Reading assignment: sections 8.1 and 8.2 of the class notes (and review sections 7.1-7.5).
Problem 1. Consider a quantum particle of mass m in a 1-d harmonic oscillator potential with angular frequency ω, with minimum at the origin, as usual. For the observable $A=P X+X P$, find:
(a) The expression in simplest form for A in terms of the usual ladder operators.
(b) The expectation value for A for the nth excited energy eigenstate $|n\rangle$.
(c) The uncertainty for A in the state $|n\rangle$.

Problem 2. Two particles labeled 1 and 2 (they are distinguishable, but happen to have the same mass) are governed by a coupled harmonic oscillator Hamiltonian in one dimension:

$$
H=\frac{1}{2 m}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{1}{2} m \omega^{2} X_{1}^{2}+\frac{1}{2} m \omega^{2} X_{2}^{2}+\frac{1}{2} m \Omega^{2}\left(X_{1}-X_{2}\right)^{2} .
$$

Here ω and Ω are constants with dimensions of angular frequency; note that ω parametrizes the restoring force for the particles to the origin, and Ω describes the attractive force between the particles. The operators X_{1}, P_{1} and X_{2}, P_{2} satisfy the canonical commutation relations $\left[X_{1}, P_{1}\right]=i \hbar$ and $\left[X_{2}, P_{2}\right]=i \hbar$ and $\left[X_{1}, P_{2}\right]=\left[X_{2}, P_{1}\right]=0$ and $\left[X_{j}, X_{k}\right]=0$ and $\left[P_{j}, P_{k}\right]=0$ for all $j, k=1,2$. Consider the new coordinate operators:

$$
U=\frac{1}{\sqrt{2}}\left(X_{1}+X_{2}\right), \quad V=\frac{1}{\sqrt{2}}\left(X_{1}-X_{2}\right)
$$

and momenta:

$$
P_{u}=\frac{1}{\sqrt{2}}\left(P_{1}+P_{2}\right), \quad P_{v}=\frac{1}{\sqrt{2}}\left(P_{1}-P_{2}\right)
$$

(a) Derive all of the commutation relations of all pairs of operators from the set U, V, P_{u}, P_{v}.
(b) Write the Hamiltonian in terms of the operators U, V, P_{u}, P_{v}.
(c) Define appropriate creation and destruction operators for the U, V, P_{u}, P_{v} system, so that the Hamiltonian has a simple form in terms of them. From this, infer the eigenvalues of the Hamiltonian, and write down a suitable notation for the energy eigenbasis kets.
(d) Obtain the wavefunction of the ground state in the u, v representation $\psi(u, v)$, and use it to obtain the normalized ground state wavefunction in the x_{1}, x_{2} representation, $\psi\left(x_{1}, x_{2}\right)=$ $\left\langle x_{1}, x_{2} \mid \psi\right\rangle$.
(e) Is the Hamiltonian invariant under translations? What about parity?

Problem 3. Consider the isotropic harmonic oscillator for a single particle moving in 2 dimensions:

$$
H=\frac{1}{2 m}\left(P_{x}^{2}+P_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(X^{2}+Y^{2}\right) .
$$

(a) Write down the energy eigenvalue expression for the basis kets $\left|n_{x}, n_{y}\right\rangle$, where n_{x} and n_{y} are the energy level quantum numbers for the corresponding 1-dimensional harmonic oscillator problem. Find a general expression for the degeneracy of the nth excited energy state.
(b) Does the state $\left|n_{x}, n_{y}\right\rangle$ have a well-defined parity? If so, what is it? If not, why not?
(c) Consider the angular momentum operator $L_{z}=X P_{y}-Y P_{x}$. Write it, as well as H, in simplest form in terms of the annihilation and creation operators $a_{x}, a_{x}^{\dagger}, a_{y}, a_{y}^{\dagger}$.
(d) Use your results from part (c) to compute the commutator $\left[L_{z}, H\right]$. Are they compatible operators?
(e) What is L_{z} acting on the ground state $|0,0\rangle$?
(f) For the states with $n=n_{x}+n_{y}=1$, compute L_{z} acting on each of the basis states from part (a). Use this to write a 2×2 matrix representation for the operator L_{z}. Find its eigenvalues and the corresponding eigenstates.
(g) For the states with $n=2$, compute L_{z} acting on each of the basis states from part (a), and a matrix representation for the operator L_{z}. Find its eigenvalues and the corresponding eigenstates.
(h) For the states with $n=3$, compute L_{z} acting on each of the basis states from part (a), and a matrix representation for the operator L_{z}. Find its eigenvalues; you do not need to find the eigenstates.
(i) Based on your experience from parts (e)-(h), do H, L_{z} form a C.S.C.O. (complete set of commuting observables)?
(j) Also based on your experience from parts (e)-(h), make a guess what the eigenvalues of L_{z} are for general n.

