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Abstract

This paper proposes a moments-based approach to the identification and estimation

of panel data quantile regression (QR) models with fixed effects when the number of

periods each individual is observed is small. When fixed effects are pure location shifts,

I show that the QR model is identified and suggest an estimator based on the recovering

of a distribution function from a sequence of its moments. When the covariates are

continuously distributed, I show that the QR model can be identified even when fixed

effects are allowed to vary across quantiles. Additionally, for a general class of random

coefficients panel data models I show that those models are identified when all covariates

are continuous, and show how one can identify variables with homogeneous individual

responses.

1 Introduction

Quantile regression (QR) models are quite popular in the empirical literature: unlike

traditional regression models that solely focus on the effect of covariates on the con-

ditional mean of the outcome variable, quantile regression models allow to identify

∗This is a preliminary version. I am very grateful to Jason Abrevaya, Ivan Canay, Wenxin Jiang
and Elie Tamer for valuable comments and discussions. Comments and suggestions are welcome. All
remaining errors are mine.
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and analyze other interesting features of the conditional distribution of the dependent

variable. The attraction of quantile regression models is that they allow for possi-

ble heterogeneous effects of covariates: in many applications a researcher may have a

reason to expect that the effect of covariates is not necessarily the same at different

points of the distribution of outcome. For example, Abadie, Angrist and Imbens (2002)

found that for women, Job Training Partnership Act (JTPA) training program had the

largest effect at the low quantiles of earnings distribution. In yet another empirical

study, Abrevaya and Dahl (2008) find that the effect of mother’s smoking on child’s

birthweight is different for different quantiles of birthweight distribution.

If a researcher has panel data (when each member of the sample is observed in mul-

tiple point in time), she can control for some unobserved covariates that stay constant

over time by utilizing panel data fixed effects models. The traditional linear panel data

fixed effects panel data model for the conditional mean of the outcome variable works

pretty straightforward even when there are only few observations per individual. The

linear structure allows to difference out those unobserved covariates, and because the

mean of the difference is the difference of the mean, looking at the mean relationship

between change in outcome variable and change in covariates still allows a researcher

to identify the effect of covariates on the conditional mean of outcome variable.

Considering the arguments outlined above, the combination of quantile regression

models with panel data fixed effects models looks like a very attractive option. It

allows us to kill two birds with one stone: study the causal effect of covariates on

the distribution of outcome variable (quantile regression) while controlling for some

unobserved heterogeneity (fixed effects). Combining individual heterogeneity (βit) as a

response of the outcome variable Yit to a change in covariates Xit with individual fixed

effects αi’s yields to the following random coefficient model:

Yit = X ′itβit + αi.

One more step is required to make this random coefficients model a linear quantile

regression model: we assume that conditional quantiles of Yit are linear in covariates.

This assumption imposes a specific structure on random coefficients:

βit = θ(Uit),
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where Uit is uniformly distributed on [0, 1] and the function τ → x′θ(τ) is strictly in-

creasing. This is the Doksum (1974) representation of the model with linear conditional

quantiles.

In panel setups, this approach is indeed attractive and easy to implement when

we care only about the mean effect of Xit, when we try to transfer it to a quantile

regression setup, we run into this difficulty: we cannot difference out fixed effects any

longer. The quantiles of the difference of two random variables do not equal to the

difference of quantiles. That is, if we have a linear model and decide to difference out

fixed effects, we end up with an object that (seemingly) tells us nothing about the

conditional quantiles we are interested in. When the number of time observations for

each individual in the sample is large, this is not a big issue: instead of differencing out

fixed effects, we can treat them as parameters to be estimated. However, when each

individual is observed only a only for a few times, this approach will not work.

In this paper I address the identification and estimation of a panel data linear

quantile regression model with fixed effects when the number of observations for each

individuals is small. In particular, I provide two sets of sufficient conditions that allow

to identify QR panel data models with fixed effects under different assumption on the

distribution of fixed effects. I treat separately two cases: when fixed effects represent

pure location shifts and when fixed effects are allowed to vary with the quantile. For

each of these cases I present the condition under which the marginal quantile effects are

identified when the number of time periods is fixed. In the case when fixed effects are

pure location shifts, I propose the estimation procedure that is based on the recovery of

the distribution function from the sequence of the consistent estimators of its moments.

