefunction,
and its derivative if the potential is finite, at the boundaries between adjacent regions. If the
potential at a boundary has a delta function, then eq. (€3.7]) can be used to obtain the boundary

condition for the first derivative of the wavefunction.
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As a first example, consider a step-function potential

Vi) = { 0 region I (z < 0), (6.6.16)

V. region Il (z > 0),
for which region III does not exist, and regions I and IT meet at x = 0. Continuity of the
wavefunction eq. (6.6.2)-(6.6.3)) and its first derivative at x = 0 give

1+B = C, (6.6.17)
ik + (—ik)B = ik'C. (6.6.18)

Here we have taken the opportunity to set A = 1, since we will be interested in the ratios R
and T'. The solutions for B and C' are

k—Fk 2k
- = . .6.1
k+ k"’ ¢ k+k (6.6.19)
The reflection and transmission coefficients are therefore
11—k /k|? Ak [k
R [ = 7 6.6.20
‘1+k:'/k; ’ (1+K/k)> ( )

where

K/k = 1-VJ/E. (6.6.21)

Note that we need F > V in order for &' and T to be real. Otherwise, the wavefunction for
x > 0 is instead an exponential of the form ¥y (z) = Ce ™ with h?x*/2m = V — E, and one
finds R = 1. Since the flux decreases exponentially in region II rather than maintaining constant
magnitude, 7" = 0 in that case; the particles are all reflected, although they still have a non-zero
probability to be found at any point z > 0, proportional to e=2%*. Region II in this case is said
to be a classically forbidden region.
As a second example, consider the symmetric rectangular barrier potential
0 region I (z < —a/2),
V(z) = Vo region III (|z| < a/2), (6.6.22)
0 region I (z > a/2),
as illustrated in Figure G.6.21
Let us first consider the case that £ > V > 0, so that transmission past the barrier is

classically allowed. Then we can write the wavefunctions in the three regions as

Yr(x) = €% 4 Bem*, (6.6.23)
Ym(z) = De** 4 Fe (6.6.24)
Yn(z) = Ce*, (6.6.25)
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174 Figure 6.6.2: A one-dimensional
scattering potential of the type in
eq. (6.6.22). The potential can
be either a barrier (if V' > 0, as
shown) or a well (if V' < 0).

A
\

region | —a/2 region IIT a/2 region 11

where k' = /2m(E —V)/h and k = v2mEFE/h are real numbers, and again we choose A = 1.
There are four remaining unknowns, B, C, D, F', and only two of these enter into the measurable

quantities R = |BJ* and T = |C|?. Continuity of the wavefunction and its first derivative at

r = —a/2, using ¢y and Yy, give us
e—ika/Q _I_Beika/Q — De—ik,a/Q +F€ikla/2, (6626)
ike=*/2 _ jkBe*e/? = k' Dem W2 _ )/ Fetke/?, (6.6.27)

Also, at z = a/2 we find from ;1 and ¢y,

Ceka/2 = peal? 4 pemik'a/2 (6.6.28)
ikCe™/? = i}/ De*/? i}/ Fem /2, (6.6.29)

It is convenient to first solve egs. (6.6.28) and (6.6.29) for D and F' in terms of C, and plug
the results into eqs. ([6.6.26) and (G.6.27)) which then involve only B and C as unknowns. The

resulting eq. (6.6.26) and eq. ([6.6.27)) then combine to give

,]{7,2—/{32
B = i

sin(k'a) C. (6.6.30)

Now, since we also know R+ T = |B|> + |C|? = 1, we can solve to get

1+ <k/2 _ k2)2 sm2(k’a)] B (6.6.31)

_ 2 _
T=|cF = 2k k!

for the transmission coefficient. Then, R is just 1 — 7.
To express the result directly in terms of the incident energy and the height of the potential
barrier, we can now plug in k' = ky/1 — V/E, to get

-1

T=|1+ ﬁ sin? <%\/2m(E - V))] , (E>V). (6.6.32)

As a check, if V' = 0, then there is no barrier, and 7'= 1 and R = 0. In the high-energy limit,

E >V gives T' ~ 1, and the barrier is almost transparent, as the potential is too weak to have
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much effect on the incident particles. It is perhaps more surprising that even if V' and E are
comparable, we also get T' = 1 whenever sin(k’a) = 0, which occurs if &' = nx/a for any integer
n. This shows that the barrier is transparent to the incident mono-energetic particle beam if its
width a is equal to an integer times half of the de Broglie wavelength 27 /% inside the barrier.

The discrete energies at which this occurs, called scattering resonances, are

h2m3n?

E=E,+V, E, = (n=1,2,3,...). (6.6.33)

2ma?’
These FE,, coincide with the energy eigenvalues for a particle in a box of width a, but with walls

of infinite potential height, as found in section [6.4l Finally, note that if £ ~ V', then we have

sin? (a\/m/h) ~ 2a*m(E —V)/h?, so

ra (1M (E~V) (6.6.34)
~~ 2h2 9 ~~ . . .

This is the transmission coefficient for the case that classical transmission past the barrier is
just barely possible; for A — oo it approaches 1.

Now we turn to the case that ' < V, so that classically the particle would not be expected
to make it past the barrier. Then, within the barrier region III, we have instead of eq. (6.6.24]),

Ym(z) = De ™ + Fe™, (6.6.35)
where
k=+2m(V — E)/h. (6.6.36)

All of the subsequent algebra is the same, but with k&’ — ik, so that the sine function is replaced

by a hyperbolic sine, and

2

T=|1+ m sinh? (%\/Qm(\/ - E))] N (E<V). (6.6.37)

In this case, T < 1 always, but it is never 0. This is an example of quantum tunneling.
Classically, there would be no transmission at all, but the Schrodinger equation gives a non-zero
probability for the particle to enter the classically forbidden region and emerge on the right side
of the barrier. For £ < V, one finds that T" — 0; the transmission due to tunneling becomes
exponentially small in the limit of an incident energy much smaller than the barrier potential
height. The results for the transmission coefficient 7" are shown as a function of the incident
particle energy E in Figure [6.6.3] for two different values of the barrier height V.

So far we have assumed that the potential barrier height in Figure is positive, with

V > 0. Now let us consider the case of scattering from a potential well, so that V < 0 in
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Figure 6.6.3: Transmission ratio 7" for scattering from a one-dimensional rectangular barrier
of width a and height V' = 5k%/ma? (left) or V' = 50h%/ma? (right), as a function of the
energy F of the incident particles of mass m. For E/V < 1, the transmission is classically
forbidden, and the non-zero 7' is an example of quantum tunneling. For E/V > 1, the
barrier is perfectly transparent if its width is an integer multiple of half of the particle’s de
Broglie wavelength inside the barrier. Transparency also occurs in the limit £ > V.

eq. (6.6.22). In that case, all of the same algebra goes through as before, with V' = —|V|. So,

we have

2 —1

T = |1+ ms&n2 (%\/Qm(EjL |V|)>} , (E>0>1V). (6.6.38)

Classically, there would never be reflection, as the particle incident from the left would have
enough momentum and energy to follow a trajectory that takes it ineluctably to x = 4+00. The
prediction of quantum mechanics in the low-energy limit is very different, as eq. (6.6.38) gives
T — 0 for E — 0. In the high-energy limit, one finds 7" — 1 for £ — oo, in agreement with the
classical expectation. Just as we found for V' > 0, there are scattering resonances that occur
when F = E, —|V| where E,, = h*7?n?/2ma? are the binding energies of bound states in a box
(with walls at infinite potential) of width a. The results for the transmission coefficient T" are
shown as a function of the incident particle energy E in Figure [6.6.4] for two different values of
the well depth |V|. For larger negative V', the resonance energies are more sharply defined.
More generally, including in three-dimensional problems, an attractive potential can become
almost transparent to scattering for certain resonance energies, which are determined by the
geometry of the potential and the de Broglie wavelengths of the incident particles. This phe-
nomenon is known as the Ramsauer—Townsend effect, as it was first observed independently
by Carl Ramsauer and John S. Townsend in 1921, before its subsequent explanation by quantum

mechanics, in the scattering of electrons from noble gas atoms Ar, Kr, and Xe. The qualitative
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Figure 6.6.4: Transmission ratio T for scattering from a one-dimensional well of width a and
V = —50h%/ma* (left) or V. = —5 x 10*h?/ma® (right). In the very low energy limit, the
particles are entirely reflected. Transparency occurs in the limit of large FE, and also when F
is equal to a resonance energy, given by the eigenvalues E,, = h;;if of a particle confined to a
box of width a.

explanation for this is that close to the positively charged nucleus, the scattering electrons see a
spherically symmetric attractive potential well that is cut off at larger distances by the screening
of the nuclear charge due to the atomic electrons. This geometry leads to a strong suppression
of the scattering cross-section, corresponding to near transparency for incident electron energies
E =~ 0.7 eV. The preceding results for the first peak in 7" in the one-dimensional well scattering

problem with large negative V' are a rough qualitative model for this phenomenon.

6.7 Particle acted on by a constant force

Consider the problem of a particle acted on by a constant force. (For example, this could be a
charged particle in a uniform electric field.) Let us take the force to have magnitude f, and to
point in the negative x direction, so that the classical potential energy is V = fx. We will treat
this as a one-dimensional problem; restoring the effects of the y and z degrees of freedom just

adds a constant to the energy. Our Hamiltonian operator is therefore

H = P—2+fX. (6.7.1)

2m

Our goal is to find the stationary states of this one-dimensional problem.
This problem is much easier to solve by starting in the momentum representation rather
than the position representation. To do it, act with (p| on the time-independent Schrodinger

equation H |1z) = E |1g). According to the momentum-representation rules [¢5) — 15 (p) and
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P — p and X — ihd/dp, as in Table 2.8l one obtains the first-order differential equation

o d ~
(2m +ihf - E) ve(p) = 0, (6.7.2)
which can be rearranged into
d ~ i [ p?
—1 = —|(——-F]|. 7.
) = (2m ) (6.73)

Integrating both sides, and then exponentiating, gives the solution, for any real energy F,

o) = Du(0)exp [—' (éj—m—Ep)} (6.7.4)

where the arbitrary normalization factor Vg (0) arises as the constant of integration.
Let us choose to fix the normalization factor so as to satisfy the Dirac orthonormality con-
dition with respect to energy. To that end, consider
[ee]

(o) = / 0 iy (2) () = / dp 3 (p) (D). (6.7.5)

—00 — 00

o0

Using eq. (6.7.4), the last expression can be rewritten as
h dp exp Q(E/ - E)|, (6.7.6)
hf

where the p? terms in the exponential have conveniently canceled. The integral can be evaluated

T 7600 [

—0o0

in terms of a Dirac delta function using eq. (2.2.20), giving

Ww|bs) = U5 (0)0p(0)2rhf 5(E' — E). (6.7.7)

We now see that to achieve Dirac orthonormality of the energy eigenstates, (Vg |tg) = 6(E'—E),
we should choose the normalization 15(0) = 1/v/27hf.
Having successfully found the momentum wavefunction, we can get the position wavefunction

by taking the inverse Fourier transform. Applying eq. (2:8.42]),

1 = ipz/h,) o 1 > 1 p3
\/ﬁ/_mdpe "hp(p) = Wh\/f/o dp cos (h_f [6—m—Ep+fxp}). (6.7.8)

The integral is not trivial, but can be put into a standard form by defining a dimensionless inte-

Ye(r) =

gration variable s = p/(2hmf)'/? and a shifted and rescaled dimensionless position coordinate
amf\ 3
y = < = ) (z—E/f). (6.7.9)
The resulting integral over s is proportional to the Airy function, defined by
1 [e.e]
Ai(y) = - / ds cos(sy + s%/3). (6.7.10)
0
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This improper integral can be shown to converge, in the sense that it can be defined more
formally either as Ai(y) = A}l_I}I(l)O % fON ds cos(sy + s°/3), or by means of a convergence factor as
Ai(y) = 11_1%% Jo " ds e cos(sy + s*/3). The Airy function is the solution bounded at y = oo of
the Airy differential equation

(;l—;? — )Ai(y) = 0. (6.7.11)

It is named for George B. Airy, who first used it to describe optical caustics (like rainbows).

The final result for the position wavefunction of the stationary state with energy FE' is

om \/3
vp(r) = (W) Ai(y). (6.7.12)

The point y = 0 (also known as x = E/f) is the classical turning point. This means that a
classical particle of energy F coming from the left will follow a trajectory confined to y < 0,
because it turns around at y = 0 where the momentum vanishes. The quantum wavefunction
we have found can be thought of as a special kind of scattering problem in which an incident
particle is always reflected, with "= 0 and R = 1.

The Airy function is depicted in Figure[G.7.Il It decreases rapidly in the classically forbidden
region y > 0, with an approximation for large positive vy,

. N 1 2 5
Ai(y) =~ Wexp (—gy / ) : (y>0). (6.7.13)

In the classically allowed region, it instead oscillates, but with a wavelength and amplitude that

both decrease for larger —y. The asymptotic form for large negative y is

Ai(y) =~ W sin (%(—y)?’/2 + %) ; (y <0). (6.7.14)
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The approximate values of the first four zeros of Ai(y) and its first derivative are

~ —2.33811, —4.08795, —5.52056, —6.78671,...  [zeros of Ai(y)],  (6.7.15)

Y
y ~ —1.01879, —3.24820, —4.82010, —6.16331, . .. [zeros of Ai'(y)].  (6.7.16)

The solution that we have found is useful for understanding the tunneling penetration of a
particle into a classically forbidden region in which the potential grows linearly, for example a
charged particle confined by a constant electric field. The form of the exponential fall of the
wavefunction is as given in eq. (GZI3]). Of course, this solution is only an idealization, because
in reality the potential energy is always bounded from above. However, if the cutoff of the
potential is far in the forbidden region, then this makes little difference.

A common practical application is to stitch the solutions of the Airy differential equation,
including the orthogonal solution Bi(y) that is not bounded as y — oo, onto other solutions
associated with other potentials in other regions, by matching the wavefunction (and its first
derivative, if the potential is finite). For example, this is used in one approach to the WKB
approximation method, named for Gregor Wentzel, Hendrik Kramers, and Léon Brillouin, which

is discussed in other books.

6.8 Exercises

Exercise 6.1. A particle of mass m moves in 1 dimension in the presence of an attractive

delta-function potential V' (z) = —ad(z), where a is a positive constant.

(a) Show that there is always exactly one bound state solution, with energy E = —ma?/2h?,
and obtain its normalized position and momentum wavefunctions v(z) and ¢ (p).

(b) For the bound state, sketch ¢(x), and compute (X), (X?), and AX.

(¢) For the bound state, sketch 1(p), and compute (P), (P2), and AP.

(d) What is (AX)(AP) ? How does it compare to the result for a Gaussian wavefunction?

Exercise 6.2. For the particle in a 1-d box of length L discussed in section [6.4] consider the
wavefunction v, (x) for each energy level n.

(a) Find the probability that the particle will be found within a distance L/4 of the center of
the box. (Your answer should contain no trigonometric functions, and may have a different form
for even and odd n.) For which n is this probability largest, and for which is it smallest?

(b) Find the uncertainties AX and AP for each energy level n. Show that their product is

always consistent with the uncertainty principle.

Exercise 6.3. Consider a particle of mass m moving in a potential that has a power-law behavior

V(z) = (z/a)"V, at large positive x, where Vj, a, and n are positive constants. Show that the
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wavefunction for a stationary state falls off at large z like ¢ ~ N exp (—c(z/a)"), where ¢ and

v are constants that you will find in terms of the quantities h, m, Vg, a, and n.

Exercise 6.4. Consider scattering of particles with mass m and energy E from a potential
V(z) = Voo(z/a), where a is a length scale and V; is a constant potential energy.

(a) Find the transmission and reflection coefficients 7" and R by matching stationary-state
wavefunctions at x = 0.

(b) Check your result for T' by comparing to the behavior of eq. (6.6.31) for small a.

Exercise 6.5. Consider a particle of mass m moving in one dimension in a potential
V(z) = —aVh[o(z —a) + d(z + a)], (6.8.1)

where a > 0 and V) > 0. (Note that V4 has units of energy.)

(a) What is the form of the wave function for a bound stationary state with even parity?
Normalize your answer so that ¢(x) = e™"* for large positive z.

(b) Find an equation that determines the energies for even-parity bound states, and determine
graphically how many such states there are. [Hint: the equation can be written in the form
ka = (polynomial in e~"*). Sketch the shape of the right-hand side as a function of ka.]

(c) Repeat parts (a) and (b) for odd-parity bound states. For what values of Vj are there no
such states? [Hint: this time your equation should have the form ka = (polynomial in e™"%).
Sketch the right-hand side, and consider its slope at ka = 0.]

(d) Solve for the even-parity bound state energy analytically in the limit of Vy < h%/ma?.

(e) Find the even- and odd-parity bound-state energies in the limit Vy > h%/ma®. (They are

equal to each other in that limit.)

Exercise 6.6. For the potential in Exercise [6.5] let us look for stationary scattering states with

E = h?k*/2m > 0 and wavefunctions of the form

eikm + Be—ikm (SL’ S _a)
Y(x) = Deke 4 Fe~ike (—a<z<a) (6.8.2)
Ceike (x> a).

(a) Derive four equations that relate the coefficients B, C', D, and F. Simplify the notation for
your work below by writing them in terms of the dimensionless quantity n = maVj/h%k.

(b) Solve for C', and use it to find the transmission coefficient 7. Some partial results: C' =
[1 — iNn + n?(eM2k2 — N3)|=1, where Nj, N, and Nj are certain positive integers that you
will discover, and T' = [P, + P, cos(Nyka) + Pysin(Noka)]™! where Py, P, and P are certain
polynomials in n with integer coefficients.

(¢) Check that your transmission coefficient has the expected behavior when the energy E

becomes very large. How does it behave when F is very small?
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Exercise 6.7. Consider a quantum mechanical “bouncing ball”, consisting of a particle of mass

m moving only vertically in the potential

00 (for x < 0),

mgx (for x > 0), (6.:8.3)

Vix) = {

where z is the height above an impenetrable surface at x = 0, and ¢ is the acceleration due to
gravity.

(a) Find the stationary-state wavefunctions 1, (z) and energies F,,, in terms of the Airy function
Ai(y) and its zeros y, forn =1,2,3,....

(b) For the ground state, estimate the numerical energy and characteristic height, defined as the
point where 9;(z) is maximum, when m = 1 gram and when m = 1.7 x 1072 grams (the mass
of a neutron or proton or a hydrogen atom). Use eqs. (G.7.15) and (G7.16) and g = 9.8 m/s%.
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7 The harmonic oscillator

7.1 The unreasonable effectiveness of the harmonic oscillator

A harmonic oscillator is any system in which the restoring force is proportional to the displace-
ment from equilibrium. Consider the case of a particle of mass m moving in one dimension. In

terms of energy, the classical harmonic oscillator is defined by

2 1
kinetic energy = 2]';, potential energy = V(z) = émwzxz, (7.1.1)
m
where the angular frequency w has units of 1/time and parameterizes the strength of the restoring
force, according to

force = —— = —mw’r. (7.1.2)

ox

The classical Hamiltonian is the sum of the kinetic and potential energies,

p2 1 2 2

which leads to the phase-space equations of motion

& = %—H =p/m, p = o —mw?z, (7.1.4)
P

with the general solution
z(t) = xgcos(wt+ ¢yp), p(t) = —mwzgsin(wt + ¢p), (7.1.5)

where xy and ¢, are constants determined by the initial conditions.

A wise theorist, Sidney Coleman, was fond of remarking that the job of a physicist consists
of “treating the harmonic oscillator in ever-increasing levels of abstraction”. This may be a
slight exaggeration, but there are at least three reasons why the quantum harmonic oscillator is
particularly worthy of study.

First, the harmonic oscillator is a problem that can actually be solved exactly in closed form
in quantum mechanics. Most problems in quantum mechanics do not have this property.

Second, it arises quite often as a good approximation to more complicated problems. To
understand this, consider a more general potential V' (x), which we assume to have a local
minimum at some point x = xy, and to be smooth in a neighborhood of that point. Then we
can expand it in a Taylor series for small x — x,

2 3
Vi(z) = V(zo) + (z — xo)% :w0+ %(m — xo)z% + %(m — xo)s% B

T TrT=x0 =xo

4o (7.1.6)
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The first term is a constant, and so can be absorbed into a redefinition of the zero point of energy;
as a constant part of the Hamiltonian, it gives the same overall phase to all states, and therefore
can be ignored. The second term is zero, since by definition dV/dx vanishes at a minimum of
the potential. Thus, if the terms in the expansion are getting smaller, the leading behavior is
captured by the quadratic term. After redefining coordinates according to x — = + x(, we can
hope to approximate

V(z) ~ )

dx?

x? <d2V

m:o) (7.1.7)

where the constant quantity in parentheses is defined to be mw?.
The same argument generalizes to a particle moving in a three dimensional potential. Let
us suppose that the z,y, z coordinates have already been redefined so that the minimum of the

potential is at the origin (x,y, 2) = (0,0,0). Then we have

1
V(QE‘, Y, Z) = V(O, 07 0) + §xaxbvab + - 5 (718)
where by convention repeated indices a, b, ... are implicitly summed over 1,2, 3, with x; = =z,
Ty =1y, x3 = 2z, and
0?V
Vab - (719)

8%8:6;, 2o=0

is a real symmetric matrix. A linear term involving gTV .o vanishes because we are at the
a lTp=

minimum of the potential. A theorem in linear algebra says that a real symmetric matrix can

always be diagonalized by some orthogonal matrix O, according to
y =0"vo, (7.1.10)
where V = diag(V;, V2, V3), so that
Var = OcVeOu, (7.1.11)
and the orthogonality condition on O is written as
OucOpe = OOy = dap- (7.1.12)

Dropping the constant V'(0,0,0), and assuming the higher-order terms in the expansion can be

neglected, the quantum mechanical Hamiltonian can be approximated as

1 1 -
H=—(P*+P*+P)H+-0.,V.0,X,Xp. 1.1
Qm( e T Ly + Z)+20 V.Ou b (7 3)
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Now we can do a change of variables, by defining
X. = OuXy, P. = OuP,. (7.1.14)
A key feature of this change of variables is that X, and P, have canonical commutators, since
(Xe, Pi) = 0u404a| Xy, Po] = ih0uuOy = ihdeq, (7.1.15)

where the second equality used the canonical commutation relation for the original variables,
[ Xy, P,] = ihdap, and eq. (TII2) was used to get the last equality. Also,

PP, = OuP,OuPy = 6y PuPy = PP, = P2+ P2+ P2, (7.1.16)

Therefore, the Hamiltonian in terms of the new canonical variables is
3 -
P2 1 ~
H = —% 4 —mw? X} 7.1.17
; <2m + Qmwa a) Y ( )

where mw? = V,. This shows that H is the sum of three independent harmonic oscillator Hamil-
tonians, with possibly different natural frequencies. The general case is called the anisotropic
three-dimensional harmonic oscillator. The special case w, = w, = w, is called the isotropic
three-dimensional harmonic oscillator; we will study it in more detail later in section [[0.5] using
its spherical coordinate wavefunction.

The preceding illustrates why many systems can be treated as if they were, effectively,
systems of harmonic oscillators, with various higher-order effects that one may hope to either
neglect or treat as perturbations. Of course, there are some important problems that are not
approximated well by the harmonic oscillator. The free particle has no restoring force at all.
The potential of a particle in a box or a square well is not close to its Taylor series expansion.
The hydrogen atom has a potential with minimum —oo at r = 0, and again the Taylor series
expansion fails. Fortunately, these three cases are also exactly solvable, and one can say that
together with the harmonic oscillator they are the four important examples of potential problems
in nonrelativistic quantum mechanics that should be familiar to a well-educated physicist.

A third reason for the importance of the harmonic oscillator is that, as we will see, it has the
unique property of equally spaced energy levels. This means that its operator algebra is suited
for describing multiple energy excitations that can be added independently of each other. This
turns out to have special relevance in quantum field theories, where free-particle modes with
different momenta can be described using an infinite collection of harmonic oscillators, with
couplings between them that describe particle interactions.

The energy eigenvalue problem of a harmonic oscillator in three dimensions can be solved as

the tensor product of three one-dimensional harmonic oscillators. In the following two sections,
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we will use two very different methods to derive the solutions of the one-dimensional harmonic

oscillator with Hamiltonian
H = —+ -mw’X> (7.1.18)

But first, we make a general observation: the eigenstates of this H must all have positive
energy. This should be intuitively plausible, since both contributions to the classical energy are
manifestly positive. To prove it formally in the quantum theory, note that in a stationary state
|t)) with energy F,

B = WIHW) = o (Pl + gme? (6] X70) (7119
1 1
= %<Pw|]3w>+§mw2 (XY| X)) > 0. (7.1.20)

Here we have applied the fact that P and X are Hermitian, so that for example (1| P = (PTy)| =
(P1|, and then used the positivity of the inner product for non-null kets.

7.2 Position and momentum representations: the differential equa-
tions approach

In this section, we will solve for the energy eigenstates of the harmonic oscillator in the position
representation. This involves solving a differential equation for the wavefunction. It must be
admitted that this procedure is less elegant than the algebraic (energy representation) approach
given in the following section. So why do we bother with it? Besides the goal of building
character in the student, the differential equation method is important to learn because of its
greater applicability; it can be used to solve the eigenvalue problem for many other Hamiltonians
for which algebraic approaches are not available.

The position-representation version of the time-independent Schrodinger equation for the
harmonic oscillator H |[¢) = E|v) is

P2 o1,
— + —mw?X? =FE 2.1
(ol (g + gma?X?) 19) = B ). (721)
or, in terms of the wavefunction ¥ (z) = (z[¢), after using X — x and P — —ihd/dx,
d*>y  2m 1
— + | B — —mw?a? =0. 2.2
d:):2+h2( 2mw:):)z/) 0 (7.2.2)

It is convenient to introduce dimensionless variables corresponding to the position and energy,

y=x/b, E=FE/hw, (7.2.3)
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where we have defined a constant length scale
b=+/h/mw. (7.2.4)
In terms of y and &, eq. (C22)) becomes

d2w
e + (28 —y*) =0, (7.2.5)
which we will now solve as an eigenvalue problem for £ and ¢ (y). Since H commutes with the
parity operator I, our solutions will be simultaneous eigenstates of energy and parity.

To help us further understand the character of the solutions, first consider the behavior at
large |y|, where we can neglect the constant £ compared to y2, so that d*y/dy? ~ y*). Let us

try a solution of the form

W= Aye (7.2.6)
where n and « are constants. Then
d
d—‘b = A(ny"" = 2ay™) e~ —2ay1, (7.2.7)
Yy

where at large |y| the first term in parentheses is neglected compared to the second. Repeating
this yields

d*y
Therefore the guess eq. (C.2.0) indeed works for large y, with o = £1/2, regardless of the value
of the constant n. We can reject « = —1/2 on physical grounds, since the wavefunction would
blow up at large |y| and would not be normalizable. A purported wavefunction that grows
exponentially with |y| must be unphysical because it would imply that no matter how far from
the origin you look, the probability that the particle would be found farther way would be

infinitely larger.

This motivates trying a solution of the form
U = u(y) 6_92/2, with u= chyj, (7.2.9)

where the ¢; are constants to be determined. No negative powers are included in this guess,

because we expect that ¢ will be well-behaved as y — 0, where the potential smoothly vanishes.

Plugging eq. (C.2.9) into eq. (T.2.5]) gives

Zc] GG — Dy 2+ (26 — 1 - 25)y’] = 0. (7.2.10)
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Now we use a trick on the first term. Since it vanishes for j = 0 and j = 1, we rewrite it as
> 025¢d(j — 1)y 72, and then let j = k + 2 so that it becomes Y77 crya(k + 2)(k + 1)y, and
finally rename k — j, so that it becomes % ¢;(j +2)(j 4+ 1)y’. Now it can be nicely reunited

with the second term, combining like powers of y to give

> W [ejali + 1) +2) +¢;(26 = 1-2j)] = 0. (7.2.11)
§=0
Because each power 3/ in the sum is independent, their coefficients must vanish separately for
each 7, so we have a recurrence relation,
2] +1-2&

Cita = mcj. (7.2.12)

This shows that we only need to know two constants ¢y and ¢, because if ¢q is known, then so

are cs, Cy4, Cg, ..., and if ¢; is known, then so are cs, cs5, ¢z, etc. So, the solution is
B 1—26\ o [1—2E\ (5—2E\ , }
“(y)_00[1+< 2 >y+< 2 )( 12 >y+
326\ 4 (3—25) (7—25) . ]
Yo [y+ ( - )y + (= )] (7.2.13)

which, naively, appears to be an infinite series.
However, there is something horribly wrong with the solution if it is really an infinite series.

For sufficiently large |y|, the series will be dominated by terms with large powers j, where
eq. (C212)) appears to give

Cjt2 - 2
cj JHE+5/2

(7.2.14)

up to contributions to the denominator that vanish as j — oo. If arbitrarily large powers j are
present, the function u(y) will necessarily grow too fast as |y| — o0o. To see this, consider for

comparison the function f(y) = y”ey2, with series expansion

o0

Fly) =Yy P /Rl (7.2.15)

k=0

Now, writing j = 2k + p, this series has terms C;y/ where C;,5/C; =1/(k+1)=2/(j —p+2).
Comparing to eq. (214, we see that if u(y) is really a non-terminating series in powers of ¥,

then u(y) ~ yPe?” for p = —&€ — 1/2, and the wavefunction behaves for large |y| like
U(y) ~ (e )e VP = yrer )2, (7.2.16)
These are recognized as the unphysical solutions with o = —1/2 that we had already rejected.
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For a sensible physical solution, there is only one way out: the series for u(y) must terminate.
To find a basis of such solutions, first consider ¢y # 0 with ¢; = 0, so that only even-index
coefficients are present. If one of them vanishes, ¢y, = 0 for some k, then all higher coefficients
c; with 7 > 2k will also vanish, according to the recurrence relation. Likewise, we can take
c1 # 0 with ¢y = 0, so that only odd-index coefficients are present. If one of them vanishes,
cop+1 = 0 for some k, then all ¢; with j > 2k + 1 will also vanish.

In either case, the condition for the series in u(y) to terminate, yielding a physical solution,
is that the numerator in the recurrence relation eq. (212 must vanish for some non-negative

integer j = n. Therefore, the allowed energy eigenvalues are £ =n + 1/2, or
E,=n+1/2)hw, (n=0,1,2,...). (7.2.17)

It follows that u(y) is a polynomial of degree n in y, and contains only even (odd) powers of
y if n is even (odd). For any given n, they can be constructed from the recurrence relation,
eq. (T212), up to an overall multiplicative constant given by either ¢y or ¢;. The resulting
u(y) = H,(y) for a given n are called Hermite polynomials. From eqgs. (T.2.0) and ([Z.2.9)
with & = n 4 1/2, they satisfy the differential equation

d—2—2i+2n H,=0 (7.2.18)
0 ydy n=0. 2.
A general expression for the Hermite polynomials is
d n
Ho(y) = e/ (y — d—) eV, (7.2.19)
Y

This can be verified by plugging it into the differential equation (C2I8]). Here we are relying
on the fact that stationary bound states in 1-dimensional problems are non-degenerate, as we
found at the end of section [63] and therefore unique (up to a normalization constant) for a
given n. An even nicer derivation of eq. (.2.I9) will be found near the end of the section [[.3

The first few Hermite polynomials are

Ho(y) = 1, Hi(y) = 2y, (7.2.20)
Hy(y) = —2+4y°, Hy(y) = —12y +8y°, (7.2.21)
Hy(y) = 1248y +16y", H(y) = 120y — 160y° + 324/°. (7.2.22)

Using eq. (Z219), one can establish the identities

Ho(—y) = (=1)"Hu(y), (7.2.23)
%Hn(y) = 2nH,1(y), (7.2.24)
Hun(y) = 2yH,(y) — 2nH, 1 (y). (7.2.25)
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It is useful to define the function F(y,¢) = > 7 % H,(y), which can be evaluated as follows.
First, using eq. (C2Z24]), one finds the differential equation OF /0y = 2tF', which has the solution
F(t,y) = F(t,0)e*™. Then using eq. (Z2.25), one finds 0F/0t = 2(y — t)F, which yields
OF (t,0)/0t = —2tF(t,0), which has the solution F(t,0) = F(0,0)e™". Since F(0,0) = Hy(0) =
1, we arrive at the generating function for Hermite polynomials,

= 2

n=0

n

~

H,(y) = exp(2yt —t*). (7.2.26)

!

S

One use of the generating function is to find the orthonormality properties of the Hermite

polynomials. Consider the product of two generating functions with e=¥*,

_2ootn OOSm .2 s)—s2 42
N )Y S Hly) = e (7.2.27)
n=0 m=0

Now integrating both sides with respect to y, we get

ZZt—,S—. (/ dye_yQHn(y)Hm(y)) = e (7.2.28)
= nlm! \J
The right side can be expanded as
2 t S o © 2ntn m
o2t — \72 = WZZ%@ (7.2.29)
n=0 m=0 n!

Comparing the coefficients of ¢"s™, we arrive at the orthonormality condition
/ dy eV Hy(y)Hm(y) = GOpm /72" 0. (7.2.30)

The orthonormal energy basis wavefunctions for the harmonic oscillator can now be written

mw /4 1 2
= (— — —y°/2
() ( Wh) i Huly)e ™, (7.2.31)
where y = x/b = xy/mw/h, and the multiplicative constant has been chosen so that
/ dz (Y (2)) V() = o (7.2.32)

(Actually, the wavefunctions are all real, so the complex conjugation does nothing in this case.)

In particular, the normalized ground state wavefunction is a pure Gaussian,

mw

o(z) = (5)1/4 exp(—mwz?/2h). (7.2.33)

The wavefunctions v, and the corresponding probability densities |¢,|? are shown for n =

0,1,2,3,4, and 16 in Figure [.2.1]
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Figure 7.2.1: Harmonic oscillator stationary-state wavefunctions ¢, in units of (mw/h)Y* (left
column) and probability densities [¢,|? in units of \/mw/h (right column) for n = 0,1,2, 3,4,
and 16, as functions of y = x/mw/h.
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The wavefunctions are related to the energy eigenstate kets |n) of the harmonic oscillator by
(z|n) = ¥n(), (7.2.34)

with
Hln) = hw(n+1/2)|n). (7.2.35)

This shows that the energy levels of the one-dimensional harmonic oscillator are equally spaced
and non-degenerate, with a quantum of energy given by AE = hw. There is also a zero-point
energy of the ground state, Fy = hw/2, in agreement with our earlier proof that the energies
had to be positive. From eq. (L.223), the states with even n have even parity, and those with
odd n have odd parity.

Another interesting relation satisfied by the harmonic oscillator wavefunctions, and thus the

Hermite polynomials, is
> (@ )n(z) = oz — ). (7.2.36)
n=0

This can be derived immediately from (z|z') = §(z — 2’) by applying the completeness relation
> oo |n) {n| =1.

Having found the position wavefunctions for the harmonic oscillator, we now turn to the
momentum representation. One way to evaluate the momentum wavefunctions of the energy

eigenstates |n) is to use the completeness relation:

[e.e] o0

Bole) = (o) = [ do pla) al) = [~ dr

but it may not be immediately obvious how to evaluate the integral for general n. Fortunately,

e~ /Moy, (), (7.2.37)

we can gain some insight by noting that the Hamiltonian in eq. (ZII8]) has the very special

property of being invariant under the simultaneous substitutions

1
X < P, mw < —. (7.2.38)
mw

Since the energy eigenstates are non-degenerate, their momentum wavefunctions must be given,
up to a phase e*" to be determined, by making these same substitutions in eq. (Z.2.31]). There-

fore, defining a dimensionless variable proportional to momentum,
v =p/Vhwm, (7.2.39)

it must be that

-~ . ]_ ]_ _UQ
onle) = € e\ e (7.2.40)
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The phase factor ¢’*» must be chosen consistently with the phase convention of the ket |n) that
has already been fixed by eqs. ([231]) and (Z2Z34). For the lowest few n = 0,1,2,3,..., you
can do the integral in eq. (T2.37) to check that eq. ([.2.40) is indeed true with

eer = (—i)", (7.2.41)

and we will prove it for general n at the end of the next section.

