
NIU Physics PhD Candidacy Exam – Fall 2010 – Quantum Mechanics
DO ONLY THREE OUT OF FOUR QUESTIONS

Problem 1.

We consider a spinless particle with mass m and charge q that is confined to move on a circle of
radius R centered around the origin in the x-y plane.

(a) Write down the Schrödinger equation for this particle and solve it to find the eigenenergies
and corresponding normalized eigenfunctions. Are there degeneracies? [ 10 points ]
(b) This system is perturbed by an electric field E pointing along the x axis. To lowest nonvan-
ishing order in perturbation theory, find the corrections to the eigenenergies of the system. [10
points]
(c) What are the corrections to the eigenfunctions due to the field E in lowest nonvanishing
order? [10 points]
(d) Next we consider instead of the electric field E the effect of a magnetic field B pointing
along the z axis. Evaluate to lowest nonvanishing order in perturbation theory the corrections
to the eigenenergies of the system. [10 points]

Problem 2.

Let us consider two spins S and S ′ with S = S ′ = 1
2
. The z components of the spin are Sz = ±1

2

and S ′z = ±1
2
. We can define a basis set as |SSz, S

′S ′z〉 (or simplified |Sz, S
′
z〉). The spins interact

with each other via the interaction

H = TS · S′, (1)

where T is a coupling constant. S and S′ work on the spins S and S ′, respectively.

(a) Rewrite the interaction in terms of Sz, S
′
z and step up and down operators S± and S ′±. [10

points]
(b) Find the eigenvalues of H when the spins are parallel. [10 points]
(c) Find the eigenvalues of H for Sz + S ′z = 0. [13 points]
(d) Give a physical interpretation of the eigenenergies and eigenstates of H.[7 points]



Problem 3.
Given a one-dimensional harmonic oscillator with Hamiltonian

H =
p2

x

2m
+

1

2
mω2x2 (2)

and a wavefunction which is a mixture of the n = 0 and n = 1 states

ψ(x) =
1√
5
(u0(x)− 2u1(x)), (3)

where u0 and u1 are the normalized eigenfunctions of the lowest two energy states. Note that
a± = (∓ipx +mωx)/

√
2h̄mω.

(a) draw ψ(x). [5 points]
(b) what is 〈E〉 in terms of m and ω? [8 points]
(c) what are 〈x〉, 〈x2〉 and ∆x? [17 points]
(d) what is 〈p〉? [10 points]

Problem 4.
The (unnormalized) eigenfunctions for the lowest energy eigenvalues of a one-dimensional simple
harmonic oscillator (SHO) are

ψ0(x) = e−x2/a2
, ψ1(x) = x

a
e−x2/a2

, ψ2(x) =
(
1− 4x2

a2

)
e−x2/a2

,

ψ3(x) =
(

3x
a
− 4x3

a3

)
e−x2/a2

, ψ4(x) =
(
3− 24x2

a2 + 16x4

a4

)
e−x2/a2

.

Now consider an electron in “half” a one-dimensional SHO potential (as sketched below)

V (x) =

{
K x2 x > 0
∞ x ≤ 0

(4)

(a) Sketch the ground and first excited state for this new potential. [6 points ]

(b) Write the normalized wave function for the ground state in terms of the electron mass m
and the oscillator frequency ω (corresponding to the spring constant K). [6 points ]
(c) What are the energy eigenvalues for the potential V (x)? [6 points ]
(d) Now we add a constant electric field E in x direction. Use first-order perturbation theory to
estimate the new ground state energy.[8 points ]
(e) We go back to E = 0. Now we add a second electron. Ignoring the Coulomb interaction
between the electrons, write the total energy and the new two-particle wave function, assuming
that the electrons are in a singlet spin state with the lowest possible energy. (You can ignore
wave function normalization now.) [7 points ]
(f) Repeat part (e) assuming that the electrons are instead in a triplet spin state with the lowest
possible energy. [7 points ]

x
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DO ONLY THREE OUT OF FOUR QUESTIONS