My main contribution in this paper is threefold. First, my identification result does

not require the number of time periods (T ) that we observe each individual in the

sample to be large. Second, even if all covariates are discrete, my identification result

does not require that we observe individuals for whom covariates do not change between

time periods. Finally, the identification results in this paper are constructive and offer

an estimation procedure that is based on estimating a sequence of moments.

The rest of this paper is organized as follows: Section 2 discusses the related lit-

erature. Section 3 presents the model and outlines identification and moments-based

estimation strategy. Section 4 presents a set of assumptions sufficient for the iden-

tification of QR panel data model when the covariates can have discrete distribution
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and fixed effects are pure location shifts. Section 5 gives identification result for the

case when the regressors have continuous distribution and also gives a set of sufficient

conditions that allows to identify the QR model even when fixed effects are allowed

to depend on quantile. Also, this section discusses possible extension of the proposed

identification approach for identification of the distribution of random coefficients in a

random coefficients panel data model. In particular, it suggests a test for homogeneous

individual responses that is based on a
√
n-consistent estimators of first two moments.

Section 6 explores some possible estimation procedures, and Section 7 concludes. All

proofs of the results are collected in the Appendix.

2 Related Literature

The majority of the literature that studies QR models for panel data with fixed effects

propose inference procedures based on the assumption that the number of periods T

goes to infinity when the sample size n goes to infinity. This assumption allows to

estimate unobservable fixed effects αi. Under this assumption, Koenker (2004) and

Lamarche (2010) suggest a penalized quantile regression estimator that simultaneously

estimates quantile regression coefficients for a set of quantiles {0 < τ1 < . . . < τm} and

fixed effects. Galvao (2008) adopts a similar approach in the context of dynamic panel

data. Canay (2011) introduces a different approach that does not require specifying a

penalty parameter. He suggests a simple two-step procedure that relies on the trans-

formation of the data and where the unobserved fixed effects are estimated at the first

step. Koenker (2004), Lamarche (2010) and Canay (2010) assume that fixed effects

αi have a pure locations shift effect, while Galvao (2008) allows fixed effect to depend

upon the quantile of interest.

When the number of periods T is small, one cannot simply estimate fixed effects

any longer. Abrevaya and Dahl (2008) impose a particular structure on the relation-

ship between unobserved fixed effects and regressors and quantiles. As a result they

obtain a correlated random coefficients model that can be estimated consistently using

standard quantile regression technique. Rosen (2010) focuses on the identification of a

quantile regression coefficients for a single conditional quantile restriction rather than

for the whole set of quantiles 0 < τ < 1. He imposes no restrictions on the distribu-

tion of fixed effects and shows that under rather weak assumptions linear conditional
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quantile function can be at least partially identified and provides sufficient conditions

for point identification. Evdokimov (2010) considers identification in a general class

of nonparametric panel data models with unobservable heterogeneity that includes a

linear quantile model with fixed effects. His identification and estimation result stems

from the assumption that there are individuals in the sample for whom covariates do not

change over time. However, this assumption may be too restrictive for some empirical

applications. In particular, it does not allow to include year-specific effects.

A very interesting point of view on quantile regression panel data models is presented

in Powell (2011). He changes the object of interest: instead of looking at the causal

effect of covariates on the quantiles of the conditional distribution of an outcome (which

is the object of interest here), he analyzes the quantiles of the unconditional distribution

of an outcome and suggest a simple (and therefore attractive) moment-based approach

to estimation of those unconditional quantiles.

In this paper I treat the QR panel data model as a special case of a random co-

efficients model. Heckman and Vytlacil (1998) emphasizes the importance of random

coefficient models in capturing unobservable heterogeneity for some economic models.

Beran and Hall (1992) and Beran, Feuerverger and Hall (1996) provide identification

results for a cross-section random coefficients model. In particular, Beran and Hall

(1992) show how one can identify and estimate the distribution of random coefficients

if all the moments of this distribution are identified. Another interesting paper is by

Fox et al. (2011), where the authors adopt a similar approach and show that the dis-

tribution of random coefficients in a logit model is identified by showing that all the

moments of this distribution are identified. Finally, Hoderlein, Klemelä and Mammen

(2007) propose a kernel based estimator for the joint probability density of the random

coefficients that is based on the Radon transform.

