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Abstract

In this paper I extend the two-step estimator of the additive nonparametric model

with a known link function proposed in Horowitz and Mammen (2004) to cover the ad-

ditive models with multiplicative interaction terms. I find the same rate of convergence

(n2/5) for estimators of both the univariate additive part and the multiplicative interac-

tion part. I show that this convergence rate does not depend on the dimension of the

vector of covariates.

1 Introduction

Additive models with multiplicative interaction terms provide the nonparametric ex-

tension to the simple linear regression model that includes interactions between the

covariates. These models are useful in economic analysis since they allow to capture

the cross-factor effects that are common in e.g. the production function analysis or

demand analysis. However, the majority of the literature that studies those types of

nonparametric models focuses on pure additive models that do not include any interac-

tion terms (see e.g. Linton and Nielsen (1995), Linton (2000), or Horowitz and Mammen

(2004)). In this paper I fill this gap and provide a nonparametric estimator of the ad-

ditive univariate terms and two-factor interaction terms in the additive model with a
∗I am grateful to Joel Horowitz for his continuous encouragement and support. I thank Maria

Goltsman and Eugene Orlov for valuable comments and suggestions. All remaining errors are mine.
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known link function. I extend two-step estimator of Horowitz and Mammen (2004)

to cover additive models with bi-factor interaction terms and show that it possesses

similar properties. When both additive univariate components and cross-term univari-

ate components are twice continuously differentiable, the estimator is asymptotically

normally distributed with the convergence rate n2/5 regardless of the dimension of the

vector of covariates. The estimator discussed in this paper can be easily adjusted to

cover the case where the multiplicative cross-terms are composed of more than two uni-

variate factors while preserving the convergence rate. In particular, adding factors to

the multiplicative terms affects the the rate of the second-order term of the asymptotic

expansion of the estimator discussed in this paper, but it does not affect the rate of the

first-order term.

The rest of the paper is organized as follows. In section 2 I formally state the

problem, provide the conditions for identification and describe the two-step estimator of

the univariate components of the additive model with bi-factor cross-terms. In section

I present theoretical results that supports the validity of this two-step procedure. I

illustrate the behavior of the estimator with two small simulation exercises in section

5. Finally, section 6 concludes. All proofs are collected in the Appendix.

2 The Model

Consider the following model:

Yi = F

(
µ+

d∑
j=1

mj(X
j
i ) +

d∑
k,l=1,k<l

h1k(X
k
i )h2l(X

l
i)

)
+ Ui, (1)

where E[Ui|Xi] = 0, Xi ∈ Rd is a continuous random vector with density f(x), and F

is a known link function. Throughout the paper I assume that density function f(·)
has a compact support. The goal is to estimate unknown additive and multiplicative

components: µ, {mj, j = 1, . . . , d}, and {h1k, h2l, k, l = 1, . . . , d, k < l} based on the

sample {(Yi, Xi), i = 1, . . . , n}. For the ease of the presentation of the results, in this

paper we will deal with a simplification of the model in (1) that includes only a single
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cross-term component:

Yi = F

(
µ+

d∑
j=1

mj(X
j
i ) + h1(X1

i )h2(X2
i )

)
+ Ui. (2)

There are several nonparametric estimators for this type of models available in the

literature. In general, one can ignore the structure of the model and use a series esti-

mator developed by Newey (1997), or a local linear estimator proposed by Stone (1977)

and Cleveland (1979), or finally a Nadaraya-Watson kernel estimator. However, all

these estimators suffer from the curse of dimensionality, so that the rate of convergence

of these estimators depend on the dimension of the vector of regressors. In the context

of the additive model without cross-term component, Stone (1985) shows the rate of

convergence estimator based on splines does not depend on the number of covariates

and therefore does not suffer from the curse of dimensionality.

For pure additive models, Linton and Nielsen (1995), Linton and Härdle (1996), and

Chen, Hardle, Linton and Severance-Lossin (1996) propose various estimation procedure

that based on marginal integration. Linton and Nielsen (1995) also consider a pure

multiplicative submodel with two components show that it also can be estimated by

marginal integration procedure. In the case when the dimension of the problem is

d = dim(Xi) ≤ 2, their marginal integration estimator has a convergence rate n2/5.

However, when d ≥ 3, Linton and Nielsen (1995) estimator requires the number of

continuous derivatives of additive or multiplicative terms to go up with the size of the

problem.

The optimal convergence rate for the estimator based on the marginal integration

in this case is n
r

2r+1 , where r is the number of continuous derivatives. To avoid this

“curse of dimensionality”, in the case of the pure additive model without the cross

terms, Horowitz and Mammen (2004) propose a two-step method that achieves a n2/5

convergence rate regardless the dimension of X under the minimal assumption that

second order derivatives are continuous. Another two-step procedure that also attains

the convergence rate of n2/5 is proposed in Linton (2000). In this paper I show how

the approach in Horowitz and Mammen (2004) can be extended to the case when

the model contains bothadditive and multiplicative terms. Next subsection addresses

identification issues and describes the estimator.
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2.1 Two-Step Estimator

Identification. For the identification purposes, since µ, {mj, 1 ≤ j ≤ d} and {h1, h2}
in (2) are identified only up to a location, we need to fix the location. Let the support

of each component of the vector of regressor Xi be [−1, 1], so that suppXj
i = [−1, 1].

Then we pin down the location by assuming that functions {mj, 1 ≤ j ≤ d} and {h1, h2}
satisfy

1∫
−1

mj(x)dx = 0, and

1∫
−1

hl(x)dx = 0

for any j = 1, . . . , d and l = 1, 2. Also, observe that cross-term h1(·)h2(·) identifies

functions h1 and h2 only up to scale. Therefore, we assume that h1(−1) = h1 6= 0 to

pin down the scale. Finally, if e.g. h1(x) = 0 for any x ∈ [−1, 1], then h2(·) is not

identified, and vice versa. Therefore, we assume that h1(x) 6= 0 and h2(x) 6= 0 for any

x ∈ [−1, 1].