Problem 1. In many systems, the Hamiltonian is invariant under rotations. An example is the
hydrogen atom where the potential V (r) in the Hamiltonian

H =
p2

2m
+ V (r),

depends only on the distance to the origin.
An infinitesimally small rotation along the z-axis of the wavefunction is given by

Rz,dϕψ(x, y, z) = ψ(x− ydϕ, y + xdϕ, z),

(a) Show that this rotation can be expressed in terms of the angular momentum component
Lz. [10 points]
(b) Starting from the expression of Lz in Cartesian coordinates, show that Lz can be related to
the derivative with respect to ϕ in spherical coordinates. Derive the ϕ-dependent part of the
wavefunction corresponding to an eigenstate of Lz. [10 points]
(c) Show that if Rz,dϕ commutes with the Hamiltonian, then there exist eigenfunctions of H that
are also eigenfunctions of Rz,dϕ. [10 points]
(d) Using the fact that Li with i = x, y, z commute with the Hamiltonian, show that L2 commutes
with the Hamiltonian. [10 points]

Problem 2. To an harmonic oscillator Hamiltonian

H = h̄ωa†a,

we add a term

H ′ = λ(a† + a).

This problem is known as the displaced harmonic oscillator. It can be diagonalized exactly by
adding a constant (let us call it ∆) to the step operators.
(a) Express the constant ∆ in terms of h̄ω and λ. [8 points]
(b) The energies are shifted by a constant energy. Express that energy in terms of h̄ω and λ. [8
points]
(c) Express the new eigenstates |ñ〉 in terms of the displaced oscillator operator ã†. [8 points]
(d) Calculate the matrix elements 〈ñ|0〉.[8 points]
(e) An harmonic oscillator is in the ground state of H. At a certain time, the Hamiltonian
suddenly changes to H +H ′. Plot the probability and change in energy for the final states |ñ〉
for ñ = 0, · · · , 5 for ∆ = 2. [8 points]



Problem 3. We consider scattering off a spherical potential well given by

V (r) =

{ −V0 r ≤ a

0 r > a
V0, a > 0

The particles’ mass is m. We restrict ourselves to low energies, where it is sufficient to consider
s wave scattering (angular momentum l = 0).
(a) Starting from the Schrödinger equation for this problem, derive the phase shift δ0.[14 points]
(b) Calculate the total scattering cross section σ assuming a shallow potential well

(a
√

2mV0/h̄
2 ≪ 1). [10 points]

(c)Show that the same total scattering cross section σ as in b) is also obtained when using the
Born approximation. Note: part c) is really independent of parts a) and b). [16 points]

Problem 4. The normalized wavefunctions for the 2s and 2p states of the hydrogen atom are:

ψ2s =
1√

32πa3
(N − r/a) e−r/2a

ψ2p,0 =
1√

32πa3
(r/a) e−r/2a cos θ

ψ2p,±1 =
1√

64πa3
(r/a) e−r/2a sin θ e±iφ.

where a is the Bohr radius and N is a certain rational number.
(a) Calculate N . (Show your work; no credit for just writing down the answer.) [10 points]
(b) Find an expression for the probability of finding the electron at a distance greater than a
from the nucleus, if the atom is in the 2p,+1 state. (You may leave this answer in the form of
a single integral over one variable.) [10 points]

(c) Now suppose the atom is perturbed by a constant uniform electric field ~E = E0ẑ. Find the
energies of the 2s and 2p states to first order in E0. [20 points]
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DO ONLY THREE OUT OF FOUR QUESTIONS

Problem 1.

Consider the effects of the hyperfine splitting of the ground state of the Hydrogen atom

in the presence of an external magnetic field ~B = B0ẑ. Let the electron spin operator be ~S

and the proton spin operator be ~I, and call the total angular momentum operator ~J = ~S+ ~I.