Related papers that study random coefficients model in the context of panel data

include Graham and Powell (2008) and Graham, Hahn and Powell (2009). The first

paper looks at a certain features of the distribution of random coefficients, while the

second paper looks at identification and estimation of certain conditional quantiles in

a panel data model without fixed effects. A recent paper by Arellano and Bonhomme

(2009) focuses on the identification and estimation of certain features of the distribution

of random coefficients in panel data models, including first and second moments of those

distributions.
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3 The Model

If all conditional quantiles of the outcome variable Yit are assumed to be linear in

covariates Xit, the panel data quantile regression model can be represented as the

following random coefficients model:

Yit = X ′itθ(Uit) + αi, i = 1, . . . , n, t = 1, 2. (1)

where Uit|Xi1, Xi2 ∼ U [0, 1] is individual- and time-specific error, and αi is an additive

individual effect that is the same for both time periods. The function τ → x′tθ(τ) is

assumed to be strictly increasing on the interval (0, 1) for any given realization xt in

the support of Xit.
1

A researcher observes (Yit, Xit) in both time periods, but not Ui1, Ui2 or αi. If αi’s

were observable, then conditional quantiles of Yit would be

QYit
(τ |Xi = (x′1, x

′
2)′, αi = α) = x′θ(τ) + α.

The parameter we are interested in is the vector function θ(·). However, quantile

functions are not linear functions and we cannot simply difference out fixed effects even

when αi’s are independent from both Xi and Ui1, Ui2:

QYi2−Yi1
(τ |Xi) 6= QYi2

(τ |Xi)−QYi1
(τ |Xi) 6= QYi2

(τ |Xi, αi)−QYi1
(τ |Xi, αi) = (Xi1−Xi2)′θ(τ).

Our goal is to identify the so-called “quantile generating” function θ(·) from the

joint distribution of the observables: (Yi1, Yi2, Xi1, Xi2) while allowing for an arbitrary

relationship between αi and Xi (and possibly, between αi and Ui = (Ui1, Ui2)). If

we treat model (1) as a random coefficient model, identification of θ(·) amounts to

identification of the distribution of the random coefficients. I show that under the

certain assumptions this distribution is identified.

In particular, when fixed effects αi’s are independent from error terms Ui’s, I show

that both the conditional distribution of X ′itθ(Uit) and the conditional distribution of αi

conditional on Xi are identified under certain conditions, and this identification argu-

1Throughout the paper I use upper case letters to denote random variables or the element of the
random sample, and lower case letters to represent a particular realization or the point in the support
of the corresponding random variable.
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ment is constructive. Also, I show that when all covariates are continuously distributed

(which is a common assumption for identification of many random coefficients models),

then we can identify θ(·) even when fixed effects are not independent from error terms

Ui’s.

Outline of the Inference Procedure: Identification and estimation of the function

τ → x′itθ(τ) for 0 < τ < 1 essentially amounts to identification and estimation of the

distribution of X ′itθ(Uit) conditional on Xi. Once we obtain consistent estimators for

this conditional distribution function, the inference procedure becomes really simple:

we can sample from this distribution and estimate θ(τ) for any given 0 < τ < 1 using

the usual quantile regression technique (minimizing an appropriate function).

The standard error of such an estimator based on a sampling depends only on the

standard error of the estimator of the conditional distribution function. One of the

many ways to estimate a distribution function is to estimate its moments and then if

the distribution is uniquely defined by its moments, we can recover the distribution

function. This approach is used e.g. in Beran and Hall (1992) to estimate distributions

in a certain class of random coefficients regression models. I show that if either all

covariates are discrete or all are continuous, these moments can be estimated at
√
n-

rate. So, the estimation procedure for quantile coefficients can be summarized by the

following two steps:

1. Estimate conditional moments
{
E
(

(X ′itθ(Uit))
k |Xi

)
: k = 1, 2, . . .

}
and recover

the conditional distribution Ft(u|Xi) = P (X ′itθ(Uit) ≤ u|Xi).

2. Sample from this conditional distribution (let’s call this sample (Ỹi1, Ỹi2, Xi1, Xi2)

and estimate θ(·) by minimizing over θ the following objective function:

2∑
t=1

n∑
i=1

ρτ

(
Ỹit −X ′itθ

)

where ρτ (u) = u(τ−1(u < 0)). Here Ỹit’s are essentially equivalent to (Yit−αi)’s.