Two-Step Estimator. The procedure proposed in this paper is based on the two-

step estimator introduced in Horowitz and Mammen (2004). The first step estimator is

a series estimator that estimates all the components of the model in (2) simultaneously.

The second step estimator is a local linear estimator that treats each component indi-

vidually, while employing the first step estimator for the remaining parameters. The

series estimator uses the following notation: let {pk, k = 1, 2, . . .} be an orthonormal

basis for twice continuously differentiable functions on [−1, 1], that satisfy the following

conditions:

Condition 1. (a)
1∫
−1

pk(x)dx = 0 for any k;

(b)
1∫
−1

pk(x)pj(x)dx = 0 for any k, jsuch that k 6= j and
1∫
−1

p2
k(x)dx = 1 for any k;

(c) For any 1 ≤ j ≤ d, l = 1, 2 and any x ∈ [−1, 1]d, there exist θ
(mj)
k and θ

(hl)
k such

that

mj(x) =
∞∑
k=1

θ
(mj)
k pk(x) and hl(x) =

∞∑
k=1

θ
(hl)
k pk(x). (3)

These are standard conditions imposed on the basis functions that justify the use of

series estimator. The two-step procedure for estimation of cross-term components can

be summarized as follows.
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Step 1: Series Estimator. Let pκ(v) = (p1(v), . . . , pκ(v))′ be the vector of first κ basis

functions. For any x ∈ [−1, 1]d, define

g(x) ≡ µ+
d∑
j=1

mj(x
j) + h1(x1)h2(x2) (4)

and let

φκ(θ;x) = µ+ pκ(x1)′θ(m1) + . . .+ pκ(xd)′θ(md) +
[
pκ(x1)′θ(h1)

] [
pκ(x2)′θ(h2)

]
.

Let {(Yi, Xi), i = 1, . . . , n} be a random sample from the distribution of (Y,X). Suppose

that θ̂nκ is a solution to the minimization problem:

min
θ∈Θκ

Snκ(θ) ≡
1

n

n∑
i=1

{Yi − F (φκ(θ;Xi))}2 , (5)

where Θκ ⊂ R1+κ(d+2) is a compact set. Then the first-stage series estimator of g(x)

is φκ(θ̂nκ;x). The corresponding first-stage series estimators for mj(x) and al(x) are

m̃j(x
j) ≡ pκ(xj)′θ̂

(mj)
nκ and h̃l(x

l) = pκ(xl)′θ̂
(hl)
nκ respectively, for any j = 1, . . . , d and

l = 1, 2.

Step 2: Local Linear Estimator.

Define m̃(x) = µ̃+
d∑
l=1

m̃l(x
l) and g̃(x) = m̃(x)+h̃1(x1)h̃2(x2). Let K be a kernel function

defined on [−1, 1] and let Kh(v) ≡ K
(
v
h

)
for h > 0. Consider the following optimization

problem:

min
b0,b1

Sn(b0, b1;x1) ≡

≡ 1
n

n∑
i=1

{Yi − F (m̃(Xi) + (b0 + b1(X1
i − x1))h̃2(X2

i ))}2Kh(x
1 −X1

i )
(6)

Define the set of first and second partial derivatives of Sn(b0, b1;x1) with respect to b0

and b1, evaluated at the point (b∗0 = h̃1(x1), b∗1 = 0):

S ′nb0(x
1, g̃) ≡ ∂Sn(b0,b1;x1)

∂b0

∣∣∣
(b∗0,b

∗
1)

;

S ′nb1(x
1, g̃) ≡ ∂Sn(b0,b1;x1)

∂b1

∣∣∣
(b∗0,b

∗
1)

;

S ′′nb0b0(x
1, g̃) ≡ ∂2Sn(b0,b1;x1)

∂b20

∣∣∣
(b∗0,b

∗
1)

;
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S ′′nb0b1(x
1, g̃) ≡ ∂2Sn(b0,b1;x1)

∂b0∂b1

∣∣∣
(b∗0,b

∗
1)

;

S ′′nb1b1(x
1, g̃) ≡ ∂2Sn(b0,b1;x1)

∂b21

∣∣∣
(b∗0,b

∗
1)
.

The second-stage estimator of a cross-term h1(x1) is given by:

ĥ1(x1) = h̃1(x1)−
S ′′nb1b1(x

1, g̃)S ′nb0(x
1, g̃)− S ′′nb0b1(x

1, g̃)S ′nb1(x
1, g̃)

S ′′nb0b0(x
1, g̃)S ′′nb1b1(x

1, g̃)−
[
S ′′nb0b1(x

1, g̃)
]2 (7)

This is a one Newton step descend from the point (h̃1(x1), 0) towards the minimum of

(6). Pure additive components mj(·) can be estimated analogously with the appropriate

choice of the objective function in (6). Next section provides a set of sufficient conditions

for consistency and asymptotic normality of this two-step estimator.

3 Results

First, I introduce some additional notation. For any matrix A define the norm ‖A‖ ≡
(trace(AA′))1/2. For any k ∈ N let Ik be k× k identity matrix. For any two α1, α2 ∈ R
define the following two matrices:

γ(α1, α2) =


Ik 0 0

0 α1 0

0 0 α2


and

Γκ(α1, α2) =

(
1 0

0 γ(α1, α2)⊗ Iκ

)
.