Then the Hamiltonian for the system is:

H =
Eγ

h̄2
~S · ~I + 2

µB

h̄
~B · ~S, (1)

where Eγ is the energy of the famous 21 cm line and µB is the Bohr magneton. The states

of the system may be written in terms of angular momentum eigenstates of Sz, Iz or J2, Jz,

so clearly label which basis you are using in each of your answers.

(a) In the limit that B0 is so large that Eγ can be neglected, find the energy eigenstates and

eigenvalues. [12 points]

(b) In the limit that B0 is so small that it can be neglected, find the energy eigenstates and

eigenvalues. [15 points]

(c) Find the energy eigenvalues for general B0, and show that the special limits obtained in

parts (a) and (b) follow. [13 points]

Problem 2.

A quantum mechanical spinless particle of mass m is confined to move freely on the

circumference of a circle of radius R in the x, y plane.

(a) Find the allowed energy levels of the particle, and the associated wavefunctions. [16

points]

(b) Now suppose the particle has a charge q and is placed in a constant electric field which

is also in the x, y plane. Calculate the shifts in energy levels to second order in the electric

field, treated as a perturbation. [16 points]

(c) Show that the degeneracies are not removed to any order in the electric field treated as a

perturbation. [8 points]



Problem 3.

Given a 2D harmonic oscillator with Hamiltonian

H =
p2

x

2m
+

p2
y

2m
+

1

2
mω2(x2 + y2) + kmxy (2)

(a) How does 〈x〉 change with time, that is determine d〈x〉/dt ? [10 points]

(b) For k = 0, what are the energies of the ground state and first and second excited states?

What are the degeneracies of each state? [15 points]

(c) For k > 0, using first order perturbation theory, what are the energy shifts of the ground

state and the first excited states? [15 points]

Problem 4.

In many systems, the Hamiltonian is invariant under rotations. An example is the

hydrogen atom where the potential V (r) in the Hamiltonian

H =
p2

2m
+ V (r), (3)

depends only on the distance to the origin.

An infinitesimally small rotation along the z-axis of the wavefunction is given by

Rz,dϕψ(x, y, z) = ψ(x− ydϕ, y + xdϕ, z), (4)

(a) Show that this rotation can be expressed in terms of the angular momentum component

Lz. [10 points]

(b) Starting from the expression of Lz in Cartesian coordinates, show that Lz can be related

to the derivative with respect to ϕ in spherical coordinates. Derive the ϕ-dependent part of

the wavefunction corresponding to an eigenstate of Lz. [10 points]

(c) Show that if Rz,dϕ commutes with the Hamiltonian, then there exist eigenfunctions of H

that are also eigenfunctions of Rz,dϕ. [10 points]

(d) Using the fact that Li with i = x, y, z commute with the Hamiltonian, show that L2

commutes with the Hamiltonian. [10 points]
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2000 Spring Ph.D. Candidacy Exam, Quantum Mechanics
DO ONLY 3 OUT OF 4 OF THE QUESTIONS

Problem 1.

The diagram shows the six lowest energy levels and the associ-
ated angular monenta for a spinless particle moving in a certain
three-dimensional central potential. There are no “accidental”
degeneracies in this energy spectrum. Give the number of nodes
(changes in sign) in the radial wave function associated with each
level. Justify your answer. l = 0

l = 0
l = 1
l = 2

l = 1
l = 0E

Problem 2.

Assume that the mu-neutrino νµ and the tau-neutrino ντ are composed of a mixture of two mass
eigenstates ν1 and ν2. The mixing ratio is given by(

νµ

ντ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
ν1

ν2

)
(1)

In free space, the states ν1 and ν2 evolve according to( |ν1(x, t)〉
|ν2(x, t)〉

)
= eipx/!

(
e−iE1t/!|ν1(0)〉
e−iE2t/!|ν2(0)〉

)
(2)

Show that the transition probability for a mu-neutrino into a tau-neutrino is given by

P (µ → τ) = sin2(2θ) sin2 (E2 − E1)t

2! . (3)
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Problem 3.