As it was already mentioned above, the set of key identifying assumptions is differ-

ent depending on whether the covariates have discrete or continuous support (in the

latter case we can relax the assumption that fixed effects are independent from Ui’s).

Therefore, the next two sections treat each case separately, carefully summarizing the
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set of identifying restrictions in each case and proposing an estimator that is consistent

under the corresponding set of assumptions.

4 Identification

In this section I present identification argument for the case when error terms Ui and

fixed effect αi are independent conditional on the observable covariates. Let X =

suppXi and let x = (x′1, x
′
2)′ denote a typical element in this set. Let’s consider the

following random variable:

Zit = X ′itθ(Uit)

Identification of θ(·) amounts to the identification of the conditional distribution of

Zit conditional on Xi = (X ′i1, X
′
i2)′. If we can identify the conditional distribution of

Zit and if matrix E(XitX
′
it) has full rank, we can identify quantile coefficients θ(τ) for

τ ∈ (0, 1).

Assumption 1. For any x ∈ X , distributions of random variables X ′itθ(Uit)|Xi = x

for t = 1, 2 and distribution of αi|Xi = x are uniquely determined by their moments

(assuming that all moments exist and are finite).

Assumption 1 implies that if the moments of the corresponding distributions are

identified, then we can identify the distribution itself. Assumption 1 holds if, for exam-

ple, the conditional distributions of Zit and αi satisfy the Carleman’s condition, so we

can re-state Assumption 1 as

Assumption 2. For any x in the support of Xi, the moments of Zit conditional on

Xi = x, denoted by mk(x, t) = E(Zk
it|Xi = x) and the moments of αi conditional on

Xi = x, denoted by ak(x) = E(αki |Xi = x):

(i) exist;

(ii) are finite;

(iii) satisfy the Carleman’s condition for all x ∈ X :

∞∑
k=1

(m2k(x, t))
− 1

2k = +∞ and
∞∑
k=1

(a2k(x))−
1
2k = +∞
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Any distribution that satisfies the Carleman’s condition is uniquely determined by

its moments. The Carleman’s condition is the sufficient condition for the determinacy

of the Hamburger moment problem for distributions with unrestricted supports. If it

is known that Zit and αi have compact supports, then the determinacy of the moment

problem follows immediately without the need for the Carleman’s condition.2 The

assumption of compact support for Zit = X ′itθ(Uit) is not that restrictive: the quantile

regression literature often imposes the assumption that θ(τ) ∈ Θ for all τ ∈ T ⊂ (0, 1)

where Θ and T are compact sets. If we strengthen this to θ(τ) ∈ Θ for all τ [0, 1], we

immediately get compact support of Zit conditional on Xi.

Next assumption imposes some restrictions on the relationship between the observ-

ables Xi and the unobservables Ui and αi in the model:

Assumption 3. Random variables Ui1, Ui2 and αi are

(i) independent conditional on Xi;

(ii) Uit ∼ U [0, 1] for t = 1, 2.

Assumption 3 is a key identifying assumption used in Canay (2010). It rules out

the case when αi may depend on Ui1 and Ui2, so that αi is basically a location shift

of the distribution of Zit. Note that no conditions are imposed on the distribution of

the vector of covariates Xi = (X ′i1, X
′
i2)′: components of Xit can have a discrete or a

continuous distribution, but Xit cannot include a constant term: Xit 6= (1, X̃ ′it)
′.

I will use the following notation for the conditional distribution of Zit and αi:

mk(x, t) = E(Zk
it|Xi = x) (2)

ak(x) = E(αki |Xi = x) (3)

The result below states that those moments are identified under Assumption 3.3

The proof of this result is constructive and immediately suggest the way to estimate

these moments.

Theorem 4.1. Suppose that Assumption 3 is satisfied and assume that the matrix

E[(Xi2 − Xi1)(Xi2 − Xi1)′] has full rank. Then for any integer 1 ≤ k < +∞ and any

x ∈ X , mk(x, 1), mk(x, 2) and ak(x) are identified.

2With compact supports we have the Hausdorff moment problem. The determinacy of the Hausdorff
moment problem follows from the Stone-Weierstrass theorem.

3All proofs, including this result, are collected in the Appendix.
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Remark 4.1. The result in Theorem 4.1 can be extended to a general case of T ≥ 2

periods, with the straightforward modification of Assumption 3 that allows to take into

account more than just two time periods.