Both γ(α1, α2) and Γκ(α1, α2) are diagonal matrices. Using this above notation, I

define matrices

Qκ = E[F ′ (g(X))2 (Γκ(h2(X2), h1(X1))Pκ(X)
) (

Γκ(h2(X2), h1(X1))Pκ(X)
)′

]
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and

Ψκ =Q−1
κ E[F ′ (g(X))2 V (X)

(
Γκ(h2(X2), h1(X1))Pκ(X)

)
×
(
Γκ(h2(X2), h1(X1))Pκ(X)

)′
]Q−1

κ ,

where V (x) = V ar(U |X = x). Note that Qκ and Ψκ are positive semidefinite d(κ)×d(κ)

matrices, where d(κ) = 1 + κ(d + 2). Finally, let λκ,min be the smallest eigenvalue of

Qκ and ζκ = sup
x∈[−1,1]d

‖Pκ(x)‖. Below is the set of conditions that are sufficient for

consistency and asymptotic normality of the two-step estimator. These conditions

closely follow assumptions A1-A7 from Horowitz and Mammen (2004), so that the con-

dition that we need for consistency and asymptotic normality of the two-step estimator

of multiplicative components are not more restrictive than the conditions we need for

consistency and asymptotic normality of the two-step estimator of pure additive model.

Assumption 1. The data {(Yi, Xi), i = 1, . . . , n} are i.i.d. sample from (Ω,F , P ), and

E(Y |X = x) = F (µ+
d∑
j=1

mj(x
j) + h1(x1)h2(x2)) for almost any x ∈ [−1, 1]d.

This is a standard random sampling assumption. Also, this assumption specifies

the structural form defined in (2) for the conditional expectation of Y conditional on

X.

Assumption 2. (i) The support of X is X = [−1, 1]d.

(ii) The distribution of X is absolutely continuous with respect to Lebesgue measure.

(iii) The probability density function of X is a bounded twice continuously differentiable

function on [−1, 1]d and is bounded away from zero.

(iv) There are constants cV > 0 and CV < ∞ such that cV < V ar(U |X = x) < CV

for all x ∈ [−1, 1]d.

(v) E |U |2 < ∞ for all j > 3. Also, there is a constant CU < ∞ such that E |U |j <
Cj−2
U j!.

Assumption 3. (i) There is a constant Cac < ∞ such that |mj(v)| , |al(v)| < Cac,

for each j = 1, . . . , d, l = 1, 2 and any v ∈ [−1, 1].
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(ii) Each function {mj, 1 ≤ j ≤ d}, h1 and h2 is twice continuously differentiable on

[−1, 1].

(iii) There are constants CF1 < ∞, cF2 > 0, CF2 < ∞ such that |F (v1)− F (v2)| <
CF1 |v1 − v2| and cF2 < F ′(v) < CF2 for all v1, v2, v ∈ V =

[ min
x∈[−1,1]d

g(x), max
x∈[−1,1]d

g(x)]. Here function g is defined in (4).

(iv) F is twice continuously differentiable on V .

(v) There are constants CF3 < ∞ and S1 > 5/7 such that |F ′′(v1)− F ′′(v2)| <
CF3 |v1 − v2|S1 for all v1, v2 ∈ V .

Assumptions 2 and 3 impose some regularity conditions on the parameters of the

model (functions {mj}, h1, h2, and F ) and distributions of vector of covariates X

and error term U . In particular, we require known link function F to be Lipschitz

continuous, so that applying function F to the series expansion of g preserves the

convergence rate of this expansion.

Assumption 4. (i) There are constants CQ < ∞ and cλ > 0 such that |Qij| 6 CQ

and λκ,min > cλ for all κ and all i, j = 1, . . . , d(κ).

(ii) The largest eigenvalue of Ψκ is bounded for all κ.

Assumption 5. (i) The basis functions {pk, k = 1, 2, . . .} satisfy conditions 1 (a),

(b) and (c).

(ii) There is a constant cκ > 0 such that ζκ > cκ for all κ sufficiently large.

(iii) ζκ = O(κ1/2) as κ→∞.

(iv) There are constant Cθ < ∞ and vector θκ0 ∈ [−Cθ, Cθ]d(κ) such that

sup
x∈[−1,1]d

|g(x)− φκ(θκ0;x)| = O(κ−2) as κ→∞.

(v) For each κ, θκ0 is an interior point of [−Cθ, Cθ]d(κ).

Assumptions 4 and 5 provide regularity condition that are sufficient for the consis-

tency of a first step series estimator.

Assumption 6. (i) κ = Cκn
4/15+v for some 0 < Cκ < ∞ and 0 < v <

min{1/30, (7S1 − 5)/ [30(1 + S1)]}.
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(ii) h = Chn
−1/5 for some 0 < Ch <∞.

Assumption 7. The function K is a bounded, continuous probability density function

on [−1, 1] and is symmetric about 0.

Here Assumptions 6 and 7 specify the rate at which the number of basis functions

κ used in a first step estimation goes to infinity with the sample size, rate at which the

bandwidth h used in the second step shrinks to zero, and restricts the choice of kernel

functions to the family of symmetric probability density functions.

Under those assumptions, theorem below shows that the first step series estimator

is consistent and characterizes its asymptotic expansion and convergence rate.

Theorem 2. Suppose that Assumptions 1 through 7 hold. Then

(a)
∥∥∥θ̂nκ − θκ0

∥∥∥→ 0 almost surely as n→∞,

(b) θ̂nκ − θκ0 = Op

(
κ1/2

n1/2 + 1
κ2

)
,

(c) sup
x∈X

∣∣∣φκ(θ̂nκ;x)− g(x)
∣∣∣ = Op

(
κ

n1/2 + 1
κ3/2

)
,

and finally,

(d)

θ̂nκ − θκ0 =Q−1
κ

1

n

n∑
i=1

UiF
′(g(Xi))Γκ(h2(X2

i ), h1(X1
i ))Pκ(Xi)

+Q−1
κ

1

n

n∑
i=1

[F ′(g(Xi))]
2 (

Γκ(h2(X2
i ), h1(X1

i ))Pκ(Xi)
)

×
(
Γκ(h2(X2

i ), h1(X1
i ))Pκ(Xi)

)′
bκ0(Xi) +Rn,

where ‖Rn‖ = Op

(
1

n1/2κ1/2 + κ2

n

)
.

