PHYS 660 Homework 9

Reading assignment: sections 8.3-8.7 and 9.1-9.3 of the course text.

Problem 1. Consider a spinless particle in a state with spherical-coordinate wavefunction

$$\psi(r,\theta,\phi) = ae^{-br^2}\cos^2\theta,$$

where a and b are constants.

(a) Solve for the constant a, by assuming that the wavefunction has unit normalization.

(b) If L^2 and L_z are simultaneously measured, what are the possible pairs of results, and their probabilities? Check that your probabilities are dimensionless and non-negative and that they add up to 1.

(c) Find the expectation value and uncertainty of the radial coordinate r. You should not let the symbol a appear in your answer. Check that your answers have the correct units.

<u>Problem 2.</u> Consider a particle with spin 1/2 that starts in an eigenstate of S_z with eigenvalue $+\hbar/2$. Suppose now that the spin along the direction $\hat{n} = \hat{x} \sin \beta + \hat{z} \cos \beta$ is to be measured.

(a) Construct the matrix representations of the operators S_x , S_y , S_z , S^2 , and $\hat{n} \cdot \vec{S}$, in the basis of eigenstates of S_z , denoted $|\uparrow\rangle$ and $|\downarrow\rangle$. What are the eigenvalues and eigenvectors of each, written in that basis?

(b) What is the probability that the measurement of $\hat{n} \cdot \vec{S}$ yields the result $+\hbar/2$?

(c) Suppose that the measurement in part (b) has been carried out and the result was indeed $+\hbar/2$. Immediately afterwards, S_z is measured. What is the probability that the measurement yields $-\hbar/2$?

(d) Check that your results for parts (b) and (c) make sense when $\beta = 0$ and π . What happens when $\beta = \pi/2$?

<u>Problem 3.</u> Consider a spinless particle in a state with L^2 eigenvalue $2\hbar^2$ and L_z eigenvalue \hbar . As in the previous problem, let $\hat{n} = \hat{x} \sin \beta + \hat{z} \cos \beta$.

(a) Suppose that the angular momentum along the direction \hat{n} is measured. What are the possible results, and their probabilities?

(b) For each of the possible results in part (a), suppose that L_z is then measured. What are the possible results, and their probabilities?

(c) Check that your results make sense in the special cases $\beta = 0$ and $\beta = \pi$ and $\beta = \pi/2$.

<u>Problem 4</u>. Consider a quantum system consisting of two independent spin-1/2 operators, $\vec{S_1}$ and $\vec{S_2}$, so that the state space is spanned by orthonormal S_{1z} and S_{2z} eigenstates $|\uparrow,\uparrow\rangle$ and $|\uparrow,\downarrow\rangle$ and $|\downarrow,\uparrow\rangle$ and $|\downarrow,\downarrow\rangle$. Here the first entry of each ket labels the S_{1z} eigenvalue as $\pm\hbar/2$, and the second labels the S_{2z} eigenvalue $\pm\hbar/2$. At time t = 0, the system happens to be in the state:

$$|\psi(0)\rangle = c\Big(4|\uparrow,\uparrow\rangle + 3|\uparrow,\downarrow\rangle + 2|\downarrow,\uparrow\rangle + |\downarrow,\downarrow\rangle\Big),$$

where c is a constant that you should solve for and eliminate from your answers.

(a) At time t = 0, we measure the z-component of spin 1, S_{1z} . What is the probability of finding $+\hbar/2$?

(b) Suppose the measurement mentioned in the previous part has happened, and the result was indeed $+\hbar/2$. What is the normalized state ket immediately after this measurement? If we then immediately measure the *x*-component of spin 2, S_{2x} , what results can be found, and with what probabilities?

(c) Instead of performing the above measurements, we let the system evolve under the influence of the Hamiltonian $H = \vec{B} \cdot \vec{S}_1$, where $\vec{B} = B_0 \hat{z}$ and B_0 is a constant. Find the state of the system at time t. Use this to find the expectation value of the x-component of spin 1, $\langle S_{1x} \rangle$, as a function of time.