Remark 4.2. If we are not interested in the conditional distribution of αi conditional

on Xi, we do not have to require in Assumption 1 that all moments of this distribution

exist: for the identification of mk(x, t) it is sufficient that only the first conditional

moment of αi exists and is finite.

Theorem 4.1 together with Assumption 1 imply the following corollary:

Corollary 4.2. Suppose that conditions of Theorem 4.1 hold and that Assumption 1

is satisfied. Then for any x in the support of Xi, conditional distributions of X ′itθ(Uit)

and αi conditional on Xi = x are identified.

For a traditional quantile regression model as introduced by Koenker and Bassett

(1978) we know that the model is identified when the conditional distribution of the

outcome variable Y conditional on observable covariates X is continuous. Otherwise,

some quantiles may not be identified. In our case, the continuity of the conditional

distribution of Zit = X ′itθ(Uit) (the “outcome” variable in which conditional distribution

we are actually interested in) will be continuous if the vector function θ(·) is continuous.

This is summarized below by

Assumption 4. The vector function of quantile slope coefficients θ(·) is continuous

everywhere on [0, 1].

Note that the continuity of θ(·) on the whole segment [0, 1] automatically gives us

the compact support of the conditional distribution of Zit, which in turn ensures that

Assumption 1 is satisfied, as was noted above. Now we can state the main identification

result:

Theorem 4.3. Suppose that Assumptions 3 and 4 are satisfied. Also, assume that

matrices E[(Xi2 − Xi1)(Xi2 − Xi1)′], E(Xi1X
′
i1) and E(Xi2X

′
i2) have full rank. Then

the quantile regression model (1) is identified.

The result in Theorem 4.3 tells us that the quantile panel data model (1) is identified

under some restrictions on relationships between the unobservables Ui1, Ui2, αi and the

observables Xi1 and Xi2. It works for both discrete and continuous covariates in Xit,
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and it does not rely on observing individuals for whom the covariates Xit do not change

or almost do not change from period 1 to period 2.

One of the assumptions that is essential for the identification in Theorem 4.3 is the

assumption that individual fixed effects αi’s are independent from Ui1 and Ui2 condi-

tional on Xi. This may be a strong restriction on the assumed data generating process,

and the next section shows that when all covariates are continuously distributed, the

assumption of conditional independence of αi and (Ui1, Ui2) can be removed.

5 Identification with Continuous Covariates

In this section I consider the same quantile regression panel data model (1), but now

I will not impose the independence between αi and Ui1, Ui2. Instead, I will put some

restrictions on the distribution of Xit. Namely, if d = dim(Xit), I require that at

least (d − 1) covariates are continuously distributed, and that Xit does not include

a constant term. The continuity of the distribution of covariates is one of the key

identifying assumptions for the identification of certain random coefficients models (see,

for example, Beran, Feuerverger and Hall (1996) or Fox et al. (2011a)).

Similar to the previous section, for any point x ∈ X = suppXi I define a sequence

of conditional moments of Zit = X ′itθ(Uit) as

mk(x, t) = E[(X ′itθ(Uit))
k |Xi = (x1, x2)].

Note that mk(x, t) is a multivariate polynomial of degree k in the elements of vector

xt. That is, we have the following expression for the kth-order conditional moment of

the random variable Zit

mk(x, t) =
∑

l1+...+ld=k

cl1,...,ld(k)xl1t,1 · . . . · x
ld
t,d, (4)

where xt = (xt,1, . . . , xt,d). The fact that all conditional moments of Zit have this very

specific form help identify mk(x, t) from the sequence of conditional moments of the

difference in outcomes between two time periods: Yi2 − Yi1.

Assumption 3 can now be replaced with

Assumption 5. Random variables Ui1 and Ui2 are
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(i) independent conditional on Xi;

(ii) Uit ∼ U [0, 1] for t = 1, 2.

Additionally, at least (d− 1) components of Xit are continuously distributed.

Unlike Assumption 3 employed in the previous section, Assumption 5 does not

require fixed effects αi’s to be independent of Ui = (Ui1, Ui2) conditional on Xi.

Theorem 5.1. Suppose that Assumptions 5 and 4 are satisfied. Also, assume that

matrices E[(Xi2 − Xi1)(Xi2 − Xi1)′], E(Xi1X
′
i1) and E(Xi2X

′
i2) have full rank. Then

the quantile regression model (1) is identified.