7.3 Energy representation: the algebraic approach

In this section, we will use a different, and more elegant, method to solve for the stationary
states of the harmonic oscillator. In this approach, due to Dirac, we use algebraic methods
rather than differential equations, working directly in the energy basis.

We begin by defining dimensionless creation and annihilation operators (also known as raising

and lowering or destruction operators, or together as ladder operators) by

N e P, 7.3.1
2h Z 2hw ( )

mew
2h \/

As the notation indicates, these are not Hermitian operators and so are not observables, but

(7.3.2)

rather are Hermitian adjoints of each other. Equivalently, one can write the relationship as

h
_ f
X 2mw(a +a), (7.3.3)
hw
P =i 2m(aT—a). (7.3.4)

Using the canonical commutation relations [X, P| = ih, we find that

[a,a'] = 1. (7.3.5)
We also can compute
t, — Yy 1 p2 X, P| = H/hw—1/2
@a on > 1 2hom +2h[ ) [hw =172,

so that the Hamiltonian is simplyH

H = hw(a'a+1/2). (7.3.6)

*One could also write the equivalent form H = fw(a'a + aa')/2. In choosing to write eq. (T3.6]), we have
followed the systematic protocol known as normal ordering. To “normal order” an operator means to rewrite
it by moving all a operators to the right and all a' operators to the left, using aa’ = afa + 1 (which is equivalent
to the commutation relation) as many times as necessary.
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Using eq. (Z.33]), one then obtains
[H,a)| = —hwa, [H,a'] = hwa. (7.3.7)

Now suppose that we have an energy eigenstate |E), with energy eigenvalue E. Consider

the Hamiltonian acting on the state a'|E):
H (d'|E)) = d'H|E)+ [H,d'||E) = (E+ hw)ad|E). (7.3.8)

This shows that a!|E) is an eigenstate of H with energy E + hw. Repeating this n times, the
state (a")"|E) must be an energy eigenstate with energy E + nhw. Similarly,

H(a|E)) = (E—hw)alE), (7.3.9)

so the state a”|E) is apparently an energy eigenstate with energy E — nfw.
Thus, naively it might appear that, given |E), we can construct an infinite chain of energy

eigenstates with both arbitrarily low and arbitrarily high energies,
o, |EF=2hw), |E—hw), |E), |E4+hw), |E+2hw), ---. (7.3.10)

But this cannot be true, since we proved at the end of section[Z.Ilthat all of the energy eigenvalues
of the harmonic oscillator are positive. The only way out is that all of the kets in the chain
with negative energy are actually the null ket. Let us rename the state with lowest non-negative
energy as |0), where the label 0 is not the energy, but signifies that this is the ground state. It

must satisfy
al0) =0, (7.3.11)

so that all of the kets a”|0) = 0 for n > 1 are null and do not actually exist as physical states.

Since a'a|0) = 0, we have
(H/hw—1/2)|0) = 0, (7.3.12)

so the ground state must have Ey = hw/2, a result that we had also found in the previous
section using the differential equation approach.

In section[6.3] we proved that bound states in one-dimensional quantum mechanics never have
degenerate energies. This implies that there is a unique state |0) with Ey = hw/2, and unique
states with F,, = hw(n+1/2) forn = 0,1,2, ..., just as we had found by the differential equations
method in eq. (C2ZI7). Up to normalization, the energy eigenstates |n) are proportional to
(a")™0). Since they are non-degenerate eigenkets of a Hermitian operator (H), they can be

normalized to form an orthobasis,
(k|n) = On. (7.3.13)
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Let |0) have norm 1. Then we can define the other orthobasis kets by recurrence, using
In) = cpalln—1), (7.3.14)
where ¢,, are normalization constants to be determined. We have
(n|n) = |ea* (n—1aa’|n—1) = nle,|* (n—1n—1), (7.3.15)
where the second equality makes use of
aa' = a'a+1 = H/hw +1/2 (7.3.16)

and then H |n—1) = hw(n—1/2) |n — 1). Equation (L.3.15]) shows that (n|n) = (n—1|n—1) =1
requires ¢, = 1/y/n, where we have made an arbitrary choice of phase. From this, we use

egs. (C3.14) and (Z3.16) to deduce that

a'ln) = Vn+1|n+1), (7.3.17)
aln) = Vnln—1), (7.3.18)

so that a' raises the energy of the state (or creates an energy quantum), and a lowers the energy

(or destroys an energy quantum). Taking the Hermitian conjugate gives

(nfla = vn+1(n+1], (7.3.19)
(nla" = Vn (n—1]. (7.3.20)

It follows that the matrix elements of a! and @ in the energy eigenstate orthobasis are
(kla"|n) = vVn + 16,41, (klaln) = V/ndgn_1. (7.3.21)

Another consequence is that the nth excited state can be written in terms of n creation operators

acting on the ground state,

my = ) (7.3.22
Dy, 5

The Hamiltonian is sometimes written as H = hw(N +1/2), where N = a'a is called the number

operator. It is clearly Hermitian, and satisfies
N|n) = n|n), (7.3.23)

so it is the observable that just measures the number of energy quanta in the state.
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The matrix elements of the position and momentum operators in the energy eigenstate basis
follow immediately from eqs. (C33) and (Z34]) using (T321)), with the results

n
E|X|n) = y/—— (\/n LG + \/ﬁa,w_l) , (7.3.24)
2mw
huw
(k|Pln) = i/ Tm <\/n 101 — N 5k,n_1) . (7.3.25)

In particular, their expectation values in any energy eigenstate |n) vanish,
(n|X|n) = 0, (n|Pln) = 0. (7.3.26)

This is an example of the parity selection rule, Theorem [5.4.1] since X and P each have odd
parity. One can also compute, using eqs. (.3.17) and (Z.3.18)),

Xofn) = 2£w(aT+“>(aT+aHn>
_ %<\/(n—|—1)(n+2)|n+2>—I—(2n+1)|n)—I—\/WM—Q)), (7.3.27)

with the consequence that
h
X?%n) = — 1/2). 7.3.28
(X2} = (0 +1/2) (73.29)
In a very similar way,
(n|P?*|n) = hwm(n +1/2). (7.3.29)

As a check,

mw?

(n|H|n) = % (n|P?|n) + (n|X?|n) = hw(n +1/2), (7.3.30)

in agreement with the result for F, that we found in eq. (C2ZI7). Furthermore, the uncertain-
ties in position and momentum, AX = \/W and AP = \/W each grow with n,
proportionally to v/E, or \/n + 1/2.

To further illustrate the power and convenience of the algebraic method, suppose that for

some reason we needed to evaluate the matrix element (3|X?3|2). We have, using eq. (7.3.3),

3/2

(3|X3)2) = (%) 3|(a' + a)?|2) (7.3.31)
3/2

= (%) (3 (E’%/—i- a?a + afaa’ + aa® +M+M+%+ag> 2). (7.3.32)

Here, we have crossed out terms that can be immediately seen to give no contribution by simply

counting quanta created and destroyed. For the first term, we start in the ket on the far right
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with 2 quanta, and create 3 more, so it is proportional to |5), which by orthonormality has
vanishing inner product with the bra (3| on the left. Likewise, the fifth, sixth, and seventh
terms cannot contribute because we start with 2 quanta and then (in various orders) create 1
more but destroy 2, resulting in a state with 1, which again has vanishing inner product with
the 3-quanta bra. And, the last term immediately vanishes because a*|2) = 0. The remaining
three terms do not vanish, but can be easily evaluated with nothing but simple arithmetic,
by applying eqs. ((3.17) and (T3I8) repeatedly. In contrast, evaluation of the same matrix

element in the position representation approach of section would read

00 1/4
mw
o = [ (o) s (o)
mw 1/4 2
<7rh247(2')2) H2 (ZI}'\/ mw/h) e M /2h. (7333)
This is certainly doable, but less pleasant.

Let us now see how to connect the energy and position representations, by writing a and af

as differential operators in the latter. In the position representation, X — = and P — —ihd/dxz,

so from eqs. (T3] and (7.3.2]) we get

1 d 1 d
0 = L4 ot = — (y— L), 7.3.34
V2 (y dy) V2 (y dy) (7330
where y = x/b = xy/mw/h as before. Therefore, the condition a|0) = 0 gives

(y + d%) Yo(y) = 0. (7.3.35)

This implies dibg /1o = —ydy, or d(Iny) = —d(y*/2), so that upon integration, Iny = —y*/2+

In Ag, where In Ay is a constant of integration. Thus,
Woly) = Age ™V /2 = Agemen" /2, (7.3.36)

in agreement with eq. (TZZ33) after fixing the normalization constant Ay = (mw/7h)Y*. Now,

combining eqs. (C.3.22) and (3.34]), we have

Un(x) = (2[n) = % [% <y - d%)r (%)M e V2, (7.3.37)

Comparing this with eq. (231 yields the general form for the Hermite polynomials given in
eq. (C219), as promised.
The energy and momentum representations can be connected in a similar way. The momen-

tum representations are P — p and X — ihd/dp, from which one finds

a= % (v + d%) : al = —\/% (v — d%) : (7.3.38)



where v = p/vhwm is the dimensionless rescaled momentum, as in eqs. (Z239) and(Z.2.40).
Evaluating eq. (L237) for the special case n = 0, we then find

- 1 )
Vo) = Gromya® /2 (7.3.39)

for the ground state. Using eq. (T.338)) in eq. (7.3.:22)), we obtain

Un(p) = (pln) = % {—% (v - d%)]n We—vzﬂ. (7.3.40)

Now comparing to eq. ({2.19), we obtain eq. (Z2Z40) with e*#" = (—i)™, as promised.

7.4 Coherent states of the harmonic oscillator

Consider a macroscopic harmonic oscillator of the type one might encounter in a lab experiment
in an introductory physics course, with mass m = 0.2 kg, w = 10 radians/second, and amplitude
xo = 0.1 meters. Classically, the energy can be obtained as the potential energy at the extremum
of the displacement, when p = 0 and x = g, so that F = mw?z/2 = 0.1 J. The energy quantum
associated with the oscillator is Aiw = 1.055x 1073* J. Therefore, we expect macroscopic oscillator
states to have enormous numbers of energy quanta, roughly n = E/hw ~ 103 in this example.

Is the energy eigenstate |n = 103?) classical-like? The answer is clearly no, since in any
energy eigenstate, (X)(t) = 0 and (P)(¢) = 0 for all times ¢ by the parity selection rule, while
the classical trajectory, eq. (L), involves macroscopic oscillations. We would like to find
quantum states that are approximately classical, by which we mean that (X)(t) ~ z(t) and
(P)(t) =~ pa(t) should be as close as possible to the solutions in eq. (ZLH). The states that
accomplish this are called coherent (or quasi-classical) states, and the argument just given
ensures that they cannot be energy eigenstates, or parity eigenstates.

Instead, with the wisdom of foresight, let us try kets |«) that are eigenstates of the lowering

operator a with eigenvalue «,
ala) = ala). (7.4.1)

Since a is not Hermitian, we have no reason to expect that the allowed eigenvalues o will be
real, and indeed it will turn out to be very important that they are complex in general. For the
same reason, we also cannot expect that the set of all coherent states |a) for different o will
form an orthobasis or even be orthogonal, and again they are not.

To construct the coherent states that satisfy eq. (C4AI), let us try an arbitrary linear com-

bination of energy eigenstates,
@) = enln), (7.4.2)
n=0
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with coefficients ¢,, to be determined. Then,
ala) = cualn) =Y eav/nin—1), (7.4.3)
n=0 n=1

where in the second equality we have used eq. (Z.3I8)), and started the sum from n = 1 by
exploiting the fact that the n = 0 term vanishes. If we now relabel n — n + 1, and require that
the result

ala) = Z Cnp1Vn+1|n) (7.4.4)

is equal to @ c,|n), we obtain a recurrence relation

o

Cn1l = Cp-
+1 1

Starting with co, we get ¢; = acy, ca = a’cy/V/2, etc., or in general ¢, = a™cy/v/n!. Therefore,

(7.4.5)

up to normalization,

n

) = ¢ Zojmm. (7.4.6)

To fix ¢y, we require (a|a) =1, or

LA an TR 0 ] e
1= choﬁcoﬁwn) = |col ;7 = |eo| el (7.4.7)

m=0 n=0

where the second equality uses the orthonormality (m|n) = d,,, to collapse the sum over m.
Therefore, ¢y = elal?/2 (up to the usual arbitrary global phase), and the normalized coherent

state with complex eigenvalue « is

o0 an
o) = e 2N —— |n). (7.4.8)
n=0 \/m
Using eq. (T.3:22)), this can be rewritten as

o -i- n
) = el Z% 10) = elo*/2¢2a ) (7.4.9)
n=0 ’

If a harmonic oscillator is in a coherent state |«), and the energy is measured, all results
E,, = hw(n + 1/2) can occur, with probabilities

‘a|2n

P, = |(n|a)]? = elol, (7.4.10)

n!
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These do not depend on the phase of «, and form a Poisson distribution with mean |«|?. Since
P, = @7’“_1, (7.4.11)
n
we see that the probability increases with n as long as n < |al?, but decreases thereafter.
Therefore, the most probable result of an energy measurement is of order fiw|a|?. This shows that
for a macroscopic oscillator like the one posed at the beginning of this section, |a| ~ y/n ~ 106
in a coherent state. The expectation value of the energy is

(a|Hl|a) = hw (<a|af)(a|a>)+1/2} — hw[(<a|a*)(a|a>)+1/2] - <|a|2+%>h¢u, (7.4.12)

giving a similar measure of the average energy.

Next let us compute the uncertainty in the energy. First, we need

(| H2a) = (m>2[<a|ama*a|a>+<a|aTa\a>+i<a\a>} (7.4.13)
= (hw)?(Ja]* + 2|af* + 1/4) . (7.4.14)

Therefore
AH = \/(H?) — (H) = hwlal. (7.4.15)

This is a very small energy uncertainty compared to the energy expectation value,
AH/(H) = 1/]a] < 1, (7.4.16)

since we found 1/|a| of order 1071¢ in our numerical example. Thus, the energy distribution is
peaked extremely sharply about the classical value.

We can likewise compute the expectation value and uncertainty of the position. First,

(a|X|a) = \/%(M(cﬁ—i—a)\a) = %(a*jLa) = \/i—ZRe[a]. (7.4.17)

Also, one has

(a| X?a) = % {(al(a" + a)?*|a) = % (al(a™ + 2a'a + a* + 1)|a) (7.4.18)
_ % (0" +a)? +1]. (7.4.19)

It follows that

AX = y/(alX?a) - (a|X]a)* = 1/ ——. (7.4.20)

Remarkably, this does not depend on « at all, and in fact is exactly the same as for the ground

state, making it ridiculously tiny by macroscopic standards. The interpretation of AX/ (X) < 1
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is that the position wavefunction is extremely sharply peaked about its expectation value. In a

similar way, one can compute the expectation value and the uncertainty of the momentum:

(a|Pla) = v2mhwImla], (7.4.21)
AP = mTh“ (7.4.22)

The latter is again independent of a and is the same as in the ground state. Putting these

results together, the product of uncertainties in position and momentum is
(AX)(AP) = h/2, (7.4.23)

which is exactly as small as it could possibly be, consistent with the uncertainty relation.
The preceding results suggest that there is some close relation between the ground state and
the coherent states, since they have exactly the same uncertainties in position and momentum.

To see this, let us work out the wavefunction of the coherent state |a). We start with
Uol(z) = (z]a) = e719P/2 (z]e"|0) (7.4.24)
from eq. (C49]). Next, we write
aa' = A+ B (7.4.25)

where, from the definition of a' in eq. (7.3.2),

mw a
A= ax B-—i—2 _p 7.4.26
2h 2hwm ( )

Since [A, B] = a?/2 is a constant, we can use the Baker—Campbell-Hausdorff formula eq. (2.4.37)),

A+B _ LA B—[AB]/2

repeated here for convenience as e , to obtain

Yalz) = 1P 2e=0 4 gy (, /”21—;"04:5) (x| exp (—i\/%P) 10). (7.4.27)

The next step is to notice that the exponential operator inside the matrix element has the same
form as the translation operator T'(a) defined in eq. (B2.1), with a replaced by the (complex, in
general) number ay/h/2wm. Therefore, we can invoke eq. (B.2.7) to find

(x| exp (—i\/%P) 0) = (m - a\/%) (7.4.28)

where 1y(x) is the ground state wavefunction, found in eq. ({.233]). Using this in eq. (T.4.27),

and rearranging the exponentials, gives

2
Uo(z) = e lal+e?)/? <@>1/4 exp {—% (x -« 2—h) } . (7.4.29)

7h wm
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Now, writing « in terms of its real and imaginary parts, and then expressing them in terms of the
position and momentum expectation values using eqs. (CZI7) and (T.4.2T]), the wavefunction

takes the simple form
Vo(z) = PPy (z — (X)), (7.4.30)

where § = —Re[a|Im[a]. Up to the physically irrelevant global phase provided by 6, the coherent
state wavefunction is the same as the ground state, but displaced by the position expectation
value and multiplied by the position-dependent phase factor that encodes the momentum ex-
pectation value.

So far, we have considered a coherent state |«) at a fixed time ¢. Now let us investigate the
time evolution of the state and its properties. Since the Hamiltonian is independent of time,

the solution of the Schrodinger equation tells us that at time ¢ the state is

_th/n| ) = —iHt/h —|al?/2 a” n) = —lal?/2 o —iw(n+1/2)t| ) (7.4.31)
e « e e E —In e E —e n 4.
vn! vn!

n=0 : n=0 ’
= mwt/2p—a?/2 i (o™ n) (7.4.32)
n=0 m
eTWt2| ety (7.4.33)

This shows that the coherent state just evolves to another coherent state in which o has changedH
to ae™™!. Thus, in the time-dependent coherent state, the magnitude of o does not change,
and the phase of o rotates linearly with time, at the natural angular frequency of the harmonic
oscillator.

Suppose that at time ¢ = 0, we start with a = |a|e™°, so that at a general time ¢,
a = |a|eTiwtten) (7.4.34)

Then, using the results from eqs. (ZAI7) and (T42T), we get

(XH)(t) = ;—Z Re [|ae " @H90)] = 3 cos(wt + ¢p), (7.4.35)
(P)(t) = v2mhwlm [|a|e_"(m+¢0)} = —mwxgsin(wt + ¢p), (7.4.36)

where we have defined

oh
20 = 1| —~]al. (7.4.37)

mw

fThe state ket has also acquired an irrelevant global phase e~**/2. In contrast, the complex phase e~ *?

multiplying « (inside the ket symbol) is certainly physically relevant, as is clear from eqs. (C4I7) and (ZZ21).
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This establishes the connection between the classical trajectory of the harmonic oscillator and
the parameter « of the coherent state that most closely resembles it. Not only is the coherent
state for a harmonic oscillator as close as possible to the classical limit, but we see, by comparing
to eq. (TLH), that the expectation values of the position and momentum evolve in exactly the
same way as their classical counterparts. The uncertainties do not change with time. To

summarize the properties of a coherent state,

(HY = hw(|al*+1/2) AH = hwlal, (7.4.38)
t) = walt), AX = /h/2mw, (7.4.39)
t) = palt), AP = /mhw)/2. (7.4.40)

The harmonic oscillator potential evidently has a remarkable “focusing” property, such that the
coherent state wavefunctions do not spread out at all as they evolve in time, unlike the case for
the free particle Gaussian states as seen in section [6.21
There is a simple (and even practical) way to prepare a coherent state for the harmonic
oscillator. Suppose we temporarily apply a constant force f, acting in the positive x direction,
so that the new Hamiltonian is
2

P 1
H = — 4+ -mw?X?—fX. 4.41
f 5, T 5w f (7.4.41)

By defining a shifted position operator

f
X = X-— 7.4.42
. (7442
the Hamiltonian can be rewritten as
Pz 1 12
Hf = — +-mw?X"”? - : 7.4.43
f 2m + 9" 2mw? ( )
The constant shift in the position operator does not affect the commutation relation,
(X' P] = ih, (7.4.44)

so the solution of the eigenvalue problem for Hy proceeds exactly as for the Hamiltonian with
f = 0. The energy eigenvalues will be the same, but lowered by the constant amount — f? /2mw?.
More importantly for our present purposes, the ground state |0) f of Hy is defined by the property
that it is annihilated by the operator

1 f
d = x4 P—qg——2t _ 7.4.45
2h v 2hwm 2hw3m ( )
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where a is the annihilation operator for H with f = 0. This implies that the state |0) s 1s exactly

a coherent state of the original Hamiltonian H:
al0);, = «al0);, (7.4.46)
where the eigenvalue

0=— (7.4.47)

is a real number.

To summarize, a coherent state of the harmonic oscillator can be prepared as follows. First,
apply a constant force f, shifting the equilibrium position of the mass to the point g = f/mw?.
Next, allow the oscillator to settle into the ground state of the new Hamiltonian Hy, with the
same uncertainties in position and momentum as the ground state of H. Finally, we release the
mass by removing the force f. At the instant that the mass is released, it will find itself in a
coherent state of H, with « initially real and given by eq. (.4.47). It will therefore evolve in time
as we have already seen, remaining in a coherent state as a acquires a non-trivial phase e~™*.
The subsequent behavior is as close as possible to what would happen in classical mechanics if

we displaced the oscillator and then released it from rest.

7.5 Three-dimensional harmonic oscillator

We now return to the case of a three-dimensional harmonic oscillator, with Hamiltonian given
by eq. (ZIIT). Rewriting it without the tildes (which just denoted a particular choice of

rectangular coordinates), this can be rewritten as
H = H,+H,+H,, (7.5.1)

where

2

_ P:c 1 2v2 T

with exactly analogous expressions for H, and H.. Here, we have made use of the experience of
section to write

mw 1
. = X+ P, 5.
¢ on T atoom (7.5.3)
MW, ) 1
= Y P 5.4
a, 57 +1 TN (7.5.4)

etc. Now H, and H, and H, all commute with each other, and are Hermitian. One can therefore

find an orthobasis consisting of their common eigenstates, denoted |n,,n,, n.), where operators
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with the x subscript just ignore the n, and n, labels, and similarly for operators with the y and

z subscripts. Thus,

H, |n:c>nya n.,) = E, |n:c>nya n.), H, |n:c>nya n.) = E, |n:c>nya n.), (7.5.5)

H,|ng,ny,n,) = E,|ng,ngn,). (7.5.6)

(This can also be viewed as the tensor product of three one-dimensional harmonic oscillators.)
From section [T.3] we have already solved the eigenvalue problem for each H;, and so we know

that the allowed energies for each of j = x,y, 2z are
Ej = hwj(nj—i—l/Q), n; = 0,1,2,..., (757)

and that the corresponding eigenkets satisfy, for example:

Ay [Ny My, M) = /Ny N —1,ny, 1), (7.5.8)
al |ng,ny,n.) = Vng+ 1 |ng+1,n,,n.), (7.5.9)
Ay [Ny, My, Mz) = /Ty [N, ny—1,n0), (7.5.10)

etc. Since the labels n,, n,, and n, uniquely specify the states of an orthobasis, H,, H,, and
H, form a CSCO for this problem.

The state |n,, n,,n,) has total energy eigenvalue
E=FE+E,+E, = hwy(ny +1/2) + hwy(n, +1/2) + hw,(n, + 1/2), (7.5.11)

and its wavefunction is just a product of the wavefunctions for the one-dimensional harmonic

oscillator,

wnz,ny,nz(?) = <?‘nwvnyvn2> = wnz,wz(x> wny,wy(y) ¢nz,wz(z>v (7'5'12>

where each of the 1, ., functions can be obtained from eq. (Z.2.31)) in the obvious way.
In the special case of the isotropic 3-dimensional harmonic oscillator, w, = w, = w, = w, the
system is invariant under arbitrary rotations about the origin. This symmetry is reflected in a

degeneracy of the energy spectrum, which is now
E, = hw(n+3/2), (7.5.13)

for states |n, u,), where n = n, +n,+n, and v, = 1,..., g, is a degeneracy label for the energy
eigenvalue F,. To find the degeneracy g, of each energy level, we need to know how many ways
there are to choose three non-negative integers that add up to n. The ground state with n =0

is unique, as it can only be achieved with the lone combination n, = n, = n, = 0, so go = 1.
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The first excited energy level can be achieved in three different ways, by taking one of n,, n,, n,
to be 1, and the others 0, so g; = 3. Similar straightforward counting reveals that g, = 6, and
g3 = 10. More generally, this combinatorics problem can be solved using the dots and lines
trick: one arranges n dots in a row, and splits them into three groups by placing two vertical

lines as shown below.

0o -0jee---0lee- -0 (7.5.14)
S—— —— —

Ny Ny Nz

The degeneracy of the energy eigenvalue F, is therefore the number of ways of arranging a row

of n + 2 objects, of which n are identical and 2 are identical,

g = % = %(n—l—l)(n+2). (7.5.15)

There is another natural choice of CSCO that one can use for the isotropic three-dimensional

harmonic oscillator, consisting of the total Hamiltonian H and two observables associated with

the angular momentum. We will discuss this approach in section [10.5l

7.6 Exercises

Exercise 7.1. For a particle of mass m in a 1-d harmonic oscillator potential with angular
frequency w, with minimum at the origin, use ladder operators to calculate the following matrix
elements for energy eigenstates |n) and |k) where n and k are non-negative integers. (Your

answers should make use of the Kronecker delta symbol.)
(klaln), (Klaf|n), (KIX|n), (k|Pln),  (K|X?[n),  (k|IP%n), (k|H|n).
Make note of how the parity selection rules apply to each of your results.

Exercise 7.2. Consider a particle of mass m in a 1-d harmonic oscillator potential with angular
frequency w, with minimum at the origin.

(a) Use ladder operators to calculate (n|X*|n) and (n|P*|n), for k = 0,1,2,3,4,5, with n
arbitrary. Make note of how the parity selection rule applies to your results.

(b) Find the expectation values of the kinetic and potential energies for the state |n), and show
that they are equal. [This illustrates the Virial Theorem; see eq. (B:421).]

(c) What is (AX)(AP) for the state |n)?

Exercise 7.3. Use the raising and lowering identities (T.3.17) and (Z.3.I8)) and the representa-
tion of @ and a' in eq. (Z.3.34)) to derive the Hermite polynomial identities (7.2.24)) and (7.2.25)).
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Exercise 7.4. Consider a particle of mass m in a 1-d harmonic oscillator potential with angular
frequency w, with minimum at the origin. For the observable A = PX + X P, find:

(a) The expression in simplest form for A in terms of the usual ladder operators.

(b) The expectation value for A for the nth excited energy eigenstate |n).

(¢) The uncertainty for A in the state |n).

Exercise 7.5. At time ¢ = 0, a harmonic oscillator is in the state |¢)(0)) = %|O> + %|1> in the
usual energy basis.

(a) Find the state at later times, |¢)(¢)), in the energy basis.

(b) By direct calculation using the results of part (a) (without appealing to Ehrenfest’s Theo-
rem), find the expectation values (X) and (P) as functions of time ¢.

(c¢) Check that your results from part (b) obey Ehrenfest’s Theorem.

(d) At time ¢, compute the probability that a measurement of the position yields > 0. Evaluate

the minimum and the maximum probabilities numerically.

Exercise 7.6. At time ¢t = 0, a harmonic oscillator has wavefunction ¥ (z, 0) = cz? exp(—mwxz?/2h),
where ¢ is a positive real constant.

(a) By requiring the wavefunction to be normalized, find the constant c.

(b) If the energy is measured, what are the possible outcomes and their probabilities?

(c) Find the state ket [1(¢)) in the energy basis, as a function of time.

(d) Compute the expectation values (X), (P), (X?), and (P?), and the uncertainties AX and
AP, each as a function of time.

(e) At time t, what is the probability that a measurement of the position yields z > 07
Exercise 7.7. Consider a particle of mass m moving in 1 dimension in the potential

tmw?z?  (for z > 0),

Viz) = { 00 (for x < 0). (7.6.1)

Find all of the energy eigenvalues and the corresponding unit-normalized wavefunctions. [Hint:

try to make use of calculations already done, rather than new ones.]

Exercise 7.8. Consider the coherent states of the harmonic oscillator in section [(.4]

(a) For two different coherent states |a) and |3), compute (3|a) and |[{S]|a)|? in simplest form.
(Your answers should be exponentials. Therefore, they cannot vanish, which shows that the
coherent states do not satisfy orthogonality.)

(b) Suppose that the oscillator is in the state |a) at time ¢ = 0. Find, in simplest form, the
probability P(t) to find it again in the state |«) at a later time ¢. At what times is P(t) = 17

(¢) Suppose that |o| > 1, as for a macroscopic oscillator. For what small length of time after
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t = 0 does the probability P(t) remain greater than 0.57 [Hint: expand cos(wt) to order 2]
(d) What is the minimum value of P(t), and at what time or times is it achieved?
(e) Estimate your answers to parts (c¢) and (d) numerically for a macroscopic oscillator with

m = 0.2 kg, w = 10sec™!, and zy = 0.1 meters.

Exercise 7.9. We found in section [(.4] that the eigenstates of the lowering operator a are of
great interest, so it is natural to wonder about the possible eigenstates of the raising operator.

Show that a' has no normalizable eigenstates.

Exercise 7.10. Consider a spin-less particle of mass m, moving in three dimensions, with

1 1 5) 5
H=_"—(P2+P?+P)+ -mw’ | 2 X*+ Y2 +3XY + 7% . 7.6.2
Qm(x+y+z)+2mw p XY+ + (7.6.2)
a) Use the change of coordinates: x = ca’ + sy’, y = —sa2’ + cy’, z = 2/, where ¢ and s are
(a) g v,y Y

the cosine and sine of an arbitrary rotation angle, to rewrite the Hamiltonian in terms of the
operators X', Y’ Z', P, Py, and P,. (You may use the fact that this is an orthogonal rotation
on the coordinate system, so P; + Py + P? = P2 + P} + P2.)

(b) Choose ¢ and s (remembering that ¢?4s? = 1), so that H will not contain a term proportional
to X'Y’. Rewrite the Hamiltonian with this choice. (There is more than one valid choice here.)

(c) What are the three smallest energy eigenvalues of H, and what are their degeneracies?

Exercise 7.11. Two particles labeled 1 and 2 (they are distinguishable, but happen to have

the same mass) are governed by a coupled harmonic oscillator Hamiltonian in one dimension,

1 1 1 1
H = %(Pf + P} + §mw2X12 + §mw2X§ + §mQQ(X1 - X)?, (7.6.3)

where the constant w parametrizes the restoring force for the particles to the origin, and €2
describes the attractive force between the particles. The operators X, P, and X5, P, satisfy the
canonical commutation relations (X, Pi] = ih and [ Xy, P] = ih and [ X, P] = [X», P1] = 0 and
[X;, Xi] =0 and [P}, P;] =0 for all j,k =1,2. Consider the new operators

1 1
U - %(Xl + XQ), V - %(Xl - Xg), (764)

V2 V2

(a) Derive all of the commutation relations of all pairs of operators from the set U, V, P,, P,.
(b) Write the Hamiltonian in terms of the operators U, V, P,, P,.
(c) Define appropriate creation and destruction operators for the U, V, P,, P, system, so that

the Hamiltonian has a simple form in terms of them. From this, infer the eigenvalues of the
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Hamiltonian, and write down a suitable notation for the energy eigenbasis kets.
(d) Obtain the wavefunction of the ground state in the u, v representation ¢ (u,v), and use it to

obtain the normalized ground state wavefunction ¢ (zy, x2) = (1, z2]1)).

Exercise 7.12. Consider the isotropic harmonic oscillator for a single particle in 2-d,
L 2 Lo 52 2

This can be viewed as the sum of independent oscillators for the = and y directions.
(a) Express H and the angular momentum operator L, = X P, —Y P, in simplest form in terms

of the raising and lowering operators a!, a,, a!

1, ay for the independent x and y oscillations.

Compute the commutator of L, and H. Are they compatible?
(b) Consider the basis kets

(aT)”z (az)w

xT

s my) =
B Vgl \/n,!

where |0, 0) is the ground state. Show that the |n,,n,) are eigenstates of energy and parity, and

10,0, (7.6.7)

give the corresponding eigenvalues. What is the degeneracy of the nth excited energy level?
(c) Show that the basis kets |n,,n,) are not eigenstates of L.

(d) Define new raising and lowering operators

al, = (al +id})/V2, ay = (ay —ia,)/V2, (7.6.8)
al = (al —ial)/V2, a. = (a, +ia,)/ V2. (7.6.9)

Y

Compute all of the non-zero commutators involving these four operators. Express H and L, in
terms of them, in normal-ordered form.

(e) Consider the basis kets

+

Ly = @@ g0 (7.6.10)

ny! /n_!

Show that these are eigenstates of H and L,, and give the corresponding eigenvalues. For the

lowest three energy levels, write the eigenvalues of H and L., and express the corresponding

eigenstates as linear combinations of the kets |n,,n,). Do H and L, form a CSCO?
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8 Angular momentum and its representations

8.1 The eigenvalue problem for angular momentum

At the end of section (.3 we introduced the commutation relation algebra for the components

of a generic angular momentum operator J=aJ, + yJy, + 2J, defined to satisfy
(o, o] = iheapede, (a,b,c=z,y,2), (8.1.1)

with ¢ implicitly summed over. Let us now find the simultaneous eigenvectors and the corre-
sponding eigenvalues of the compatible observables J* = JZ + J2 + JZ and J..
We start by observing that the eigenvalues of J? must be non-negative. To prove it, note

that for any non-null ket [¢),

W12 [) = 1Tz [P + 11Ty [9)1F + 17 1) [1* > 0, (8.1.2)

where |||v)|| denotes the norm of |v), and so the possibility of equality exists only because each
of the kets J, [¢), J, |¢), and J, |[¢) could be null. Now, if

T2y = Alw), (8.1.3)

then it follows that (1|J2[¢)) = X (¥|1) > 0, so A > 0. For reasons to become clear shortly, it
turns out to be convenient to give A the name h%j(j + 1), by defining j = \/\/h2 +1/4 — 1/2.
Since A > 0, it follows that 7 > 0 also.

Because J? and J, are compatible observables, Theorem 2.7.1] says that there must be an
orthobasis consisting of common eigenstates, |7, m, u;,,), which satisfy orthonormality and com-

pleteness relations

<j/? m/’ u;"m’ |j, m, U]m> = 5]']-/ 6mm’ 6“;-/m/’“jm’ (814)

ZZZ|j>m’ujm><jam>ujm| = I (815)
i mooug,

Here wj,, is a possible degeneracy labeﬂ that will be important in particular cases, but plays no
role in the following discussion and so will be suppressed for simplicity. We therefore seek to

solve the eigenvalue problem

J2gm) = B+ 1) [5,m), (8.1.6)
J.j,m) = hm|j,m). (8.1.7)

fSoon [just before eq. (8I28)], we will learn that the orthobasis can actually always be chosen in such a way
that the u;,, do not depend on m. But we do not know that yet.
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for the allowed eigenvalues 7 and m, recognizing that there may be more than one sector of
such states, distinguished by the suppressed degeneracy label. In the special case of orbital
angular momentum, we already found in section [£.3], by requiring the position wavefunction to
be single-valued, that the allowed eigenvalues of L, are hm, where m is an integer. However, spin
(intrinsic) angular momentum is not associated with a position wavefunction, so that argument
does not apply, and m need not be an integer, as we will see.

