
Physics 661 Homework 8 Due Thursday, April 3, 2025

Reading assignment: sections 21.4 and 22.1-22.4 of the text.

Problem 1. Consider a particle of mass m bound in a simple harmonic oscillator of

natural frequency ω in one dimension. Initially (for t < 0), it is in the ground state. At

t = 0, a perturbation to the Hamiltonian is turned on, of the form:

W (X, t) = kX2e−t/τ (t ≥ 0)

where k and τ are constant numbers.

(a) Using first-order time-dependent perturbation theory, calculate the probabilities that,

after a very long time (t ≫ τ), the system will have made a transition to each of the

excited states.

(b) Using your answers for part (a), infer the probability that after a long time the system

will remain in the ground state.

(c) Now use second-order time-dependent perturbation theory to directly calculate the

probability that the system will remain in the ground state. Check that your answer

agrees with the result found in part (b).

Problem 2. A hydrogen atom in its ground state [(n, ℓ,m) = (1, 0, 0)] is placed between

the plates of a capacitor. At times t < 0, there is no electric field due to the capacitor,

but for later times the capacitor produces a field:

~E = E0ẑe
−t/τ .

Using first-order time-dependent perturbation theory, compute the probability for the

atom to be found at t ≫ τ in each of the 1st excited states [(n, ℓ,m) = (2, 0, 0) and

(2, 1, 1) and (2, 1, 0) and (2, 1,−1)].

Problem 3. In this problem you will consider a 2-state system subject to a harmonic

perturbation, both exactly and in the approximation of time-dependent perturbation

theory.

Consider an orthobasis of states |1〉 and |2〉 that are eigenstates of an unperturbed Hamil-

tonian H0 with eigenvalues E1 and E2. This means that

H0 = E1|1〉〈1|+ E2|2〉〈2|.

Assume, without loss of generality, that E1 < E2. There is also a time-dependent poten-



tial that connects the two levels, with matrix elements:

W11 = W22 = 0, W12 = W ∗

21 = h̄γeiωt,

where γ is a real number, so that

W (t) = h̄γeiωt|1〉〈2|+ h̄γe−iωt|2〉〈1|.

Thus ω is the driving frequency of the perturbation, and the total Hamiltonian is

H = H0 +W (t).

Let us write the normalized state at time t as

|ψ(t)〉 = c1(t)e
−itE1/h̄|1〉+ c2(t)e

−itE2/h̄|2〉.

Suppose that at time t = 0, the system is known to be in the lower level, so that c1(0) = 1

and c2(0) = 0. Our goal is to calculate the rate of transition to the higher level state |2〉.

(a) Consider the exact differential equations for the coefficients c1(t) and c2(t). Starting

from the Schrodinger equation, show that they can be written as

ih̄
dc1
dt

= W12e
−iω21tc2,

ih̄
dc2
dt

= W21e
iω21tc1.

where ω21 = (E2 − E1)/h̄.

(b) Solve these equations for c1(t) and c2(t). Do this by assuming a solution of the form:

c1(t) = ei(ω−ω21)t/2[cos(Ωt)− b1 sin(Ωt)];

c2(t) = e−i(ω−ω21)t/2b2 sin(Ωt),

where we define

Ω2 = γ2 + (ω − ω21)
2/4,

and b1 and b2 are constant quantities that you will determine in terms of ω, γ, and ω21.

[Hint: plug c1(t) and c2(t) into the second differential equation first. Since this equation

is supposed to be satisfied for all t, you can consider separately the parts of the equation

that are proportional to cos(Ωt) and sin(Ωt).]



(c) From your results in the previous part, find the transition probability,

P1→2(t) = |c2(t)|
2.

What is its maximum value if ω = ω21? Sketch P1→2(t) for this case, for 0 ≤ t ≤ 2π/γ,

with labeled axes.

(d) What is the maximum value of P1→2(t) if |ω−ω21| = γ? What is its maximum value

if |ω − ω21| = 10γ? What is its maximum value if |ω − ω21| = 100γ?

(e) Now using the approximation of first order time-dependent perturbation theory, find

the transition amplitude a
(1)
1→2(t) and the corresponding probability P1→2(t) = |a

(1)
1→2(t)|

2.

Do the two approaches agree for small values of γ?

(f) When ω is very close to ω21, show that the perturbative answer you got in part (d)

can be interpreted in terms of a rate:

Γ(1 → 2) ≈ Nγ2δ(ω − ω21),

where N is a certain number that you will find. [Hint: note the relationship between

eqs. (21.3.9) and (21.3.20) of the text.] To apply this formula in practice, you would

integrate it over a spectrum of driving frequencies ω.