The proof of Theorem 5.1 is constructive and suggests that one can estimate a

sequence of moments {mk(xt), k ≥ 1} from a sequence of linear regressions. Note,

however, that unlike the estimation procedure discussed in the previous section, the kth

step requires to estimate a linear regression model whose dimension is
(
d+k−1
d−1

)
= O(kd)

as k → ∞. Therefore, given the dimension of the problem d = dim(Xit), the number

of moments to be estimated must be small relative to the size of the sample, n.

5.1 Random Coefficients Panel Data Model

A quantile regression model like (1) can be treated as a special case of a more general

random coefficients (RC) panel data model with fixed effects:

Yit = X ′itβit + αi, i = 1, . . . , n, t = 1, 2. (5)

Here random coefficients βit represent individual heterogeneity in the response of the

outcome variable Yit to changes in covariates Xit. Random coefficients models are very

popular in empirical Industrial Organization literature, because such models allow for

heterogeneity in marginal effects across individual agents. Beran, Feuerverger and Hall

(1996) show identification of the distribution of random coefficients βit for a linear cross-

section RC model, and Fox et al. (2011) prove the identification of the RC Logit model.

In both cases, the key identifying assumption is that all covariates are continuously

distributed.

The identification result of Theorem 5.1 can be extended to the identification of the

RC panel data model (6).
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Assumption 6. The distribution of βit is uniquely determined by its moments (assum-

ing that all moments exist and are finite).

This assumption is similar to Assumption 1 and ensures that once all the moments

of the distribution of βit are identified, the distribution itself is also identified.

Assumption 7. (i) Vectors of random coefficients βi1 and βi2 are independent con-

ditional on Xi;

(ii) Vector of covariates Xit is continuously distributed for t = 1, 2.

Assumption 7.(i) is somewhat restrictive as it does not allow for any relationship

between individual responses in both periods: all intertemporal relationship between

the outcomes in two periods is assumed to be captured by αi. Assumption 7.(ii) is a

standard identifying assumption in RC models.

Theorem 5.2. If Assumptions 6 and 7 are satisfied by the model (1), and if matrix

E[(Xi2−Xi1)(Xi2−Xi1)′] has full rank, then the distribution of random coefficients βit

is identified.

5.1.1 Identification of Heterogeneous Effects: Dimension Reduction

Estimation of the joint distribution of random coefficients does not escape the curse of

dimensionality that is common to all nonparametric estimators. One way to alleviate it

is to assume that that individual responses to some of the covariates are homogeneous.

That is, the model 6) can be written as

Yit = X ′1,itβ1,it +X ′2,itβ2, i = 1, . . . , n, t = 1, 2. (6)

That is, individual responses to covariates in X1,it are heterogeneous (β1,it varies across

individuals), but individual responses to covariates in X2,it are homogeneous (β2 does

not vary across individuals). It turns out that using the same moment-based approach

we can identify the covariates with homogeneous individual responses and consequently

test the null hypothesis that individual responses to some component of Xit are homo-

geneous against the alternative that they are heterogeneous. The good news is that

this procedure does not suffer from the curse of dimensionality.
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Theorem 5.3. Suppose that Assumptions 6 and 7 are satisfied by the model (1). Then

we need only first two moments to identify those components of βit that are constant.

Additionally, those moments can be estimated
√
n-consistently.

This result immediately suggests a test procedure based on a
√
n-consistent estima-

tor of the second central moment.

Remark 5.1. The proof of Theorem 5.3 does not require that all covariates are contin-

uously distributed: it is sufficient that only the variable for which we want to test the

homogeneity of individual responses is continuously distributed. Also, if some or all of

the covariates are discrete but have rich enough support that allows identification of

first two moments, we are able to identify the variables with homogeneous individual

responses.