It is very useful (and not just for the present purpose of solving the eigenvalue problem) to
define the angular momentum raising and lowering operators, also sometimes known as

ladder operators for angular momentum,
Ji = Jp+idy, Jo = Jy — iy, (8.1.8)

which will play a role similar to a' and a for the harmonic oscillator. They are not Hermitian,

but instead are Hermitian conjugates of each other,

J)T = J_. (8.1.9)
The inverse relations of eq. (B8] are
1 .
Jo = S+ 1), J, = %(J_ — 7). (8.1.10)
Some other useful identities are
[J., Ji] = +hJs, (8.1.11)
[y, J_] = 2hJ,, (8.1.12)
JoJ. = J*—J*+hJ., (8.1.13)
J.Jy = J*—J*—hl.. (8.1.14)
From the last two equations, we get
2 1 1 2
Each of J,, J_, and J, commute with the total angular momentum squared,
[(J2, 0y = [J%, )] = [J%, J.] = 0. (8.1.16)

We now derive some useful facts by studying the ket J|j,m). Since J? commutes with J,,

2 (Jelgm)) = B30+ 1) (Jilj,m)). (8.1.17)
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Also,

L. (Jeljym)) = [, Jilld,m) + JyJelg,m) = hdylj,m) + hmJi|j,m)  (8.1.18)
= R(m+1) (Jelj,m)). (8.1.19)

Thus, J.|j,m) is an eigenstate of both J? and J,, with eigenvalues A%j(j + 1) and A(m + 1),

respectively. Due to the fact that the |j,m, u were chosen as an orthobasis, we can conclude

m)
J,m
that either J.|j, m) is proportional to |j,m + 1) within each sector labeled by w;,,, or else it is
the null ket. This is why J, is called a raising operator; it raises the J, eigenvalue. To find out

whether J, |j,m) is the null ket, we compute its squared norm,

||']+ |.]7m>H2 = <.j7m"]—‘]+‘j7 m) = <j7m| (J2 - Jz2 - h"]z) |.]7m>
= (.m| [1*j(j + 1) — (hm)* — h(hm)] |j,m)
= PG+ 1) —m(m+1)). (8.1.20)

From this we learn two useful things. First, the general properties of the inner product require
that the squared norm is non-negative, so allowed j,m must satisfy j(j + 1) — m(m + 1) =
(j—m)(j+m+1) > 0, and since we learned at the beginning of this section that j > 0, we

can conclude that for every non-null ket |j, m),

m < j. (8.1.21)

The second useful result from eq. (8I1.20) is the constant of proportionality between J|j, m)

and the unit-normalized ket |j, m+1),

Jolj,m) = Bji(G+1) —m(m+1) |5, m+1). (8.1.22)

Here we had to make an arbitrary and unavoidable choice of phase; eq. (81.22) can be taken
as the definition of the relative phase between |j, m) and |j,m+1). It follows from eq. (81.22)
that J, |7, 7) is actually the null ket.

Everything in the previous paragraph can be repeated for J_|j, m). We learn that, for every

non-null ket |7, m),

m > —j (8.1.23)

due to the requirement of positive squared norm, and that J_|j, —7) is the null ket, and that

J_|jym)y = B/ +1) —m(m —1)[j,m—1). (8.1.24)
This justifies calling J_ the lowering operator for (the z component of) angular momentum.
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In eq. (BI24), we have made another choice of phase, and we should be careful to make
sure that it is consistent with the phase choice made in eq. (8I22]). This can be checked by
using eqs. (8I1.22) and (8I.24) to compute J.J_|j,m) and J_J,|j,m), and noting that they
are equivalent to the results obtained using eqs. (8I1.I3) and (8I.14), respectively. A nice
feature of eqs. (BI122) and (RI24) is that the coefficients on the right-hand sides are real and
non-negative.

Combining egs. (8121 and (8I1.23) tells us that, for any given j, the only possible values

of m for physical states |j, m) are in the range

—j<m<j. (8.1.25)

Intuitively, this is the quantum version of the classical statement that the magnitude of the
z-component is less than the magnitude of the angular momentum vector.

We are now ready to prove that j = n/2 for some integer n. If we compute (J;)?|7, m),
it must be proportional to |j,m + p), according to eq. (81.22). For some finite p, this must
be the ket |j,j), because otherwise we could keep acting with J, to find non-null kets with
arbitrarily large J, eigenvalue, which would contradict of eq. (8I1.25). (Here, we are relying on
the fact that eq. (81.22)) tells us that |7, j) is the unique non-null ket that is annihilated by J...)
Therefore, j = m + p for some non-negative integer p. Similarly, if we compute (J_)?|j,m), it
must be proportional to |j, m — ¢), according to eq. (8I1.24]). For some finite ¢, this must be the
ket |7, —j); otherwise, we would again contradict eq. (8I1.25]). Therefore, —j = m — ¢ for some
non-negative integer ¢q. Putting the results together gives 25 = p + ¢, a non-negative integer.

The allowed values are
j = 0,1/2, 1, 3/2, 2,.... (8.1.26)

The fact that j = m + p for some integer p, together with eq. (8I20), also tells us which values

of m can give non-null kets |j). For each j, they are the 2j + 1 values
m = —j, —j+1, ..., 5—1, 7. (8.1.27)

For the special case that J= f, we already found in section that m must be an integer, so
in the case of orbital angular momentum the allowed values of j = [ are also restricted to the
non-negative integers 0, 1,2, .... The case of half—integeIH J must correspond to something other
than orbital angular momenta.

For a given state |j,m,u,,,), the operations of J?, J., Jy, and J_, given by eqs. (BI1G]),
B11), B122), and (BI24) are independent of u,,,, and can change m, but not j. This has

two important implications.

iThe standard term “half-integer” means an odd integer divided by 2. It might be more logical to call this
“half-odd-integer” or “integer-plus-half”, but it is difficult to fight tradition.
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First, if we have a single representative state with a certain j and w,,,, then all other states
with the same j and w,, but other values of m are obtained by acting repeatedly with J, or
J_. Therefore, the degeneracy label u;,, does not actually depend on m, as foreshadowed in
the footnote following eq. (8LH). Thus, for any quantum system, the orthobasis of common

eigenstates of J? and J, can be labeled as |j, m, u;), with a slight simplification of eqs. (81.4)

and (L5,

<j/,m',u;,\j, m, Uj> = 5jj’ 5mm’ 5“3,-/“]" (8128)

DD limouGmul = I (8.1.29)
J m.u,

Typically, u; represents the eigenvalue(s) of some observable(s) that, together with .J 2 and J.,
form a CSCO for the quantum system. If the Hamiltonian is invariant under rotations, then H
can be taken to be one of those observables. The group of 25 + 1 orthobasis states with common
J and u; and varying m = —j,...,j is called an angular momentum multiplet.

The second observation is that, because the operations of the angular momentum operators
J?, J,, Jy, and J_ (and J,, J,) in the orthobasis |j,m, u;) do not depend on u; at all, we can
work out their matrix representations and operations on kets for each relevant value of j just
once, and the results will be applicable to any quantum system with that j.

For a j = 0 subspace, we have J? = 0 and J, = J, = J_ = J, = J, = 0, so the state
space has only one non-null ket |[j = 0,m = 0). All angular momentum operators acting on

|7 =0,m = 0) give the null ket, so that they are all represented by the 1 x 1 matrix 0.

8.2 The j = 1/2 representation: Pauli matrices and spin

For a j = 1/2 subspace, the orthobasis consists of two states with m = 41 /2, with corresponding

two-component vector representations

=1/2, m=1/2) ((1)) =1/2, m=—1/2) © ((1)) (8.2.1)

The matrix representations of the angular momentum operators can now be constructed from

eqs. (B16), B11), BI1I0), BI22), and (BI.24), with the results

3r% (1 0 h(1 0
2 _ J—
J* < 1 (O 1) , J, < 5 (0 _1) , (8.2.2)
h (0 1 h (0 —i
Jp 5 (1 O) : Jy < B) (Z 0 ) . (8.2.3)
01 0 0
Ji < R (O O) : J_ < h (1 0) : (8.2.4)

190



Some special operator identities that hold only in the j = 1/2 case are
=T =] =h/4, J:=J =0, (j=1/2). (8.2.5)

As noted after eq. (8L27), the fact that m = +1/2 is not an integer implies that J cannot be
a pure orbital angular momentum.

The case of purely intrinsic angular momentum for a single particle is called spin, and we
write J = S and j = s in that case. For s = 1/2, we say that the particle is (or has) spin-1/2,

and we often rewrite eq. (82]]) using a simplified notation for the S, eigenstates,

me(y) we () (526

referred to as spin-up and spin-down, with eigenvalues mgs = 1/2 and —1/2, respectively.
From eqs. (B22) and (8Z3)), one can deduce that the components of the spin operator

written in ket-bra form are

o= 2w+ ), (827)
s, = S e—m ), (828
s = o(mal- 1) (5.2.9)
The standard notation for their matrix representation is
S ga (8.2.10)

where the components of the vector ¢ are known as the Pauli matrices, defined by

0 1 0 —1 1 0
Oy = (1 0), o, = (z O)’ o, = (0 _1). (8.2.11)

The Pauli matrices obey the commutation and anticommutation relations

[Uaa Ub] = 2'é€abcgca (8212)
{00, 00} = 20a (8.2.13)
for a,b = z,y, z, and
Trlo,] = 0, (8.2.14)
Detlo,] = —1. (8.2.15)

For any spatial vector ¥ = 2v, + yv, + 2v,, we have

¥-7 = < v ”f_“’y), (8.2.16)

Uy + 10y —,

191



and a formula useful for simplifications,
(U-0)(W-0) = U-w+i(0 x W) -7, (8.2.17)
with the 2 x 2 identity matrix understood in the first term on the right side. In particular,
@-)©W-7) = 0-T =0, +v,+0v2 =0 (8.2.18)

is proportional to the identity matrix.
For a spin-1/2 particle like an electron, the complete state can be written as a linear combi-

nation of kets with S, eigenvalues my = h/2 and —h/2, as

|¢> = W}Ta/w + W]iaif)a (8.2.19)

where 14 and 1| represent the non-spin degrees of freedom corresponding to the classical motion
of the particle in three dimensions. This state can also be represented as a two-component

column vector of kets, called a spinor,

Ay
) = (w)‘ (8.2.20)

Acting on these two-component spinor kets, the spin operator is again represented by S gﬁ.

The bra corresponding to eq. (8220) is a two-component row spinor,

Wl = (Wl (). (8.2.21)

The inner product of two states |¢)) and |y) is

uw>=«m|an%>=uww+mwm (5222
and unit normalization means
L= (Ply) = (drln) + (uleby) - (8.2.23)

For example, the two-component spinor position wavefunction for an electron is

R |y ()

ey = (V1) = () (8.2.24)
(Fleby) ()

These correspond to orthobasis eigenstates of the CSCO consisting of the observables (R, S.).

If we impose the usual unit normalization condition for the state, the two spin-component

wavefunctions are required to satisfy

1=/$M%®Fﬂmmﬁ (8.2.25)

but they are otherwise independent, in general.
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8.3 Matrix representation for j =1

For a j = 1 subspace, the orthobasis of J, eigenstates consists of three states |7, m) with j =1

and m = 1,0, —1, with corresponding vector representations

1 0 0
11,1) < (0], 11,0) < 1], 11,-1) < [0] . (8.3.1)
0 0 1

The matrix representations of the angular momentum operators can now be constructed from

egs. (RL0), LD, BIIN), BI22), and (8I124), with the results

100 10 0
J? < 2R7|0 1 0], J. < {00 0], (8.3.2)
001 00 —1
010 000
Jy < V2r([0 0 1 J_ < V2r([1 0 0], (8.3.3)
00 0 010
010 p (0 —i 0
Jx<—>—101, J, & — i 0 —i]. (8.3.4)
v2\o 1 0 v2\o i o

As an example of the use of these matrices, suppose that a system is in an eigenstate of J,
and we want to know the possible results and their probabilities if .J, is measured. To answer
this question, we first find the eigenvalues and eigenstates of J,, expressed in the orthobasis of
J, eigenvectors of eq. (8&31]). Since there is nothing special about the x direction as opposed
to the z direction, we know even without computing the characteristic equation for J, that its
eigenvalues must be the same as J., namely h, 0, and —h. Then, solving for the eigenvectors of

the matrix representation for .J,, one finds the normalized kets

1 1 1
1 1
1 1 1
==ty = 5111 = 5 [1.0) + 5L -1), (8.3.7)

As a check, these kets are mutually orthogonal, as required (Theorem [Z.6.5]) by the fact that
they are eigenkets of a Hermitian operator with different eigenvalues. Then, for example, the
probabilities that a measurement in the state |1,1) will yield the results J, = h, J, = 0, and
J, = —h are, by applying Postulate 4,

Pr—n = |{J,=h|1,1)>=1/4, (8.3.8)
Pr—o = |{J.=0|1,1)|*=1/2, (8.3.9)
Pr—n = |(J.=—-R11)|*=1/4 (8.3.10)
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8.4 Matrix representation for arbitrary j

For a subspace with arbitrary j, the orthobasis of J, eigenstates consists of 2j + 1 states |j, m)
with m = 75,7—1,..., —j+1, —j. The corresponding column vector representations of these

states, in that order, are

1 0 0
0

|j7 ]> A : ) |]7 ]_1> AN : ) ) |]7 _]> e . . (841)
0 0 1

Again, eqs. (BL4), BLT), BL22), and (BI24) provide the matrix elements of the angular

momentum operators. The (25 4+ 1) x (25 + 1) matrix representations have the forms

10 ... 0 j 0 ... 0
) 0. 01 ... 0 0 j—1 ... O
J e B+ 1) e J, < h : : . e (8.4.2)
00 1 0 0 —7
0 e 00 00 00
00 e 00 e 00 00
000 ... 00 0 e 0 ... 00
Jy o D S I Jo = h RS B (8.4.3)
000 ... 0 e 000 ... 00
000 ...00 000 ... 0

where the e are the only non-zero elements, which lie just above and below the main diagonal

for J, and J_, respectively. Using eq. (8&I1I0), J, and .J, have matrix elements

(B = o [VIG D =m0 =D buru + GG+ 1m0+ 1) o], (8:44)

Dt = 1 (VTG0 01— 1) b s — VGG 5 D) 1l 4 1) 8] (8:45)

and so have the forms

0O e 0 ... 00 0O —e 0O ... 0 O
e 0 e ... 00 e 0 —e ... 0 O
0O e 0O ... 00 0O ¢ O ... 0 O
Jo & R . A I Jy < ih | .. L ], (84.6)
000 ... 0 e 0 0 0 ... 0 —e
000 ... 0 0O 0 0 ... e 0

where each pair of e’s on opposite sides of the main diagonal are equal, consistent with the
Hermiticity of these operators. Note that the e’s are also all real and positive in the phase

convention we have chosen.
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8.5 Matrix representations for unitary rotation operators

In section (.3 we discussed the unitary operators that act on the Hilbert space to generate
rotations parameterized by @ = na, where the unit vector n is the axis of rotation, and « is the

magnitude of the rotation angle,
U@ = exp (—z'a : 7/h> . (8.5.1)

The matrix representations for these unitary operators are called Wigner functions, after
Eugene P. Wigner, and traditionally denoted as DY) (@). They are defined by

G, m|U@)|j,m) = ;DY) (@) (m,m! = —j, ..., J). (8.5.2)

By completeness of the angular momentum eigenstates,

a)lj,m Z j,m’) DY) (@). (8.5.3)

Note that each D is a (2j+1) x (2j + 1) dimensional matrix, which can mix different m values
but keeps 7 fixed.

The set of matrices D . for fixed j form an irreducible representation of the rotation
group, with the following consequence. If you do one rotation a followed by another B, the

result is always some other rotation 7,

U@ = U@)U@). (8.5.4)
Then, applying completeness gives
DY = Y DY .(B)DY).@). (8.5.5)
m”——j

The unitarity of the operator U(a@) and the fact that U(a@)™' = U(—ad) implies

m'm

DY) (~@) = [D;{}n,(a)]*. (8.5.6)

For small j, the exponentiation in eq. (851]) can be done explicitly in the matrix represen-
tation. For the trivial j = 0 case, we have D (@) = €* = 1, the unit 1 x 1 matrix, independent
of a. This corresponds to the fact that states with 0 angular momentum are invariant under
rotations.

For j =1/2,

=1
DY2(@) = exp(—ia-7/2) = ZH (—ia -7/2)". (8.5.7)
k=0
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Using eq. (BZIX), we have (a-7)? = a?, so that the terms in eq. (85.7) have a recurring matrix

structure, which allows us to resum the even and odd terms of the infinite sum separately,
DY2(@) = cos(a/2)] —in-dsin(a/2), (8.5.8)

where [ is the 2 x 2 unit matrix.
As an example, suppose we have a spin-1/2 that has been measured to be along the 2z

direction, so that the state ket is [¢)) = |1), or in the matrix representation,

V) ((1)) : (8.5.9)

Now let us rotate this state by an angle 6 about the y axis. The matrix representation of the

rotation is

DYD(§8) = cos(8/2)] — io, sin(6)2) — (Ziﬁ?ﬁ? ‘lesr(lé%f)) (8.5.10)

and so the rotated state has

cos(6
) < <sin((9;§)>)7 (8.5.11)

or [y = cos(8/2)|1) + sin(6/2)|l). You can check that this is indeed an eigenstate of the

rotated operator

h (cosf sinf
r . v
S, = cosfS, +sinbS, < 5 (sin9 ~cos 9) , (8.5.12)

with eigenvalue +5h/2. If we prepare the system in a spin eigenstate, then the probability to

find the spin oriented in a direction at an angle 6 with respect to the original direction is
P = [P = cos’(0/2). (8.5.13)

As a check, this is 1 for # = 0 or 27, and 0 for § = 7. The probability to find the spin oriented

in some particular direction at a right angle to the original spin direction is cos?(r/4) = 1/2.
Abstracting this to a slightly more general case, let |n) be the eigenstate of an arbitrary spin

component 7 - S with eigenvalue /i/2. Then the probabilities for outcomes of the measurement

of a different spin component 7’ - .S are

/

>

P(
P’ -

=+h/2) = [(A|n)]* = cos*(0/2), (8.5.14)
—h/2) = |{(=A/|n)|* = sin*(0/2), (8.5.15)

Wl Wl

where 6 is the angle between n and 7/'.
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A surprising feature of eq. (85.8)) is that a rotation about any axis by an angle a = 27 gives,

instead of the identity matrix:
DY (p2m) = -1 (8.5.16)

for a spin-1/2 system. Thus, the j = 1/2 state always acquires a minus sign when continuously
rotated by an angle a = 27, even though such a 27 rotation corresponds to no change at all for
rotations of classical objects. If the state was in an eigenstate of a particular component m - j,
then it will still be after the 27 rotation, but with a minus sign phase change.

For general j, the unitary matrix for a rotation about the z axis is easy to obtain, because

J. has a diagonal matrix representation, making the exponentiation easy,

j 0 o0 et 0 o 0
o 10 j-1 -+ 0 0 e tali-1) .0
D(J)(za) = exp |—ia | . ) . ] = ] ) . ) . (8.5.17)
0O 0 - —j 0 0 o et
For example, in the j = 1 case,
DW(za) = diag(e™™, 1, e). (8.5.18)

The special case of a rotation through an angle 27 gives
DY) (327) = (=1)%1, (8.5.19)

which is equal to the identity matrix for integer j, but is equal to —I for half-integer j, gener-
alizing what was found for j = 1/2. For this reason, it is impossible to define a single-valued
continuous position wavefunction (like the spherical harmonics introduced in the next section)
for non-integer j.

For rotations about other axes 7 # 2, the algebraic form of matrices DY) (@) for general j
can be considerably more complicated. The resummation of the infinite sum in the exponential
may depend on matrix recurrence relations of higher order. For an example of a harder case
that can still be done straightforwardly in closed form, one can evaluate D) (Za) by using

3

010 010
101] =210 1 (8.5.20)
010 010

to resum the exponential series, with the result:

cos?(a/2) —% sin(a) —sin?(a/2)

DW(za) = —% sin(a) cos(a) —% sin(a) | . (8.5.21)
—sin?(a/2) —% sin(a)  cos?(a/2)
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Similar expressions for rotations about the ¢ and 2 axis for j = 1 are left as an exercise.
For general j, the numerical value of any D) (@) can always be obtained by exponentiation
of the (2j+1) x (2j+ 1) matrix corresponding to eq. (85.0]). There is also a remarkable formula,

due to Wigner, for rotations about the y-axis,

DO (38) = 3 (~1) = cos B/ fsin( /)
G+ m)! G m) () (G — )2
Kl (k—m+m)(G+m—k) (G —m —k)

(8.5.22)

where the sum is over integers k for which all of the factorials in the denominator have non-
negative arguments, in other words k is summed from max(0, m — m') to min(j + m,j —m’).
The proof is omitted here.

The Wigner formula for the matrix DU) () is especially useful because it can be used to
construct a general rotation matrix. The reason is that a general rotation can always be built
up as a product of three sequential rotations about two fixed orthogonal axes. Suppose that we
first rotate by an angle o about the 2 axis, then about the ¢ axis by an angle [, and finally by

an angle v about the 2 axis againll The change in coordinates induced by this rotation is

T ¢y —Sy 0 cg 0 sp Ca —Sa 0 T
y/ = S,y C.y 0 O 1 0 Sa Ca 0 y ) (8523)
4 0 0 1/ \=sg 0 ¢ 0 0 1/ \=z

where ¢, = cosa, s, = sina, etc. The components of vector operators including R, P, and J

rotate in the same way as eq. ([85.23]). The corresponding unitary rotation operator is
Ule, B,7) = UEy)UGH) U(Za), (8.5.24)
so that the Wigner rotation matrix for a multiplet with angular momentum j is
DY, B,7) = DY(zy) DY(§5) DY (2q). (8.5.25)

The matrices for the first and last rotations about the fixed z axis are simple, being just given
by eq. (BLIT).

TThere are different conventional ways of defining the three Euler angles needed for a general rotation. In
classical mechanics, it is traditional to choose the middle rotation to be about the Z axis. In quantum mechanics
it is preferable to use the ¢ axis, because DU )(Qﬁ) has purely real entries, as exhibited in eq. (85.22). There are
also differing conventions for whether the axes of rotations are absolutely fixed, or whether the second and third
rotation axes are the “body” axes, obtained by the previous rotations of the original (fixed) y and z axes. Here,
our rotation axes are the absolutely fixed ones.
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8.6 Spherical harmonic representation of orbital angular momentum

The orbital angular momentum operators L,, L,, and L, were introduced in section 5.3 We
now consider the representation of these operators in terms of the position wavefunctions in

spherical coordinates. Recall that in the position orthobasis,

(. 0,0) = (1,0,0¢). (8.6.1)

Using the definitions of L,, L,, and L, in egs. (0.3.3)), we get the rectangular coordinate repre-

sentations of these as differential operators:

: 0 0
. 0 0
: 0 0

which can be converted into spherical coordinate differential operators, with the results

. . 0 cos¢cosf 0
Lm <~ 1ih (Slﬂ(ﬁ % + Wﬁ_(b) 5 (865)
, 0 sin¢gcosf 0
Ly <~ 1h (— COS(b % + SlTa_QS) s (866)
L, < —ihg (8.6.7)

oo’
From these, we also obtain for the raising and lowering operators Ly = L, +iL, as defined by

eq. BLY),

o[ O cosf 0O
L Z¢ 00 . b 0.
e (09+Zsin98¢>’ (3.6.8)
; 0 cosf 0
L_ _Z¢ 90 : b 0.
& he ( 00 +Zsin98¢)’ (8.6.9)
and, using L? = L2 + L2+ L2 = (LyL_ + L_L,)/2 + L? from eq. (ELI5), we get
9%  cosf O 1 o2
2 2 Y o0
Lo h <892 T smooe " sinzea¢z> : (8.6.10)

For future reference, we note that L? is closely related to the part of the Laplacian involving
angular derivatives; this is useful because the kinetic energy term in the Hamiltonian involves

V2. More precisely,

22 1
Vv o= 0 +—3——L2. (8.6.11)

o2 " ror  hr?



When acting on a wavefunction corresponding to an eigenstate of L? with eigenvalue h2I(l + 1),

this becomes

2 20 1(+1)
2 __
\V4 = W + ;E — 2 . (8612)

We now solve the eigenvalue problem for orbital angular momentum. In doing so, we can
make use of a notable feature of egs. (B.G.5)-(B.G.I0): there is no r dependence in any of

the angular momentum operator representations as differential operators on the wavefunctions.
Thus we can consider wavefunctions for eigenstates of L? and L. in which the r dependence is
factored out, with an orthobasis of position eigenkets that are a tensor product of radial and

angular parts,
r,0,0) = |r)®10,0), (8.6.13)

with Dirac orthonormality conditions

) = %w s (8.6.14)
0,4'10,0) = 6(¢p— ') d(cos — cosh'), (8.6.15)
and completeness relations
/OOO drr®|r) (r| = I, (8.6.16)
/dQ 10,0)(0,0| = Iy, (8.6.17)

where I, and Iy 4 are the identity operators on the respective Hilbert spaces, with I = I, ® Iy 4.
In eq. (B6.I7), and from here on, we define

dQ) = dpd(cosb) (8.6.18)

as the differential of solid angle in spherical coordinates, so that
2m 1
/dQ s = / do d(cos@)--- . (8.6.19)
0 -1

The Hilbert space spanned by the orthobasis of angular eigenkets |0, ¢) is also spanned by an

orthobasis of (L?, L.) eigenkets |I, m) satisfying, from eqs. (8L, (BLT), (B1.22), and RI.24),

L.|[lym) = hml|l,m), (8.6.20)
Loll,m) = BJI(l+1)—m(m+1)|l,m+1), (8.6.21)
L_|lym) = hJIl+1)—m(m—1)|l,m—1), (8.6.22)
L2l,m) = R+ 1)|l,m), (8.6.23)
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for | =0,1,2,... and m = —[,...,l. The |l,m) also satisfy orthonormality and completeness

relations
<l/7 m/|l7 m) = 5ll’ 5mm’7 (8624)

DD Lmylm| = Igg (8.6.25)

=0 m=—1

We now define the angular wavefunctions
(0.9[l,m) = Y"™(0,9), (8.6.26)

called spherical harmonics.
The actions of the differential operators L., L., L_, and L? defined in egs. (8.6.7)(8.6.10)

on the spherical harmonic wavefunctions are expressed as

LY"(0,6) = hmY"(0,0), (8.6.27)
L.Y™(0,6) = h/I(1+1)—m(m+1)Y,"(0,¢), (8.6.28)
LY™0,¢) = h/I(I+1)—m(m—1)Y""'(0,¢), (8.6.29)
L2Y™(0,¢) = KA1+ 1)Y™(0, ). (8.6.30)

These are the position representation differential operator versions of the Hilbert space operator

equations (8.6.20)(8.6.23). For simplicity, we are using the same symbols for the differential op-
erators (acting on wavefunctions) and the corresponding Hilbert space operators (acting on kets
and bras). From eqs. (86.17) and (86.24), the spherical harmonics satisfy the orthonormality

condition
/ AQY (0, 0) Y ™(0,0) = uSmm, (8.6.31)

and from egs. (8610 and (8.6.25]), the completeness relation

oo

SN VMO ) Y (0,6) = 6(¢—¢)d(cost — cos ). (8.6.32)

1=0 m=—1

The full Hilbert space is now spanned by the orthobasis of tensor product kets
r) ®|l,m), (8.6.33)

which describe states in which the particle is known to be at a distance r from the origin, and in
which L? and L. are also known to be h%[(l+1) and hm respectively. These orthobasis elements
are an alternative to eq. (BG.13).
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Equation ([86.27) together with eq. (86.1) gives the simple differential equation

—zha—(bYl = hmY™, (8.6.34)
which has the general solution
Yi"(0,0) = ™ f(0), (8.6.35)

where the functions f/"(6) are now to be determined. We know already that the largest possible

value of m is [, so let us start with that case. Equation (8.6.28) implies L, Y}' =0, or

0 ccost O\ 4 B
<% + 1 sin98_¢) e"?f(0) = 0 (8.6.36)

after using eq. ([R.6.8). This reduces to

a1

= 8.6.37
d(sinf)  sinf’ ( )
which has the general solution
f1(0) = e%(sinf), (8.6.38)
where C' is a constant of integration. Thus, we can write
! _ L JRUEDE T

where a multiplicative normalization factor has been included, with magnitude chosen in such
a way that eq. (86.31]) holds with m’ = m =1’ = [. The (—1) factor is a choice of convention.

The spherical harmonics for the remaining values m < [ can now be obtained by acting
repeatedly with L_, using eq. (86.29]), and comparing to eq. (86.9). First,

e [0 cos 6
NG <% + lsme) Y0, ¢). (8.6.40)

Continuing in the same way, it can be shown by recursion that, for general — < m <,

Yil_l(eagb) - =

Y (0,0) = (;? \/ (214:(1[>£l;)7!”)!eim¢(sme)—md(c(i$(sm9)2l. (8.6.41)

The normalization factor in eq. (86.40]) ensures that eqs. (86.31)) and (RG.32) are satisfied. The
phase convention here is determined by the choices that we have already made in eqs. (8I1.22]),
R®I24), and (B6.39), and is called the Condon—Shortley phase convention. (Other phase
and normalization conventions for the spherical harmonics exist, so one must be careful when

comparing results from different sources.)
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An equivalent way of writing the spherical harmonics is

Y"™0,0) = \/ T+ m) (—1)™e"™ P (cos ), (8.6.42)
where the P/ (u) are called associated Legendre functions. They are solutions to the differential
equations

d? d m?
2 m —
{(1 - )d:c2 — 2xd:c +1I(l+1) - 2 P™z) = 0. (8.6.43)

For the special case m = 0, the solutions are the ordinary Legendre polynomials,

P(z) = PO(x) = ﬁd%(x? _qy (8.6.44)
which have a generating function
ithl(a:) = (1—2tx+t>)72 (8.6.45)
1=0
and satisfy the orthonormality relations
! 2
/_1d:c Py(x)P/(x) = ST 15”1. (8.6.46)
The first few Legendre polynomials are
Py(z) = 1, Pi(z) = x, Py(z) = (32* —1)/2, (8.6.47)
Py(z) = (52 —371)/2, Py(z) = (352" — 302* + 3)/8. (8.6.48)

For non-negative m, the associated Legendre functions are then given by

PM(x) = (1- xz)m/QCZC—msz(x), (m >0), (8.6.49)

and those with negative m are

(I —m)!

Fr@) =

P (x), (m < 0). (8.6.50)
With the Condon—Shortley phase convention,
Ym0.9) = (=1)"Y"(0,9)" (8.6.51)

For large [ and maximal m, Y, *(6, ¢) o (sin §)!, which is largest in magnitude for § ~ 7. Thus,
states with large angular momentum about the z axis have probability densities that are peaked

near the xry plane and are suppressed near the z axis.
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Since Y;™(0, ¢) is proportional to €™, the only spherical harmonics that are independent of

¢ are those with m = 0,

20+ 1
Y2(0,6) — 4; Pi(cos 0). (8.6.52)

In the special case 6 = 0, the coordinate ¢ is arbitrary. This implies that Y;"(0,¢) cannot

possibly depend on ¢, so it can only be non-zero if m = 0. From eq. (86.52) and P(1) =1, we

therefore obtain the special value

20+ 1
A

The spherical harmonics that are most commonly encountered in practical problems are the

ones for [ < 2, which are

1
Yy = T (8.6.54)
YY) = 5 — cos b, Y = 74/ — ’ e*? sin 0 (8.6.55)

A 8 ’

5
Yy = ,/16ﬁ(3cos 6—1), (8.6.56)
;o= Eﬁ’j”‘z’ sin f cos 6 Y2 = 15 e sin? 6. (8.6.57)

? 8 ’ ? V327 €

Note that Y, is always a polynomial of degree [ in cosf and sin 6.
Using completeness of the orthobasis |/, m) over the Hilbert space component corresponding

to the angular coordinates, as expressed in eq. (8.6.27), any wavefunction can be expanded as

NE
M-

Y(r,0,¢) = ((r[ @ (8, o[) [l,m) (I, m[¢) (8.6.58)
=0 m=—1
o) l
= YD YmE@.o)(rledm) ). (8.6.59)
=0 m=—1
Defining functions £ ,,,(r) = ((r| ® (I, m]) [¢), this can be rewritten as

W(r0,0) = D> Fam(r)Y™(6,9). (8.6.60)

1=0 m=—1
To find the coefficient functions Fj,,(r) for a given ¢(r, 8, ¢), multiply both sides of eq. (8.6.60)
by Y™ (0, $)*, then integrate d), then use the orthonormality condition eq. (86.31]) to reduce
the double sum to a single term with " = [ and m' = m, and finally rename (I',m') — (I, m).
The result is

Finlt) = [d9Y7(0.0)" 010.0,0). (3.6.61)
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Of course, eqs. (B6.60) and (B6.61)) also apply if ¢ and F have no dependence on 7.
If the wavefunction 4 (r, 0, ¢) is normalized, so that [~ drr?® [ dQ [)(r,0,¢)[> = 1, then one
can use the orthonormality condition eq. (8.6.31]) again to obtain

ZZ/ drr®|F(r))? = 1. (8.6.62)

1=0 m=—1

It follows that the probability of simultaneously measuring L? and L, and getting the results
R2I(l + 1) and hm is, by using Postulate 4 with r playing the role of the degeneracy label,

Pim = /000 drrz‘(<r| ® (l,m|) |¢>’2 = /000 dr | Fy (7). (8.6.63)

As a corollary, the probability of measuring just L? and getting h?l(I+1) is obtained by summing
this over m, so P, = Zm——l Pi.m- And, the probability of measuring L, and getting the result
hm is P, = Zfz‘m‘ Pi.m. Here, the sum over [ starts at |m|, because for smaller [ there are no
states that have L, eigenvalue hm.

In many cases, it is not necessary to actually do the radial integral in eq. (8.6.63)) in order to
evaluate the probabilities; instead one can make use of ratios between the various possibilities.
As a simple but essential example, any wavefunction that is a function of r only (with no 6
or ¢ dependence) is proportional to Y, so one has [ = m = 0, and the measurements of the
compatible orbital angular momentum observables L? and L. are both certain to give 0.

For a slightly less trivial example, consider a wavefunction
Y(F) = Csin?6 cos®¢ f(r), (8.6.64)

where C' and « are constants. (Note that we are not providing any context about whether
this state is related to any particular Hamiltonian.) If L? and/or L, is measured, what are the
possible outcomes and their probabilities? To answer this, we seek to write the wavefunction as
a linear combination of spherical harmonics multiplied by functions of r only. A useful clue is
that the wavefunction is quadratic in sines and cosines of 6 and ¢, so one should expect that it
will involve [ = 2 and [ = 0. Indeed, one finds that

YO——YO \/ Y2 \/
3

This implies that the measurements of (L?, L.) can yield only the four possible pairs (0,0) and
(6R%,0) and (6h2,2h) and (6h2, —2h), with probability ratios, respectively,

sin?f cos’¢p = /7 (8.6.65)

2 2

2

a1

15

3

2
Pr=0,m=0 : Pi=2,m=0 : Pi=2.m=2 : Pil=2.m=—2 ‘ B

- i 2| . (8.6.66)
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By requiring that the sum of the probabilities is 1, it follows that
7Dl:O,m:O = 5/97 Pl:Q,m:(] = 1/9, Plzg,ng = Pl:gm:_g = 1/6 (8667)

Note that the radial wavefunction here was irrelevant for the angular momentum measurement
probabilities, since it is common factor.
One often needs to consider wavefunctions for states that are pure eigenstates of L? and L.,

with fixed eigenvalues h2l(I + 1) and Aim, respectively. These will have the form

U(r.0,6) = F(r)Y;"(0,9). (8.6.68)
According to eq. (BGI2), the Laplacian acting on such a wavefunction is

PF L 2dF 10+ 1)
dr?  rdr 72

V2 [F(r)Y™ (0, 9)]

F|Y™(0,0). (8.6.69)

As a consequence of the rotational invariance of the Laplacian operator, this maintains the form
of an eigenfunction of L? and L, with the same eigenvalues.