Define the following set of auxiliary variables:

D0(x1) = 2
∫

[F ′(g(x1, x̃−1))]
2

[h2(x̃2)]
2
h′1(x1)fX(x1, x̃−1)dx̃−1;

D1(x1) = 2
∫

[F ′(g(x1, x̃−1))]
2

[h2(x̃2)]
2
h′1(x1)∂fX(x1,x̃−1)

∂x1 dx̃−1;

AK =
1∫
−1

ν2K(ν)dν;
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BK =
1∫
−1

[K(ν)]2 dν;

β1(x1) = C2
h

2AK
D0(x1)

∫
q(x1, x̃−1)F ′(g(x1, x̃−1))[h2(x̃2)]2fX(x1, x̃−1)dx̃−1;

V1(x1) = C−1
h

BK
D0(x1)

∫
V ar(U |x1, x̃−1) [F ′(g(x1, x̃−1))]

2
[h2(x̃2)]2fX(x1, x̃−1)dx̃−1;

q(x1, x̃−1) = F ′′(g(x1, x̃−1))h′1(x1)
{

4∂
2g((x1,x̃−1))

∂(x1)2
− 3h′1(x1)h2(x̃2)

}
+F ′(g(x1, x̃−1))h′′1(x1).

Theorem 3 (Asymptotic normality for multiplicative components). Suppose that As-

sumptions 1 through 7 hold, and let ĥ1(x1) be a second stage estimator of h1(x1) defined

in (7). Then

(a) ĥ1(x1)−h1(x1) =
−S′1b0 (x1,g)+[D1(x1)/D0(x1)]S′1b1 (x1,g)

nhD0(x1)
+op(n

−2/5) uniformly over |x1| ≤
1− h,

(b) n2/5
[
ĥ1(x1)− h1(x1)

]
d→ N(β1(x1), V1(x1)),

(c) n2/5(ĥ1(x1)− h1(x1)) and n2/5(ĥ2(x2)− h2(x2)) are asymptotically independently

distributed. Moreover, n2/5(ĥ1(x1)−h1(x1)) and n2/5(m̂j(x
j)−mj(x

j)) are asymp-

totically independently distributed, for any j 6= 1.

Theorem 3 shows that the second step estimator has pointwise convergence rate

equal to n2/5 and is asymptotically normally distributed. Moreover, estimators of both

univariate additive and cross-term components in the model (2) evaluated at different

points are asymptotically independent. Next section describes the optimal choice of

the bandwidth in empirical applications.

4 Bandwidth selection

The general rule of the bandwidth selection is to choose bandwidth that minimizes

Mean Integrated Square Error (MISE ) or Asymptotic MISE (AMISE ). In our case, for

each h1 and any given weight function w(·), the AMISE for the bandwidth h = Chn
−1/5

is given by

AMISEh1(Ch) = n
4
5

1∫
−1

w(x1)[(β1(x1))2 + V1(x1)]dx1.

10



Recall that β1(x1) and V1(x1) in the expression for AMISEh1 depend on the choice of

Ch. The asymptotically optimal bandwidth sets Ch in h = Chn
−1/5 as to minimize the

AMISEh1 . Define β1(x1) = C2
hβ01(x1) and V1(x1) = C−1

h V01(x1). Then

AMISEh1(Ch) = n
4
5

1∫
−1

w(x1)[C4
h(β01(x1))2 + C−1

h V01(x1)]dx1.

Therefore, the asymptotically optimal C∗h for the estimate of h1 is given by

C∗h =
1

4


1∫
−1

w(x1)V01(x1)dx1

1∫
−1

w(x1)(β01(x1))2dx1


1
5

. (8)

A plug-in estimator of C∗h can be obtained by substitution of β01(x1) and V01(x1) in

(8) with their consistent estimates (e.g. kernel estimators). The same method can

be used to obtain plug-in estimators of the asymptotically optimal choice of Ch for

other multiplicative cross-terms (h2 in our case) and additive univariate components

{mj, j = 1, . . . , d}.
To estimate asymptotically optimal bandwidths simultaneously for all component

of the additive model, one can use the Penalized Least Squares method proposed in

Horowitz and Mammen (2004).

5 Simulation

In this section, I consider two simple examples with d = 2. Both models have a logistic

link function F (v) = ev

1+ev
.

Design 1: Let

P (Y = 1|X = x) = F
(
f1(x1) + f2(x2) + x1x2

)
,

where

f1(x1) = sin(πx1) and f2(x2) = Φ(3x2).

The covariates x1 and x2 are independent and uniformly distributed over [−1; 1]. Sample
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Figure 1: Design 1: First and second step estimators of f1

size is n = 500. The first step estimator uses B-splines and κ1 = 4 for f1 and κ2 = 2

for f2; Tchebychev polynomials are used to obtain a first-step estimator of interaction

terms. The second-stage estimator sets h1 = 0.5 and h2 = 1.5 and uses a kernel

function K(v) = 15
16

(1− v2)
2
I (|v| 6 1) . Figures 1 and 2 plot the results of the two-

step estimation procedure: first step series estimators (dashed lines) and second step

estimators (dotted line). Observe that the second step estimator has smaller integrated

squared error than series estimator.

Design 2: Let

P (Y = 1|X = x) = F
(
x1 + x2 + f1(x1)(f2(x2)− 1/2)

)
,

were f1(·) and f2(·) are the same as in previous case. B-splines and Tchebychev poly-

nomials are used to obtain a first step estimator, with the parameters specified as in

the Design 1. The second step estimation uses h1 = 0.5 and h2 = 1.5 and a kernel func-

tion K(v) = 15
16

(1− v2)
2
I (|v| 6 1) . Figures 3 and 4 show the results of the estimation

procedure: dashed lines for the first step series estimator and dotted line for the second

step estimators. Again, we observe that the second step estimator behaves better than

the series estimator in the case of function f2(·), but for this particular sample it turns

out to be inferior in the integrated squared error sense to series estimator for f1(·).
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Figure 2: Design 1: First and second step estimators of f2

Overall, the two-step procedure performs satisfactory in these examples.