6 Estimation

As the identification results in Theorems 4.3 and 5.1 suggest, the problem of estimation

of the panel data quantile regression model (1) can be separated into two steps:

1. Estimation of the conditional distribution of X ′itθ(Uit);

2. Estimation of the quantile slope coefficients θ(τ).

6.1 Estimation of the conditional distribution of X ′itθ(Uit)

The identification results of Theorems 4.3 and 5.1 are constructive: that is, they suggest

a sequential procedure for estimation of moments {mk(x, t), k = 1, . . .} for any x in the

support of Xi, and then we can recover the distribution of a scalar random variable

x′tθ(Uit) from its moments (the inverse Hamburger problem). The statistic literature

offers a variety of techniques to recover the distribution from its moments. Beran and

Hall (1992) provide a review of some of those methods, including approximations based

on series and discrete approximations. When we assume conditional independence

between fixed effect αi and Ui = (Ui1, Ui2) conditional on Xi (Assumption 3), for a

given sample size n it is possible to estimate (in theory) as many moments as we

wish (see the proof of Theorem 4.1 in the Appendix). However, if we do not want to

restrict possible relationship between αi and Ui (Assumption 5) and when covariates
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are continuous, it is possible to estimate only a finite number of moments given the

sample size n. In the following discussion I consider those two cases separately.

6.1.1 Estimation with Discrete Covariates When αi and Ui Are Independent

Suppose that we observe the following data: {(Yi1, Yi2, Xi1, Xi2), i = 1, . . . , n}. When

all covariates are discrete, the for any k ≥ 1, we can
√
n-consistently estimate both

mk(x, t) and a1(x) for any x in the support of Xi as the solution to4

m̂k(x, 1) = Ên[Y1(Y1 − Y2)k−1|x]−
k−1∑
j=1

(
k − 1

j

)
(−1)jm̂k−j(x, 1)m̂j(x, 2) (7)

− â1(x)
k−1∑
j=0

(
k − 1

j

)
(−1)jm̂k−1−j(x, 1)m̂j(x, 2) (8)

and similarly,

m̂k(x, 2) = Ên[Y2(Y2 − Y1)k−1|x]−
k−1∑
j=1

(
k − 1

j

)
(−1)jm̂k−j(x, 2)m̂j(x, 1) (9)

− â1(x)
k−1∑
j=0

(
k − 1

j

)
(−1)jm̂k−1−j(x, 2)m̂j(x, 1), (10)

where

m̂1(x, t) = x′tθ̂µ, (11)

â1(x) =
1

2

(
Ên[Y1|X = x] + Ên[Y2|X = x]− m̂1(x, 1)− m̂1(x, 2)

)
, (12)

θ̂µ = argmin
θ

Ên(Y1 − Y2 − (X1 −X2)′θ)2. (13)

For each fixed k, the estimators m̂k(x, t) and â1(x) defined above are n1/2 consistent

and asymptotically normally distributed when the data are i.i.d. sample and if certain

moments of the distributions of random variables X ′itθ(Uit) and αi exist and are finite.

In particular, suppose that the following assumptions are satisfied:

4Here I use the following notation: for a random sample {Wit, i = 1, . . . , n, t = 1, 2}, ÊnWt =
1
n

∑n
i=1 Eit.

15



Assumption 8. (i) The data (Yi1, Y i2, Xi1, Xi2) are i.i.d. random sample from

(Ω,F , P ) defined in (1).

(ii) The support of Xi = (X ′i1, X
′
i2)′ is discrete.

Assumption 8.(i) is a standard random sampling condition, and Assumption 8.(ii)

is the discrete support assumption that allows to estimate all moments at
√
n-rate.

Although we can estimate mk(x, t) for any k using the system of equations in (7),

(9) and (11), the estimation error will accumulate as we increase k, and the standard

deviation of the estimator of mk(x, t) for large k is going to be too high. One way to

deal with this issue is to estimate only a finite number of moments and then invert this

truncated sequence to get an estimator of the distribution of X ′itθ(Uit) (the truncated

Hamburger problem). The larger is the sample size n, the higher can be the number of

moments that we can estimate with a reasonable error. Theorem 6.1 below specifies a

rate condition for the number of moments to be estimated, k(n) so that {m̂l(x, t), 1 ≤
l ≤ k(n)} converge uniformly to {ml(x, t).1 ≤ l ≤ k(n)}.

Theorem 6.1. Suppose that conditions of Theorem 4.3 and Assumption 8 are satisfied.

Then for any δ > 0 there exists η > 0 such that with probability 1,

max
1≤k(n)≤(η logn)1/2

(|m̂k(x, t)−mk(x, t)|) = O(n−1/2+δ) as n→∞.

