Reading assignment: sections 8.3-8.7 and 9.1-9.3 of the course text.
Problem 1. Consider a spinless particle in a state with spherical-coordinate wavefunction

$$
\psi(r, \theta, \phi)=a e^{-b r^{2}} \cos ^{2} \theta
$$

where a and b are constants.
(a) Solve for the constant a, by assuming that the wavefunction has unit normalization.
(b) If L^{2} and L_{z} are simultaneously measured, what are the possible pairs of results, and their probabilities? Check that your probabilities are dimensionless and non-negative and that they add up to 1.
(c) Find the expectation value and uncertainty of the radial coordinate r. You should not let the symbol a appear in your answer. Check that your answers have the correct units.

Problem 2. Consider a particle with spin $1 / 2$ that starts in an eigenstate of S_{z} with eigenvalue $+\hbar / 2$. Suppose now that the spin along the direction $\hat{n}=\hat{x} \sin \beta+\hat{z} \cos \beta$ is to be measured.
(a) Construct the matrix representations of the operators $S_{x}, S_{y}, S_{z}, S^{2}$, and $\hat{n} \cdot \vec{S}$, in the basis of eigenstates of S_{z}, denoted $|\uparrow\rangle$ and $|\downarrow\rangle$. What are the eigenvalues and eigenvectors of each, written in that basis?
(b) What is the probability that the measurement of $\hat{n} \cdot \vec{S}$ yields the result $+\hbar / 2$?
(c) Suppose that the measurement in part (b) has been carried out and the result was indeed $+\hbar / 2$. Immediately afterwards, S_{z} is measured. What is the probability that the measurement yields $-\hbar / 2$?
(d) Check that your results for parts (b) and (c) make sense when $\beta=0$ and π. What happens when $\beta=\pi / 2$?

Problem 3. Consider a spinless particle in a state with L^{2} eigenvalue $2 \hbar^{2}$ and L_{z} eigenvalue \hbar. As in the previous problem, let $\hat{n}=\hat{x} \sin \beta+\hat{z} \cos \beta$.
(a) Suppose that the angular momentum along the direction \hat{n} is measured. What are the possible results, and their probabilities?
(b) For each of the possible results in part (a), suppose that L_{z} is then measured. What are the possible results, and their probabilities?
(c) Check that your results make sense in the special cases $\beta=0$ and $\beta=\pi$ and $\beta=\pi / 2$.

Problem 4. Consider a quantum system consisting of two independent spin-1/2 operators, $\overrightarrow{S_{1}}$ and $\overrightarrow{S_{2}}$, so that the state space is spanned by orthonormal $S_{1 z}$ and $S_{2 z}$ eigenstates $|\uparrow, \uparrow\rangle$ and $|\uparrow, \downarrow\rangle$ and $|\downarrow, \uparrow\rangle$ and $|\downarrow, \downarrow\rangle$. Here the first entry of each ket labels the $S_{1 z}$ eigenvalue as $\pm \hbar / 2$, and the second labels the $S_{2 z}$ eigenvalue $\pm \hbar / 2$. At time $t=0$, the system happens to be in the state:

$$
|\psi(0)\rangle=c(4|\uparrow, \uparrow\rangle+3|\uparrow, \downarrow\rangle+2|\downarrow, \uparrow\rangle+|\downarrow, \downarrow\rangle)
$$

where c is a constant that you should solve for and eliminate from your answers.
(a) At time $t=0$, we measure the z-component of $\operatorname{spin} 1, S_{1 z}$. What is the probability of finding $+\hbar / 2$?
(b) Suppose the measurement mentioned in the previous part has happened, and the result was indeed $+\hbar / 2$. What is the normalized state ket immediately after this measurement? If we then immediately measure the x-component of $\operatorname{spin} 2, S_{2 x}$, what results can be found, and with what probabilities?
(c) Instead of performing the above measurements, we let the system evolve under the influence of the Hamiltonian $H=\vec{B} \cdot \vec{S}_{1}$, where $\vec{B}=B_{0} \hat{z}$ and B_{0} is a constant. Find the state of the system at time t. Use this to find the expectation value of the x-component of spin 1 , $\left\langle S_{1 x}\right\rangle$, as a function of time.