We now state and prove an extraordinarily useful formula:

Theorem 8.6.1. (Spherical harmonics addition formula) Consider any two unit vectors
n and ', characterized by their spherical coordinate angles (0,¢) and (0',¢"), respectively. Let

us call the angle between these vectors v, so that

n-n' = cosy = cosfcost +sinfsinb cos(p — ¢'). (8.6.70)
Then, for each ,
4m l
— m / 1\ * m
Pleoss) = g 30 W0 60 40.0) (8.6.71)

Proof: Since Pj(cos<y) is a function of  and ¢, it can be written as an expansion in spherical
harmonics with arguments 6 and ¢. Since the differential operator L? is invariant under rotations,
the spherical harmonics involved in the linear combination all must have the same [. This is
because we can always rotate to a coordinate system in which 7’ is the new z direction, so that
the polar angular coordinate of 7 is v. In that coordinate system, P;(cos~y) is proportional to a
spherical harmonic with m = 0, an eigenfunction of the differential operator L? with eigenvalue
R21(1+1). Likewise, Pj(cos7y) is also a function of " and ¢, so it can also be written as a linear
combination of spherical harmonics of those angles, with the same [. Therefore, it must be that

Py(cos ) is a sum of terms of the form Y™ (¢, ¢')* Y;™(0, ¢). Each of these terms is proportional
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to e!mo=m'®) but if one chooses ¢’ = ¢, then cos~ is independent of ¢, so only terms with

m' = m can occur. Therefore, we must have

Py(cosy) Z ar, Y™ (0, ) Y6, 6), (8.6.72)

m=—1
and the remaining task is to evaluate the coefficients a;,,.

Because P;(cos<y) is real, and is unchanged if we exchange (0, ¢) <> (0, ¢'), the coefficients
must satisfy a;, = aj,,, so they are real. To learn more, consider the special case (0, ¢) = (¢, ¢'),
so that cosy = 1. Then, since the Legendre polynomials satisfy F,(1) = 1, eq. (B6.72)) gives

l

L= > am[Y"(0.0). (8.6.73)

m=-—I

Integrating with respect to df2, and using the orthonormality condition eq. (8.G6.31), we get

l
At = > . (8.6.74)

m=—I

Next, consider the square of eq. (R6.72), which can be written

!
(Pl(cosv)>2 N Ao Z a Y (0, 8) Y (6. 6)". (8.6.75)
m=—1

m=—1
Let us integrate over all angles (¢, ¢’). To evaluate the integral of the left side, it is convenient

to again use coordinates such that « is the polar angle, and making use of eq. (B.6.46), we have

/dQ/<B(COS”y))2 = 27r/_11 d(cos) <Pl(cosy)>2 = 21411. (8.6.76)

Meanwhile, the d€? integral of the right side of eq. (B.6.75]) is evaluated by using the orthonor-

mality condition eq. (R6.31]) again, after which only the terms with m’ = m contribute in the

double sum. Comparing the two sides, we get

47

l
I = D ¥ (0,0)Y(6,0). (8.6.77)

m=—I1

Integrating this with respect to df2, and using orthonormality once again, we find

l

Ur)”  _ 3 b (8.6.78)

We now have enough information to solve for the coefficients. From eqs. (R6.74) and (B6.78)),

we discover that

l A 2
> (alm— 2z+1) = 0. (8.6.79)

m=—I
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Since the left side is a sum of squares, the unique solution is obtained when each term vanishes,
so that a,, = 47/(2l + 1) for all [,m. This concludes the proof of the spherical harmonics
addition formula. O

As an application, consider the identity

1 >l

"in
o > 1 D(cosy), (8.6.80)
l:() max
with
Tmax = max(r, '), Trnin = min(r, r'). (8.6.81)

Equation (8.6.80) follows from the generating function eq. ([8.6.45), and may be familiar from
the multipole expansion for problems with azimuthal symmetry in electrostatics. The spherical

harmonics addition formula ([86.71]) allows us to rewrite it as

1 S mln m / ym
P Z 2l+ 1 7l Z Y, ¢ Y0, 9), (8.6.82)

max

a form that will be useful to us later.

8.7 Parity of angular momentum eigenstates

As we noted in section (.3l angular momentum operators have even parity, which is another
way of saying that they commute with the parity operator II. According to Theorem 2.7.1]
this means that the eigenstates of angular momentum operators J2, .J, can also be chosen to be
parity eigenstates.

First, let us work out the parity eigenvalues of the orbital angular momentum eigenstates

|l,m). If (z,y,2) — (=, —y, —z), the spherical coordinate transformations are
r—r, 0 —m—0, O — o+, (8.7.1)
so that
cos) — —cosé, sinf — sind, €M — (—1)me™?, (8.7.2)
Using these, it follows immediately from eq. (8:6.41]) that
Y —0,0+m) = (=1)'Y"(0,9). (8.7.3)

Therefore,

(0, ¢l111,m) = (7 — 0,6 +ll,m) = (=1)'¥"(0,6) = (1) (0, ¢ll,m) , (8.7.4)



IM|,m) = (=1'l,m). (8.7.5)

This shows that eigenstates of orbital angular momentum are always even (odd) under parity if
the quantum number [ is even (odd). This is true regardless of the quantum number m, which
can be understood from the fact that the states |l,m) are all obtained from |[,[) by acting with
L_, which commutes with II. [Therefore, the parity eigenvalue (—1)! could actually have been
obtained by considering the spherical harmonics for only one sample value of m for each [, for
example m = [ using eq. ([8.6.39), rather than the more general formula of eq. (8.6.41]).] Since
parity in spherical coordinates does not change the radial coordinate, the parity eigenvalue of
an angular momentum eigenstate also does not depend on the radial wavefunction or radial
quantum numbers.

Let us next consider the parity of eigenkets |s, my) of intrinsic angular momentum operators
S? and S,. From the fact that the lowering operator S_ commutes with parity and relates kets
with different m, we know that the parity eigenvalue of |s, mg) cannot depend on ms. We can

therefore write
II|s,ms) =nls, ms), (8.7.6)

where 7 is known as the intrinsic parity of the particle in question. For any given particle
type, the intrinsic parity can be chosen to be either +1 or —1, as an arbitrary convention. This
conventional choice cannot be of any practical significance at all if the number of particles of
each type does not change. This is because a change in the conventional choice of intrinsic parity
just amounts to flipping the parity for every bra and every ket, therefore not affecting matrix
elements. So, when the number of particles does not change, one might as well just always
choose 1 = +1, and the parity of a single particle L? eigenstate is (—1)!, regardless of the spin.

For a system of N particles with individual orbital angular momentum quantum numbers /;, the

parity eigenvalue is, from eq. (875,
N oL
= (-1)==h (8.7.7)

This is the case for electrons in an atom, where the parity and the angular momenta are all
defined with respect to the origin chosen to be the location of the fixed nucleus.

However, if the Hamiltonian is invariant under parity and can cause changes in the numbers of
particles, it is natural and useful to adopt a convention in which the intrinsic parities of particles
and antiparticles are chosen in a consistent way so that parity is conserved. Such Hamiltonians

arise in quantum field theory, where the electromagnetic and strong nuclear interactions conserve
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parity, while the weak nuclear interactions do not but can often be treated as a perturbation. A
generally accepted convention is to choose n = +1 for spin-1/2 particles (the electron, proton,
neutron, muon, and quarks, for example). Then the structure of kinetic terms in relativistic
quantum field theory can be used to show that their antiparticles (the positron, antiproton,
antineutron, antimuon, and antiquarks) must be assigned n = —1 in the same convention.

For a composite particle ¢, made out of two particles a and b with intrinsic parities 7, and
in a state with relative angular momentum quantum number L, the consistent intrinsic parity

assignment i

Ne = (_1)Lnanb- (878)

Thus, mesons composed of a quark and an antiquark in an L = 0 bound state (for example,
pions and kaons) have intrinsic parity n = —1. For a bound state of three or more particles,
the situation is more complicated, but the intrinsic parities of bound states can always be
defined if the Hamiltonian is invariant under space inversion. In processes governed by the
electromagnetic and strong nuclear forces, one can experimentally verify parity conservation
and check the consistency of the intrinsic parity assignments. In doing so, the photon and the
gluon have intrinsic parity —1, while the Higgs particle has intrinsic parity +1. The W and
Z particles are not assigned a well-defined intrinsic parity, as they are the mediators of the

parity-violating weak interactions.

8.8 Exercises

Exercise 8.1. Consider an eigenstate |j,m) of J? and J., as in eq. (BLG)-®I17). Find the
expectation value and the uncertainties of J, and .J, in this state. For which state or states |7, m)
are these uncertainties maximized? For which are they minimized? Show that the uncertainty
relation eq. ([B.3.6]) is satisfied.

Exercise 8.2. Consider a particle with spin 1/2, and let n = Zsin 8 + Zcos 8 be a fixed unit
vector, where (3 is a fixed angle.

(a) Consider the basis of eigenstates of S,, denoted [1) and |]) for eigenvalues +4/2 and —h/2
respectively. In that basis, construct the matrix representation of 7 - S. Find its eigenvalues and
eigenvectors.

(b) Suppose that the spin is in the state |1). What is the probability that the measurement of
f - S yields the result +h/2?

"Note that this differs from eq. 8Z1), since (—1)” is not always equal to (—1)!a*le. This is because the
angular momentum L and the intrinsic parity 7. in eq. (RZZ8) are defined with respect to the origin as the
center-of-mass position of the two particles, rather than a fixed origin position as in eq. (87.1).
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(c) Suppose that the measurement in part (b) has been carried out and the result for 7 - S
was indeed +7/2. Immediately afterwards, S, is measured. What is the probability that the
measurement yields —h/2 7

(d) Check that your results for parts (b) and (c) make sense when 5 =0 and 7 and 7/2.

Exercise 8.3. Consider a spinless particle in a state with L? eigenvalue 2h% and L, eigenvalue
h. As in the previous problem, let n = Zsin 5 + Z cos (5.

(a) Suppose that the angular momentum along the direction 7 is measured. What are the
possible results, and their probabilities?

(b) For each of the possible results in part (a), suppose that L, is then measured. What are the
possible results, and their probabilities?

(c) Check that your results make sense when = 0 and 7 and 7/2.

Exercise 8.4. Consider a particle in a state with spherical coordinate wavefunction of the form
U(r,0,¢) = f(r)cos® 0.
(a) Write the wavefunction in terms of spherical harmonics Y, (6, ¢).

(b) If L? and L. are measured simultaneously, find the possible results and their probabilities.

Exercise 8.5. Professor Bumble measured the spin component of a spin-1/2 system at time
t = 0 and recorded the result as definitely +%/2, but forgot whether it was S,, S,, or S,.
Assigning equal probabilities to these possibilities, what is the density matrix operator p for
the resulting mixed state at t = 0, in the basis of S, eigenstates? What is the von Neumann
entropy o? If the Hamiltonian is H = wS,, use the unitary time evolution operator to find the

probability of getting the result +/4/2 for a measurement of S, at time ¢.
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9 Charged particle in a magnetic field

9.1 Spin precession in a constant magnetic field

One of the simplest, and yet most useful, quantum systems is a spin carrying a magnetic moment
in a constant magnetic field. Let us assume that the particle carrying the spin has a fixed
position, so that we do not need to worry about its kinetic energy and any position-dependent

potentials. Specializing eq. ([A3.28]), the Hamiltonian is therefore simply
H=-~B-§5, (9.1.1)

where 7 is the gyromagnetic ratio of the particle. Since we only care about the magnetic field
at the point where the particle is located, we can orient our coordinate system so that B = Bz,
where B is a constant number. An orthobasis of states for this system consists of the eigenstates
of S, with eigenvalues i/2 and —h/2, denoted |1) for spin up and ||) for spin down. Then the
Hamiltonian can be expressed as the spectral decomposition

1

H = Shop (1) (1= 14 (1)), (9.1.2)

where we have defined the Larmor precession frequency
wp = —yB. (9.1.3)

(With this sign choice, wp is positive for the electron when B is positive, since the electron’s
gyromagnetic ratio v = —g.e/2m.c is a negative number. The same is true for the muon and
the neutron. For the proton, wg is negative when B is positive.) Thus the matrix representation

for this orthobasis is
1 1 0

with energy eigenstates |T) represented by ((1)) with E; = hwg/2, and |]) represented by (?)
with E| = —hwpg/2. To decide which of these is the ground state requires knowing the product of
the signs of B and 7. In any case, a transition between the two stationary states typically involves
emitting or absorbing a photon with energy |Ey — E|| = h|lwg|. The Planck-Einstein relation,
discussed in section [[L3] says that the wavelength of the photon will be A = 27¢/|wg| = 27¢/|vB],
providing a way of determining the gyromagnetic ratio of the particle.

Another way of measuring the gyromagnetic ratio (or equivalently, the magnetic moment)
is provided by the phenomenon of precession of the spin when the state is a linear combination

of energy eigenstates. Suppose that at time ¢ = 0 the normalized initial state is

[¥(0)) = alt) + b, (9.1.5)
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with complex coefficients satisfying |a? + [b]*> = 1. The subsequent time evolution can be
obtained either by solving the time-dependent Schrodinger equation, or by applying the unitary
operator U(t) = e #/" with the result

(1) = ae” P2 |1) + beB 2 []) (9.1.6)
If S, is then measured, the possible results are the eigenvalues +4/2, with probabilities

P(S. =0/2) = [{t|[@) " = laf, (9-1.7)
P(S. = —-1/2) = [{LIw®)]* = b, (9.1.8)

which do not depend on time. (As a check, they sum to 1 because of the normalization condition.)
It follows that the expectation value of S, is

h

(9.) = S(lal* = o), (9.1.9)

which is also independent of time.
If, instead, we measure S,, then the possible results are again +h/2, and the evaluation of

the probabilities makes use of the corresponding eigenstates

1
1) = ﬁ(m + 1)), (for S, = h/2), (9.1.10)
= (=), (for S, = =hy2) (9.1.11)
We therefore find
2
m&zmmzzwmwmﬁzz%@www+wW® (9.1.12)
= % (Ja]* + |6 + a*be™B" + ab*e™r") = % + Re(a*be™?"). (9.1.13)

Similarly (or, just by requiring that the probabilities add to 1), one finds

m&:4m):\mw@wzé—mwwwy (9.1.14)

The expectation value of S, can be obtained either from the probability-weighted sum of eigen-

values as
h h
(Se) = 5P(Se =h/2) = SP(S: = —h/2), (9.1.15)
or from matrix evaluation, using S, = (h/2)o,, as
* iw * —1w h’ 0 1 ae_iWBtﬂ *1 _iwp
(Sp) = (a*e™sl/2 preiwnl/2) 5 (1 0) (be“"BW = hRe(a*be™""). (9.1.16)
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Figure 9.1.1: The expectation value of a spin precesses about a

(S) magnetic field B = B2, with a period 27/|wg| = 27 /|yB|, where ~

\‘9 is the gyromagnetic ratio of the particle. The polar angle 6 remains
constant as the spin precesses, and is equal to arctan(2ab/(a? —b?))

/ Y for an initial state 1)) = a|1) + b||) with real a and b.
x

For a measurement of S, the probabilities are evaluated using the corresponding eigenstates

11,) = %(m +ill)), (for S, = h/2), (9.1.17)
b= (D =il) (or S, = —hy2) (9.1.18)
with the results
PS, = h/2) = |(,[0)] = 5+ In(abe), (9.1.19)
PS, = —h/2) = | )] = 5~ Im(a"bets"), (9.1.20)
and the resulting expectation value is
(Sy) = hIm(a*be™""). (9.1.21)

The oscillation of these quantities describes precession of S about the B direction.
For example, take a and b to be real for simplicity. Then our results for the expectation

values of the spin components are summarized as
- h
§) = 3 <2ab lcos(wpt)d + sin(wpt)j] + (a® — b2)2>. (9.1.22)

At time t = 0, the spin expectation value lies in the xz plane. As time evolves, the angle
0 = arctan(2ab/(a? — b?)) between (S) and # remains constant. (See Figure[@I.1l) The rotation
of (S) is counterclockwise (as seen looking down from positive z) if ¥B is negative, since the
angle ¢ = wpt of the expectation value of the spin vector projected onto the xy plane increases at
the constant rate wg = —vyB. This precession frequency is independent of the initial orientation
of the spin, provided only that ab # 0. Thus, the rate of precession of the spin in a known
magnetic field provides another way of measuring the gyromagnetic ratio. This effect has many
practical applications, including (in more sophisticated setups) the measurement with exquisite

accuracy of the magnetic moments of the electron and the muon and various nuclei.
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It is useful to describe the spin precession more directly in terms of the state ket, rather than
the expectation value, which after all is merely a statistical quantity. Inspired by the result of
eq. (@1.22)), consider the time-dependent unit vector

f = 2ab[cos(wpt)Z + sin(wpt)g] + (a* — b%)32, (9.1.23)

still taking a and b to be real. Note that n-n = 1 follows from the normalization condition
a’? 4+ b*> = 1. Now define the spin component along 7, as the Hermitian operator
h(a®=0*  2abe™n!

2 \ 2abest 1 —a? )

The last expression is really the matrix representation in the S,-eigenstate basis, obtained using

S. =75 = (9.1.24)

the Pauli matrices according to S = (%/2)7. It is now straightforward to check that the state
ket |1(t)) of eq. (O.I.6), represented by the column vector

ae—’int/Q
(  iwnt/2 ) , (9.1.25)

satisfies the eigenvalue equation

Sulw) = Slv). (9.1.26)

In other words, the time-dependent state is simply the one in which measurement of Sy is always

certain to give the result //2.

9.2 Magnetic spin resonance and Rabi oscillations

As discussed in the previous section, the energy eigenvalues of a spin-1/2 particle with gyro-
magnetic ratio v are split by a static magnetic field. The spin of a general state precesses in
a way that does not change its expectation value along the magnetic field direction. One way
to directly access the energy splitting is through emission or absorption of photons of the right
energy. In this section, we will discuss another way. The idea is to supplement the main static
component B of the magnetic field with a time-oscillating component B in a different direction.
This oscillatory component drives transitions between the spin eigenstates defined with respect
to the static field direction. As we will see, this effect is maximally enhanced (resonant) if the
driving frequency for B is chosen equal to the Larmor precession frequency for B.

Specifically, let the magnetic field be
B = B2+ Blcos(wt)z + sin(wt)j] . (9.2.1)

The oscillatory component rotates in the xy plane at the driving frequency w, which can be

adjusted independently by the experimentalist. Now define

wp = —B, I'=—+B, (9.2.2)
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both with units of frequency. Note that wp is the same as the Larmor precession frequency (see
the previous section) for the constant component of the magnetic field. The Hamiltonian matrix

in the S,-eigenstate basis is

hwg (1 0 Al [0 e 7wt
H = TB(O —1)+7(eiwt 0 ) (9.2.3)

As an aside, this Hamiltonian can also serve as a model for a variety of other 2-state physical
systems, for which the static part of the Hamiltonian has been diagonalized by a choice of basis,
and there is an off-diagonal contribution varying harmonically with time. Thus the results below
have more general interest and applicability.

Suppose that wp > 0, so that the ground state (neglecting the oscillating part of H) is |]).
We start in this ground state, and want to find the probability to find the system in the excited

state |1), as a function of time. To accomplish this goal, we will find the time-dependent state

[9(8) = cr() [1) + ca(t) ) (9.2.4)

that solves the Schrédinger equation for the full H, subject to the initial condition
01(0) = 0, 02(0) =1. (925)

In matrix form, the time-dependent Schrodinger equation is

L d [ h{ wg Te ™t c1
h— = — ) . 9.2.6
! dt <C2) 2 (Felwt —WBRB Co ( )

It is helpful to define new coefficients a;(t) and as(t), by

—2wt/2a

Ci =¢€ 1, Co — ei‘“t/2a2. (927)

This is convenient because the resulting coupled first-order differential equations for a; and as

have coefficients with no explicit time dependence:

Zfll + (w — (.UB)Cll/Q — FCLQ/Q = O, (928)
iag — (w — (.UB)GQ/Q — Fa1/2 = 0. (929)

Mindful of the initial conditions in eq. (Q.2.5]), we now try for a harmonic solution of the form

a; = bysin(Qt), (9.2.10)
as = cos(Q2t) + by sin(Q2), (9.2.11)
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Figure 9.2.1: The probability to find a spin-1/2 system in the higher-energy state due to mag-
netic spin resonance, as a function of time, according to eq. (@.2.16]). The peak probability for
the spin to flip is maximized near unity for the resonant condition that the driving frequency
w is equal to the Larmor precession frequency wg = —vB, where + is the gyromagnetic ratio
of the particle and B is the constant part of the magnetic field.

where 2 and b; and by are constants to be determined. Plugging this guess in, we can require
the vanishing of the coefficients of cos(Q2t) and sin(€2t) separately in each differential equation.

Success is found provided that
QP = [P+ (w—wp)’]/4 (9.2.12)
and
by = —il' /24, by = i(wp — w)/29. (9.2.13)
Putting everything together, the coefficients in |1)(t)) are

F : —iw
¢ = —z@sm(Qt)e b2, (9.2.14)

— W

e = |cos(Qt) +i2Z Y sin(Qt)| 2. (9.2.15)

The probability to find the spin in the excited state is therefore,
F2
[? 4+ (w—wp)?

PA) = [ W) P = |erf? = sin? (Q). (9.2.16)

This shows resonance behavior, for if the driving frequency w is close to the Larmor precession
frequency wg, the system periodically oscillates into the higher state with probability close to
1, as depicted in Figure These Rabi oscillations (named after Isidor Rabi, who both
measured and explained them theoretically) occur with frequency 22, which near resonance
is close in magnitude to |I'| & |yB|, where B is the amplitude of the oscillating magnetic
field. Away from the resonance, the probability for a spin flip is non-zero, but smaller, and the

frequency of the observed Rabi oscillations is larger.
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In real-world applications, the driving magnetic field is rarely of the form we assumed in
eq. (@270, because it is not so easy to make a substantial magnetic field whose direction rotates
at a high frequency. Instead, an oscillating magnetic field along a fixed direction, like B cos(wt)z,
is typically used for the driving field. This is more difficult to solve exactly, but has essentially

the same behavior near resonance. The reason is that we can decompose it as
=~ . 1~ J— PO L .
Bcos(wt)z = §B[cos(wt)x + sin(wt)y] + §B[cos(wt):c — sin(wt)y], (9.2.17)

which is a superposition of two rotating fields with angular frequencies +w and —w. When one
of these is resonant (close to wg), the other is far from resonant and therefore has a small effect.

This phenomenon has many applications, not the least of which is magnetic resonance
imaging, commonly used in medical settings to safely produce maps of tissue using the mag-
netic moments of hydrogen nuclei (protons) affected in different signature ways by the fields of
neighboring atoms in different molecules. In other applications, nuclear magnetic resonance
is made more complicated and interesting by the fact that the nuclear spin sy need not be 1/2,

in which case the number of states involved in the resonance is not 2, but 2sy + 1.

9.3 Landau levels for a charged particle moving in a constant uniform
magnetic field

Classically, a charged particle in a constant uniform magnetic field undergoes cyclotron motion,
following a helical trajectory. This problem is exactly solvable in quantum mechanics, too, and
we will now study it in detail.

First, let us gain some insight by reviewing the classical solution. To be concrete, let us take
the particle to be an electron with charge ¢ = —e and mass m, and in this section we orient the

coordinate system so that the magnetic field points in the negative z direction,

—

B=-B2 (9.3.1)

Then the Lorentz force law, eq. ([L3.12), amounts to a first-order differential equation for the

velocity vector ¥ = d7*/dt of the electron,

dv

il WeU X 2, (9.3.2)
or & =w.y and y = —w.2 and Z = 0 in rectangular coordinates, where
B
e = — (9.3.3)
me
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is called the cyclotron angular frequencyH Since the force has no component along Zz, the
velocity in that direction is constant. The general solution for the classical position of the

electron is a helix, which we take to have radius R and center (z.,y.) in the zy plane,

z(t) = x.+ Rsin(w.t + ¢p), (9.3.4)
y(t) = y.+ Rcos(wet + ¢p), (9.3.5)
2(t) = 2o+ v.t, (9.3.6)

where ¢q, 2o, and v, are the other constants needed to specify the initial conditions. It is impor-
tant that the cyclotron frequency is independent of all 6 of these parameters. Since the classical
motion is harmonic with angular frequency w,, it should not be too surprising that we will be
able to solve the corresponding quantum mechanical problem using the algebraic technology that
we developed for harmonic oscillators in section [[.3] and that the energy quantum for orbital

excitations for a free electron in a magnetic field will turn out to be

B
hw, = 1.15768 x 10™* eV (Tesla) . (9.3.7)

This is approximately twice the product of the magnetic field and the Bohr magneton defined
in eq. (L326).
The expression for the Hamiltonian depends on the choice of gauge for the vector potential.
One convenient choice maintains manifest rotational symmetry about the Z axis,
A = %B(y:& —xf) = —%Bn&, (9.3.8)
where (r, ¢, z) are the cylindrical coordinates. From the general form of eq. (£3.2])), the total

Hamiltonian operator is then

1 gee — =
Hioal = 5 (I + I + P?) — e®(2) + S-S, (9.3.9)

where we have included spin and allowed for the possibility of a z-dependent electric potential,
and the kinetic momentum operators
eB eB
I,=P, +—Y, In,=°,——X 9.3.10
+ 2C Yy Y 2C ( )
obey the commutation relation

I, 10,] = i?B. (9.3.11)

fFor an isolated electron, the cyclotron frequency is nearly the same as the Larmor frequency wp = (ge/2)w.
defined in the context of spin precession in section However, for electrons that are not isolated, m in
eq. (@33) should be interpreted as the effective mass of the electron moving in its environment, which can
differ greatly from the nominal 0.511 MeV/c?. This can give a very different numerical value for w, in practical
applications involving electrons in materials, sometimes modifying eq. ([@3.7) dramatically.
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Since S and P, and ®(z) commute with I, and II,, it makes sense to separate the spin and

z-dependent parts of the Hamiltonian as Hiy. = H + Hy + H., where our primary interest is
1
H = — (I2+11%), 9.3.12
(12 ) (9.3.12)

the Hamiltonian for the 2-dimensional motion in the xy plane, and the other parts are

2

P
S., H, = —ed(2). (9.3.13)

geeB B
- 2m

H, =
2me

The eigenvalues of H are just Ey = Fg.heB/4mc, for spin-up states with S, = //2 and spin-
down states with S, = —h/2. Thus, each spin-up state is lower than its counterpart spin-down
state by an energy splitting g.heB/2mc ~ hw.. We now assume that the eigenvalues E, of
H, have also been found. For example, if & = 0, the H, eigenstates are plane waves with
momentum p, along the z-direction and E, = p*/2m. In the opposite extreme, it might be that
the potential ®(z) effectively confines the electron to the vicinity of a plane of constant z, by
requiring a large energy gap for excitations along the z direction. In any case, we can concentrate
on the remaining 2-dimensional problem with Hamiltonian H, to which the constants F, and
E. can be added to find the total energy.

Since H is quadratic in two Hermitian operators with a constant commutator, we are inspired

to follow the logical path of the harmonic oscillator by defining raising and lowering operators

—1 ) 1 )
aT - (HSC — ZHy) , |G = —— (HSC + Zl__[y) . (9314)
v 2hw.m 2hw.m

You can check that they obey the usual ladder operator commutation relation
[a,al] = 1, (9.3.15)
and that the Hamiltonian has the simple form
H = hw(a'a+1/2). (9.3.16)
So, the energy levels are the same as for a 1-dimensional harmonic oscillator with frequency w,.,
E, = hw.(n+1/2), (9.3.17)

where we will soon verify that n = 0,1,2,.... These are called the Landau levels for a charged
particle in a magnetic field, after Lev Landau. The energy spacing between them grows linearly
with the applied magnetic field.

At this point, one might naively suppose that the Landau level states obey a [n) = y/n|n—1)
and a' |n) = v/n+1|n+1). However, one must take into account the fact that in the present 2-

dimensional problem the states at each level n are not unique, unlike the 1-dimensional harmonic
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oscillator. In fact, each Landau level is infinitely degenerate. This corresponds to the classical
property that the energy is determined by the radius R of the helix, but one can always translate
it so that it is centered about any desired point in the zy plane, without changing the energy.
To understand the quantum version of this degeneracy, let us first define two operators
corresponding to the center of the classical trajectory. Solving eqs. (0.3.4)) and (@31 for (z., y.)
in terms of x(¢) and y(¢) and their time derivatives & = m, /m and y = m,/m, and then promoting

these objects to operators, we define

1 1
X.=X+—1I, Y,=Y —

mw, Mwe

I1,. (9.3.18)

You can check that these are both constants of the motion, meaning that [H, X.] = [H,Y,] = 0.

However, they do not commute with each other, as one finds

he

[Xe, Y] = ~i. (9.3.19)
(&

Therefore, a CSCO can include either one of them (or any linear combination), but not both.
For example, a valid CSCO choice would be H and X,.. In that case, the degeneracy of the
orthobasis kets with fixed n is uncountably infinite, and corresponds to the eigenvalue of X..
However, let us make another choice, which we will see involves X, and Y, in a different way.
Since the problem has symmetry under rotations about the z axis, we know (and can explicitly

check) that the angular momentum component
L, = XP,-YP, (9.3.20)

commutes with H. Therefore, we take the CSCO to consist of H and L., and denote the

corresponding orthonormal energy eigenstate basis elements as |n, ), where

Hin N = hwo(n+1/2)|n,\), (9.3.21)
LA\ = BA|m,A). (9.3.22)

From the general theory of rotations, in section 0.3, we know that A must be an integer, but
we will soon find that in the present problem it must satisfy the further restriction of being
bounded from below, but not from above. This asymmetry is related to the sign of the magnetic
field in eq. (@30)). In this basis, the infinite degeneracy of the Landau levels is countable, since
L. has discrete eigenvalues, unlike X..

From the operator definitions, you can check that

[H,a] = —hw,a, [L.,a] = ha, (9.3.23)
[H,a'] = hw.a', [L.,a'] = —ha'. (9.3.24)
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Acting on |n, \) with eq. ([@3.23)), we find that a |n, \) must be an eigenstate of H and L, with
eigenvalues fuw.(n—1/2) and h(A+ 1), respectively. It follows that a not only lowers n by 1, but
must simultaneously raise A by 1, so a|n,\) = c¢|n—1,A+1), for some normalization constant
c. Using orthonormality of the basis kets, the norm of the right side is |c|?, while the norm of
the left side is (n, A|afa|n, \) = n, where we have made use of eq. (1.3.16) and the definition of
n in eq. (@327)). Therefore, we must have ¢ = y/n, where an arbitrary phase convention has

been chosen. Doing a similar computation for a' |n, \), we arrive at

a'ln,\) = Vn+1|n+t1,A-1), (9.3.25)
aln,\) = Vnln—1,A+1). (9.3.26)

Equation ([0.3.26]) shows that n must be a non-negative integer, just as in the case of the ordinary
harmonic oscillator, because acting with a on any of the states |0, A) results in the null ket. The
infinitely degenerate set of states with n = 0 and varying A is called the lowest Landau level.
Acting with a or a' changes both the energy level and the angular momentum. We will now
construct raising and lowering operators for the angular momentum that leave the energy fixed.
One clue to this construction is the fact, already noted, that X. and Y. commute with H. A
second clue is that X, and Y, have a constant commutator with each other. We are therefore
inspired to define a second pair of raising and lowering operators,
b= —— (X +iY,), b= f%eg (X, —iY,), (9.3.27)

where we have defined the magnetic length,

he _s Tesla \ /2
lp = “E = 2.56556 x 107" meters ( 5 ) : (9.3.28)

These operators obey the usual ladder commutation relation

0,01 =1, (9.3.29)
and are independent in the sense that they commute with the a, a’ operators,
[a,b] = [a,b'] = [a',b] = [a,b!] = 0. (9.3.30)

Furthermore, you are invited to check from the operator definitions that

1 1
Vb= —H-+ L, —1/2 3.31
T /2, (9.3.31)
and that the counterparts of eqs. (1.3.23) and (0.3.24) are
[H,b] =0, [L.,b] = —hb, (9.3.32)
[H,b'] =0, [L.,b] = hb'. (9.3.33)
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With this information, it is now a short exercise, very similar to the derivation of eqs. (3.2
and (@.3.26)), to check that (up to the usual arbitrary phase choice),

bin, ) = VA+n+1|nA+1), (9.3.34)
bln, ) = VA+nln,A-1). (9.3.35)

This shows how the infinite degeneracy of each Landau level n arises, as the operators b and
b change the angular momentum within each level. However, eq. ([@0.3.33) also shows that A is
restricted to be not less than —n, as lowering it further would result in the null ket.

The complete set of eigenstates of H and L, can now be constructed, from the state with

n=XA=0,as

()" ()"

n,A\) = 0,0), 9.3.36
where n = 0, 1,2, ... is a non-negative integer, and A = —n,—n+1,—n+2,... so that A + n is

also a non-negative integer. This is a complete orthobasis for the two-dimensional degrees of
freedom of a charged particle in a magnetic field.
To construct the corresponding wavefunctions ¢, \(z,y) = (x,y|n, ), it is convenient to

define dimensionless complex coordinates z, z* by

xH4ay e x—iy  re™

= — , 25 = = , 9.3.37
Vats vl Vils Vs 9337
with partial derivatives defined by
0 lg (O O 0 lg (O O
~— = = = = =—4+i— 9.3.38
9: ~ 2 (ax Z@y) : 0 2 (8x “ay) : (9:3.38)
so that
0z 0z* 0z" 0z
EPial v 1, % o 0 (9.3.39)
Then the position representations of the ladder operators are simply
0 0
= P L
a 5 +2/2, a o + 2" /2, (9.3.40)
b = ﬁ+z*/2 o= 9 +2/2 (9.3.41)
02 ’ Oz ’ o

Now, an eigenstate of L, with eigenvalue A\ must have wavefunction proportional to ¢*?, as
we found on general grounds in section 5.3l Therefore, 1)y, cannot depend on ¢, and so must
depend on position only through the combination zz*. Writing ¢9o = f(zz*), and noting that it
must be annihilated by a (and also by b), we find f'(zz*) + f(22*)/2 = 0, which has the solution
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f(z2*) = ce™**"/2 with a normalization constant c¢. The other states in the lowest Landau level
(n = 0) are found by acting repeatedly with b'. Applying eq. (3.41) A times, this gives the

elegant result

c e
Yor = —mzke /2, (9.3.42)
Rewriting this in cylindrical coordinates, and requiring fo% do [ drrlieol* = 1 to fix ¢, we
obtain the normalized wavefunctions
1 rei \ )
= exp (—r?/40%) . 9.3.43

The wavefunctions for the higher Landau levels are more complicated, but can now be obtained
by acting with (af)"/v/n!.

The wavefunction )y is sharply peaked at the origin r = 0, which is arbitrarily chosen. For
nonzero A, the probability density [ty |? instead has a ring-like profile, vanishing at the origin,
and maximum at r = Ry = v2\p. For very large angular momentum )\, the radius of the ring
R, is much larger than its width (defined as the range of  near R, for which the wavefunction
is appreciable), which is always comparable to ¢, independent of \.