6 Conclusion

In this paper I show how the technique developed in Horowitz and Mammen (2004) can

be used to estimate both univariate additive terms and multiplicative two-factor terms

in the non-parametric additive model with a known link function. I show that both

estimators of univariate components and cross-term components are asymptotically

normally independently distributed with the rate of convergence n2/5. This is equal

to the rate of convergence obtained by Horowitz and Mammen for the additive model

without multiplicative cross-terms. The method proposed in this paper can be extended

to cover the estimation of additive models where cross-terms are composed of more than

two univariate factors.
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Figure 3: Design 2: First and second step estimators of f1

Figure 4: Design 2: First and second step estimators of f2
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7 Appendix

The following notation is used throughout the appendix:

g(x) = µ+
d∑
j=1

mj(x
j) + h1(x1)h2(x2),.

m(x) = µ+
d∑
j=1

mj(x
j),

φκ(θ;x) = µ+ pκ(x1)′θ(m1) + . . .+ pκ(xd)′θ(md) +
[
pκ(x1)′θ(h1)

] [
pκ(x2)′θ(h2)

]
,

Ik is k × k identity matrix,

γ(α1, α2) =


Ik 0 0

0 α1 0

0 0 α2


Γκ(α1, α2) =

(
1 0

0 γ(α1, α2)⊗ Iκ

)
.

bκ0(x) = g(x)− φκ(θκ0;x),

α1κ0(x) = h1(x1)− pκ(x1)′θ
(h1)
κ0 ,

α2κ0(x) = h2(x2)− pκ(x2)′θ
(h2)
κ0 ,

Γ̂κ(θ̂nκ;x) = Γκ(p
κ(x2)′θ̂

(h2)
nκ , pκ(x1)′θ̂

(h1)
nκ ),

∆Γ̂κ(θ̂nκ;x) = Γ̂κ(θ̂nκ;x)− Γκ(0, 0),

∆Γκ0(x) = Γκ(α2κ0(x2), α1κ0(x1))− Γκ(0, 0),

Λκ(x) =


0 0 0

0 0 pκ(x1)pκ(x2)′

0 pκ(x2)pκ(x1)′ 0

 .

Proof of Theorem 2: I begin with six auxiliary lemmas that help prove Theorem 2.

Lemma 4. There is a constant a > 0 and C <∞ such that

P

[
sup
θ∈Θκ

|Snκ(θ)− E[Snκ(θ)]| > ε

]
≤ C exp

(
−naε2

)
for any sufficiently small ε > 0 and all sufficiently large n.

Proof: Write Snκ(θ) = 1
n

n∑
i=1

Y 2
i − 2Snκ1(θ) + Snκ2(θ), where

Snκ1(θ) = n−1

n∑
i=1

YiF (φκ(θ;Xi))

and
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Snκ2(θ) = n−1

n∑
i=1

[F (φκ(θ;Xi))]
2 .

Define S̃nκ1(θ) = Snκ1(θ)−ESnκ1(θ). Divide Θκ into hypercubes with edge-length equal

to some l > 0. Let Θ
(j)
κ be the j’th cube and define θκj to be the center of the cube, for

every j = 1, . . . , J ≡ (Cθ/l)
d(κ).

For any θ ∈ Θ
(j)
κ , we have

∣∣∣S̃nκ1(θ)
∣∣∣ 6 ∣∣∣S̃nκ1(θκj)

∣∣∣+
∣∣∣S̃nκ1(θ)− S̃nκ1(θκj)

∣∣∣ 6 ∣∣∣S̃nκ1(θκj)
∣∣∣+ 2CF1ζ

2
κrn

−1

n∑
i=1

|Yi| .

Choose r = [ζ2
κ]
−c
, c > 1, so that 2CF1ζ

2
κrE |Y | < ε/4 for all sufficiently large κ. By

Bernstein’s inequality,

P

[
2CF1ζ

2
κrn

−1

n∑
i=1

|Yi| > ε/2

]
6 2 exp

[
−a5nε

2ζ4c−4
κ

]
and

P
[∣∣∣S̃nκ1(θκj)

∣∣∣ > ε/2
]

= P

[
n−1

∣∣∣∣∣
n∑
i=1

{YiF (φκ(θκj;Xi))− E [YiF (φκ(θκj;Xi)]}

∣∣∣∣∣ > ε/2

]
≤ 2 exp

[
−b5nε

2
]
.

Therefore,

P

[
sup
θ∈Θκ

∣∣∣S̃nκ1(θ)
∣∣∣ > ε

]
≤ 2M

[
exp

[
−b5nε

2
]

+ exp
[
−a5nε

2ζ4c−4
κ

]]
≤ exp [d(κ) (ln (Cθ/r) + (1/2) ln (d(κ)))]

[
exp

[
−b5nε

2
]

+ exp
[
−a5nε

2
]]

Observe that by the choice of r, d(κ) (ln (Cθ/r) + (1/2) ln (d(κ))) < 0 when n is

sufficiently large. The result of the lemma follows immediately. 2

Define Sκ(θ) = ESnκ(θ) and let θ̃κ = arg min
θ∈Θκ

Sκ(θ). Also define Sκ0(θ) =
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E [Y − F (φκ(θ;X) + bκ0(X))]2 and let θκ0 = arg min
θ∈Θκ

Sκ0(θ).

Lemma 5. For any η > 0, Sκ(θ̂nκ) − Sκ(θ̃κ) < η almost surely for all n sufficiently

large.

Lemma 6. For any η > 0, Sκ0(θ̃κ)− Sκ0(θκ0) < η for all sufficiently large n.

Proof: The proof of Lemmas 5 and 6 closely follows the proof of Lemmas 2 and 3 in

Horowitz and Mammen (2004) and therefore is omitted here.