Let the potential V = 0 for r < a0 (the Bohr radius) and V = ∞ for r > a0. V is a function of r
only.
a) What is the energy of an electron in the lowest energy state of this potential?
b) How does that compare to the energy of the 1s state of Hydrogen?
c) What is the approximate energy of the lowest energy state with angular momentum greater than
0 (you can leave this result in integral form)?

Problem 4.
The Hamiltonian for a two-dimensional harmonic oscillator is given by

H0 = (a†a + b†b + 1)!ω, (4)

with the coordinates given by

x =

√
!

2mω
(a† + a) and y =

√
!

2mω
(b† + b). (5)

a)Give the eigenvalues of this Hamiltonian.

The Hamiltonian is perturbed by

H ′ = αxy, (6)

where α is a small constant.
b) Express H ′ in terms of the operators a and b and their conjugates.
c) Using degenerate perturbation theory, show how the eigenvalues are changed by H ′ for the states
with eigenenergy 2!ω for H0.
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2008 Fall Ph.D. Candidacy Exam, Quantum Mechanics
DO ONLY 3 OUT OF 4 OF THE QUESTIONS

Problem 1.

We consider a system made of the orthonormalized spin states |+〉 and |−〉, where
Sz|±〉 = ±(~/2)|±〉. Initially both of these states are energy eigenstates with the same en-
ergy ε.

a) An interaction V couples these spin states, giving rise to the matrix elements

〈1|V |1〉 = 〈2|V |2〉 = 0 and 〈1|V |2〉 = ∆

Give the Hamiltonian H of the interacting system.

b) Determine the energy eigenvalues of H.

c) Show that the states |A〉 and |B〉

|A〉 =
1√
2

(
|+〉+

∆∗

|∆| |−〉
)

and |B〉 =
1√
2

(
|+〉 − ∆∗

|∆| |−〉
)

are orthonormalized eigenstates of the interacting system.

d) Determine the time evolution of a state |ψ(t)〉 for which |ψ(t = 0)〉 = |+〉.

e) For the state |ψ(t)〉, calculate the probability that a measurement of Sz at time t yields ±~/2.

Problem 2.

A particle of mass m is constrained to move between two concentric impermeable spheres of radii
r = a and r = b. There is no other potential. Find the ground state energy and normalized wave
function.



2

Problem 3.

Given a two-dimensional oscillator with Hamiltonian

H =
p2

x

2m
+

p2
y

2m
+

1

2
mω2(x2 + y2) + kmxy, (1)

a) What is the time dependence of d〈x〉/dt?

b) What is the time dependence of d〈px〉/dt?

c) For k = 0, what are the energies of the ground state and the first and second excited states?
What are the degeneracies of each state?

d) For k > 0, using first-order perturbation theory, what are the energy shifts of the ground state
and the first excited states?

Problem 4.

a) We want to study the spin-orbit coupling for a level with l = 3. How do you expect that this
level will split under the interaction ζL · S. Give also the degeneracies.

b) Show that for an arbitrary angular momentum operator (integer and half-integer), we can write

J±|jmj〉 =
√

(j ∓mj)(j ±mj + 1)|jmj〉 (2)

(take ~ = 1).

c) Since mj is a good quantum number for the spin-orbit coupling, we can consider the different mj

values separately. Give the matrix for ζL · S in the |lm, 1
2
σ〉 basis with σ = ± 1

2
for mj = 5/2. Find

the eigenvalues and eigenstates of this matrix.

d) Write down the matrix for the spin-orbit coupling in the |jmj〉 basis for mj = 5/2.

e) Obtain the same eigenstates as in question c) by starting for the mj = 7/2 state using the step
operators.
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2008 Spring Ph.D. Candidacy Exam, Quantum Mechanics
DO ONLY 3 OUT OF 4 OF THE QUESTIONS

Problem 1.