If we now suppose that the electron is confined to a disk of radius R centered at the origin in
the xy plane, then the infinite degeneracy of each Landau level is reduced to a finite degeneracy.
Intuitively, valid states must have Ry < R, implying A < R?/2(%. in order for the wavefunction
ring to “fit” inside the disk. This is not exact, because confining the electrons to r < R introduces
a boundary condition that modifies the stationary state wavefunctions in a complicated way.
However, in a macroscopic disk with R > (g, only the tiny fraction of states with R — R,
comparable to g will be distorted significantly. For the purposes of counting the number of
states in a macroscopic area, this makes almost no difference. So, we estimate that the number

N of states in the lowest Landau level should be (one more than) the maximum allowed A,

R? ed,, D,

N~y & — = —— = —, 9.3.44
202, 2mhe N ( )

where ®,, = 7R%B is the magnetic flux through the disk, and
dy = 2whe/e = 4.13567 x 107! Tesla - cm? (9.3.45)

is the natural quantum unitH of magnetic flux. Thus, by varying the applied magnetic field, one

can dial the number of electrons that can fit in the lowest Landau level, and in each higher energy

In the context of superconductivity, a conventional definition of ® is used that is half as big, corresponding
to a (Cooper pair of electrons) charge that is twice as large.
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level. This affects the conductivity properties of materials, and in particular is an important
ingredient in the quantum Hall effect.
It is instructive to treat the same problem in a different gauge. The magnetic field B = — B2

can also be obtained as V x A where we now choose

—

A = —Buxy. (9.3.46)
This vector potential is invariant under translations in the y direction, rather than maintaining
manifest invariance under rotations about the z axis. The Hamiltonian in this gauge is

1
2m

1 eB 2
PPy — (P, ——X| . 3.4
oo (- Sx) (9.8.47)

H =

Since this version of H commutes with P, due to our gauge choice, we use them as our CSCO,

and look for an orthobasis of common eigenstates |n, k) that satisfy

H|n, k) = hw(n+1/2)|n,k), (n=0,1,2,...), (9.3.48)
P,|n,k) = hkln,k), (k = real). (9.3.49)

Here we have used the fact that we already know the energy eigenvalues, since they are mea-
surable and so cannot depend on our choice of gauge. The infinite degeneracy in the Landau
levels is now represented by the freedom to choose any P, eigenvalue hk, independently of n.
Substituting P, = hk, and defining

Ty = hk/mw, = k%, (9.3.50)
the Hamiltonian becomes
R 2 2
H= Qum + 2mcuc(X To)”. (9.3.51)

This is simply a 1-dimensional harmonic oscillator with angular frequency w, describing motion
in the z direction, and displaced by the constant distance zy depending on the y momentum

eigenvalue. The orthobasis position representation wavefunctions are, up to normalization,

wn,k(x7y> = (:L’,y|n, k) = ¢n(x_x0>eiky7 (9352)

where 1, (x) are the harmonic oscillator wavefunctions of section [[.2] with w = w, and length
scale b = (. Thus our new choice of gauge achieves a clean separation of x and y wavefunctions.
The more general lesson is that different gauge choices are useful for highlighting different aspects
of a problem.

Suppose now that our electron is confined to a rectangular area, 0 < z < d, and 0 <y < d,,

with macroscopic lengths d, and d,. We could try to impose a boundary condition that the

225



wavefunction vanishes outside of this rectangle, but then it would become difficult to solve the
H, P, eigenvalue equations exactly. Fortunately, for many purposes we can still use the solutions
found above, to a good approximation. For the vast majority of states in the lowest Landau
levels, the boundary conditions at x = 0 and x = d, have almost no effect because the support
of the wavefunctions is limited to a distance comparable to 5. For example, the lowest Landau

level (n = 0) states have wavefunctions (up to normalization)
Yor(z,y) = exp[—(z —x0)?/20%] ™. (9.3.53)

Because of the exponential suppression, the distortion of this wavefunction resulting from the
existence of the x = 0 and x = d, boundaries is very small except for the tiny fraction of
states for which zy or d, — zy is comparable to 5. This argument does not apply for the
y = 0 and y = d, boundaries, because the wavefunction factor e’*¥ has constant magnitude.
However, we can use the trick of imposing periodic boundary conditions in the y direction, so
that y = 0 is identified with y = d,. Since d, is a macroscopic length, the microscopic physics
should not depend very much on whether we identify the two distant sides, or more generally
on what boundary conditions we impose, as long as they are consistent. The point is that
imposing periodic boundary conditions in y is particularly easy to do in a consistent way for
the wavefunctions proportional to e*¥ (and in particular is much easier than trying to impose

p=0aty=0andy=d,). It just restricts the allowed eigenvalues to
k = 2mn,/d,, (n, = integer). (9.3.54)

We can now repeat the estimate of the number of states per unit area in the lowest Landau level.
To a good approximation, the valid states will be the ones for which zy = ¢%27n, /d, fits between
0 and d,. This means that the allowed n, are the integers in the range 0 < n, < d,d,/27(%,

resulting in a degeneracy for the lowest Landau level of

eBd,d )
N~ —2¢ = 1 9.3.55
2mhe by ( )

This agrees exactly with our previous result of eq. (@344]) obtained using the rotationally

symmetric gauge choice corresponding to the H, L, orthobasis.

9.4 Exercises

Exercise 9.1. Show that the spin expectation value precession result of eq. ([I22) obeys
Ehrenfest’s Theorem, eq. (B416), with S playing the role of A.

Exercise 9.2. A spin-1/2 particle with gyromagnetic ratio v is in a uniform but time-varying
magnetic field B = B(t)% so that the Hamiltonian is H = —vB - §. At time ¢ = 0, the
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spin of the particle along the direction 7 = (Z + 2)/+/2 is measured to be +h/2. You should
express your answers in terms of the definite integral I(t) = fg dt'B(t'). [Hint: in this problem
the Hamiltonian is not constant in time, so you need to solve a differential equation for the
components of the state vector. That’s where the definite integral comes in.]

(a) If the Z component of the spin is measured at time ¢ > 0, what is the probability that the
result will be S, = —h/2 7

(b) If, instead, the § component of the spin is measured at time ¢ > 0, what is the probability
that the result will be S, = +h/2 7

(c) Find the expectation value of S, as a function of time ¢ > 0.

Exercise 9.3. For the Rabi oscillation solution of eqs. ([0.2.14)) and ([@Q.2.13), find the expectation
value of the spin operator, (g), as a function of time. Simplify the result as much as possible,
and show that it obeys Ehrenfest’s Theorem, eq. (34.10) with S playing the role of A.

Exercise 9.4. Consider the magnetic spin resonance system treated in section 0.2 but now
assume that the system is initially in an eigenstate of S, with eigenvalue h/2, so that the
boundary condition for the differential equations (@28) and ([@23) is a,(0) = ax(0) = 1/v/2.
Find the Rabi oscillation solution for a;(¢) and as(t) with the same Q? = [I'? + (w — wp)?]/4.
Show that the probability to find the system in the state |1) is P(1) = 1/2 + nsin®(Qt), where
n is a quantity that you will find. What happens to this probability at resonance (w = wg)?
Under what conditions can |n| = 1/2, so that the probability periodically reaches 0 and 17

Exercise 9.5. Prove each of eqgs. (0.3.29)-(@.3.30]) from the operator definitions given earlier.

Exercise 9.6. Find the n = 1 and n = 2 Landau level state wavefunctions ; » and 5 , in the

H, L, eigenstate basis. Write your answers in terms of z and z* defined in eq. (0.3.37).

Exercise 9.7. Consider an electron moving in the xy plane in the presence of uniform constant
fields B = —B% and E = E#. Use the same gauge choice as in eqgs. ([I3.46) and (I347). The
presence of the electric field just adds a term eEX to the Hamiltonian.

(a) Show that there are stationary states with energies E,, . = hw.(n+1/2)+ckE/B+cE? /B2,
where ¢; and ¢y are constants that you will determine, with corresponding wavefunctions
Uni(z,y) = ¥n(x — f)e™* where ¢, are the standard 1-d harmonic oscillator wavefunctions,
and x{, is another constant that you will find.

(b) A wavepacket superposition of states with nearly the same k will have a velocity in the
y direction, with dispersion because the energy depends on the wavenumber. Find the group
velocity vy, = (1/h)OE,, ,/0k. (This is equal to the time-averaged velocity for the cycloid motion

of the corresponding classical problem.)
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10 Examples with spherical symmetry

10.1 Stationary states with spherical symmetry

Counsider a Hamiltonian of the form
H = —+4+V(R). (10.1.1)

In this chapter, we will write i for the mass of the particle, to avoid confusion with the eigenvalue
hm of L., and R is the operator corresponding to the classical spherical coordinate r. Thus V(R)
is a spherically symmetric potential, with no dependence on 6 or ¢. Likewise, the momentum

squared operator
P? =P} + P!+ P} = —1*V? (10.1.2)

is rotationally invariant, so there is no preferred direction associated with the Hamiltonian. It
follows that H, L?, and L, are compatible observables, and we can look for an orthobasis of

common eigenstates
|E,l,m), (10.1.3)

where FE is the energy of the state, the eigenvalue of the Hamiltonian. Because of eq. (87.1),
these are also parity eigenstates, with eigenvalue (—1)".

In the following, we will work in the position wavefunction representation with

Vpim(r,0,¢) = (r,0,0|E,l,m) = Rp,(r)Y;"(6, ), (10.1.4)

where Rp () is a radial wavefunction. Note that R (r) will depend on both E and [ in general,

but it will not depend on m, because the operators L, and L_ raise and lower m without

changing [ or the radial dependence of the wavefunction. The time-independent Schrodinger
equation in this basis is

h*Vv?

[_ 2p

+ V(T):| ¢E,l,m(ra 9? ¢) = E¢E,l,m(r> 9, ¢) (1015)

Now, using eq. ([8.6.12), this becomes

[ 2d Ui+
21

2 g T T2 }REJ(THV(T)RE,I(T) = ERp,(r), (10.1.6)

where the spherical harmonics have been factored out.
In many cases, we will find that the radial wavefunction Rp (r) has a power-law behavior 77

near the origin, for an integer p. By requiring the total probability to be finite, it is clear that
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p cannot be less than —1; otherwise, the normalization integral [ drr?|Rg,(r)* would diverge
even for a finite volume. But in almost all cases, one can make the even stronger statement that
Rp,(r) must be finite as » — 0. This is because V?(1/r) = —4m(7), so that p = —1 would
necessarily imply the presence of a delta function contribution to the potential V(r). In the
examples to follow, we will often make use of the finiteness of the radial wavefunction.

It is often useful to define a function
Ugu(r) = rRgu(r), (10.1.7)

in which one power of the radial coordinate has been factored out. The eigenvalue differential

equation then becomes
2 72 2
_%% )] ZQ(L Vv ve = BUL (10.1.8)
with the nice feature that there is no term with a single r derivative; that is the reason for
sometimes using Ug; rather than Rg;.
Indeed, eq. (I0L8) for Ug, is very similar to the one-dimensional time-independent Schrodinger
equation (633) with x replaced by r. However, there are two important differences. First, the

domain of the independent variable is now limited to non-negative values,
0 <r < oo, (10.1.9)

unlike the one-dimensional Schrédinger equation. Second, the potential has effectively been
modified to
RA(1+1)

Veg(r) = V(r)+ o

: (10.1.10)

where the second term is a repulsive centrifugal contribution that blows up at r = 0, and
therefore makes the wavefunction vanish there unless [ = 0. In fact, if V(r) is finite at r = 0,
one finds from eq. (ILY) that for [ # 0, Rp,; must scale like 7! at small 7.

With these caveats, the problem of stationary states for a particle in a spherically symmetric
potential has been reduced to a particular type of one-dimensional problem. The same results
that we derived in section [see the discussion surrounding eqs. (6.3.6)—(6.3.8))] for matching
wavefunctions at special points holds here as for the one-dimensional problems. In particular, the
radial wavefunction is always continuous, and if the potential is finite (not necessarily continuous)

at a point r = rq, then its first derivative with respect to r is continuous there.

10.2 Free particle in spherical coordinates

We have already discussed the position and momentum eigenstates and wavefunctions for a free

particle moving in three dimensions, in section 28 For position eigenstates, the CSCO used was
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(X,Y, Z), while for momentum eigenstates, it was (P, P,, P,). Now we will discuss the same
physical problem using the CSCO (H, L?, L.) with eigenvalues (E, h%I(l + 1), hm), starting
from eq. (I0L8) with V(r) = 0. We will solve the time-independent Schrédinger equation for
fixed (E,l,m) in the position wavefunction representation with coordinates (7,0, ¢), where the
domain may consist of only a sub-volume of the whole space. The resulting solutions can then
be applied, using matching of the wavefunction, to problems in which a particle moves freely
only in that sub-volume. They can also be applied to scattering problems in three dimensions.

To simplify things, define
k* = 2uFE/R?, p = kr. (10.2.1)

From the discussion in section 2.8], we already know that the allowed eigenvalues E are positive,
so that k is a real number with units of 1/[length]. Thus p is a radial coordinate re-scaled to

make it dimensionless. In terms of these, eq. (IL.LY) becomes

<d2+1 I(1+1)

dp? I

)m@): 0. (10.2.2)

Note that this equation and the forms of its solutions U;(p) do not depend on E, because the
dependence has been hidden in p.

Let us start with the case [ = 0. Then eq. (I0.2.2)) is a familiar equation, with the familiar
solutions Up(p) = sin(p) or cos(p). Of these, the first solution Uy = sin(p) gives a constant for
R(r) as r — 0. However, the second solution U, = cos(p) approaches a constant as r — 0.
This renders it physically unacceptable if the origin is included in the spatial region under
consideration, because then R(r) ~ 1/r, which is divergent and would require a delta function
potential V' (r) at the origin, since V*(1/r) = —4nd(7*). Nevertheless, it is acceptable if we are
solving for the free-particle wavefunction only in a region that does not include the origin. We

therefore have two solutions for L? = 0, labeled A and B,
U (kr) = sin(kr), UL (kr) = —cos(kr), (10.2.3)

where the minus sign is a phase choice for later convenience, and the B solution is understood
to be acceptable if, and only if, the origin is excluded. These solutions for [ = 0 can be used as
seeds to find solutions for [ > 0, as we will now see.

Writing the solution for general [ in the form

Ulp) = r"filp), (10.2.4)
the differential equation (I0.2:2) becomes
<d2 2(14+1)

dp? p

2%+i)ﬁ@)=0. (10.2.5)
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Now we note that if f;(p) satisfies the differential equation for [, then
L df,
fralp) = =9 10.2.6
alp) = (10.26)
will satisfy it for [ + 1, as can be proved by computing d*fi,,/dp? and df;,/dp and plugging
into eq. (I0.2.0). So, for each of our two [ = 0 solutions from eq. (I0.2.3),

sin p

cos p
p p
by recursion we will have a solution
1d\'
=|—-——— . 10.2.8
fi=(—50) (1028
Therefore, for each value of [, we have two linearly independent solutions
1d\'/[sn p
A I pA ! _
_ — - = 10.2.
wi) = A1t =i (5) (22) = o) (10.29)
RG) = A= o (-22) (-2} = np (10.2.10)
: : pdp p ) -

The functions j;(p) are called the spherical Bessel functions, and n,;(p) are called the spher-
ical Neumann functions. The lowest few are

sin p cos p

jolp) = , no(p) = : (10.2.11)
P P
, sinp  cosp cosp sinp
nip) = — , ni(p) = — — , 10.2.12
1(p) o p 1(p) o ; ( )
3 1 3 3 1 3
J2lp) = | —= — —|sinp— —cosp, na(p) = ——+—)cosp——sinp. 10.2.13
:(0) <p3 p) P #(7) ( P P ( )
For small p, they can be shown to behave like
P
j ~ 10.2.14
i) ~ G (102.14)
(20 —1)N
where the double factorial notation means
2L+ = 2+ 1)(2A —1)---(1) = (21 + 1)1/(21"), (10.2.16)

with the special value (—1)!! = 1. Thus the j; solutions are well-behaved at the origin, but the
n; solutions are not. For large p, they both fall off like 1/p multiplied by oscillating functions,

(o) ~ %Sin(p—lw/Q), (10.2.17)

) ~ —%cos(p—lw/Q). (10.2.18)
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The functions n;(p) are not needed for the case of a completely free particle (one that has no
potential everywhere including r = 0). However, they are useful in situations where we piece
together the free-particle solution(s) in region(s) not including the origin to other solutions that
do include the origin, as for example in section [10.4]

For example, suppose we have a potential that is spherically symmetric and piece-wise con-
stant within radial intervals, so that

Vo 0<r<a),

CIER B (10.2.19)

VN (CLN <r< OO)

In each of these regions, the constant potential V,, can be absorbed into the constant energy, so

the possible stationary-state solution wavefunctions are
(A§”> i(knr) + BM™ nl(knr)) Y™(0, ¢), for (an, < r < aps1), (10.2.20)

for some constants Al(n) and Bl(n), but now with

kn = \/2u(E — V,,) /. (10.2.21)

The coefficients Al(") and Bl(") can be determined by matching the wavefunctions, and their
first derivative with respect to r, at each of the points a,. This procedure also simultaneously
determines the energy eigenvalue E. In the region 0 < r < a;, the Neumann function solutions
are not allowed, so one must have BZ(O) = 0, but in all other regions Bl(") is allowed to be non-
zero. Note that there is a degeneracy 2] + 1 for each of these stationary states, due to the fact
that the energy does not depend on m = —I[,...,[. One can also match such wavefunctions to
regions in which the potential is something more complicated.

Different linear combinations of j; and n; are useful in certain kinds of problems. The

spherical Hankel functions defined by

M) = o) +inilp) = i (—ﬂ)l(e—m), (10222)

pdp p

l _
@\ (AN (e 10.2.2
W20 = ip) — imi(p) zp( ! dp) ( } ) (10:2.23)

correspond to outgoing and ingoing spherical waves, respectively. To understand this, note that

from eqs. (I0.2.17) and (I0ZIY)) their behavior for large p = kr is
1

hY(p) ~ ;ei[p—w(l+1>/2] = il /p, (10.2.24)
1, :
hl(2)(p) ~ ;e—l[fH‘W(l"’l)/z} = ile_lp/p’ (10.2.25)
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so that the time dependence of the corresponding wavefunctions is

(FlpW(t) oc e ey, (10.2.26)
(Flo@(t) o e PheTH (10.2.27)

These maintain constant phase at r = (E/hk)t+ constant and r = —(E/hk)t 4 constant, re-
spectively. (The phase velocity is therefore w/k = FE/p = hk/2m, but recall from the discussion
leading to eq. (G2I1]) that wavepacket superpositions will have a group velocity twice this,
hk/m, which is the classical value.)

For problems in which £ < V,, in at least one region, k£ will be imaginary in that region.
Then the solutions will involve j,(kr) and n;(kr) or hl(l)(kr) and hl(2)(kr), where now k =
z\/m /h is a pure imaginary number. In many such cases, a more convenient basis of

solutions is provided by the modified spherical Bessel functions,

o) = i = o' (5 d)l (2. (10.2.28)

pdp p
1d\" [er
Lip) = —ithM(ip) = l(———) (—) 10.2.29
1(p) 1 (ip) = p i p ( )

where now

p = Kr, Kk =k/i = \2u(V, — E)/h. (10.2.30)

The function i;(p) is well-defined and useful for regions that include r = 0, while the function
ki(p) is useful for regions that extend to r = co.
For the rest of this section, we consider the (H, L?, L,) orthobasis eigenstate wavefunctions

for the completely free particle whose domain includes all space, including the origin. They are
<?|ka l>m> = ,lvbk,l,m(?) - Rk,l(r)yim(9>¢)> (E = h2k2/2ﬂ), (10231)

where the radial wavefunctions Ry ;(r) = Ay, ji(kr) contain a normalization constant Ay, to be

fixed. To do so, we can use the orthonormality relations for the spherical Bessel functions

/ dr (ke )jKr) = ord(k = k), (10.2.32)
0

for each [. It follows that if we choose A;; = +/2/m, so that the radial wavefunctions are

Ry(r) = \/gjz(/ﬁ“), (10.2.33)

TEquation M0.2.32 is technically ill-defined, because the integration does not converge, even for k # k'. It
should therefore be viewed as a formal relation, to be used within expressions where k or k' is integrated over.
This is similar to the technically ill-defined nature of the Fourier integral for the delta function in eq. (Z2Z20).
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then we have the orthonormality relations,

1 /
/d?“ 7’2 Rk/J(T’)RkJ(T) = ﬁd(k‘ —k ), (10.2.34)
and for the full eigenstates and their wavefunctions,
<k‘/, l/, m/ |k’, l, m> = /d3? ¢k’,l’,m’ (?)* @Dk,l,m(?) = ﬁd(k‘ k‘ ) 5ll’5mm’~ (10.2.35)

With our choice of normalization in eqs. (I0.233)-(I0.235), we also have the completeness of

the orthobasis in terms of an integral over k,

0o 00 l
/ dkk* Y |k Lm)(k Lm| = T, (10.2.36)
0

=0 m=—1

from which follows

/ dk k? Z Z Okt () Upim(®) = 6O F—7). (10.2.37)

0 1=0 m=—1

A perfectly good alternative normalization choice would be to express the same results in

terms of “energy normalization” kets

ik
\E,l,m) = T'u|k,l,m), (10.2.38)

and the corresponding radial wavefunctions

2uk

i

Ji(kr). (10.2.39)

If one uses |E,l,m), Rg;(r), and ¢ g ,,(7), then the Dirac orthonormality and completeness
relations will have the same form as eqs. ([0.2.34)-([{0.2.37), but with 6(E — E’) replacing
6(k —K)/k* and [[° dE replacing [ dkk?. This follows from 6(k — k') = 0(E — E")ik/ .
Let us now consider the relation between the plane wavefunctions associated with momentum
eigenstates |p) and the spherical waves associated with the (H, L?, L.) eigenstates |k, [, m). Using

the completeness relation, we have

(Flp) = / dkk:?zz Pk, {,m)(k, [, m|p) . (10.2.40)
0

1=0 m=—1

Now, both |B) and |k,I,m) are eigenstates of H with energy eigenvalues F = |B|>/2u and
h2k? /24, respectively. Therefore, Theorem 2.6.5 says that the last inner product in eq. (I0.2.40)

must vanish unless |p| = hk, and so it must be of the form
BLmlp) = 8k — [pI/A) | % Crn(6 10.2.41
(k,l,m|p) = @rh) (k= 1Bl/h) ) 5 Crm(95, ¥p), (10.2.41)
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for some functions C,, that depend only on [, m, and the angular coordinates of the vector
p. (The Cj,, cannot depend on the magnitude k, because they are dimensionless and there

is no other dimensionful quantity on which they could depend.) Since k& = |p|/h is enforced
by the delta function, we can define k& = p/k and use egs. (Z8562) and ([([T.231) to find that

eq. (I0.2.40) reads

ik 1

@2rh32 — (2rh)p2 Z Z Crm (0, 07) 31(kr) Y™ (0, ). (10.2.42)

=0 m=—1

The claim is that the coefficient functions turn out to be
Cim(05, d) = 4mi' Y™ (0, )", (10.2.43)

so that we have the remarkable identity relating plane waves to spherical waves,
9] l
= > Y ami' Y0, ¢7)" (k)Y (0, ). (10.2.44)
1=0 m=—1

Note that (6, ;) are the spherical coordinate angles for the vector k, while (6, ¢) are the angles
for the vector 7 in the same coordinate system. The interpretation of eq. (I0.2.44]) is that
a plane wave with momentum p = hk consists of a superposition of spherical waves with all
allowed (quantized) values of orbital angular momentum.

To prove the claimed eq. (I0.2.44]), we first consider the case that k = k2. Then 0. =0,
and k - 7 = kr cos 8, so eihT = ¢ikreost Because this does not depend on ¢ at all, its expansion
in terms of spherical harmonics will only include the m = 0 functions Y°(6,¢), which are

proportional to the ordinary Legendre polynomials P,(cos ). So, in this case the expansion in
eq. (I0.2.44) has the simpler form

pikreosd chjl(l{;r)Pl(COSO), (10.2.45)
=0

where ¢; are some coefficients that we need to determine. Now we can multiply both sides of
eq. (I0:245]) by Py(cosf), and integrate with respect to cos#, making use of the identity

1
2
/_1 duPl(u)Pl/(u) = 2[—}—15”/' (10.2.46)

The result, after relabeling I’ — [, is

20+1 (! .
agn(kr) = ZT+/ d(cos 0) Py(cos §)e™" s (10.2.47)
-1
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This must hold for all r, so we can consider the leading behavior as » — 0 in particular. Using
eq. (I02.14), this gives

20+1 [1 -
+ O(,r,l-i-l) — i du Pl(u)elkTu‘ (10248)
—1

k)
1 ( 5

20+ 1)

This shows that the right side evidently must be proportional to 7! in the limit of small r.

ikru

Expanding ¢*™ in a power series in r, using "% = "> (ikru)"/n!, this implies the identities

1
/ duu"P(u) = 0 (for integer n < 1), (10.2.49)
-1
and the result we need (from the n = [ term),

K 20+ 1 (k) 1,
Cl(21+1)!! = 5l /_lduuPl(u). (10.2.50)

Using eq. (8.6.44)) for the Legendre polynomials, one can obtain the integral

/_duulPI(u) = % (10.2.51)

1

by integrating by parts [ times. Thus, eq. (I0Z50) simplifies to

a = 2+, (10.2.52)
so that
e = N (21 + 1)i ji(kr) Pi(cos6). (10.2.53)

=0

Now for the case of k in an arbitrary direction, substitute kr cosf — k-7 in the preceding, or
cos — k- 7. (10.2.54)

Using the spherical harmonic addition identity, eq. (86.71]), one finally arrives at eq. (I0.2:44).

10.3 Particle confined to a sphere

As an application of the results of the previous section, consider a particle of mass u that is

confined within a sphere of radius a, but is otherwise free, so that the potential is

B 0 (r <a),
Vir) = { o (r>a) (10.3.1)

The stationary-state wavefunctions are

_ { CE,l,mjl(kr)Y}m(ea ¢) (T < a)a
7pE‘,l,m -

. r>a). (10.3.2)
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i ya i Figure 10.3.1: The solutions of the transcendental
T ’ ] equation X = tan X for positive X = ka provide the
y o ‘ ] eigenvalues for k for the [ = 1 states of a particle con-
S ] fined to a ball of radius a. This graph shows the low-
4r ) est three solutions X =~ 7(1.4303, 2.4590, 3.4709) =
3r ] (4.4934, 7.7253, 10.9041), obtained as the intersec-
2r ) tions of Y = tan X with the line Y = X.
1_ -
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X=ka

where Cp,, are normalization constants and £ = R2k?/2p. Continuity of the wavefunction at

r = a requires that
Jilka) = 0, (10.3.3)

and this boundary condition determines the allowed quantized energy levels E, ;. Let us see
how this works for [ = 0,1, 2.
For [ = 0, eq. (I033)) becomes simply sin(ka)/ka = 0, so ka = nmw, where n is a positive

integer. The energies are therefore

R’k* RPmPn?

E., = _ 10.3.4
. 241 2a? ( )
for [ = m = 0, with corresponding wavefunctions
sin(nwr/a
V00 = Cn,O,OM- (10.3.5)
nrr/a

Note that these wavefunctions approach a non-zero constant at » = 0. The number of zeros of
the radial wavefunction, including the one at r = a, is n. The constant can be fixed by requiring
the unit normalization condition 1 = 47 [ dr r?[ty,0,0[%, which yields Cy 00 = ny/7/2a3.

For | = 1, the boundary condition (I0.3.3) reads

tan(ka) = ka, (10.3.6)

which is a transcendental equation that can be understood graphically and then solved nu-
merically for X = ka as shown in Figure [[0.3.J] The lowest three energy solutions have
ka/m =~ (1.4303, 2.4590, 3.4709, ...), so

22

2a?

Enp ~ (2.0458, 6.0468, 12.0471, ...)  for n = (2,3,4,...), (10.3.7)
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where the label n is again the number of zeros of the radial wavefunction. In the [ = 1 case,
r = 0 and r = a are always both zeros, so n > 2. Each of the [ = 1 energy levels has degeneracy

3, because the quantum number m = —1,0, 1 does not affect the energy.
For [ = 2, the boundary condition (I0.3.3]) becomes

ka
tan(ka) = ———— 10.3.8
which again is transcendental, but whose solutions can again be found numerically, with the
results ka/m ~ (1.8346, 2.8950, 3.9225, ...), so
h27T2

2a?

E,s (3.3656, 8.3812, 15.3861, ...)  for n = (2,3,4,...), (10.3.9)

where again the label n is the number of zeros of the radial wavefunction j,(kr). Each of these
energy levels has degeneracy 5, corresponding to m = —2,—1,0,1, 2.

The energy eigenvalues for higher angular momentum quantum number [ can be numerically
solved for in a similar way, and have increasingly higher energies. The degeneracy of each energy
level E,; is 204 1, corresponding to the allowed values of the L, eigenvalue im. The lowest few
energy levels, with E,; < 10h*7?/ua® and [ < 7, are depicted in Fig. [0.3.2

Energy
Y
20

15 -

10

=0 =1 =2 =3 =4 =5 =6 =7

Figure 10.3.2: The lowest energy levels, in units of the ground-state energy E1 o = h*m?/2ua?,
for a particle of mass p confined to a sphere of radius a, labeled by the angular momentum
quantum number [. All energy eigenvalues with F,,; < 10h*7?/pa? and [ < 7 are shown.
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10.4 Particle in a spherical potential well

Consider a particle of mass p in a spherical potential well of radius a and finite depth Vj,

V(r) = { ;VO E:;Zi (10.4.1)

We will consider bound state solutions, which have EF < 0. As discussed in section [10.2], the
stationary-state solution for the region r < a involves the ordinary spherical Bessel function
Ji(kr), but now with

k= /2u(E + Vo)/h. (10.4.2)

The Neumann functions n;(p) are not well-behaved at p = 0 and so do not appear for r < a.
The solution for r > a uses the modified spherical Bessel function k;(xr) [see eq. (I0.2:29)] with

Kk =+/—2uE/h, (10.4.3)

because ki(p) is the linear combination that is well-behaved at p = o0o. The stationary-state

wavefunctions are therefore

- A]l(kr) Yim(ea ¢) (’l" S a)a
m = 10.4.4
wnin® = { Gl ims) (o5 0 oAy
where A and B are normalization constants, and
k? 4 k?* = 2uVy/R? (10.4.5)

from eqs. (I0.42) and (I0.43).

At r = a, the wavefunction and its first derivative with respect to r are continuous, since

the potential is finite there. This gives

Aji(ka) = Bk(ka), (10.4.6)
kAj/(ka) = rkBk)(ka). (10.4.7)

Taking the ratio of these to eliminate A and B yields

kjj(ka)  rki(ka)
gika)  ki(ka) (10.4.8)

which is a transcendental equation that can be used together with eq. (I04.5]) to solve for
the allowed eigenvalues k, k, and thus FE. As always for a spherically symmetric potential,
the allowed energies depend on [, but not m. Either equation (I0.Z6) or (I0ZT) then also

allows for the ratio A/B to be found for each E,l. The remaining unknown corresponds to the
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overall magnitude of the constants A and B, which can be fixed by the normalization of the

wavefunction.

For example, if [ = 0, eq. (I0.48) yields
—k cot(ka) = k. (10.4.9)
Writing dimensionless variables X = ka and Y = ka, eqs. (I0.45) and (I0.4.9) give

X2 4+Y?r = 2uVya®/R?, (10.4.10)
—XcotX =Y. (10.4.11)

Fortunately, these are exactly the same equations we encountered for the odd-parity solutions of
the one-dimensional square well problem, with L — 2a. [Compare to egs. (6.5.12) and (G.5.18]).]
The same graphical and numerical analysis therefore applies. In particular, if we label the [ =0

stationary states by n =1,2,3,..., then the condition for the bound state [¢,,) to exist is

M%a2 2 )
—(n—1/2)". 10.4.12
> - (n—1/2) (10.4.12)

Recall that in the case of a particle in a one-dimensional square well, there is always at least
one bound state, but for a sufficiently shallow potential well only the even-parity ground state
exists as a bound state. For the three-dimensional spherical well, since only the analogs of the
odd-parity one-dimensional square-well states exist, eq. (I0.412]) tells us that the existence of
a bound state requires the potential to be sufficiently deep, Vy > 72h*/8ua®. The more general
lesson is that three-dimensional potentials may have no bound states if they are not sufficiently

attractive.

10.5 Isotropic three-dimensional harmonic oscillator

In section [L.5, we have already encountered the isotropic three-dimensional harmonic oscillator
as a special case of the general anisotropic version, and obtained its stationary-state energy
levels and degeneracies. We did this using a CSCO of (H,, H,, H,), the individual Hamiltonians
for excitations in the x, y, and z directions. In this section, we will solve the problem again,
this time with a CSCO consisting of (H, L?, L.). This is possible because, in the isotropic case,

1
H = — + -uw’R? (10.5.1)
2u 2

is invariant under all rotations and therefore commutes with L? and L,. Note that we are now

using p as the symbol for the mass of the particle.
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Before proceeding, let us consider what sort of answer we expect, given the results of section
At an energy level E = hw(n + 3/2) with n = n, + n, + n., the wavefunctions must be

linear combinations of wavefunctions of the form
(0,9 2lnesnyy ) o H, (afD)Hy, (5/0)H, (2/0) "2 (10.5.9)
where the length scale in the problem is

b=+/h/pw, (10.5.3)

and the H,, are the Hermite polynomials. After translating to spherical coordinates, such a

linear combination that is an eigenstate of L? and L, must be of the form
(r,0,¢n,l,m) = Y™ (0,0)R,(r), (10.5.4)
where
Rou(r) = (polynomial of degree n in r)e™""/?". (10.5.5)

Our goal is to solve for the functions R, (7).
In section [10.1 we found the differential equation for U, ; = rR,,;, which in the present case

becomes

R d* 1 RA(1+1

- —-FE\U,; = 0. 10.5.6
2 dr? 2 212 ! ( )

Inspired by eq. (I0.5.3), we define dimensionless quantities = and y(z) by
x = r/b, Upi = y(z)e /2. (10.5.7)
When plugged into eq. ([I0.5.6]), this gives
y'—2xy +[E-1-1(1+1)/2*]y = O, (10.5.8)
where
E = 2ub*E/R* = 2E/hw (10.5.9)

is a dimensionless combination proportional to the energy eigenvalue. We already know from
eq. (CEI3) that the allowed eigenvalues are &€ = 2n + 3 for non-negative integers n, and from
eq. (IME0) that y(z) is a polynomial, but in the following derivation we will proceed as if these

facts were not known.
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We now try a series solution for y(z), of the form
y=a2) cua’. (10.5.10)
p=0

Here ¢ and the ¢, are constants, with ¢y # 0 by definition. (Otherwise, we would adjust the

value of ¢ to make it so.) Now we prepare to plug in to eq. (I0.5.8) by computing

v o= Y o+ apt+g—Dar (10.5.11)
p=0

y/rt = Y et (10.5.12)
p=0

v = D G+ =) ca(pt+g—2)a" (10.5.13)

p=0 p=0

y o= ) Gt (10.5.14)

p=0

where in the last equality of each of eqs. (I0.5.13) and (I0.5.14)) we have used the trick of
relabeling p — p — 2 and defining ¢_5 = ¢_; = 0. The motivation behind this relabeling trick is
that now all of the summands have the same powers of z, and so eq. (I0.5.8) becomes

[e.e]

St e [+ p+a—1) — 0+ 1] - ¢oRp+a-2)+1-€]} = 0. (105.15)

p=0
For this equation to be satisfied for all z, each coefficient of a given power of x must vanish, so
the quantity in braces must vanish for each p.

