

Reading assignment: sections 21.1-21.3 of the **NEW** text.

Problem 1. In the Bizarro Universe, long ago and very far away, scientists have determined that everything is just like in our universe except that electrons are fermions with spin 3/2 instead of spin 1/2. Consider atomic states for Bizarro electrons.

- (a) How many Bizarro electrons can fit into each s ($l = 0$) orbital? How many Bizarro electrons can fit into each p ($l = 1$) orbital?
- (b) What are the atomic numbers of the lightest two Bizarro noble gases (the lightest has a filled $1s$ orbital, the next has a filled $2p$ orbital)?
- (c) Consider Bizarro neon, by which we mean a neutral atom with $Z = 10$. What is the electron configuration, instead of $(1s)^2(2s)^2(2p)^6$ as in our universe? Will it behave chemically like a noble gas? What are all of the $^{2S+1}L_J$ spectroscopic terms for the electron configuration you found, and which of them is the ground state?

Problem 2. In class and in the text, we evaluated the probability that a ${}^3\text{H}$ (tritium) atom in its ground state would end up in the ground state of ${}^3\text{He}$, after beta decay, and found $P = 512/729$. In the same way, evaluate the probability that the atom ends up in each of the $n = 2$ or $n = 3$ levels instead. Check that the total probability for ending up in the $n = 1$, $n = 2$, and $n = 3$ levels does not exceed 1.

Problem 3. A particle of mass m moves freely in a 1-dimensional box of length a , with the left edge at $x = 0$ and the right edge at $x = a$. At time $t = 0$, the particle is in the ground state, and the box is suddenly lengthened by expanding the right edge out to $x = b$.

- (a) Find the probability that the particle ends up in *each* of the energy eigenstates of the final box, labeled by positive integers n . (Make sure that your probabilities are dimensionless.)
- (b) Use your results from part (a), and your knowledge of the laws of probability, to evaluate the following mathematical infinite sum over n :

$$S(a, b) = \sum_{n=1}^{\infty} \frac{\sin^2(n\pi a/b)}{(n^2 a^2 - b^2)^2}.$$

Quantum mechanics knows how to do non-trivial sums!

- (c) As a check, for the special case $b = 2a$, evaluate the individual probabilities numerically for each integer up to $n = 10$, and their total with 6 significant digits. (Be careful for $n = 2$; the answer is non-zero and finite.)