Define Gi = g(Xi), Zκi = F ′ (Gi) Γκ(h2(X2
i ), h1(X1

i ))Pκ(Xi). Also define Q̂κ =

n−1
n∑
i=1

ZκiZ
′
κi and Bn = Q̂−1

κ
1
n

n∑
i=1

F ′(Gi)Zκibκ0(Xi). Let U = (U1, . . . , Un)′ be the vector

of residuals. Under Assumptions 1 through 7 the following results hold:

Lemma 7.
∥∥∥Q̂κ −Qκ

∥∥∥2

= Op(κ
2/n).

Lemma 8. γn

∥∥∥ 1
n
Q̂−1
κ Z ′κU

∥∥∥2

= Op(κ/n).

Lemma 9. ‖Bn‖2 = Op(κ
−4).

Proof: The proof of Lemmas 7, 8 and 9 follows the proof for corresponding lemmas in

Horowitz and Mammen (2004) and therefore is omitted here.

Now we are ready to prove Theorem 2. To prove part (a) of Theorem 2, note that

Sκ0(θ̂nκ)− Sκ0(θκ0) =
[
Sκ0(θ̂nκ)− Sκ(θ̂nκ)

]
+
[
Sκ(θ̂nκ)− Sκ(θ̃κ)

]
+
[
Sκ(θ̃κ)− Sκ0(θ̃κ)

]
+
[
Sκ0(θ̃κ)− Sκ0(θκ0)

]
.

From Lemmas 5 and 6 and uniform convergence of Sκ to Sκ0 it follows that for any

given h > 0 and η > 0 each of the four terms in the expression for Sκ0(θ̂nκ)−Sκ0(θκ0) is

less than η/4 almost surely for all sufficiently large n. Therefore Sκ0(θ̂nκ)−Sκ0(θκ0) < η

almost surely for all sufficiently large n. Part (a) follows because θκ0 uniquely minimizes

Sκ0(·).
To prove part (d) of Theorem 2, define ∆Gi = φκ(θ̂κn;Xi) − Gi = φκ(θ̂κn;Xi) −

φκ(θκ0;Xi)−bκ0(Xi). From Taylor series expansion for ∂Snκ(θ̂nκ)/∂θ = 0 it follows that:

1

n

n∑
i=1

ZκiUi −
[
Q̂κ +Rn1

]
(θ̂nκ − θκ0) +

1

n

n∑
i=1

F ′ (Gi)Zκibκ0 (Xi) +Rn2 = 0. (9)
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The residual terms have the form:

Rn1 =
1

n

n∑
i=1

{−UiF ′′(Ĝi)− F (Gi)F
′′(Ĝi) + (2F ′(Gi)F

′′(G̃i) + F ′(Gi)F
′′(Ĝi))∆Gi

+ ((F ′′(G̃i))
2 +

1

2
F ′′(

˜̃
Gi)F

′′(Ĝi)) (∆Gi)
2}(Γ̂κ(θ̂nκ;Xi)Pκ(Xi))(Γ̂κ(θ̂nκ;Xi)Pκ(Xi))

′

+
1

n

n∑
i=1

(F ′(Gi))
2(∆Γ̂κ(θ̂nκ;Xi)Pκ(Xi))(Γ̂κ(θ̂nκ;Xi)Pκ(Xi))

′

+
1

n

n∑
i=1

(F ′(Gi))
2(Γ̂κ(θ̂nκ;Xi)Pκ(Xi))(∆Γ̂κ(θ̂nκ;Xi))Pκ(Xi))

′

+
1

n

n∑
i=1

{−UiF ′(Gi) + F (Gi)F
′(Gi) + (−UiF ′′(G̃i) + F (Gi)F

′′(G̃i))∆Gi

+
1

2
F ′(Gi)F

′′(
˜̃
Gi) (∆Gi)

2 +
1

2
F ′′(G̃i)F

′′(
˜̃
Gi) (∆Gi)

3}Λκ(Xi),

and

Rn2 =− 1

n

n∑
i=1

{Ui(F ′′(Gi)Γ̂κ(θκ0;Xi) + F ′(Gi)∆Γκ0(Xi))

+ (
1

2
F ′(Gi)F

′′(Gi) + F ′(Gi)F
′′(Gi)bκ0(Xi)

+
1

2
F ′′(Gi)F

′′(Gi) (bκ0(Xi))
2)Γ̂κ(θκ0;Xi)

+ (F ′(Gi))
2

∆Γκ0(Xi)}Pκ(Xi)bκ0(Xi),

where G̃i and
˜̃
Gi are the points between Ĝi = φκ(θ̂nκ;Xi) and Gi, Gi, and Gi are the

points between φκ(θκ0;Xi) and Gi.

Following Horowitz and Mammen (2004), one can show that

||[(Q̂κ +Rn1)−1 − Q̂−1
κ ]Z ′κU/n||2 = Op

(
κ3

n
||θ̂nκ − θκ0||2 +

1

κn

)
and that
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||((Q̂κ+Rn1)−1−Q̂−1
κ )(

1

n

n∑
i=1

F ′ (Gi)Zκibκ0 (Xi)+Rn2)||2 = Op

(
||θ̂nκ − θκ0||2

1

κ2
+ κ−6

)
.

From the above results, it follows that

θ̂nκ − θκ0 =
1

n
Q̂−1
κ Z ′κU + Q̂−1

κ

1

n

n∑
i=1

F ′(g(Xi))Zκibκ0(Xi) +Rn, (10)

where ‖Rn‖ = Op

(
1

n1/2κ1/2 + κ2

n

)
.

Part (d) then follows from applying the result of Lemma 7 to the right-hand

side of (9).

Part (b) of Theorem 2 follows immediately from part (d). To prove part (c), observe

that φκ(θ̂nκ;x)−φκ(θκ0;x) = Γ̂κ(θ̃nκ;x)P ′κ(x)(θ̂nκ−θκ0), where θ̃nκ lies between θ̂nκ and

θκ0. Therefore, sup
x∈X

∣∣∣φκ(θ̂nκ;x)− φκ(θκ0;x)
∣∣∣ = Op

(
κ

n1/2 + 1
κ3/2

)
.