From the first term p = 0, using ¢_, = 0 we find
colglg—1)=1(1+1)] = 0. (10.5.16)

Since ¢y # 0, the possible solutions are ¢ = [ + 1 and ¢ = —I. However, the latter can be
rejected on physical grounds, since it would imply that y ~ 2~ for small =, which would mean

Ry ~ 1/r"™! for small 7, and the wavefunction would not be finite at the point 7 = 0. Therefore,
qg=1+1, (10.5.17)

which implies that R,; ~ r! for small r. This suppression for small r is consistent with the

existence of the repulsive h2[(I+1)/2ur? centrifugal barrier contribution to the effective potential

for non-zero angular momentum, see eq. (I0II0) or eq.([I0.5.6).
The second term p = 1 gives us

alglg+1)=11+1)] =0, (10.5.18)
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because ¢_; = 0. Now, plugging in ¢ = [ + 1, this becomes 2(I + 1)c¢; = 0. Since our knowledge
of the angular momentum eigenvalue problem tells us that [ + 1 cannot vanish, we must have
cp =0.

For all larger p, the vanishing of eq. (I0.5.15]) implies (after using g = [+ 1) that

pp(p+20+1) = ¢, 2(2p+20-1-8). (10.5.19)
Since ¢; = 0, it follows that ¢, = 0 for all odd p. Defining C}; = ¢y;, we have

y ="y i, (10.5.20)
=0

with, from eq. (IL5I9) by taking p = 2(j + 1), the recurrence relation

4 +20+3-6
2/ +1)(2j +20+3) 7

Ciyn = (10.5.21)

For large j, we have C; =~ C;_;/j, so if the series does not terminate, it would behave asymp-
totically like y ~ z!*! > (@) /g~ 2 1e?” | which would imply that R, ~ rle™"/20% /P ~
rler®/2”  As in the case of the one-dimensional harmonic oscillator, such a solution that blows
up exponentially as r — oo is unphysical, since it cannot be normalized.

We can therefore conclude that the series must terminate, and y(z) is actually a polynomial,
in agreement with eq. (I0.5.5)). Then the recurrence relation eq. (I0.5.21]) implies that physically

valid solutions for y(z) must have Cjyq = 0 for some integer k& > 0, and so satisfy

£ =4k +20+3, (10.5.22)

or, using eq. (I0.5.9),
E = hw(2k + 1+ 3/2). (10.5.23)

The integer n = n, +n,+n, must then be equal to 2k +1[, and the energy eigenkets |E, [, m) are
linear combinations of the kets |n,,n,,n,). An interesting feature of these results is that, unlike
the particle-in-a-sphere and particle-in-a-spherical-well examples of sections and [I0.4] here
the degeneracies in the energy levels are not entirely due to the rotational invariance of the
problem. For a given [, there are 2/ + 1 degenerate states with m = —[,...,[ that have the
same energy. But, there are also “accidental” energy degeneracies between states with different
angular momenta, for example k =0,/ =2 and k =1,1=0.

Summarizing what we now know about the three-dimensional isotropic harmonic oscillator

stationary-state wavefunctions with definite (L2, L.),
7vbk,l,m(rr? ‘97 ¢) = ARk,l(r> Yzm(ea ¢)7 (10524>
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where A is a normalization constant. The radial wavefunctions are of the form

Riy(r) = (r/b)' Pey(r?/b?)e "% (10.5.25)
where, with z = 22,
k
Po(z) = > O (10.5.26)
=0

Using eq. (I0.5.22), the recurrence relation (I0.5.21]) becomes

_ 2(j — k) |
Ciay = TSI 3)CJ. (10.5.27)

For the lowest few values k = 0,1,2,3, we have (leaving the coefficient Cy as an arbitrary

normalization for the moment):

PQ[(Z) = Co, (10528)
2
P(z) = C’O<1—2l—+3,z), (10.5.29)
_ _ 4 4 2
Py(z) = CO<1 13 @@ ) (10.5.30)
6 12 ) 8

+

@+3)@+5) @ +IR+H)R+T) Z3> - (10.5.31)

Paz) = C°<1_2l+3z

These polynomials are proportional to associated Laguerre polynomials, for which there
are unfortunately at least three different notational conventions in common use. Adopting here

the definition of the associated Laguerre polynomial L{(z) used by Mathematica
Po(z) = L), (10.5.32)

corresponding to the choice

@42k 20+ 2k + 1)1

More generally, the conventional normalization is such that, at z = 0 and for any «,

I'k+a+1)
L3(0) = ——+. 10.5.34
£(0) E'T(a 4 1) (10-5.:34)
Here, the Gamma function is defined by
I(z) = / dtt* e " (10.5.35)
0

fThe relations between the definition of the associated Laguerre polynomials used here and in some other
sources is F(N + o+ 1)L?\](Z>hcrc, Mathematica — L?\L/'(Z)somc other books — (_1)QL?V+Q(Z)still other books-
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and satisfies I'(z) = (z — 1)I'(z — 1). When z is an integer, then z! = I'(z + 1). Another useful
value is T'(1/2) = /7.
An explicit, general form for the associated Laguerre polynomials is
T, dY
NIT OGN
Note that the lower index N is always an integer equal to the degree of the polynomial, but the

LY (2) = (e772N*e) . (10.5.36)

raised index a need not be, as in the present application where o = [ + 1/2. They satisfy the

differential equation

d> d N
and the orthogonality relation
o (N 1
/ dz e Lo (2) Lo (2) = %@W. (10.5.38)
0 .

The degree N is also equal to the number of zeros (in the present case N = k), which all occur
for positive real z.
Putting everything together, the wavefunctions for the stationary states of the three-dimensional

isotropic harmonic oscillator with energies £ = hw(2k 4+ 1+ 3/2) are

o 2(]{3') r\! 14+1/2 12792 < rm
P \/b3F(k+l+3/2) () L2029y e 0 6). (10.5.39)

The normalization factor A in eq. (I0.5.24)) has been chosen, with the aid of eq. (I0.5.38), so
that orthonormality holds,

<k‘,, l,, m'|k, l, m) = / d?“ 7’2 / dQ [@Dkl,l/,m/(’l“, 9, ¢)]* @Dk,l,m(r, 9, gb) = 5kk’6ll’5mm’- (10540)
0

10.6 Exercises

Exercise 10.1. Consider a particle of mass p in a spherically symmetric potential V(R) in a
stationary bound state with energy E and zero angular momentum, so that the wavefunction
¥(r) is only a function of r. The quantity [/(0)|? is useful for evaluating “contact” quantities
that depend on the probability for the particle to be found at the potential source, the origin.

(An example is the Darwin term of the hydrogen atom fine structure.) Show that in general

O = VR, (10.6.1)

with the standard wavefunction normalization such that 47 [~ drr? [¢(r)|* = 1. [Hint: multiply
the Schrodinger equation —% (W' +2¢) + [V(r) — E] 4 =0 by ¢/(r), and integrate by parts.]
Check this result in the special cases of the [ = 0 states of a particle confined to the interior of

a sphere, and the ground state of the isotropic harmonic oscillator.
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Exercise 10.2. Use the spherical Bessel and Neumann function forms in eqs. (I0.2Z11)-(I0.213)
to verify the large-distance forms of eqs. (I0214)) and (I02TH) for [ =0, 1,2.

Exercise 10.3. Consider a particle of mass u trapped inside a ball of radius b that has a hard

core of radius a, so that the potential in spherical coordinates is

Vi(r)

{ oo (for r < a and for r > b). (10.6.2)

0 (fora<r<b)

This means that the eigenstates of H, L?, and L, have wavefunctions of the form W ,,(r, 0, ¢) =
[Aj,(kr) + Bny(kr)]Y;™(0, ¢) for the region a < r < b.

(a) Find all of the allowed energy eigenstates and eigenvalues for [ = 0. [Hint: use boundary
conditions to solve for the ratio B/A twice, and require the two expressions to be equal.|

(b) For the case [ = 1, find a transcendental equation whose solutions will yield the energy
eigenvalues. Put your equation into the form tan[k(b — a)] = {an expression not involving sines
or cosines}. [Hint: first put the equation into a form that is polynomial in ka, kb, and their
sines and cosines; then use trigonometric identities for sin(kb — ka) and cos(kb — ka).]

(c) For the special case [ = 1 and b = 2a, write your transcendental equation in the form
tan X = X/(1+ NX?), where X = ka and N is a certain integer that you will discover. Solve
for X numerically to at least 3 digits of accuracy, and obtain the lowest energy for [ = 1. How

does it compare to the lowest energy for [ = 0 that you found in part (a)?

Exercise 10.4. Consider the isotropic 3-d harmonic oscillator problem, with potential V' (z,y, z) =
tuw?(2? + y* + 2%). The Hamiltonian H can be written as the sum of H, = hw(ala, +1/2),
H, = hw(ala, + 1/2), and H. = hw(ala. + 1/2), which form a CSCO with corresponding or-
thonormal eigenbasis |n,, n,, n.). Another choice of CSCO is H, L?, and L., with corresponding
eigenbasis |n,l,m)’, where n = n, + n, + n,. (The ' distinguishes the two types of orthobasis
elements, since they both have three integer labels.)

(a) Show that the angular momentum component operators L,, L,, and L, can be written as
Ly, = ih€pqacal. (10.6.3)

(b) Construct the operator L? in terms of the ladder operators. You should write the answer in
“normal-ordered” form, which means that the commutation relations have been used to ensure

that no creation operator appears to the right of an annihilation operator, as
L = B[N (afai + al?a’® + afai + ajfai + al?a? + a?ai)

+No(alalaza, + alalaga. + alalaya.) + Ns(ala, + ala, + alaz)] . (10.6.4)

where N7, Ny, and Nj are certain integers that you will discover. Note that L, L,, L., and L?

all give 0 acting on the ground state with n = 0.
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(c) For the subspace of states |1,0,0), |0,1,0), and [0,0, 1) with n = 1, find the action of L? and
L.. What are their matrix representations in that basis? Find the eigenvalues and eigenvectors
of L. within this subspace.

(d) For the subspace of states with n = 2, find the action of L? on each of the |n,, n,, n,) basis.
Using these results, and using the ordering |2,0,0), |0,2,0), [0,0,2), |1,1,0), |1,0,1), |0,1,1),
find the corresponding 6 x 6 matrix representation for L?. Find the eigenvalues and normalized
eigenvectors of L? for the n = 2 subspace in that basis.

(e) Compute the action of L. on each of the simultaneous eigenvectors of H, L? found in the
previous part. Within each sub-subspace of fixed n = 2 and fixed [, find the eigenvalues
and eigenvectors of L., and so conclude by writing the six |2,1,m)" orthobasis states as linear

combinations of the six |n,, n,,n,) eigenstates.
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11 Coulomb potential and hydrogen-like atoms

11.1 Bound states for hydrogen atom

One of the most important exactly solvable problems in quantum mechanics is that of a particle
moving in a Coulomb potential. This includes the hydrogen atom, and more generally hydrogen-
like ions, which consist of a single electron with mass m, and charge —e [with the normalization
as defined in Gaussian cgs metric system units, see eqs. (LLI]) and (TTZ)] and a heavy nucleus
with mass my and charge Ze, where Z is an integer. As discussed in a general context in section
4.2l the problem can be separated into center-of-mass and relative degrees of freedom, where
the latter use a reduced mass p = memy /(me+my), which is very close to m.. In this chapter,
we neglect the small effects of special relativity and electron and nuclear spins, which will be
treated in Chapter 7l So, our Hamiltonian is H = P?/2u + V(R), where the potential energy

in the position representation is
V(r) = —Zé/r (11.1.1)

The special case Z = 1 is the hydrogen atom. Because the potential is spherically symmetric,
we choose the CSCO to be (H,L?, L), and look for an orthobasis of eigenstates |E, [, m) with

wavefunctions

YEim(r,0,0) = (r,0,0|E,l,m) = Rg,(r)Y;"(0, ). (11.1.2)

The goal is to find the energy eigenvalues and the radial wavefunctions Rg (7).

In this section, we will work out the properties of the bound state solutions, for which the
energy eigenvalues are discrete and satisfy F < V(oco) = 0, and |Rg,| decreases exponentially
as r — oo. Unlike the case of the three-dimensional harmonic oscillator, there are also unbound
energy eigenstates, for which F is continuous and non-negative, and rRp; oscillates with an
amplitude approaching a constant for large r. The unbound state solutions will be found in
section

The time-independent Schrodinger equation for the radial wavefunction is

R (d 2d 1(1+1)\  Ze
{_@ (ﬁ+?$_ 2 )— . —E] Rpu(r) = 0. (11.1.3)

A good first step is to replace 7 by a dimensionless variable. Since —h?/2uE has units of [length]?

and is a positive number for the bound states, we define a rescaled radial coordinate

s = 2r/b, b = h/\/—2uk. (11.1.4)
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With this change of variables, eq. (ILL3) becomes

d? 2d l(I+1) n 1
- 4z Z—Z)Rp, = 0 11.1.5
(d82 T ds 2 Ty Tg)h ’ ( )
where we have introduced
Ze? | —pu

a dimensionless quantity that parameterizes the energy eigenvalue. Note that n is a real number
for E < 0, and is pure imaginary for £ > 0. We will soon find out [see eq. (ILTIH)] that n
must be a positive integer for a bound-state solution, but we do not know that yet.

The next part of our strategy is to identify, and factor out, the large-distance and short-
distance behaviors of Rg;. For s — oo, eq. (ILLH) becomes d*R/ds? ~ R/4, which has two

=%/2_ The first of these is unphysical, as it blows up for

linearly independent solutions, e*/? and e
s — oo and so is not normalizable. In the opposite limit s — 0, the last two terms of eq. (IT.1.H)

can be neglected, and there is a power-law solution for R proportional to s'. We therefore write
Rp, = s'e7®2f(s), (11.1.7)

which factors out the leading behavior in the two limits. Plugging this into eq. (ILLH) gives

d’f df
s@—l—(Ql—l—Q—s)EjL(n—l—l)f = 0, (11.1.8)

which we must now solve simultaneously for the eigenfunctions f(s) and the corresponding
eigenvalues n.
Equation (ILIS) is a special case of a famous differential equation, called the confluent

hypergeometric equation, which in its traditional general form is

x%—i—(e—x)i—i —aF = 0, (11.1.9)
where a and ¢ are constants. This has a unique (up to a multiplicative constant) solution that
is finite as * — 0, the confluent hypergeometric function, which has a series expansion
a(a+1)az* a(atl)(a+2)2®
cle+1) 21 ¢(c+1)(c+2) 3! ’

Fla,cx) = 1+ %2+ (11.1.10)
&

as can be verified by direct substitution into the differential equation. This series converges for
all finite |z|, even if a, ¢, and x are complex, provided that ¢ # 0,—1,—2,.... One can check
(either from the series solution, or by direct substitution into the differential equation) that it

has an integral representation

F(a,c,z) = L(e) )/Oldtetxt“_l(l—t)c_“_l, (11.1.11)

Fa)'(c—a
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provided that Re[a] > Re[c] > 0. For real = large and positive, it has the asymptotic form

r
F(a,c,x) =~ % x4 e (large real z, and a # 0,—1,—-2,...).  (11.1.12)

However, as we are about to see, the special case relevant for our present purposes will arise
when a is a non-positive integer; in that case, F'(a,c,x) is instead a polynomial in = of degree
—a, because the series in eq. (ITTI0) terminates.

For the present application to the bound states of the hydrogen-like atom, we have x = s
and a =1+ 1—n and ¢ = 2] + 2, by comparing eq. (ILLY) to (ILT9). Therefore, f(s) in
eq. (ITI7) is equal to F(I+1—n, 2142, s), up to normalization, so

Ro = Cuyse™F(l4+1-n, 20+2, s), (11.1.13)

Here we have replaced the subscript label E by the label n, which contains the same information,
and C),; is a normalization constant to be chosen later. In the large-distance limit s — oo, the
asymptotic form of eq. (ILTI2) would seem to tell us

R, o< s " let/? (n—1—1 # 0,1,2,...). (11.1.14)

However, the exponential factor e*/? is the form that we already rejected as non-normalizable
and therefore physically unacceptable; it would imply that no matter how far from the nucleus
you look, the electron must have infinitely larger probability to be farther away. The only way
to get a physically sensible bound state is to arrange for eq. (IT.I.14]) not to apply. In other
words, it is necessary that the series solution eq. (ILTI0O) for F(I4+1—n, 2+2, s) terminates,
so that instead of being proportional to e®, it is actually a polynomial in s with degree that we
will call k. This implies that

n=k+l+1. (11.1.15)

Since k, being the degree of the polynomial, is a non-negative integer, and [ + 1 is always a
positive integer, n must be a positive integer, called the principal quantum number of the
hydrogen atom bound state.

Inverting eq. (ITI6), the allowed energy eigenvalues are

e\ 22 e\ 22
B - — (ﬁ) == (2_%) = (11.1.16)

which depend only on n, not k£ and [ individually. To write the last expression we have deﬁnedH

TThe definitions of the Bohr radius and Rydberg energy units used here are appropriate for the infinite nuclear
mass limit, with g = me. An alternative definition uses, instead of the electron mass m., the reduced mass p
for the lightest isotope of hydrogen, which is smaller by a factor m,/(m. + m,) ~ 0.999453. From here on, we
ignore the small difference between m. and p, which can be restored by replacing m. — u in the obvious way.
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continuum

n:4’5’_“ = = e _ 2= E=0
n=3
n =2
n=1 —_— E=-13.6 eV
=0 =1 =2 =3 =4
Figure 11.1.1: Stationary-state energy levels of the hydrogen atom for [ < 4. The bound
state levels with E,, = —13.6 eV/n? for n = 1,2, 3,. .. are discrete and have degeneracy n?,

with 0 < [ < n — 1. For each non-negative integer [, there are also unbound continuum
energy eigenstates with £ > 0.

the Bohr radius (named after Niels Bohr),

h2

e2m.

ap = = 5.292 x 10" meters = Bohr radius. (11.1.17)

The scale of energy is therefore

Cme € M 180 % 1071 Joules = 13.6066V — Rydber (11.1.18)
2R 2a9  2mead - - & o

named after Johannes Rydberg. The ground state has n = 1 and k = [ = 0. More generally, for
each [, the lowest possible energy is obtained for £ = 0, so that n =1+ 1.

The energy levels of the hydrogen atom are depicted in Fig. [T.1.0l At each bound-state
energy level n, the values of [ that can occur are the integers from 0 to n — 1, each with
degeneracy 2l + 1, which comes from m = —I[,...,[. The total degeneracy for each energy level

E,, is therefore

n—1

gn = Y _(21+1) = n”. (11.1.19)

1=0
Because this includes states with different angular momenta, the energy degeneracy is accidental,
meaning that it cannot be explained by rotational invariance alone. This was also the case for
the three-dimensional isotropic harmonic oscillator. For hydrogen-like atoms, this degeneracy is

slightly broken by spin and relativistic effects, as we will discuss in detail in Chapter [I7

251



The distinct values of [ are given letter codes that go back to the early history of spectroscopic

analysis. This spectroscopic notation is as follows:

[=0 < s “sharp”,

=1 <« p “principal”,
=2 <« d “diffuse”,

=3 <« [ “fundamental”,
[=4 < g “grotesque”,
l=5 < h “horrendous”,

(11.1.20)

The letter codes are in alphabetical order f, g, h,i,k, ... for l =3,4,5,6,7,..., but j is omitted.
(And I'm just kidding about the names “grotesque” and “horrendous”; unlike the first four, I
just made those up, and they do not actually have standard names to fit the standard letters.)
A supposedly useful mnemonic is “sober physicists don’t find giraffes hiding in kitchens”. The
hydrogen atom states are often referred to in the notation nl, but with [ = 0,1,2,3,4,5,...
replaced by the spectroscopic codeH letter s,p,d, f,g,h..., sothat the ground state is called 1s
and the first excited states are 2s and 2p, and the second excited states are 3s, 3p, and 3d.
Returning to the radial wavefunction, eq. (ILTI3)) tells us that

R,; = Chys'e™**F,,, (11.1.21)
where we are now adopting the shorter notation
Foy = F(l4+1—n, 2142, ), (11.1.22)

which is a polynomial of degree k = n — [ — 1. Recalling that s = 2r/b from eq. (IT.I.4), the
exponential factor tells us that the spatial support of wavefunctions is set, in terms of the Bohr

radius, by the length scale
b = nag/Z. (11.1.23)

Equations (ILTI6) and (ILT.23)) show that the magnitude of the binding energy scales like Z?2,
while the characteristic size of a given wavefunction’s support scales like 1/Z. In the classical
limit 2~ — 0, the Bohr radius goes to 0 and the binding energy of the ground state goes to —oo,

in accord with the discussion of the classical instability of atoms in section [L1l

In some other contexts, the letter codes for orbital angular momentum in eq. (ILL20) are capitalized.

252



For the lowest few energy states, the polynomials are, from eq. (ILLI0),

Fio=1, (11.1.24)
Foy=1  Fpo=1- g (11.1.25)
s 52
Fg’g = 1, Fg’l =1- Z, Fg,o =1—-s+ E, (11126)
s s s 3s  s? s
Fis=1 Fi,=1—- Firi=1——-+— Fio=1——+———. (11.1.2
43 ) 4,2 6’ 41 5 + 20’ 4,0 5 + SR ( 7)

More generally, in terms of the associated Laguerre polynomials L% (x) already defined explicitly

by eq. (I0.530), it can be shown that
(n—=1=1)! 2U+1)! o4
(n+1)! n-i=l

The lower index on L% is always equal to the degree of the associated Laguerre polynomial,

Fo, (s). (11.1.28)

which is also the number of its zeros, in this case N = k — 1. Note, however, that in the case
of the isotropic three-dimensional harmonic oscillator the upper index o was always half-integer
[see eq. (10.5.32))], while here o = 21 + 1 is always a positive odd integer.

From Theorem R.6.5, we know that the kets |n,l,m) and |n’,I’, m’) are orthogonal whenever
any of n, [, or m differ from n’, I', or m/, respectively. The orthogonality conditions d;; and
Omme are already enforced by the proportionality of the wavefunctions to spherical harmonics.
It follows that the associated Laguerre polynomials must also satisfy an orthogonality relation

of the form (taking z = ns = 2Zr/ay):
/0 do 2?2 L2A (x/n) L24Y (a/n)) e =W/mEm)2 =5 B, (11.1.29)

forn,n’ =1,2,3,...and [ = 0,1,...,min(n,n’) — 1. Although not obvious, it can be checked
that this is true, with

2 (n+1)!n2+t
Bu = S (11.1.30)

Note that eq. (IT.1.29) is a quite different orthogonality relation for associated Laguerre polyno-
mials than the one that was useful for the three-dimensional harmonic oscillator, eq. (I0.5.38).

Putting together eqs. (IT14), (ITT2T), (ITT.23), and (ITT.28)), we obtain the radial wave-

functions of the hydrogen-like atom bound states,

22r

Ry.(r) = An,le_Z?“/nao (nao

l
) L2 (227 [nag), (11.1.31)

where we have introduced a new normalization constant factor

32 3/2 Y
Apy = (g) LA (5) 2 jlp=t=1} (11.1.32)

ap B ag n? (n+10)! 7’
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chosen so that
/ drr® R (r) R i(r) = Spr. (11.1.33)
0

The full wavefunction [obtained by including the Y;™(6, ¢) factor according to eq. (IT.I2)] is

Vngm(1,0,0) = Rua(r)Y,"(0,6). (11.1.34)

An arbitrary choice of phase has been made in A, ;, as usual. With this sensible choice, the
radial wavefunctions R,,; are all real.
We now have everything necessary to evaluate the wavefunctions for the lowest few energy

levels. For the ground state,

3/2
Rio(r) = (é) 2¢=2r/a0 (11.1.35)
1,0 0 J L

and for the first excited states,

Z\** 1 Z
Roo(r) = (—) ﬁ(Q_a_:) e~ r/2a0 (11.1.36)

Z\** 1 z
Roq(r) = (—) ﬁa—ge—z’“ﬂ%, (11.1.37)

and for the second excited states,

7 3/2 92 [ Zr Zr\ >
R = (= — |27 —18=— +2 | =— —Zr/3a0 11.1.38
3,O(T) (a,o) 8]_\/§ _ a0 + (CLQ) e ; ( )
3/2 i 2
Rt = (2 2V2 |z (Zr ¢ 2r/3a0. (11.1.39)
’ ag 81+/3 | ao ag

3/2 2
Rusr) = (2 2Y2 (21 zejsa, (11.1.40)
' agp 8115 \ ag

These radial wavefunctions, and the corresponding radial probability densities r?|R,;|?, are
graphed in Figure [T.1.2] for Z = 1. For future reference, we also note that the hydrogen atom
radial wavefunction at r = 0 can be evaluated, using eqs. (IL1.28), IT.T.3T]), and (IT.1.32), as

7\ 3/2
R,1(0) = 2<n—a0) S10- (11.1.41)

In particular, it is only non-zero for states with orbital angular momentum [ = 0.
Putting in the spherical harmonics with the Condon—Shortley phase convention, the wave-

functions for the lowest few energy levels are

Z\*? 1
Y100 = (—) — ¢~ %r/ao, (11.1.42)
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Figure 11.1.2: Radial wavefunctions R, ; in units of 1/ ag/ ? (left column) and radial probability
densities 7?|R,,;|? in units of 1/aq (right column) for the Z = 1 hydrogen atom stationary states
with n = 1,2, 3, as functions of 7/ag. Note the differing vertical scales.
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for the ground state, and

Z\** 1 r
= [ = 2 — ) e Zr/2a0, 11.1.43
2,00 (ao) Wors ( ao) ( )
Z\** 1 zr
Yo10 = (—) Z_em 20 o5 ), (11.1.44)
w ao 421 ap
ZN\N** 1 Zr , .
Y141 = F (a_) N Zr/2a0 gin § e*19, (11.1.45)
0 0
for the first excited states, and
Z\** 1 r Zr\?
= (= 27— 18~ + 2 =— —Zr/3a0 11.1.46
Y00 (ao) 81¢%[ aw (ao) o (11.1.46)
N N2 | zr (2rN]
— - A <SR —Zr/3a0 11.1.4
Y310 (ao) SIE 6a0 (ao) e cos 6, ( 7)
ZNY? 1 | Zr (Zr\ .
= — 6— — [ — —Zr/3a0 gip § ¢*1? 11.1.48
P31 41 :F(ao) sivz |V (ao) e sin § e, ( )
Z 3/2 1 Z 2
T (a_o) e (a—:) e~ 4340 (3 cos?f — 1), (11.1.49)
Z\** 1 (z2r\* .
Y3241 = F (—) W (—T) e~ 2r/3a0 sin § cos 0 e, (11.1.50)
Qg s Qo
Z\*? v 72\, .
_ = “ —Zr/3a0 o;.42 +2i¢
P39 42 (CLO) NG (ao) e sin® 0 e='?, (11.1.51)

for the second excited states.

Let us now work out the expectation value of RP in the ground state, for integer p,

> Z\*1
(1,0,0|R?[1,0,0) = / drr2/d9 rP <—) —e22r/a0, (11.1.52)
0 Qo s
Using [ dQ) = 4, this evaluates to
1 ap \P
“(p+2)! (=2 > —2),
(1.0.0[R"[1,0.0) = J 2P T2 (37) =z~ (11.1.53)
00 (p < -3).

In particular, plugging in p = 0 gives (1,0,0[1]1,0,0) = 1 (confirming the correct normalization

of the wavefunction), while p = 1 gives

(1,0,0[R|1,0,0) = (R) — % (11.1.54)
27
and p = —1 gives
(1,0,0/1/R|0,0,1) = Z/aq. (11.1.55)
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(Note that this is not equal to 1/(R).) We can also directly compute, for the ground state,
(1,0,0[P%1,0,0) = /Ooo drr? /dQ VY 00(—RPV) 1o = BPZ% /a5, (11.1.56)
As a check, the expectation value of the Hamiltonian in the ground state is
(H) = (P?) /2m, — Ze* (1/R) = —Z%¢*/2ay = —Z* Rydberg, (11.1.57)

in agreement with the energy eigenvalue.

Later, we will want more general expressions for the expectation values (RP) in arbitrary
hydrogen-like atom stationary bound states |n, [, m), for various integer powers p. A helpful tool
to find these for all integer p > —1, and for all integer p < —3 in terms of the single seed case
p = —2, is the Kramers—Pasternack recurrence formula, which relates the expectation
values for any three consecutive integer powers of the radial coordinate R. It is

q+1
n2

Qo

Z

2
%

Z2

(RY) — (2¢+1)— (RI™") + = [(2141)* = ¢*] -5 (R"?) = 0,  (11.1.58)

4
4
valid for all ¢ > —2[ — 1.

The proof of eq. (ILT58) is far from obvious, but goes as follows. Start from the differential
equation for the radial wavefunction R, ;(s) with s = 2Zr/nay, as given in eq. (ILIH). Multi-
ply by 43‘”3}%7[ +2(1 — q)s?2R,,, (this is perhaps the most non-obvious part), and integrate
with respect to s. Then, expand the integrand and eliminate all derivatives of R, ; using the

integration-by-parts identitie

> d
/0 ds£(5q+3R;?l) = 0, (11.1.59)
>~ d
/ dsd—(sq”Rn,lR;’,) = 0, (11.1.60)
0 s
> d
/0 ds%(spRiJ) = 0, (11.1.61)

with p =q+ 1, ¢+ 2, and ¢ + 3 in the last equation. The result is
/ ds {(q+1)s7" =22+ Dns"™ + q[(20+ 1) = ¢*] s*} RS, = 0. (11.1.62)
0
Finally, using the change-of-integration-variable relation,

(RP) = /O " dr o [Roi(r)]? = (nag/22)P+? / " ds s+ [Ru(s)”,  (11.1.63)

0

from eqs. (ITT4), and (ITI23), we arrive at eq. (ILI5S).

SThe ' denotes a derivative with respect to s. The boundary terms in eqs. (ILL59)(ILLG61) vanish for
q > —2l — 1, because I, scales like st for s — 0, and like e=%/2 for s — o0o.
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Using ¢ = 0 in the Kramers—Pasternack formula of eq. (ILL5S), and (R°) = (1) = 1, we
immediately find
1/R) = —— 11.1.64
am - (11.1.64)
in agreement with the n = 1 special case in eq. (II.L53). Then, using ¢ = 1, one obtains

(R) = 23n? —i(1+1)]. (11.1.65)
27
Using this as a measure of the “size” of the state |n,l,m), we note that it does not depend on

the magnetic quantum number m, and

e shrinks with larger nuclear charge 7,
e grows with larger n, for fixed [,

e shrinks with larger [, for fixed n.

The last two of these features can be compared visually to the probability density distributions
in the right column of Figure I1.1.2]

Applying eq. (ITT58)) with ¢ = 2, we get
at n?

(R?) 7 [5n* = 31(1+1) +1] . (11.1.66)

One can apply eq. (ITT58) recursively to find (RP) for any desired positive integer p. However,
for negative p, one finds an obstacle, that (1/R?) cannot be determined by the recurrence relation
alone. In section [I5.6, we will use another method to find

72

I (11.1.67)

(1/R?) =

With this as a seed, all results for (RP) with p < —3 can then be determined by the recurrence
relation. In particular, using ¢ = —1 in eq. (ILL5S) yield

Z3

1/R?) = : 11.1.68
{1/ 1) adndl(l+ 1)1 +1/2) ( )
The expectation value of P? can also be found by relating it to the Hamiltonian,
2 222 h2z2
Py = o2m.((H)+ Ze*(1/R)) = m. [ — | 22 = 2= 11.1.
P = () + 2 WR) = m () 25 = 550 v

where we have used the known energy eigenvalues and eq. (IT.I.64]). This result can also be
obtained from the Virial Theorem, eq. (3.6.5).

INote that (1/R®) diverges for I = 0. More generally, (R) = [ drr®*P|Ry, (r)|? diverges if p < —2 — 3,
because |R,,;| o< 7! for small r.
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The characteristic size of the hydrogen atom with Z = 1 is set by the Bohr radius ag =
h%/mee?. This could have been estimated by a dimensional analysis construction from the
available quantities in the problem, by requiring it to have units of length, and demanding that
it vanish in each of the following three extreme limits: (1) the classical limit & — 0, and (2)
the limit that the electron mass m, is taken very large, and (3) the limit of large €? so that the
attractive electrical force between the nucleus and the electron is large.

However, if we add the speed of light ¢ to our toolbox of quantities, then there is a dimen-
sionless quantity that we can form out of the available parameters in the problem, namely the

fine structure constant,

2
e

= — ~1/137.036. 11.1.70

“ he / ( )

So, we can construct another significant length scale, the reducedﬂl Compton wavelength of

the electron,

Xe = aay = ~ 3.862 x 107" meters. (11.1.71)

mec
Named for Arthur Compton’s studies of the scattering of electrons by high-energy photons,
this is the (very small) length scale at which virtual electron-positron pair production becomes
important for understanding the energy levels of electron bound states. To see this, note that
according to Einstein’s famous formula relating energy and mass, the amount of energy needed to
make such a pair is AE = 2m.c?. For ultra-relativistic particles, energy is related to momentum
by AE ~ ¢Ap, so e” e’ pair production becomes important for Ap > 2m.c. From the uncertainty
principle (Az)(Ap) > h/2, confinement of the electron to a size Az ~ h/dm.c ~ X./4 will
result in large enough fluctuations Ap to cause virtual e”e™ pair production to be an issue.
Furthermore, if we call v = \/(P2)/m, the order of magnitude of the “velocity” of electrons in

a hydrogen-like atom state with principal quantum number n, then
Zh

nagmMme

= Zac/n. (11.1.72)

vV ~

These considerations show that the approximation we have made in this section works only
because the fine structure constant is small. That is what ensures XA, < ag and v < ¢, so that
electron-positron pair production and other relativistic corrections to the Hamiltonian can be
neglected, to first approximation. However, for atoms with very large Z, the speeds of atomic
electrons increase, and relativistic effects become important.

A related point is that the binding energy of the hydrogen atom is very small compared to
mec? = 0.511 MeV, the rest energy of the electron. In terms of the fine structure constant,

2 e‘me 1,

1 Rydberg = 26—% = S = 30me (11.1.73)

IThe ordinary Compton wavelength of the electron is defined as A\, = h/m.c = 27 X,..
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To estimate (very roughly) the size of the relativistic corrections to the energies, we can take
the total classical relativistic energy of an electron with momentum p, and subtract off the rest
energy, then expand in small p,

4

— 24 2.2 2 P’ p
Erolativistic - mec +p CT —MeC = — + ct (11174)

2m.  8mdc?

where we have used the binomial expansion v/1 +z = 14+z/2—2%/8+- - - for small z = p?/m2c?.

The first term is just the nonrelativistic kinetic energy that we have been using in the quantum

Hamiltonian. So, we can estimate that relativistic effects should make a difference of order
(P2)? o274

AEﬁrela‘tivistic ~ _8m302 = — Ank Rydberg (11175)

However, it turns out that a correct relativistic analysis must take into account spin. We
will carry this out in section [I7.0] with a final result in eq. (IZ1.26). We will do it again in
section 270 using a manifestly relativistic approach. Our crude estimate in eq. (ILITH) is
parametrically correct in the sense that the fine structure effects indeed modify the binding
energies by amounts that are suppressed by o? and by powers of n, but we will see that the
numerical details are quite different than the naive estimate of eq. (ILITH).