Remark 6.1. When some of the components of Xit are continuously distributed, we

cannot estimate m̂k(x, t) and a1(x) n1/2-consistently any longer without imposing some

strong assumptions. However, one can use any nonparametric methods of conditional

moment estimation. In this case, the rate of convergence will be slower and the corre-

sponding rate in Theorem 6.1 will be adjusted accordingly to reflect the nonparametric

convergence rate.

Theorem 6.1 allows us to estimate the distributions of x′tθ(Uit) for any given x ∈ X
from its first k(n) moments. Foe example, Beran and Hall (1992), Greaves (1982), and

Mnatsakanov and Hakobyan (2009) provide several methods of solving the truncated

Hamburger problem. There is no general rule on how many moment to choose for this

estimation for a given sample size. However, condition that η = O(δ) as δ → 0 (see the

proof of Theorem 6.1 in the Appendix) suggests that one should choose k much smaller

than the sample size n.
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6.1.2 Estimation with Continuous Covariates When αi and Ui May Not Be

Independent

When at most only one regressor is discrete, Theorem 5.1 implies that the distribution

of θ(Uit) can be identified from the distribution of

Yi1 − Yi2 = X ′i1θ(Ui1)−X ′i2θ(Ui2)

Here one can use either the discrete approximation in Fox and Kim (2011), or the

Radon transform estimator proposed in Hoderlein, Klemelä and Mammen (2008). In

particular, here I consider the discrete approximation in Fox and Kim (2011) and show

how it reduces to the constrained Nonlinear Least Squares estimator in this case.

We want to approximate the conditional distribution of X ′itθ(Uit) given Xi. Let

θ(u) ∈ Θ, where Θ is a known compact parameter space and let R(n) be the number of

grid points for the discrete approximation. That is, we consider a grid ΘR(n) ⊂ Θ such

that ΘR(n) = {θ1, θ2, . . . , θR(n)}. The grid is chosen by the researcher. Given the choice

of the grid, the conditiona distribution of X ′itθ(Uit) is approximated by the following

discrete distribution:

X ′itθ(Uit) =


X ′itθ

1 with probability p1

X ′itθ
2 with probability p2

. . . . . .

X ′itθ
R(n) with probability pR(n)

(14)

where pr ≥ 0 and
∑R(n)

r=1 pr = 1. Our goal now is to estimate p = (p1, p2, . . . , pR(n))
′.

Note that

exp {Yi1 − Yi2} = exp {X ′i1θ(Ui1)} · exp {−X ′i2θ(Ui2)}

and

E (exp {Yi1 − Yi2} |Xi) =

R(n)∑
r=1

pre
X′i1θ

r

R(n)∑
r=1

pre
−X′i2θr

 .
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Then we can estimate vector p as:

p̂ = argmin
p

exp(Yi1 − Yi2)−

R(n)∑
r=1

pre
X′i1θ

r

R(n)∑
r=1

pre
−X′i2θr

2

subject to pr ≥ 0 and

R(n)∑
r=1

pr = 1 .

This is the nonlinear least squares problem, and a rate condition for R(n) that

insures uniform convergence is specified in Fox and Kim (2011) to satisfy

R(n) logR(n)

n
→ 0.

6.2 Estimation of the quantile slope coefficients θ(τ)

Suppose now that we picked some consistent estimator of the conditional distribution of

Zit = X ′itθ(Uit) conditional on Xi. That is, let F̂t(u|Xi = x) be a uniformly consistent

estimator of Ft(u|Xi = x) = P (Zit ≤ u|Xi = x). Our object of interest is

QZit
(τ |Xi) = X ′iθ(τ)

There is a simple procedure that allows us to estimate θ(τ) for any τ ∈ (0, 1): by draw-

ing random samples from the distribution of Zit and then applying standard quantile

regression method to the new “data” (Zit, Xit). This procedure can be summarized by

these two steps:

1. Let {(Zit, Xit) : i = 1, . . . ,m and t = 1, 2} be independent draws from the joint

distribution of (Zi1, Zi2, Xi1, Xi2).

2. Then we can estimate θ(τ) by

θ̂(τ) = arg min
θ∈Θ

1

n

m∑
i=1

2∑
t=1

ρτ (Zit −X ′itθ) (15)

where ρτ (u) = u(τ − 1{u ≤ 0}) and where Θ is a compact parameter space5 such

that θ(τ) ