

Reading assignment: review the course textbook as needed to answer the following problems.

Problem 1. Consider a quantum system consisting of two independent spin-1/2 operators, \vec{S}_1 and \vec{S}_2 , so that the state space is spanned by orthonormal S_{1z} and S_{2z} eigenstates $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, and $|\downarrow\downarrow\rangle$. Here the first label is \uparrow for $S_{1z} = +\hbar/2$ and \downarrow for $S_{1z} = -\hbar/2$, and the second label is \uparrow for $S_{2z} = +\hbar/2$ and \downarrow for $S_{2z} = -\hbar/2$. At time $t = 0$, the system happens to be in the state:

$$|\psi(0)\rangle = a(|\uparrow\uparrow\rangle + 2|\uparrow\downarrow\rangle + 3|\downarrow\uparrow\rangle + 4|\downarrow\downarrow\rangle),$$

where a is a constant that should not appear in your answers.

- (a) At time $t = 0$, we measure the z -component of spin 1, S_{1z} . What is the probability of finding $+\hbar/2$? What is the state immediately after this measurement?
- (b) Suppose the measurement mentioned in the previous part has happened, and the result was indeed $+\hbar/2$. If we then measure the x -component of spin 2, S_{2x} , what results can be found, and with what probabilities? (Hint: you will need to find the eigenvalues and corresponding eigenstates of S_{2x} .)
- (c) Instead of performing the above measurements, we let the system evolve under the influence of the Hamiltonian $H = \omega S_{1z}$. Find the state of the system at time t . Use this to find the expectation value of the x -component of spin 1, $\langle S_{1x} \rangle$, as a function of time.

Problem 2. A spinless particle is in a stationary state of an unknown, but spherically symmetric, potential. Its wavefunction in spherical coordinates is known to be:

$$\psi(r, \theta, \phi) = c e^{-r/a} \sin(\theta) \cos(\phi).$$

where a and c are positive real constants.

- (a) By requiring the wavefunction to have norm equal to 1, find c in terms of a .
- (b) If L^2 and L_z are simultaneously measured, what are the possible pairs of results, and their probabilities?
- (c) If the energy eigenvalue of the state is 0, what is the potential $V(r)$?

Problem 3. Two non-identical particles have spins 1/2 and 3/2. Each of them is in the same spatial state with orbital angular momentum quantum number $l = 1$. If \vec{J} is the total angular momentum, what are the allowed eigenvalues of J^2 , and their degeneracies? (Hint: start by working out the grand total number of states, so that you will have something to check against. It should be a number greater than 50 and less than 100.)

Problem 4. Consider the effects of the hyperfine splitting of the ground state of the Hydrogen atom in the presence of a constant uniform external magnetic field $\vec{B} = B\hat{z}$. Since we will only be working with the ground state, you can ignore the orbital angular momentum \vec{L} . Let the electron spin operator be \vec{S} and the proton spin operator be \vec{I} , and let their total be $\vec{J} = \vec{S} + \vec{I}$. (Recall that the electron and the proton both are spin 1/2 particles.) Then the Hamiltonian for the system is:

$$H = \frac{E_\gamma}{\hbar^2} \vec{S} \cdot \vec{I} + 2\frac{\mu}{\hbar} \vec{B} \cdot \vec{S},$$

where μ is a constant and E_γ is the energy of the famous 21.4 cm line. (Give your answers below in symbolic form in terms of μ and E_γ , not their numerical values.)

- (a) Find the matrix representation of the Hamiltonian, in the product orthobasis for the two spins labeled by the eigenvalues of L_z and I_z . (Hint: start by evaluating each of the two operators $\vec{S} \cdot \vec{I}$ and $\vec{B} \cdot \vec{S}$ acting on each of the product orthobasis states.)
- (b) In the limit that B is so large that E_γ can be neglected, find the energy eigenvalues, and the corresponding energy eigenstates in ket notation, again using the product orthobasis.
- (c) In the limit that B is so small that it can be neglected, find the energy eigenvalues, and the corresponding energy eigenstates in ket notation, again using the product orthobasis.
- (d) Redo part (c), but this time find the energy eigenstates in the total angular momentum orthobasis labeled by the eigenvalues of J^2 and J_z . (Hint: look up “dot product of angular momenta trick” in the index.)
- (e) Find the energy eigenvalues for general B , and expand them to show that the special limits you obtained in parts (b) and (c) follow. (You do not need to find the energy eigenstates.)