When an electron transitions between states of the hydrogen atom, it releases or absorbs a
photon with energy equal to the difference in energy levels, AE = E,, — E,,. This is equal to
hw where w is the angular frequency of the photon. Therefore, taking Z = 1 for the remainder

of this section,

13.6eV [ 1 1
or equivalently in terms of wavelength,
2
-8
A = (9.11 x 10 meters)m. (11.1.77)

This formula was found empirically by Rydberg in 1888, generalizing work by Johann Balmer.
For transitions between the ground state n’ = 1 and the states with n > 2, these spectral lines

are called the Lyman series, after Theodore Lyman. They are all in the ultraviolet range,

1
Lyman series: w,; = (2.067 x 10'%s71) (1 — —) , (n=2,3,4,...,00), (11.1.78)

n2

with wavelengths from Ao; = 1.216 x 1077 meters to Ao = 9.11 x 107® meters. The latter
wavelength, corresponding to a photon emitted when a free electron is captured to the ground

state of a hydrogen atom, or absorbed in the process of ionizing a hydrogen atom that was
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initially in its ground state, is called the Lyman limit. The spectral line with n’ = 1 and n = 2
is called the Lyman-alpha line, and is important in astronomy as an absorption feature when
observing distant sources, for example as a tool to learn about intervening gas.

The Balmer series comes from transitions between n’ = 2 and all higher-energy states n > 3,

Balmer series: w, 5 = (5.168 x 10 s71) (1 — %) : (n=3,4,5,...,00), (11.1.79)
with wavelengths ranging from A\3» = 6.56 x 1077 meters to Aoz = 3.97 x 1077 meters. The
Balmer lines are particularly interesting because four of them can be seen by the human eye. For
n = 3 the Balmer line is red, which is responsible for the reddish color of supernova remnants and
star-forming regions, including the Orion nebula. The n = 4, 5, and 6 Balmer lines are greenish-
blue, blue, and violet, respectively, while n = 7,...,00 are in the ultraviolet. The remaining
named series are all entirely in the infrared, and are called Paschen (transitions between n’ = 3
and n > 4), Brackett (transitions between n’ = 4 and n > 5), Pfund (transitions between n’ =5
and n > 6), and Humphreys (transitions between n’ = 6 and n > 7), with higher n’ series not

named. There is significant overlap between the infrared series of spectral lines. Within each

series, the spectral lines are called «, 3, etc. in order of decreasing wavelength.

11.2 Unbound states of Coulomb potentials

We now consider the unbound stationary states of the Coulomb problem, with £ > 0. These
include the ionized states of the hydrogen-like atom, describing an electron that is influenced
by the nucleus but not localized near it. The electron’s wavefunction can again be split into the

product of a radial wavefunction and an angular part consisting of a spherical harmonic,
(g 1m) = Ppim(r,0,0) = Rpi(r)Y;™(0,¢) (£ >0). (11.2.1)

We write @5, and EEJ here to distinguish them from the bound-state wavefunctions v, ;
and R, ; of the preceding section. For the unbound states, each £ > 0 can have any non-negative
integer value of [, as depicted in Fig. IT.1.1

The differential equation satisfied by the radial wavefunction for unbound states is the same
as eq. (ITTLH), with the important differences that the rescaled radial coordinate s and the quan-
tity n, defined in eqs. (ILI4]) and (IT.I.6) respectively, are imaginary for £ > 0. Accordingly,

we make the replacemen

1
— 11.2.2

In this section, we set = m, and Z = 1 for simplicity, with the understanding that general Z can always
be restored by the replacement ay — a¢/Z.
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which defines a continuous real wavenumber parameter k with units of 1/[length]. Comparing
to the definition of n in eq. (ILLG) gives

2h2E
kay = 4| 22 11.2.3
Qo me€4’ ( )

1
E = i(ka0)2 Rydberg. (11.2.4)

or, equivalently,

Then, from eq. (ITT4]) the rescaled radial coordinate used in the previous section becomes
s = 2ikr. (11.2.5)

It follows that, up to normalization, we can obtain the solution in terms of the confluent hyper-
geometric function defined in eq. (ILITI0), by simply re-using eq. (ILTI3]) with the preceding
substitutions for n and s. Since s is now imaginary, there is no problem with having an asymp-
totic behavior like e*/? for large s, and therefore no restriction that the confluent hypergeometric
function must be a polynomial; that is why there is no discrete quantization of k. The result is
~ . 1
Rp(r) = Gy (2kr)le—““”F(z+1+k—, 2042, 2ikr), (11.2.6)
Qg
where C}; is a normalization constant to be determined, which we will choose to be real.
Despite the appearance of the phase factor e=*" and the complex arguments of the confluent
hypergeometric function, Rg,(r) as given in eq. (ILZ0) is real. This follows immediately from

a property of the confluent hypergeometric function,
F(a,c,z) = €F(c—a,c,—2), (11.2.7)

which can in turn be proved quickly from the integral representation of eq. (ILIII]) by using
the change of integration variable t — 1 — ¢.
Let us now consider the behavior of the radial wavefunction R g, for large r. This can be done

by using the asymptotic form for the confluent hypergeometric function for complex arguments,

F(a,c,z) =~ %(—z)_“ + %ezz“_c (large |z]), (11.2.8)

which generalizes eq. ([ILLI2) for real arguments. The I' function for complex arguments
was defined in eq. (IBE3H). Applying this to eq. (ILZG]), the two terms turn out to give
contributions that are complex conjugates of each other, as required by the previous paragraph.

After some simplification, one finds the asymptotic form

~ (20 + 1)l e7™/2ka0 1 1 s
~ — —1In(2 — = — 11.2.
Re(r) Chryi ESEEE sm<k‘r+ o n(2kr) - 5l 5) (11.2.9)
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for large kr, where
§ = Arg[D(l+1+i/kao)]. (11.2.10)

The radial probability density TEEJ(T) approaches a sinusoidal oscillation with a constant am-
plitude at large distances, but with a phase shift that depends logarithmically on kr.

In order to determine the normalization constant, we first define the orthonormality prop-
erties of the states. Since the energy £ > 0 is continuous, we will use a Dirac orthonormality
condition for unbound states |E, [, m), along with the ordinary discrete orthonormality of the

bound states |n,l,m) of the previous section. So,

<E',l',m'|E,l,m) = 5(E—E/) 511/ 5mm’a (11211)
(', U',m'|E;l,m) = 0, (11.2.12)
<n',l',m'|n,l,m) = 57m/ 5”/ 5mm/. (11.2.13)

In terms of the radial wavefunctions for each [, these become

/ drr® Ry (r)Rp (r) = 6(E—E'), (11.2.14)

0

/ drr?® Rg (r)Roy(r) = 0, (11.2.15)
0

/ drr® Ry (r)Rui(r) = Sp. (11.2.16)
0

Now, for the purposes of normalizing the radial wavefunction in eq. (I1.2.9), note that when
E = FE’, one need only consider the asymptotic form at very large r, because contributions
to [, drr? |Rp(r)]? from any finite range in 7 contribute only an infinitesimal fraction of the
total. In the very large r limit, the logarithmic variation in the phase shift can be neglected,

and the normalization problem is the same as for the simpler wavefunctions

fulr) = Asm(kzﬂ, (11.2.17)
r
for some phase shift 3, where
21 + 1)1 e~m/2kao
A = CM( e (11.2.18)

T(l+14i/kao)|

The norm of this wavefunction is infinite, but integrating over a finite range gives

[ neine — g {20 P BE L LD 110.00)

0
In the formal limit D — oo, one can interpret the first term in the braces as a delta function

distribution [see eq. (22.22)], while the remaining part remains bounded for all k£ and &', and
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vanishes for an infinite number of choices D = 2mq/(k+ k'), for arbitrarily large integers g. This

allows us to interpret, when inserted in any expression in which k or £’ is integrated over,

wh?

OOd7"7’2 (r) fu(r) = A2i5k—k/ = A?
| @t s = Aotk = 4

0B =B, (11.2.20)

Thus we can adopt the energy normalization for Dirac orthonormality, by taking A? = 4m.k/7h?,

allowing us to solve eq. (II.2.18) for Cj;. Using this in eq. (IL2.6]), the final result for the un-

bound energy eigenstate state radial wavefunction is

~ w/2ka ~

Rpy(r) = % m;k |F(l+1é;/fio)>!|e o (2kr) e= ™ F(l+1+]m0

where k is related to E by eq. (IL23)) or eq. (IT.2.4]). Although this is not the simplest result
one might have hoped for, we again remark that at least it is real, despite naive appearances.

The completeness relation corresponding to the energy eigenstates of eqs. (ILZII])-(IL.2.13)

contains both a sum over bound states and an integral over unbound states:

]

, 20+ 2, 2ikr), (11.2.21)

oo n—1 1 0o 00 l
SN Intmy(n,lm| +/ dE Y > B L m)E,lm| = 1. (11.2.22)
n=1 1=0 m=—1 0 1=0 m=—1

This combination of ordinary and Dirac orthonormality and completeness will be crucial in the
evaluation of the ground state energy of the hydrogen atom in an electric field (the quadratic
Stark effect), in section 5.7

For a general potential V(r) = —Ze?/r, the results above can be obtained by making the
replacement ay — ag/Z everywhere in the preceding discussion. This includes the case of a
repulsive potential with Z < 0, but with one qualitative difference: the bound states |n,l,m) do
not exist, and the orthonormality and completeness relations therefore include only the unbound

states with continuous positive F.

11.3 Exercises

Exercise 11.1. In this problem, we will reconstruct the Coulomb potential from the functional
form of its ground-state wavefunction. Suppose that a particle in a spherical potential V'(r) has
a stationary state wavefunction g (r, 0, ¢) = Ne™"/*, where N and b are constants.

(a) Assume that V (r) vanishes as r — oo. Use this to find the energy eigenvalue F, by matching
leading terms in Schrodinger’s equation as r — co.

(b) Now that you have found F, consider finite r and find the potential V().

Exercise 11.2. For the ground state of the hydrogen atom, what would be the maximum
allowed classical distance of the electron from the proton, if the energy is 1 Rydberg? Compute

the probability for the electron to be found farther away from the proton than this distance.
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Exercise 11.3. For the ground state of the hydrogen atom, find the uncertainties of the rect-
angular coordinate Z and its momentum component P,. Check that the uncertainty principle

is satisfied by your answers.

Exercise 11.4. For the ground state and the first excited states of the hydrogen atom, find
all of the matrix elements of the rectangular coordinate operators for every pair of such states,
(n'JU',m/|X|n,l,m)y and (n', ', m'|Y|n,l,m) and (n',l', m'|Z|n,l,m), withn =1,2and n’ = 1,2.

(Hint: many of them are zero.)

Exercise 11.5. Use the Kramers—Pasternack formula (ITIT58]) to derive the expectation values
(n,l,m|RP|n,l,m) for all integers —3 < p < 3. As seeds, you may use the obvious fact (1) =1,
and also (1/R?) = 2/(aZn3(20 + 1)), which will be found in section using another trick.

Exercise 11.6. (a) For the ground state of the hydrogen atom, by taking the Fourier transform
as in eq. (Z8.64), show that the momentum wavefunction is
~ C

FTRT (11.3.1)

where N is an integer and C'is a normalization factor, both of which you will discover. [Hint:
since the ground state is spherically symmetric, the momentum wavefunction cannot depend on
the direction of p. So, for the purposes of computing the integral, you can take p = pZ.]

(b) Use your result from the previous part to compute (P?) and ((P?)?). The first of these
should agree with the n =1, Z =1 special case of eq. (ITI.G9).

(c) Taking the result of part (a) at face value (ignoring the reality of relativity), compute
numerically the probability for the magnitude of the electron’s momentum to exceed m.c =

h/aag, where m, is the electron’s mass.

Exercise 11.7. A particle of mass y moves in the potential V(R) = —a/R + h*b/2uR?, where
a and b are positive constants. Consider stationary-state wavefunctions of the form ¢ (7) =
R(r)Y™(0,¢). Find the bound-state wavefunctions and energy eigenvalues for orbital angular
momentum /. (Hint: note that the radial effective potential has the same form as for the

hydrogen atom, but with a modification of the angular momentum contribution.)
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12 Addition of angular momenta

12.1 Statement of the problem

In quantum mechanical problems, we often deal with two or more distinct angular momenta.

The sum of two independent angular momentum operators,

— —

J =i+ Jo, (12.1.1)

is also an angular momentum operator. This expresses the fact that if all components of Jy com-
mute with all components of 72, and if the components of Jy and J, each satisfy the commutator
algebra (5:3:33), then so will the components of J.

Since J?, J2, Ji., and Jo, are compatible operators, we can find an orthobasis of common

eigenkets for them, labeled

[Jidemame) = [jimu) ® [jama), (12.1.2)

with eigenvalues h?j1(j;+1), h%ja(jo+1), Amy, and hms, respectively. We call this the product
orthobasis for two angular momenta, because its elements consist of the tensor products of
elements of the orthobases for the individual angular momenta. Here we have suppressed any
degeneracy labels, which might correspond to different radial wavefunctions, for example. For

fixed j; and j5, there are 2j; + 1 allowed values of mq, and 27, 4+ 1 allowed values of ms,
my = jJi, h—L1,..., —ja+1, =, (12.1.3)
me = J2, Jo—1,..., =ja+1, —Ja. (12.1.4)

So, there are (2j; + 1)(272 + 1) orthobasis kets of the form eq. (IZIL2) for fixed j; and j,.
Another set of compatible operators is JZ, J2, J?, and J,. They also have a set of common

eigenkets that form a different orthobasis, whose kets we can write as
J1j2m). (12.1.5)

This is called the total angular momentum orthobasis. As we will see in the following
sections, for fixed j; and js, the possible values of j range from a maximum of j; +js to a

minimum of [j; — jo|, with integer increments,
Jo= qitie, aitde—1, oo =gl 1 [l (12.1.6)

Intuitively, the extremes for j correspond to the two angular momenta aligned in the same and

in opposite directions, respectively. Then, for each j, there are 25+1 allowed values
m = j, j—=1 ...,=j+1 = (12.1.7)
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As a check, the number of total angular momentum basis states for fixed j; and js is
Ji+j2
> @i+l = i+ DR+, (12.1.8)
J=lj1—sel
matching the result for the number of product basis kets.

There is a potentially annoying problem of notation to be addressed here, because both
orthobases are labeled by four numbers. In many cases, this will not cause confusion, but what
if it does? Our solution to this problem will be to use a colon to separate the last two (magnetic
quantum number) labels for the product angular momentum orthobasis whenever there is a
chance of confusion. All other labels in both the product and total angular momentum bases
are separated by no punctuation, or by a comma when it is typographically convenient (or
just suits our mood). Also, there will be many occasions in which the labels j; and j that
are common to both orthobases are fixed, and understood from context. In that case, we can
suppress those labels and call the total angular momentum orthobasis kets |jm) or |j, m), and
the product orthobasis kets |mims) or |mq, my), but use the notation |m;:msy) if there is a
significant chance of confusion with the total angular momentum orthobasis.

A frequently encountered situation is that we might have to evaluate matrix elements in-
volving the dot product of two angular momentum operators. If we are working in the product
basis, the most straightforward way to do this is to write the dot product in terms of raising

and lowering operators,
1
Jy-Jy = 3 (Jixdoo + J1_Joy) + Jio o, (12.1.9)

which follows from eq. (8&LI0). Then each of J;,, J;_, and J;, can be evaluated by their actions

on the |73my) component using the rules of eqs. (811), B122), (BT 24), and similarly for the
actions of Joi, Jo_, and Jo, on the |jymso) part. However, it is often more convenient to use

instead the total angular momentum basis. This is because one can use J? = (71 + 72)2 =
J2 4 J2+ 2], - Js to write

(2= T = J3). (12.1.10)

Now, when acting on the total angular momentum basis kets |j; jo jm), this operator just

evaluates to a number,

~ -~ h
Ty Jy =

PG+ 1) = 3G+ 1) = daia + ). (12.1.11)

independent of m. Solving problems in quantum mechanics is often the art of turning operators

into numbers, and using the correct choice of basis can make things easier. The specific lesson
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here is that the appearance of a dot product of angular momenta should immediately suggest
using the total angular momentum basis.

Because they are both bases, each element of the total angular momentum orthobasis must
be a linear combination of the product orthobasis kets, and vice versa. In general, the problem
of addition of angular momenta is to evaluate the coefficients appearing in these linear
combinations.

We will start with two useful and common special cases before taking on the most general
case. First, in section [[2.2] we consider the case of two spins s; = sy = 1/2, for two particles
with orbital angular momenta absent or disregarded. Next, in section [2.3], we will take up the
example of a single particle with arbitrary orbital angular momentum [ and spin s = 1/2, which
can be combined to form the total angular momentum of the particle. In section [2.4] we will
discuss the general case of addition of two arbitrary angular momenta. These results can be

applied recursively to combine any number of angular momenta.

12.2 Addition of two spins

Consider two spins with s; = s5 = 1/2. Spin magnitudes are always fixed, so we suppress those

labels, and write the four product orthobasis kets as

NP ORI A4 D I IAWR (12.2.1)

Here the first 1 or | label on each ket stands for the eigenvalue h/2 or —h/2 of Si,, and the
second label similarly stands for the eigenvalue of S;5,. We say that the individual spins in this
basis are either “up” or “down” relative to our choice of the Z direction. Now, define the total

spin operator by
S =25 +85.. (12.2.2)
The product orthobasis kets are also eigenkets of .S, since
S, lmims) = Sy, |mimsg) + Sa. [mimso) = h(my + mg) |mims) , (12.2.3)

so that S, [T1) = A[1T1), and S, [1)) = S, [{1) =0, and S, [{{) = =R |{]). Choosing a represen-

tation in which

1) e | . e |l Whe | | 224

OO“OH
o O = O
O = OO
_ o O O

268



we have the matrix representation

o O O

S. < h (12.2.5)

o O O
o O OO
o O OO

However, the product orthobasis kets are not all eigenstates of S2. The operation of S? on

them can be obtained from

S = (S48 (S48, = 52+ 52425 -5,
3

= 5712 + 51480 + 5185y +251.5s., (12.2.6)

where in the last equality we have taken advantage of the fact that all of the kets in the state
space under consideration are eigenkets of both S? and S3 with eigenvalues 3h?/4, and then
applied eq. (BI.I0) to write the result in terms of the angular momentum raising and lowering
operators. Now, recall from eqgs. (81.22) and (RI.24]) that, for any 7 = 1/2 system,

T =0, T =R, (12.2.7)
LW =0, LI =hl. (12.2.8)

Applying these for each of J = S; and Ss, we obtain from eq. (I2.2.0)),

S2IM) = 2R, (12.2.9)
S2IM) = B+ R )., (12.2.10)
S = B+ R, (12.2.11)
S = 2r* ). (12.2.12)
In matrix representation form, this reads
2000
0110
S & R 0110 (12.2.13)
000 2

This matrix has eigenvalues 2h%, 2h?, 2h?, and 0, which correspond to S? = h?s(s + 1) with
s = 1 and s = 0. The addition of two spins with s; = s, = 1/2 thus gives a triplet of states
|1, m) with total spin s = 1 and m = —1,0, 1, plus a singlet state with total spin s = 0, denoted

|0,0). By finding the eigenkets corresponding to the eigenvalue pairs (s,m), we can summarize
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the information about the addition of two spin-1/2 systems as

total spin basis |s,m) product basis |mims)
1,1 = [t), (12.2.14)
1
1,0) 7 () + 1), (12.2.15)
L-1) = ), (12.2.16)
0,00 = —= (= 1) (12.2.17)

V2
Both orthobases have 4 members, and we can of course invert the relationship for the m = 0
states, to find

1
= 25 L0+ 0.0). (12.218)
1) = —= (1,00 = |0,0)). (12:2.19)

V2
As a way of expressing the fact that the tensor product of two spin-1/2 systems gives a sum

of angular momenta 0 and 1, we write
1 1
§®§ =046 1g, (12.2.20)

Here, the ® represents the addition of angular momenta, while the & indicates the combinations
of total angular momenta. The subscripts A and S in this notation are a reminder that the
s = 0 singlet state is antisymmetric under exchange of the two spins, while each of the s = 1,
m = 1,0, —1 triplet states is symmetric, as can be seen in eqs. (I2Z.2.14))-(I2.2.17).

An important practical question is: which orthobasis should we use? The answer depends on
the problem under consideration. As a general rule, it is convenient to use a basis in which the
operators most important to us are diagonal. For example, suppose that we have a Hamiltonian

of the form
H = .Sy, + bsSo., (12.2.21)

which could occur if both spins are interacting with a magnetic field, but not with each other.
This Hamiltonian is diagonal in the product basis, where the kets are already eigenvalues of S,
and S,., but it is diagonal in the total angular momentum basis only if b; = by. On the other

hand, suppose that our Hamiltonian is of the form
H = aS, - S, (12.2.22)

which comes from the magnetic moments of the particles interacting with each other. In that

case, we can use the standard trick of writing

S-S = %(52 — S% - 53). (12.2.23)
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The right side shows that this operator is diagonal in the total spin basis, where it evaluates to
2

Sy-8, = % [s(s+1) —3/2], (12.2.24)

with s = 1 when acting on the triplet states and s = 0 for the singlet state. In other cases, a
judgment can be made about which is the most convenient basis, often based on which part of
the Hamiltonian, or some other observable of interest, is the most important.

As a classic example, the hyperfine splitting of the hydrogen atom ground state arises from
the interaction of the electron’s spin with the spin of the proton. The hyperfine Hamiltonian Hy
has exactly the form of eq. (I2Z2.22), with a constant a that is positive, and very small compared
to the Rydberg energy scale divided by h%. Before taking into account fine or hyperfine effects,

the hydrogen atom energy eigenstates can be given in the product spin basis labeled as

electron spin

—
|n, 1y, Se, M, Sp,M,) = |, Lmy,mg,,myg,) (12.2.25)
— S——
orbital proton spin

or we can use the total spin basis,
I, L, my, Se, Spy S,ms) = |nyl,my, s, my) . (12.2.26)

In both cases, the individual spin labels s., s, = 1/2 are completely fixed and therefore can be
suppressed, as indicated. Our present interest is the effect on the ground state with n = 1 and

[ = 0. Since Hympital = P?/2m, — €?/R trivially commutes with
Hye = aS. - S, (12.2.27)

they have an orthobasis of common eigenstates. The eigenvalues of Hyy are found immediately
in the total spin basis, using eq. (IZ.2.24), as

[ ah?/4 (s =1),
By = { _sah?/4 (s =0), (12.2.28)

for the triplet and singlet total spin states, respectively. The energy splitting between these

states is therefore ah?, which for the ground state of the hydrogen atom is, numerically,
AEBy = ah? = 587 x 107%eV, (12.2.29)

corresponding to a wavelength A = 2wc/ah = 0.211 meters. This is the famous 21 centimeter
line of radio astronomy. The rate for transitions between the s = 1 and s = 0 states turns out
to be highly suppressed (for reasons to be discussed in section 22.0), but space is big and mostly

cold, so it is a very useful observational tool in astrophysics and experimental cosmology.
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There is a special consideration when the two spin-1/2 particles are identical. The Pauli
exclusion principle says that two identical particles with half-integer spin cannot be in the
same quantum state, and more generally that the quantum state describing two identical par-
ticles must be antisymmetric under their exchange. Such particles are called fermions, after
Enrico Fermi, while particle with integer spin are called bosons after Satyendra Nath Bose. For
example, suppose that the orbital wavefunctions of two spin-1/2 fermions are 1, (7) and (%),
corresponding to single-particle kets (neglecting spins for the moment) [¢,) and [¢3). From

these, one can form symmetric and antisymmetric combinations

1

|waa¢b>5 = ﬁ<|¢a>wb>+|wba¢a>>a (12230)
1

Vortna = (19w tn) = 1)) (12:231)

where, on the right-hand sides, the first and second entries in each ket correspond to particle
labels 1 and 2, respectively. Then the allowed states constructed from the tensor product of the
orbital and total spin states must be either symmetric in orbital kets and antisymmetric in spin

kets, or vice versa,

1
Ya Pb)s @ %(m) - |¢T)) (s =0), (12.2.32)
[, Vo)a @ |11) (s=1,m,=1), (12.2.33)
|Va, Yp)a ® %(IN) + |¢T>> (s =1, my=0), (12.2.34)
e, bs)a @ 1) (s = = —1). (12.2.35)

Other kets, such as [1,,¥p)s ® [11), do not exist as physical states. For example, the ground
state of helium, with two electrons, has an orbital part that is symmetric under interchange of
the positions of the two electrons. The spin state is therefore the antisymmetric total spin s = 0

combination.

12.3 Addition of orbital angular momentum and spin

In this section, we consider the combination of two angular momenta j; and j5, with j; arbitrary
and jo = 1/2. This applies, for example, to the case where we are combining the orbital L and
intrinsic S angular momenta for a single spin-1 /2 particle such as the electron. We will frame
our discussion in that context.

As we saw in section B2 the spin states of an electron can be associated with a two-
component spinor, with the spin operator S represented by 2 x 2 matrices gﬁ. In the position

wavefunction spinor representation corresponding to the CSCO (ﬁ, S2.S.), the orbital angular
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momentum operators L and L? are represented by differential operators proportional to the unit

matrix in the spin sector, for example [compare eqgs. (86.7) and (B6.8)]

. (1 0\ 0O i (10 d  cosf 0
LZ < —ih (0 1) a—¢, L+ < he <0 1) (%"‘Zsinea—gb), (1231)

etc. However, it is often more useful in problems with spherical symmetry to replace R in the
CSCO with the radial coordinate operator R and the operators L? and L., so that all of the

angular momentum operators are represented by matrices rather than differential operators on
wavefunctions.

The angular momentum product orthobasis consists of common eigenkets of the compatible
operators (L?, S? L., S.). The corresponding basis kets can be labeled |l s m; m,), where we have
suppressed one or more degeneracy labels (which might correspond to the radial wavefunction).

Then, also suppressing the labels [, s, the product basis states are
|y, 1) and I, 1), (12.3.2)

where mg = 1/2 and —1/2 are represented by 1 and |, respectively. Using J =L+8, we
have another choice of compatible operators, (L?,S?, J?, J.), associated to the total angular

momentum orthobasis eigenkets
lsjm) = |j, m). (12.3.3)

Our goal is to express the kets of eq. (I23.3)) as linear combinations of the product basis kets
([232), for each I.

If I = 0, then things are very easy; the product basis kets |0, 1) and |0, |) are already
eigenstates of J? with eigenvalue 37%/4, and of .J, with eigenvalues 45/2, respectively. Therefore,
the total angular momentum basis kets have j = 1/2 and m = +1/2, and are |3, 1) = |0, 1) and
3, —3) =10, 4).

For [ # 0, we begin with some preliminary counting, in order to know what to expect. There
are (2] + 1)2 product basis kets |my, 1) and |my, |). They are all eigenkets of J, = L, + S, and
the largest eigenvalue of J, is him = A(l + 1/2). This implies that there must be, in the total
angular momentum basis, a multiplet with j =14 1/2, which will have 2(l +1/2) +1 = 2] + 2
basis elements. Exactly one of those will have m = [ — 1/2, but we also know that there
are two linearly independent states with that eigenvalue in the product basis, namely |/, |) and
|l—1, 1). Therefore, there must also be a multiplet with j = [—1/2, which has 2(I—1/2)+1 = 2I
orthobasis members. Since we have accounted for all 41 + 2 linearly independent kets, we have

established that the tensor product of angular momentum [ with angular momentum 1/2 must
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consist of states with total angular momenta j = [+1/2 and [ —1/2, and no others. In notation
similar to eq. (I2ZZ2Z20), this is expressed as

1o 5 = (-3) @ (+y). (12.3.4)

Unlike eq. (IZ.2.20), there are no A or S subscripts here, because one cannot define antisym-
metrization or symmetrization with respect to angular momenta that are are not the same.
To construct a complete map between the total and product orthobases, let us start with

the state |m;, mg) = |I,1). Acting on this with J, gives
JALY) = (Lo +S2) |L1) = R(I+1/2)[1,1). (12.3.5)

This is the unique eigenstate of J? and J, with quantum numbers j = [+ 1/2 and m = [ + 1/2.

So, up to a phase that we can set arbitrarily,
[{[+1/2,1+1/2) = |I,7). (12.3.6)

Now we can use this to construct all of the other states with j = [ + 1/2, by acting repeatedly
with the lowering operator J_ = L_ + S_. From eq. (81.24),

J_|l+1/2,14+1/2) = AV204+1|1+1/2,1—1/2), (12.3.7)
so we get
1

1+1/2,1-1/2) = ———(S_+ L)1), 12.3.8
LHY2,1-1/2) = (S L) 1) (1238)

or, using eq. ([8I.24) again to evaluate the action of each of S_ and L_,

1
[4+1/2,1—-1/2) = ——— (|1, 1) +V20[1—1,1)). 12.3.9
11/2,1-1/2) = (I 4) + VR 1,1)) (12.3.9)
This is our second total angular momentum orthobasis eigenket. Acting with J_ on it in a gives
1

14+1/2,1-3/2) = V2011, 1) +V20—11]1—2,1)). 12.3.10
172, 1-3/2) = = (V2l-1, 1) =2,1).  (123.10)

Using the same strategy of applying J_, by induction we obtain all of the j = [+1/2 kets,

1
14+1/2, m) = m<\/l—m+1/2|m+l/2, D+ Itm+1/2|m—1/2, T>) (12.3.11)
forall m = —1—1/2,...,1+1/2.

Having found all the states with total angular momentum j = [+1/2, now we find the states

with j = [—1/2. Each state with j = [—1/2 must be a linear combination of the form
1—1/2, m) = a|lm+1/2,])+blm—1/2,1). (12.3.12)
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We know this because the product orthobasis kets on the right side are the only two that have
the correct eigenvalue m of J,/h. Now, we can appeal to Theorem [ZG.5 which assures us
that, since J? is Hermitian, the state |[—1/2, m) must be orthogonal to the state [[+1/2, m).
Carrying out the inner product of eq. (IZ311]) with eq. (I2Z3.12), we learn that

a\/l—m+1/2 = —b\/I+m+1/2. (12.3.13)

As an arbitrary phase convention, we choose a real and positive. Requiring unit normalization

of the ket then uniquely determines that for j =1—1/2,
1
1—1/2, m) = (s/l%—n14—1/2|n14—1/2,i}-— \/L—7n—kl/2|n1—-1/2,1)), (12.3.14)
V2l+1
form=—1+1/2,...,1—1/2.
That concludes our task. To recap, in eqs. (IZ3.11)) and (I2.3.14]), we have obtained the

J?, J, orthobasis kets as linear combinations of the product orthobasis kets.

As the simplest non-trivial concrete example, which we will have occasion to use later (at

the end of section [7.3)), consider the addition of an angular momentum [ = 1 to a spin-1/2:

1®%==g®%- (12.3.15)
Applying eq. (I2Z311]), we have the j = 3/2 total angular momentum basis states
5.3) = 1L, (12.3.16)
12,50 = V5 ILD+y/5101), (12.3.17)
2-hy = 2o+ i L, (12.3.18)
5.-3) = =L, (12.3.19)

and applying eq. (I23.14) we get the j = 1/2 total angular momentum basis states

54 = V2ru— L, (12.3.20)
L-by = Lo -2 L. (12.3.21)

12.4 The general case and Clebsch—Gordan coefficients

Y

DO
= N

Now consider the general case of addition of angular momenta .J; and J,. Let us apply reasoning
similar to the counting that led to eq. (I23.4). The largest eigenvalue of J, = Ji, + Jo, is
h(j1 + j2), and there is only one such state, |j; : ja), so there must be exactly one total angular

momentum multiplet with j = j; 4+ jo. (In this section, product angular momentum basis kets
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will always be distinguished by use of a colon.) The subspace with J, eigenvalue fi(j; + jo — 1)
has dimension 2, spanned by the two states in the product basis |j; — 1: jo) and [j; : jo — 1).
One linear combination of these is found in the j = j; 4+ j» multiplet, so to contain the other
there must also be exactly one total angular momentum multiplet with j = j; +jo — 1. Similarly,
the subspace with J, eigenvalue Ai(j; + j2 — 2) has dimension 3, spanned by the product basis
kets |j1 —2:72) and |j; —1:j2 — 1) and [j; : jo — 2). Two linear combinations of these will
occur in the j = j; + jo» and j = j; + jo — 1 multiplets that we already know about, so there
must also be exactly one total angular momentum multiplet with 7 = j; + 7o — 2.

Continuing in this way, one finds that the tensor product of a multiplet with J eigenvalue
h%j1(j1 + 1) and a multiplet with J3 eigenvalue A%j;(j2 + 1) must consist of a sum of multiplets

with J2 = h?j(j+1), with j taking on the values from [j; — j2| to j; + j2, with integer increments,
J1®J2 = [j1—Jo| & & (J1 + J2). (12.4.1)

Each of the total angular momentum basis kets |j; j2 7, m) is a linear combination of the product

basis kets [j; jo m1:mg). By the completeness of the latter, we can write

J1 J2

Grgzdim) = Y > ljijemaima) (jijamamalji jaj,m) (12.4.2)
mi=—j1 ma=—j2
J1 J2
= 3N i) CR2 (12.4.3)

mi=—j1 ma=—Jj2

where the inner products

Clzl = (jijamyma|jij2 j,m) (12.4.4)

mimam

are known as Clebsch—Gordan coefficients, after mathematicians Alfred Clebsch and Paul
Gordan. Various different notations and conventions for them appear in the literature. We will
usually use the C notation for these inner products, as a way of saving space, with commas
inserted between the superscripts or subscripts when it helps to make the meaning clear.

The Clebsch—Gordan coefficients obey selection rules; they can be non-zero only if

lj1 — jo| < j < j1+j2, (triangle condition), (12.4.5)
J1+J2 — j is an integer, (12.4.6)
m = my + Ma. (12.4.7)

The first two of these simply restate eq. (IZ4.1]), and the last follows immediately from evaluating

the matrix element of J, = Jy, + Jo, between (j; jomy:ms| and |71 j2 7, m).
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In general, the Clebsch—Gordan coefficients are subject to ambiguities, because the normal-
ized states |j; jo j,m) are determined only up to a phase. These phase ambiguities are resolved
here by adopting a convention that CJ:/27 " is real and positive when m; = j; and m = j. (Note

that this convention gives a special role to the first of the angular momenta being combined.)

The coefficient vanishes unless my = j — j1, so we can specify the convention as

phase convention: CJJ;;Z’JU is real and positive. (12.4.8)

Then, because the actions of J_ and J;_ and Jo_ each only involve real coefficients, as given
by eq. (BI1.24), we find, by acting on eq. (I2Z4.3) repeatedly with J_ on the left side and its
equivalent J;_ + Jo_ on the right side, the convenient and useful result that all of the Clebsch—
Gordan coefficients will be real.

Omne can also use completeness with respect to the orthobasis elements |j; jo j, m), to ob-
tain the inverse relation to eq. (IZ.4.3]), which gives each product orthobasis ket as a linear
combination of the total angular momentum orthobasis kets,

Jit+j2 J
Grjemiima) = > > |jijag,m) (i gadimljy j2ma ims) (12.4.9)
J=lj1—j2| m=—j
Ji+j2 J
= Z Z |J1 g2 4, m) Cfﬁffrfgm (12.4.10)
J=lj—jal m==j
The matrix elements on the right are actually the complex conjugates of the Clebsch—Gordan
coefficients, but in our phase convention, all of them are real anyway.

