

Reading assignment: sections 22.5, 22.6, 5.6, and 6.6 of the text.

Problem 1. In this problem you will find the lifetime of the $|n, l, m\rangle = |3, 2, 2\rangle$ state of an isolated hydrogen atom, due to spontaneous emission of a single photon. Ignore fine, hyperfine, and Lamb shift splitting effects, and use the electric dipole approximation.

- (a) According to the electric dipole selection rules, what state or states could be the final state? What are the angular frequency ω , the wavelength λ , and the color of the emitted light? Note that $\lambda \gg a_0$, so that the electric dipole approximation is indeed valid.
- (b) Use eq. (22.4.14) to evaluate the emission rate, and compute $\tau = 1/\Gamma$ to find the lifetime, both symbolically in terms of quantities like α , c , \hbar , a_0 , and ω , and then numerically in seconds.

Problem 2. Consider an electron trapped in a 3-dimensional isotropic harmonic oscillator potential with angular frequency Ω . The electron is initially in the first excited state with $l = 1$, $m = 0$, and spontaneously emits a photon to decay to the ground state.

- (a) How is the angular frequency ω of the emitted photon related to the angular frequency Ω of the harmonic oscillator potential?
- (b) Compute the lifetime of the first excited state.

Problem 3. Consider scattering in one dimension of particles with mass m and energy E from a potential $V(x) = V_0\delta(x/a)$, where a is a length scale and V_0 is a constant potential energy.

- (a) Find the transmission and reflection coefficients T and R by matching stationary-state wavefunctions at $x = 0$.
- (b) Check your result for T by taking the $a \rightarrow 0$ limit of eq. (6.6.37).