Part (c) follows from this result and Assumption 5(iii). 2

Proof of Theorem 3

I begin by showing several auxiliary lemmas that will be used in the proof of Theorem

3:

Lemma 10. Let

δn1(x) =n−1
(
Γκ(h2(x2), h1(x1))Pκ(x)

)′
Q−1
κ

×
n∑
j=1

F ′ (g(Xj))
(
Γκ(h2(X2

j ), h1(X1
j ))Pκ(Xj)

)
Uj

and

δn2(x) =n−1
(
Γκ(h2(x2), h1(x1))Pκ(x)

)′
Q−1
κ

×
n∑
j=1

[F ′(g(Xj))]
2 (

Γκ(h2(X2
j ), h1(X1

j ))Pκ(Xj)
)
bκ0(Xj).
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Define

Hk1(x1) = (nh)−
1
2

n∑
i=1

[
F ′(g(x1, Xi))

]2
h2(X2

i )(X1
i − x1)kKh(x

1 −X1
i )δn1(Xi),

Hk2(x1) = (nh)−
1
2

n∑
i=1

[
F ′(g(x1, Xi))

]2
h2(X2

i )(X1
i − x1)kKh(x

1 −X1
i )δn2(Xi),

Hk3(x1) = (nh)−
1
2

n∑
i=1

[
F ′(g(x1, Xi))

]2
h2(X2

i )(X1
i − x1)kKh(x

1 −X1
i )bκ0(Xi).

Then Hkl(x
1) = op(1), where k = 0, 1 and l = 1, 2, 3.

Proof: The proof is given for the case when k = 0. Similar arguments apply to the case

when k = 1.

Write H01(x1) =
n∑
j=1

aj(x
1)Uj, where

aj(x
1) =n−1 (nh)−

1
2

n∑
i=1

[
F ′(g(x1, Xi))

]2
h2(X2

i )Kh(x
1 −X1

i )

×
(
Γκ(h2(X2

i ), h1(X1
i ))Pκ(Xi)

)′
×Q−1

κ F ′ (g(Xj))
(
Γκ(h2(X2

j ), h1(X1
j ))Pκ(Xj)

)
.

Rewrite aj(x
1) ≡ n−

3
2h−

1
2

n∑
i=1

Kh(x
1 −X1

i )Aij(x
1) and define

aj1(x1) = n−
3
2h−

1
2Kh(x

1 −X1
i )Ajj(x

1)

and

aj2(x1) = n−
3
2h−

1
2

∑
i 6=j

Kh(x
1 −X1

i )Aij(x
1)

To proof the claim for H01(x1) it suffice to show that sup
|x1|61,16i,j6n

|ajs(x1)| =

op(n
− 1

2 ) for s = 1, 2. From the Assumptions 3(iii), 5(iii) and 6(i) it follows that

sup
|x1|61,16i,j6n

|Aij(x1)| = O(κ). This in turn implies that sup
|x1|61,16i,j6n

|aj1(x1)|

= n−
3
2h−

1
2O(κ) = op(n

− 1
2 ).

The proof of the result for aj2(x1) is identical to the proof of the same result of Lemma

7 in Horowitz and Mammen (2004). Therefore, H01(x1) = op(1).
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To prove the result for H02(x1), write

H02(x1) = (nh)−
1
2

n∑
i=1

[
F ′(g(x1, Xi))

]2
h2(X2

i )Kh(x
1 −X1

i )

×
[(

Γκ(h2(X2
i ), h1(X1

i ))Pκ(Xi)
)]′

Bn,

where Bn = n−1Q−1
κ

n∑
j=1

[F ′(g(Xj))]
2 (Γκ(h2(X2

j ), h1(X1
j ))Pκ(Xj)

)
bκ0(Xj).

Arguments similar to those used to prove Lemma 9 imply that E ‖Bn‖2 = Op(κ
−4) .

So, H02(x1) = Op([κκ
−4]

1/2
(nh)1/2) = op(1).

Finally, to prove the claim for H03(x1), recall that

H03(x1) = (nh)−
1
2

n∑
i=1

[F ′(g(x1, Xi))]
2
h2(X2

i )(X1
i − x1)jKh(x

1 −X1
i )bκ0(Xi).

Then the result follows directly from Assumptions 3 and 1(i). 2

Define g̃(x) = φκ(θ̂nκ;x); that is, g̃(x) is the first-step series estimator of g(x).

Lemma 11. The following holds uniformly over |x1| 6 1 :

(a) (nh)−1S ′′nb0b0(x
1, g̃) = D0(x1) + op(1);

(b) (nh)−1S ′′nb0b1(x
1, g̃) = h2AKD1(x1)(1 + op(1));

(c) (nh)−1S ′′nb1b1(x
1, g̃) = h2AKD0(x1) + op(1).

Proof: The result follows from Theorem 2(c) and bounds on sup
|x1|61

n∑
i=1

U r
i (X1

i −

x1)sKh(x
1 −X1

i ) for r = 0, 1 and s = 0, 1, 2. 2.

Define ∆hl(x
l) = hl(x

l)− h̃l(xl), l = 1, 2, and ∆m(x) = m(x)− m̃(x).

Lemma 12. The following holds uniformly over |x1| 6 1 :

(a) (nh)−
1
2 S ′nb0(x

1, g̃) = (nh)−
1
2 S ′nb0(x

1, g) + (nh)
1
2 D0(x1)∆h1(x1) + op(1);

(b) (nh)−
1
2 S ′nb1(x

1, g̃) = (nh)−
1
2 S ′nb1(x

1, g) + op(1).