As eqs. (IZ43) and (IZZ.10) demonstrate, results for total angular momentum orthobasis
states in terms of product states, or vice versa, can always be expressed in terms of Clebsch—
Gordan coefficients. For example, the content of the results for [ ® & = (I—3) & (I+3) that we
found in eqs. (I23.11]) and (I2.3.14]) can be expressed, writing m = m; + 1/2 as appropriate, as

17%,“_% l—i—l—ml l,%,l+% l+1+ml
1 1= PR = — 12.4.11
Cmu—i,ml—i V 20+1 le’%vmﬁ% V 20+1 ( )
1, 3,1-1 [ +my Ly l=3 [l—my
1 1 == 5 1 1T = — 5 12412
lev_val_Q 20+ 1 lev§vml+§ 20+ 1 ( )

from which the results in eqs. (I2.3.16)-([I2.3.21)) follow as the special case with [ = 1. Although

we claimed to be interested in the case that [ was an orbital angular quantum number, there is

no difference in the arithmetic for any angular momentum, and [ can even be taken to be a half
integer in these formulas.
As another useful example, consider the angular momentum addition problem j ® 1 =

(jJ—1)@®j®(j+1). By a similar strategy, to be formalized below in the general case, the
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relevant non-zero Clebsch—Gordan coefficients are found to be

oLl (+1Em)(j+2+m) O L+l _ (J+1=m)(j+14+m) (12.4.13)
m, £1, m=+1 2(]+1)(2j+1) ’ m, 0, m (]+1)(2j+1) '
1] +1£m)(jF m) 1, m
CZ;LLJ = F (U - ’ CHl =, 12.4.14
, +1, mek] \/ 2j(j+1) o 3(j+1) | )
. —LEm)Em) o [GEmG—m)
Cilgl U—LFm , coti-t_ _ (Ut . 12.4.15
, 1, ml \/ 2j(2j+1) 0, J(27+1) ( )

One can easily find published or online tables of Clebsch—Gordan coefficients, and software
implementations of them, but it is a good idea to read the fine print to make sure of the phase
convention being used.

We now point out some important identities satisfied by Clebsch—Gordan coefficients in
general. First, by using eqs. (8L.22) and (81.29) to evaluatEH,

(myimalJ_|j,m) = (myima| (Jio + Joo) |jom) = ((,m|(Jis + Jog)|maimo))”, (12.4.16)

one finds

ViG+1) —mm—1)C272 = VG D) —mi(mg + 1) CR2
/5202 + 1) — ma(mg + 1) CI20 L (12.4.17)

Similarly, from evaluating matrix elements of J,

ViG+1) —mm+1)Cn2 = VG + 1) —ma(mg — D) O
+\/ja(ja + 1) — ma(mg — 1) 31727 (12.4.18)

mi,mag—1,m"

From the total angular momentum orthonormality relations, using completeness of the product

basis and the reality of the Clebsch—Gordan coefficients in our chosen convention, we also obtain
J1 J2 o o

S R ORI = b G (12.4.19)

mi1=—ji ma=—j2

Similarly, from the product basis orthonormality relations,

Ji+j2 J
J1J2] Jj1J2J _

J=lj1—j2| m=—J

which follows from completeness of the total angular momentum orthobasis.

In the rest of this section, the labels j;, j2 on bras and kets are always the same, and so are omitted.

278



Consider eq. (IZZT8)) in the special case m = j, so that the left side vanishes. This gives

szllji]i,mz,j = — (\/jg(jg + 1) — m2(m2 — 1)/\/]1(]1 + 1) — ml(ml — 1)) Cﬁfﬁn{g—l,j‘ This rela-
tion can be used to lower m; and raise ms in unit steps, starting from m; = j;, giving a sign

flip each time. Therefore, in our convention

sign (C227 ) = (=1)7 7, (12.4.21)

mi,)—mi,]

In particular, taking m; = 7 — j, we must have

sign (C71727. ) = (=1)7v+>, (12.4.22)

J—J2,J2:7
Meanwhile, directly from our convention in eq. (I2Z4I8), we also have

sign (22717, ) = 1. (12.4.23)

J2:J—Jj2,7

Now, the states |1 j2 j,5) and |jo 71 4, 7) obtained by interchanging the roles of J; and J, are
really the same state physically, so they can only differ by a phase, which in our convention
must be simply a signfi Comparing the previous two equations, we see that this sign must be
|71427,7) = (=1)7177273 |4, 4, 4, 7). Now we can act on this equation repeatedly with J_ to get
the relation between the more general states |j; jo j, m) and |ja j1 j,m). Doing so cannot change
the relative sign, because the operator J_ = J;_ + Jo_ does not know or care which of the two

angular momenta we chose to be the first one, so
J1g2gym) = (=1)77F277 |4y 4y j,m) . (12.4.24)

We therefore arrive at the rule for Clebsch—Gordan coefficients when we interchange the two
angular momenta being added,

Ciii = (_1)itiei i (12.4.25)

mimom momim-*

Although we used a convention choice in the intermediate steps of deriving it, eq. (2425 is
actually independent of the convention choice. A similar sort of strategy (with details omitted
here) can be used to show that if one simultaneously flips the signs of my, my, and m, then the
Clebsch-Gordan coefficients must also satisfy

Crizj _ (_1)j1+j2—j 9123 (12.4.26)

mimam —mi,—m2,—m

in our phase convention.

iNote that we are implicitly defining the product orthobasis kets to be invariant under interchange of the roles
of the two angular momenta, |71 jo mi:ma) = |j2 j1 ma:my) = |j1, m1)  |j2, ma).
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The following recipe can be used to construct the total angular momentum orthobasis states,
and thus the Clebsch—Gordan coefficients, in a general case. Assume that j; > jo. (Otherwise,
one can simply reverse the roles of j; and js.) Start with the state with the highest possible
m, which is m = j; + jo» = j. Since there is only one product orthobasis state with Jy, + J.

eigenvalue equal to hi(j; + ja), we have, using our phase convention choice,
J1+Jde, Jitg2) = |jiide) (12.4.27)

Now we follow the strategy of repeatedly acting with the lowering operator J_ = J;_ 4+ Jo_ to
find new states |j; + j2, m). Using eq. (BI.24)) gives

J_|j1+Jj2, j1tde) = h2(51 + Jo)|ji+ 2. 1t+j2—1), (12.4.28)

which also can be evaluated as

J1_|j1 Zj2> —|— J2_|j1 Zj2> = h\/ 2]1|]1—1 Ij2> —|— h\/ 2]2|j1 ]2—]_> (12429)

Therefore,
|j1+j27 .jl +.j2_1> = m(f|jl j2_ _'_ \/E‘jl_l j2>) (12430>

[The special cases j; = jo = 1/2 and j; = [, jo = 1/2 were previously found in eqs. (I2.2.10) and
([I2.3.9)), respectively.] Continuing to act with J_, we similarly find all of the orthobasis kets
|71+ j2, m). Eventually we will obtain m = —j; — js, which is then annihilated by J_.

Next, we proceed to obtain the states that have total j = j; + jo — 1. We start by writing

the most general possible expression for the state with the largest possible m,
Ji+d2—1 jitje—1) = alji:ja—1) + blj1—1:j2). (12.4.31)

The coefficients a and b can be uniquely identified by requiring that this ket is orthogonal to
|71+ j2, j1+J2—1), that the ket is normalized so that |a|* + |b|*> = 1, and that a is real and

positive according to our phase convention. This gives
ntp—1 nt+p—-1) = ( Jr1:da—1) — \/Jalj1 —1: o ) 12.4.32
| ) T — (V/jls Vi ) (124.32)

[Again, we had previously derived this in the special cases j; = jo = 1/2 and j; = 1, jo = 1/2,
in eqs. (I2Z217) and ([I23:14)), respectively.] Now, we again apply the operator J_ repeatedly,
to obtain all of the other states |ji1+jo—1, m).

Continuing on our vaunted quest, we proceed to the states with 7 = j; + j» — 2, starting
again with the maximum value of m. This must be some linear combination of the three product

orthobasis kets with m = m; + mg = j; + jo — 2, which we can write as
J1+J2—2, j1i+j2—2) = alji:ja—2) +blji—1:j2—1) +c[j1—2:j2). (12.4.33)
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The three unknown coefficients a, b, ¢ can be obtained by demanding that this be orthogonal
to both of the kets |j1+jo, j1+j2—2) and |j1+jo—1, j1+j2—2), as required by Theorem
(since all three are eigenvectors of J? with different eigenvalues), and that the ket is normalized,
so |al? + [b]? + |¢|* = 1, and that a is real and positive according to our phase convention. The
remaining states |j;+jo—2, m) are then obtained by acting repeatedly with J_.

The preceding illustrates the general procedure, which is shown schematically in Figure
[[2.4.11 Each column represents the repeated action of J_ on the state with the highest m for a
given j. After completing each column, we move to the next column by first writing a candidate
ket |7,7) as a linear combination of the product orthobasis kets that have m; + my = m = j.
The coefficients are determined by requiring orthogonality to all of the previously obtained total
angular momentum orthobasis kets with that value of m and total angular momentum j + 1 or
larger. Demanding that the ket be normalized and obey our phase convention, the state is then

uniquely determined, and the rest of the states |j, m) follow by applying J_ repeatedly. The

Start— |71+ 72, 71+ 72)

- orthog.
J1t+J2, jitie—1) — |fitje—1,j1+j2—1)
v 1
orthog.
1+ 72, 1+ J2—2) J1tde—L1+j2—=2) — [hi+i—2,51+j2—2)
A 1] 1
1 1] 1
|j1+ 72, —j1—J2+2) j1+je—1, —j1—Jja+2) lj1+J2—2, —j1—J2+2)
v 1
|j1+J2, —j1—Ja+1) J1+j2—1,—j1—Jja+1)
wa

|j1+J2, —J1—J2)

Figure 12.4.1: A plan to compute the total angular momentum orthobasis kets |j; j2 7, m),
abbreviated here as |j, m), in terms of product orthobasis kets, when two angular momenta
71 and jo are combined. The process starts at the upper left with j = m = j; + j». Each
column has fixed 7, and is constructed from top to bottom using J_. Then the next column
is started by constructing the state with maximum m, by requiring it to be orthogonal to all
of the previously found kets with that same m. The process ends after the rightmost column
with j = [j1 — J2] is finished, with m = —|j; — jo|. This process provides the Clebsch—Gordan

coefficients (m; :ma|j, m) = (j1 jo m1:malj1 jo j,m) = CJL27 .
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process iterates by moving to the next column with j lower by 1. Eventually, we will finish the
last column of orthobasis kets, which will have j = |j; — j2|, and there will be none more.

Consider the special case of adding two angular momenta j; = 1 and j, = 1. The resulting
allowed values of j are 0, 1, and 2. By following the procedure summarized in Figure [12.4.1]
one finds the j = 2 states

= ‘11>7
= (|1:0)+10:1))/V2,

) 12.4.34
)
2,00 = (J1:=1)+2[0:0) + |[-1:1))/V6,
)
)

12.4.35
12.4.36
12.4.37
12.4.38

= (|0:=1) +[-1:0))/v2,
= ‘_1_1>7

e N T N
~— ~— ~— ~—t ~—

which are all symmetric under my <> mo, followed by the j = 1 states

11,1) = (|1:0)—1(0:1))/V2, (12.4.39)
11,0) = (|1:=1) —|-1:1))/V2, (12.4.40)
11, -1) = (j0:=1) — [-1:0))/V2, (12.4.41)

which are each antisymmetric under the same exchange, and finally the 7 = 0 state
0,00 = (J1:=1) —[0:0) +[—1:1))/V3, (12.4.42)

which is symmetric. [These results can also be checked using the general Clebsch-Gordan
coefficients for j ® 1 in eqs. (I2413)-({12415).] To summarize what has been learned, one

writes
1®1 = 268144 0g, (12.4.43)

where the S and A subscripts indicate the symmetry or antisymmetry of the total angular
momentum orthobasis kets under exchange of the two product basis eigenvalues m; and m..
More generally, for the combination of two equal angular momenta j; = j, = 7, the symmetry

and antisymmetry properties for exchange of m; and my are summarized by
i®i = 2)s®R2j-Dad (2] —2)sD--- DO, (12.4.44)

with alternating S and A, so that the singlet on the right is symmetric if j is an integer

and antisymmetric if j is a half-integer. These symmetry and antisymmetry properties follow
immediately from eq. (I2:4.25]).
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The simplest nontrivial example that cannot be obtained from eqs. (IZZII)-([I24T12) or
from (IZZI3)-[IZ4I5) is j1 = jo = 3/2. Call the resulting total angular momentum quantum
number J. Then you can show that the J =3, m; =3 and J=3,m; =0and J=0,m; =0

states are, in terms of product basis states |m; : ma),

3.3) = [2:3), (12.4.45)
3,00 = %(}g:_gw}_g:g>+3\%;_g>+3\_%:%>), (12.4.46)
.00 = (13- - 13- F-h+-5:D), (12447

respectively. It is left as Exercise [2.7]to work out the other total angular momentum orthobasis
states |.J,m;) in this example.

One can also combine three (or more) angular momenta, to obtain an orthobasis of kets that
are eigenstates of the observables J? and .J, for the total angular momentum J=TJ+ Jo+ Js.
This can be done recursively, by first combining Jy and J, into an angular momentum operator
712, and then combining the results with 73. For example, combining three spin-1/2 angular

momenta results in

—(100)®, = (10 ) 008 ) = (3/2s0 (1/2.0 (1/2)  (12.4.48)

N |

o1
2

N |

®

DO | =

The subscript S on the j = 3/2 multiplet indicates that the states in it are symmetric under
exchange of any two of the three individual spins, as we will soon check. There are also two

= 1/2 multiplets in the result, distinguished by degeneracy labels a and b. To check the
multiplicities of states, we note that on the left side of eq. (IZZ448) there are 23 = 8 product
orthobasis states, since each individual spin has 2 values of my = £1/2. On the right, the
multiplicities of the total angular momentum states are 44242 = 8. To explicitly construct the
total angular momentum orthobasis kets, one can first use eqs. (IZ2Z.14)-([I2Z.2.I7) to construct
the J122, J1o, eigenstate kets. Combining the resulting j;» = 1 states with the third spin, one
finds, by using eq. (IZ311]), that the j = 3/2 states are

|%7%> = ™), (12.4.49)
1

13:3) = ﬁ(m + 1) + A1), (12.4.50)

3 -3) = (lm I + ), (12.4.51)

3:-2) = uw, (124.52)
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and, by using eq. (IZ3.14), the j = 1/2 states

Lda = (@I - 1) - ), (12.4.5)

S A
‘27_27a> - %

From combining the j;5 = 0 states from eq. (IZ.2.17) with the third spin, we have the additional

S

(1) + [41) — 21141)). (12.4.54)

j = 1/2 total angular momentum basis states

1
358 = () — D), (12.4.55)
g = (1) - ). (12.4.56)

5

2

The explicit forms for the j = 3/2 states show that they are indeed each symmetric under
exchange of any two of the three individual spins. For the j = 1/2 states, the ones labeled
a are symmetric, and the ones labeled b are antisymmetric, under exchange of the first two
spins. However, these j = 1/2 states do not have a complete symmetry or antisymmetry under
exchange of every pair of spins. Also note that there is no totally antisymmetric combination of
three or more spin 1/2 states, simply because in the product basis there are only two values 1
and | available, so that every product orthobasis ket is symmetric under interchange of at least
one pair of spins.

Similarly, combining four spin-1/2 angular momenta gives
1 1 1 _ 1
§®§®§®§:(1@0)@(1@0):25@1@1@1@0@0. (12.4.57)

Here the counting is that the number of product orthobasis states on the left is 2* = 16,
while the counting of multiplicities of total angular momentum orthobasis states on the right is
5+3+3+3+1+1=16. Only the total spin 2 multiplet is totally symmetric, and there is
no totally antisymmetric multiplet. The other multiplets on the right side of eq. (IZ4.57) have
mixed symmetry properties under exchange of the spins.

In the case of N electrons in an atom, the angular momentum eigenstates are often given
in spectroscopic notation, defined as follows. First, combine all of the individual spin operators
S; to obtain the total spin angular momentum operator S = > S;. The eigenvalues of the
operator 52 = S-S are then denoted by h2S (S+1) where S'is a numberH Clearly, if N is even,
then the number S must be an integer with 0 < S < N/2. If N is odd, then the number S
must be half-integer, with 1/2 < S < N/2. Next, combine all of the individual orbital angular

momenta operators L; to obtain the total orbital angular momentum operator L= > L;. The

$Following a common but potentially confusing notation, in the case of combined angular momenta, capital
letters are often used both for the names of the operators as well as the corresponding quantum numbers.
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eigenvalues of the operator L? = L - L are likewise denoted R2L(L + 1), where the quantum
number L is always an integer. Finally, the operators S and L are combined to form the total
angular momentum operator j, and the operators J? and .J, have eigenvalues denoted h*.J(J+1)

and hm, respectively. The traditional notation for a multiplet of common eigenstates of the

observables S?, L?, and J? is then
25, (12.4.58)

where S, L, and J are the quantum numbers, but with L replaced by the capital letter code S, P,
D, F, G, ..., according to whether the number L is 0,1,2,3,4, ..., as indicated in eq. (ILL20).
The degeneracy, or multiplicity, of each group of states denoted by ?*'L; is 2J + 1, since the
eigenvalue m; can take on the values —J, —J+1,...,J—1,J.

For example, a single electron always has S = 1/2. For L =0, it has J = 1/2, and for L > 1
it can have J = L £+ 1/2, as we saw in section [[2.3] So, the list of total angular momentum

multiplets for a single electron in an atom is
251/27 2P1/27 2P3/27 2D3/27 2D5/27 2F5/27 2F7/27 2G7/27 2G9/27"" (12459)

For two electrons, the possible total spin quantum numbers are S = 0 and 1, as we saw
in section [2.21 The orbital angular momenta fl and E2 with quantum numbers [; and [y can
be combined into L = |l —Iy|,...,l; + 3. Therefore, the possible total angular momentum

eigenstates for two electrons are
'S0, Py, 'Dy, 'F3, 'Gy, ... (12.4.60)
for S =0, and
351, 3Py, *Pi, *Py, ®Dy, ®Dy, Dy, *Fy, *Fy, *Fy, ... (12.4.61)

for S = 1. However, as we will discuss in more detail in section [I8.1 Fermi-Dirac statistics
requires that the total state must be antisymmetric under exchange of the two electrons. In the
special case that the electrons have the same radial wavefunction and the same orbital angular
momentum quantum number [; = Iy, then one can use eq. (IZ4.44) to see that if L is odd
(an antisymmetric position wavefunction) then only the symmetric spin combination S = 1 is
allowed, and if L is even (a symmetric position wavefunction), then only the antisymmetric spin

combination S = 0 is allowed.

12.5 How spherical harmonics combine

The spherical harmonics are the position representations of the orbital angular momentum
eigenstates of L? and L.. In this section, we will learn how the addition of angular momentum

technology is realized in terms of the spherical harmonics.
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Let us start by considering fixed [y, l5, [, and m. We then define the following function of
0, ¢, as a linear combination of products of spherical harmonics weighted by the Clebsch—Gordan
coefficients defined by eq. (I2.4.4),

UP0.0) = D YVM(0.9) Y (0.9) O (12.5.1)
mi,m2
where the sums are over all m; and msy such that the Clebsch-Gordan coefficient does not
vanish. Our goal is to find another simple expression for W"(0,¢). We claim that, as its
labeling suggests, this wavefunction is an eigenstate of the differential operators L? and L., with
eigenvalues h%[(l + 1) and hum, respectively, and it is therefore proportional to Y;"(6, ¢).

To prove this claim, we will check the action of the differential operators L., L., and L_ on
it. First, by applying eq. (86.27), we find

Lym = hmy + himy) Y™ Y,m2 Chlzl 12.5.2
1 5 l2

mimaom*
mi,ma2

The Clebsch—Gordan coefficient enforces that all non-zero contributions have my + my = m, so
LU = hmUp, (12.5.3)

Next, applying eq. ([86.29) we find

AR S NV AUES I ) G i

mi,m2

+ Va(lo + 1) — ma(my — 1) Y, Y2 7H | Ol (12.5.4)

mimam*

Since we are summing over all m; and msy, we can use the trick of relabeling m; — m; + 1 in

the first term and my — ms + 1 in the second term, to obtain

Ly = ny) [\/ll(l1 1) —ma(my + 1) ClRL

my,m2

-+ \/12(12 + 1) - mg(m2 -+ 1) ClllQl anl Y};nz (1255)

mi1,ma+1,m

Now the Clebsch-Gordan recurrence relation eq. (IZZIT) turns this into

LU = by VII+1)—m(m—1)Che, . Yy (12.5.6)

lo
mi,ma2

or, using the definition of eq. (IZ5.1), simply,

LU = h/I(l+1)—m(m—1)¥" (12.5.7)
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In an exactly analogous way, one finds

LU = hI(l+1) —m(m + 1)U (12.5.8)

Taken together, eqs. (IZ5.3), (I2.5.7) and (I2.5.8)), combined with L? = (LyL_+L_L,)/2+L?
from eq. (BI1.IH), show that this wavefunction also obeys

L2U7" = RA(L+ 1)m. 12.5.9
[ l

Since the spherical harmonic Y;™ is the unique (6, ¢) function with L? eigenvalue h%/(l + 1) and
L, eigenvalue him, eqs. (I2Z5.3) and (I2.5.9) show that ¥]" must be proportional to it, and

U(0,0) = Cuum Y™ (0,9) (12.5.10)

as claimed, for some constant ¢, (independent of 6, ¢).

Furthermore, by acting with L_ on both sides of the previous equation, we obtain

LU = Cppim LY™ = clyipmh I+ 1) —m(m — 1) Y™, (12.5.11)

but also from eq. (I2Z.5.17) this is equal to

LU = mJI(+1) —m(m —1) ciypm Y (12.5.12)

Comparing these informs us that ¢ ,m = ¢m—1 for all =l +1 < m < [, so the constant of
proportionality does not actually depend on m, and we therefore drop that label.

All of the preceding just served to prove that we can write

> V0,00 Y0,0) Ol = et Y(6,0) (12.5.13)

mi,m2

for some proportionality constant c;,;,;. Our remaining task is to identify this constant. Fortu-

nately, there is a trick to do this very easily; just consider the special case # = 0. Using the fact
found in eq. (B6.53),

20+1

}/Zm (07 ¢) = 5m0 47T

(12.5.14)

the double sum in eq. (IZ5.13)) collapses to a single term with m; = my = 0, and it reads

20, +1 [2l,+1 20+1
\/ 1+ \/ 2 + chlal — o 4; (12.5.15)
v

Solving this for ¢, eq. (IZ5.I3) becomes

m1 e s 20 + 1)(20, + 1 sl rm
SV, 6) Y6, 0) O, = \/ e a6, (125.0)

mi,m2
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This accomplishes our goal.
To derive a related interesting and useful identity, start with eq. (IZ5.16), multiply by
Cch2l then sum over all [, m, then apply the orthogonality of the Clebsch-Gordan coefficients

mmm’

of eq. (I2:4.20) on the left side, and finally relabel m| — m; and m/, — msy. The result is

I+l

. - L+ 12l +1) i dia om
Y0, 0)Y02(0,0) = ) ! 2l(+21) Mg&lo,;g;w 0,¢), (12.5.17)
I=|l1—12|

where m = my + msy on the right side. The product of any two spherical harmonics is thus an
appropriately weighted sum over the spherical harmonics selected by the corresponding addition
of angular momenta.

Another closely related identity follows. Start from eq. (IZ5.17), multiply by Y™ (6, ¢)*,
integrate over the angular coordinates, then apply the orthonormality of the spherical harmonics

using eq. (R.G6.31)) on the right side, and finally relabel I — [ and m’ — m. The result is

(20 +1)(2s + 1)

Clhlzl ohilal 12.5.18
420 + 1) 000 ( )

mimam:*

/ dQ [Y;"(0,0)] Y, (0,0)Y,* (0, 6) = \/

This is the Wigner—Eckart formula for spherical harmonics. It is a special case of the
general Wigner—Eckart theorem (a statement about matrix elements of operators, and applicable
not just to orbital angular momentum) to be derived in section Remarkably, the integral
only depends on the magnetic quantum numbers my, ms, and m through the coefficient Cf,}fl%f@zm,
so the Clebsch—Gordan selection rules (IZ.4.5)-([I2.4.17) also govern which integrals of this type
can be non-zero. This formula can be used to evaluate the integral of any product of three

spherical harmonics (with or without complex conjugates), simply by making use of eq. (8G.51)).

12.6 Exercises

Exercise 12.1. Two angular momentum operators L and S each satisfy the commutation
algebra of the form in eq. (5.333). Use this to show that all three components of J = L + S

commute with L - S.

Exercise 12.2. An atomic electron is in a state with orbital angular momentum [ = 2, with L,
and S, eigenvalues 0 and h/2, respectively. If its total angular momentum squared is measured
to be J? = h%j(j + 1), what are the possible results for j, and their probabilities?

Exercise 12.3. Two particles both have spin 1/2, and one of them is in a p-wave orbital
angular momentum state while the other is in a d-wave orbital angular momentum state. If
J is the total angular momentum operator, what are the allowed eigenvalues of J?2, and their

degeneracies? [Hint: start by figuring out the total number of basis states by multiplying
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together the individual angular momentum multiplicities. You should find 60, so that should be

the sum of the degeneracies.]

Exercise 12.4. Consider a quantum system with two independent spin-1/2 operators, S, and
S5, so that the state space is spanned by an orthobasis of Sy, and S, eigenstates I, 110, 41,
and []]). In each ket, the first entry labels states with S, eigenvalue £h/2, and the second
entry labels states with Ss, eigenvalue +h/2. At time ¢ = 0, the system is in the state

1
NG

(a) At time t = 0, we simultaneously measure S? and S, where S =S, + S, is the total spin

[90)) = 511+ 511 + = 14L). (126.1)

operator. What are the possible outcomes, and their probabilities?

(b) Suppose that instead of the above measurements, we let the system evolve until time ¢, with
the Hamiltonian H = w51, + w».55., where w; and wy are constants. What is the state at time
t? If we measure Sy, at time ¢, what are the possible outcomes, and their probabilities? Use
these results to find the expectation value (S;.) as a function of time.

(c) Now suppose that instead the Hamiltonian of the system is H = aS; - Sy, where a is a
constant. What is the state at time ¢, and what are the possible outcomes and probabilities for
a measurement of S1,7 Use these results to find (S;,) as a function of time. [Hint: to find the

state at time ¢, it is best to use the total angular momentum basis, in which H is diagonal.]

Exercise 12.5. Consider the hyperfine splitting of the n = 1 level of the hydrogen atom in the
presence of a constant external magnetic field B = BZ. Since we are only treating the ground
state, there is no orbital angular momentum L. Let the electron and proton spin operators be
S and I respectively, and let their total be J =S +1. The Hamiltonian is

_ B s 2m5 g
H=-381+=55"5 (12.6.2)

where pp is the Bohr magneton and E, is the energy of the 21.4 c¢m line. (There is also an
interaction term — (g, /h)B - I, but it is neglected because iy < up.)

(a) Evaluate each of the two operators S-Tand B-S acting on each of the product basis states
labeled by the eigenvalues of S, and I., and find the matrix representation of H in that basis.
(b) Repeat part (a), but this time use the total angular momentum basis labeled by the eigen-
values of J? and J,.

(c) In the limit that B is so large that £, can be neglected, find the energy eigenvalues, and the
corresponding energy eigenstates in the product orthobasis.

(d) In the limit that B is so small that it can be neglected, find the energy eigenvalues and the

corresponding energy eigenstates in the total angular momentum basis.
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(e) Find the energy eigenvalues for general B. Expand them to show agreement with the special
limits obtained in parts (c¢) and (d). (You do not need to find the energy eigenstates.)
(f) Graph the energy eigenvalues in units of peV as a function of 0 < B < 1200 gauss. Label

the energies near B = 0 with 7 = 0 and 57 = 1, and the energies for large B with mg and m;.

Exercise 12.6. The electron and its antiparticle, the positron, can form bound states before
they annihilate, called positronium. The positronium states with lowest energy and zero orbital

angular momenta have a Hamiltonian

H=—58-S,4+~—(S..—8S,.), (12.6.3)

where S, and §p are the spin operators for the electron and positron respectively, and a =
8.41 x 107* eV, and b = 2heB/m,.c where B is an external magnetic field in the 2 direction.
(a) Working in the total spin basis of eigenstates of S? and S, where § = S, + §p, find the
Hamiltonian as a 4 x 4 matrix in terms of @ and b, and find its eigenvalues and eigenvectors.
(b) The 1S, singlet, (parapositronium) state decays rather quickly by annihilation to two photons,
with a lifetime of about 1.25 x 1071 seconds, while the 3S; triplet (orthopositronium) states are
relatively stable, with a lifetime of about 1.42 x 1077 seconds. (Assume that these statements
do not depend on the applied magnetic field.) Estimate the magnetic field B required to make
the ground state lifetime longer by 10%.

Exercise 12.7. For the addition of two angular momenta j; = jo, = 3/2, find all of the total an-
gular momentum states in terms of the product basis states, completing eqs. (12.4.45)-([12:4.47).

Summarize the results as a list of the nonzero Clebsch—Gordan coefficients.

Exercise 12.8. General expressions for the Clebsch-Gordan coefficients for the addition of
angular momenta [ and 1 were given in eqs. (I2.4.13)-(I2Z4.15). Use the results to write each
of Y™ (0, ¢) cos 6 and Y;™(0, ¢) sinf cos ¢ and Y, (6, ¢) sin @ sin ¢ as linear combinations of other

spherical harmonics, with constant coefficients.
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13 Tensor operators and useful rules they obey

13.1 Irreducible tensor operators

Consider a finite spatial rotation generated by a unitary operator, so that a state ket [¢) is trans-
formed to |¢)') = U(@) [¢)), as discussed in section Recall, from the discussion surrounding
eqs. (Z520)-(Z53T]), that for any operator A we can consider the corresponding rotated version
defined by A’ = U(a)AU(@)', so that any matrix element (x|AJ) is equal to the matrix ele-
ment of the rotated operator for the rotated states, (x'|A’[¢)"). We will now study operators that
transform under rotations in a simple and useful way, specifically, as irreducible representations
of the rotation group.

An irreducible tensor operator (also known as a spherical tensor operator) of order

7 is a collection of 27 + 1 component operators labeled by an index m,
TY), (m=—j,....,7), (13.1.1)

which, by definition, are required to obey the following transformation rule for every unitary
rotation operator U (&),

J

U@ TP U@t = Y 19DY (@), (13.1.2)

with the Wigner rotation matrices DY) (@) as defined in eq. (85.2). Using the form of U(@) for
an infinitesimal rotation in terms of the total angular momentum operator J in eq. (R51), and
the actions of J,, J,, and J_ on angular momentum eigenstates as given in eqs. (817, (8I1.22),

and (B8I.24), which are reproduced here for convenience,

Jo |j,m) = hm|j,m), (13.1.3)
Joljm) = Bji(G+1) —m(m+1) |j,m+1), (13.1.4)
J_jm) = h/i(G+1) —m(m—1) |j,m—1), (13.1.5)

it is left to Exercise [[3.1] to show that the components of an irreducible tensor operator must

obey the commutation relations

[1.. T9] = mmTY, (13.1.6)
[T, T = B +1) —m(m+ 1) T, (13.1.7)
[J, TD] = B/ +1) —m(m—1)TY,. (13.1.8)

Equations (I3.1.06])-(I3.1.8)) serve as an equivalent necessary and sufficient requirement for 7Y

to form an irreducible tensor operator. Their similarity to eqs. (I313)—(I3.LH) suggests that
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)

" angular momentum as indicated by the quantum number labels j

the operators T “carry’
and m. Indeed this intuition is valid, as we will explain in the following, with the most precise
statement to be given in eq. (I339).

The simplest type of irreducible tensor operator is obtained for j = 0 with a single component,
and is called a scalar operator. A scalar operator S obeys U(a) SU(a@)" = S, or equivalently
it commutes with the total angular momentum operators J,, J,, J_, and therefore also with J,
and J, and J?. Consider a state |a, j,m) that is an eigenstate of J* and .J, with eigenvalues
R%j(j + 1) and hm, with a a degeneracy label. Tt follows that the state S |, j,m) is also an
eigenstate of J? and J, with the same eigenvalues. In that sense, the scalar operator S carries
no total angular momentum.

Irreducible tensor operators with j = 1/2, or more generally with half-integer j, are called
spinor operators. However, these cannot be observables, because they are necessarily double-
valued; under a rotation by 27 they acquire a minus sign, just as we saw for matrix represen-
tations of rotations of states with half-integer angular momentum in eqs. ([8.5.16]) and (85.19]).
Observables can be constructed by taking the product of an even number of spinor operators,
using Theorem [[3.1.1] below. We will not discuss them further here, although they do play a
very important role in quantum field theories with fermions.

An irreducible tensor operator with order j = 1 and three components m = —1,0, 1 is called
a vector operator Vn(ml). These can be used to define the familiar rectangular x, i, 2 components

of V=2V, + 9V, + 2V., as follows:

v, = (Vi) -v")ve, (13.1.9)
v, = (v + v /ve, (13.1.10)
v, = v (13.1.11)

These can be shown, using eqs. (I310) - (I31.8) with j = 1, to obey the commutation relations
[Jo, Vo] = iheaw Ve, (a,b,c=x,y,2), (13.1.12)

which is often taken as the defining property of a vector operator in rectangular coordinates.
For example, the rectangular coordinate position operators found in R=:iX+ yY + 27 can be

expressed in terms of components of an irreducible tensor operator RV, as

R\ = Zz, (13.1.13)
RY = —(X+iY)/V2, (13.1.14)
RY = (X —iv)/V2, (13.1.15)

and it is left as an exercise to check that the requisite commutation relations (I3.1.6)-(13.1.8])

are indeed satisfied. Besides the position operator, other examples of vector operators are the
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momentum operator 13, the orbital angular momentum Z, the spin §, and the total angular
momentum operator itself, J = L + 5. Note that the angular momentum raising and lowering
operators defined by eq. (81.8)) are actually given in the irreducible tensor component formalism
by J, = —/2 Jl and J_ = \/§J£11), respectively, while J, = Jél).

leen any two irreducible tensor operators, one can multiply them to construct others. The

way to do this is specified by the following theorem.

Theorem 13.1.1. (Product rules for tensor operators) If TV and SU2) are irreducible

tensor operators of orders j; and jo Tespectively, and C71721  are the Clebsch—Gordan coefficients

defined in eq. (124.49), then

ZZT(n S(]Z Ofﬁﬁém (m=—j4,....7) (13.1.16)

mip m2

is an irreducible tensor operator of order j. Furthermore,
T) Sy ZZWU O ITLE . (13.1.17)

The proof is left as Exercise

As an example, consider two vector operators V) and U®M. Then, using the results of
eqs. (I2434)-([12:4.42) to extract the necessary Clebsch—Gordan coefficients for 1®1 = 06162,
we apply eq. (I3.1.10) to construct the following three tensor operators, of orders 0, 1, and 2:

WO = (VU + vOU® - VU jVa (13015
and
wi = (vl - viul) 1ve, (13.1.19)
W = (%(I)Uﬁll)_v—(ll)Uil(l)) V2, (13.1.20)
and
w? — yOym (13.1.21)
w® = (Vﬂ Ut +%(1)Uilf) V32, (13.1.22)
W (v“U L vOUm Loy oy m)/\/é, (13.1.23)

Now, WO(O) is a scalar operator, equal to —VU/ V/3. Tt is also not hard to check that WY forms
a vector operator, and using eqs. ([3.L.9)—(I3I.11]), the corresponding rectangular components
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are found to be those of i(V x U)/v/2. The j = 2 tensor operator can be rewritten, in terms of

the rectangular components of V and ﬁ, as

W = (V, iV, (U, £iU,)/2, (13.1.24)
W = [(FVe 