Consider a particle with mass m confined to a three-dimensional spherical potential well

V (r) =

{
0, r ≤ a
V0, r > a

(1)

a) Give the Schrödinger equation for this problem.

b) Determine the explicit expressions for the ground state energy and the ground state wave
function in the limit V0 →∞.

c) For the more general case 0 < V0 < ∞, determine the transcendental equation from which we
can obtain the eigenenergies of the particle for angular momentum l = 0.

d) Which condition must be fulfilled such that the transcendental equation derived in c) can be
solved? (Hint: consider a graphical solution of the equation.) Compare this result with a particle
in a one-dimensional rectangular well of depth V0.

Problem 2.

The ground state energy and Bohr radius for the Hydrogen atom are

E1 = − ~2

2ma2
B

, aB =
4πε0~2

e2m
. (2)

a) Calculate the ground state energy (in eV) and Bohr radius (in nm) of positronium (a hydrogen-
like system consisting of an electron and a positron).

b) What is the degeneracy of the positronium ground state due to the spin? Write down the possible
eigenvalues of the total spin together with the corresponding wavefunctions.

c) The ground state of positronium can decay by annihilation into photons. Calculate the energy
and angular momentum released in the process and prove there must be at least two photons in the
final state.
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Problem 3.

A particle of mass m moves in one dimension inside a box of length L. Use first order perturbation
theory to calculate the lowest order correction to the energy levels arising from the relativistic
variation of the particle mass. You can assume that the effect of relativity is small. Note that the
free particle relativistic Hamiltonian is Ĥrel =

√
m2c4 + p2c2 −mc2.

Problem 4.

a) Prove the variational theorem that states that for any arbitrary state

〈ψ|Ĥ|ψ〉 ≥ E0. (3)

b) Consider the Hamiltonian for a particle moving in one dimension

Ĥ =
p̂2

2m
+ V0

(
x̂

a

)6

, (4)

where m is mass, a a length scale, and V0 an energy scale. Is the wavefunction

ψ(x) = C(x2 − a2)e−(x/d)4 , (5)

where C is a normalization constant, d an adjustable parameter with dimensions of length, a good
choice for the variational approximation to the ground state? Why or why not?

c) Depending on the answer of the previous part: If it is a good choice, make a rough order-
of-magnitude estimate of the optimal choice for d. If it is not a good choice, propose a better
variational wavefunction, including an estimate of the length scale.
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2007 Fall Ph.D. Qualifier, Quantum Mechanics
DO ONLY 3 OUT OF 4 OF THE QUESTIONS

Problem 1.

The spin-orbit coupling of an electron of angular momentum l and spin s = 1
2

is described by the
Hamiltonian

H = λl · s, (1)

where λ is the spin-orbit coupling parameter.

(a) Write down the matrix H and diagonalize it to show that the state is split into two states with
total angular momentum j = l ± 1

2
. Find the eigenenergies.

(b) Show that the eigenenergies can also be determined using the relation j = l + s.

[The raising and lowering operators for l are l+|l, ml〉 =
√

(l −ml)(l +ml + 1)|l, ml + 1〉 and

l−|l, ml〉 =
√

(l +ml)(l −ml + 1)|l, ml − 1〉 and similarly for s].

Problem 2.

(a) Write down the nonrelativistic Hamiltonian for a Helium atom with two electrons.

(b) Write down the ground state wavefunction (include the spin part) and give the ground state
energy E0 (in eV) in the absence of electron-electron interactions.

(c) Write down the matrix element for the lowest-order correction E1 to the ground-state energy due
to the electron-electron interaction. The 1s orbital is given by

ϕ100 =
1√
8π

(
2Z

a0

)3/2

e−Zr/a0 (2)

The matrix element can be evaluated giving 5
8

Ze2

4πε0a0
.

(d) Find the ratio of the correction E1 to E0.

The Rydberg constant is R = Z2~2

2ma2
0

and the Bohr radius is a0 = 4πε0~2

me2 .
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Problem 3.