Proof: To prove part (a), first observe that Taylor series expansion for S ′nb0(x
1, g̃) yields:

S ′nb0(x
1, g̃) = S ′nb0(x

1, g) +
6∑

k=1

Jk(x
1),

21



where

J1(x1) =2
n∑
i=1

[
F ′(g(x1, Xi))

]2
[∆m(Xi) + ∆h1(x1)h2(X2

i ) + h̃1(x1)∆h2(X2
i )]

×
[
h2(X2

i ) + ∆h2(X2
i )
]
Kh(x

1 −X1
i );

J2(x1) =− 2
n∑
i=1

[
Yi − F (g(x1, Xi))

]
F ′(g(x1, Xi))∆h2(X2

i )Kh(x
1 −X1

i );

J3(x1) =− 2
n∑
i=1

[
Yi − F (g(x1, Xi))

]
F ′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]
[
h2(X2

i ) + ∆h2(X2
i )
]
Kh(x

1 −X1
i );

J4(x1) =2
n∑
i=1

F ′(g(x1, Xi))F
′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]2

[
h2(X2

i ) + ∆h2(X2
i )
]
Kh(x

1 −X1
i );

J5(x1) =
n∑
i=1

F ′(g(x1, Xi))F
′′(g∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]2

[
h2(X2

i ) + ∆h2(X2
i )
]
Kh(x

1 −X1
i );

J6(x1) =
n∑
i=1

F ′′(g∗(x1, Xi))F
′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]3

[
h2(X2

i ) + ∆h2(X2
i )
]
Kh(x

1 −X1
i ).

and where g∗(x1, Xi), g
∗∗(x1, Xi) are points between g(x1, Xi) and g̃(x1, Xi).

From Theorem 2(c) and Lemma 10, it follows that

(nh)−
1
2 J1 =

[
D0(x1) +Op(h

2)
]

∆h1(x1) + op(1).

Theorem 2(c), Lemma 10 and standard bounds on sup
|x1|61

n∑
i=1

(X1
i − x1)sKh(x

1 −X1
i ) for

s = 0, 1, 2 imply that

(nh)−1/2 J2 = op(1),

(nh)−1/2 J3 = op(1),

(nh)−1/2 J4 = op(1),

(nh)−1/2 J5 = op(1),
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(nh)−1/2 J6 = Op((nh)1/2 [ κ
n1/2 + 1

κ3/2

]3
) = op(1).

This concludes the proof of part (a) of Theorem 3.

To prove part (b) of Theorem 3, observe that the Taylor series expansion for

S ′nb1(x
1, g̃) gives:

S ′nb1(x
1, g̃) = S ′nb1(x

1, g) +
6∑

k=1

Lk(x
1), (11)

where

L1(x1) =2
n∑
i=1

[
F ′(g(x1, Xi))

]2
[∆m(Xi) + ∆h1(x1)h2(Xi) + h̃1(x1)∆h2(X2

i )]

×
[
h2(X2

i ) + ∆h2(X2
i )
]

(X1
i − x1)Kh(x

1 −X1
i );

L2(x1) = −2
n∑
i=1

[
Yi − F (g(x1, Xi))

]
F ′(g(x1, Xi))∆h2(X2

i )(X1
i − x1)Kh

(
x1 −X1

i

)
;

L3(x1) =− 2
n∑
i=1

[
Yi − F (g(x1, Xi))

]
F ′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]
[
h2(X2

i ) + ∆h2(X2
i )
]

(X1
i − x1)Kh(x

1 −X1
i );

L4(x1) =2
n∑
i=1

F ′(g(x1, Xi))F
′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]2

[
h2(X2

i ) + ∆h2(X2
i )
]

(X1
i − x1)Kh(x

1 −X1
i );

L5(x1) =
n∑
i=1

F ′(g(x1, Xi))F
′′(g∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]2

[
h2(X2

i ) + ∆h2(X2
i )
]

(X1
i − x1)Kh(x

1 −X1
i );

L6(x1) =
n∑
i=1

F ′′(g∗(x1, Xi))F
′′(g∗∗(x1, Xi))[∆m(Xi) + ∆h1(x1)h2(X2

i )

+ h̃1(x1)∆h2(X2
i )]3

[
h2(X2

i ) + ∆h2(X2
i )
]

(X1
i − x1)Kh(x

1 −X1
i ).

Using the result in Theorem 2(c), Lemma 10 and standard bounds sup
|x1|61

n∑
i=1

(X1
i −

x1)sKh(x
1−X1

i ) for s = 0, 1, 2, one can show that (nh)−
1
2 Jm = op(1) for m = 1, . . . , 6.

Therefore, (nh)−
1
2 S ′nb1(x

1, g̃) = (nh)−
1
2 S ′nb1(x

1, g) + op(1), which concludes the proof of

the lemma. 2
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Now we are ready to prove Theorem 3. By definition, ĥ1(x1) − h1(x1) = h̃1(x1) −
h1(x1)−

S′′nb1b1
(x1,g̃)S′nb0

(x1,g̃)−S′′nb0b1 (x1,g̃)S′nb1
(x1,g̃)

S′′nb0b0
(x1,g̃)S′′nb1b1

(x1,g̃)−[S′′nb0b1 (x1,g̃)]
2 . Part (a) then follows from the results of

Lemmas 11 and 12 and Assumption 6(ii).

Part (b): Define η =
−S′nb0 (x1,g)+[D1(x1)/D0(x1)]S′nb1 (x1,g)

nhD0(x1)
.

Arguments like those used to prove asymptotic normality of a local linear estimator

imply that E(n2/5η) = β1(x1) + o(1) and V ar(n2/5η) = V1(x1) + o(1), and that n2/5η
d→

N(β1(x1), V1(x1)). This proves the result in Theorem 3(b).

Part (c): One can show that Cov(n2/5(ĥ1(x1) − h1(x1)), n2/5(ĥ2(x2) − h2(x2))) =

o(1). Therefore n2/5(ĥ1(x1) − h1(x1)) and n2/5(ĥ2(x2) − h2(x2)) have zero asymptotic

covariance. Part (c) then follows from this result and part (b) of Theorem 3. 2
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