Two identical spin 1/2 fermions described by position coordinates ~ri (i = 1, 2) are bound in a
three-dimensional isotropic harmonic oscillator potential

V (~ri) =
1

2
mω2r2

i . (3)

(a) Write the wave functions of the system in terms of the single-particle spin eigenstates and the
one-dimensional harmonic oscillator wave functions, for each of the energy eigenstates up to and
including energy 4~ω.

(b) Assume that in addition there is a weak spin-independent interaction V between the particles:

V (~r1 − ~r2) = −λδ(3)(~r1 − ~r2) (4)

Find the energies of the system correct to first order in λ for each of the unperturbed states found
in part (a). You may leave your results in terms of definite integrals over known functions.

Problem 4.

Consider normal 1-dimensional particle in box potential (V (x) = ∞ for |x| > L/2 and V (x) = 0
inside box. Two identical particles are confined to the box (assume only orbital degrees of freedom,
ignore spin).

(a) What is the normalized unperturbed ground state for

• two identical bosons of mass m confined in the box

• two identical fermions of mass m confined in the box

• And what are the unperturbed ground state energies of the two cases?

(b) Now a perturbation is applied. A small rectangular bump appears in the box between −a/2 and
+a/2. This perturbation is Vpert = +|V0| for |x| < a/2 and is zero otherwise.

Use first-order perturbation theory to obtain the new ground state energies for the two cases.
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2007 Spring Ph.D. Qualifier, Quantum Mechanics
DO ONLY 3 OUT OF 4 OF THE QUESTIONS

Problem 1.

A particle moves in a 1 dimensional potential described by an attractive delta function at the
origin. The potential is;

V (x) = −Wδ(x)

(a) Discuss and determine the wavefunctions valid for bound state solutions of this system.

(b) Show that there is only one bound state and determine its energy.

Problem 2.

In this problem, |0〉, |n〉 are the shorthand for the eigenstates of the 1 dimensional simple
harmonic oscillator (SHO) Hamiltonian, with |0〉, denoting the ground state. The â† and â are the
SHO raising and lowering operators. (sometimes termed creation and destruction (annihilation)
operators).

(a) Prove that the following state vector |z〉 is an eigenstate of the lowering operator â and that its
eigenvalue is z.

|z〉 = ezâ†|0〉
The z is an arbitrary complex number. (Note, knowledge of the expansion of ex will be useful. )

(b) Evaluate 〈z1|z2〉, where z1 and z2 are arbitrary complex numbers, and use this result to normalize
state |z〉.

Problem 3.

Let the potential V = 0 for r < a0 (the Bohr radius) and V = ∞ for r > a0. V is a function of r
only.

(a) What is the energy of an electron in the lowest energy state of this potential?

(b) How does this compare to the kinetic energy of the 1s state of Hydrogen?

(c) What is the approximate energy of the lowest energy state with angular momentum greater
than 0 (you can leave this result in integral form)?

Problem 4.

In a magnetic resonance experiment a specimen containing nuclei of spin I = 1
2

and magnetic
moment µ = ~γI is placed in a static magnetic field B0 directed along the z-axis and a field B1

which rotates in the xy-plane with angular frequency ω.
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(a) Write down the Hamiltonian for the system.

(b) If the wave function is written

ψ(t) = c+(t)χ 1
2

+ c−(t)χ− 1
2

where χ 1
2

and χ− 1
2

are the spin eigenfunctions, show that

i
dc+
dt

=
1

2
ω0c+ +

1

2
ω1c−e−iωt

and i
dc−
dt

= −1

2
ω0c− +

1

2
ω1c+e

iωt

and where ω0 = γB0 and ω1 = γB1. Assuming that the system starts in the state χ− 1
2
, i.e. c+(0) = 0

and c−(0) = 1, solve these equations to show that subsequently the probability that the system is
in the state χ 1

2
is

|c+|2 = ω2
1

sin2 1
2
[(ω − ω0)

2 + ω2
1]

1
2 t

(ω − ω0)2 + ω2
1


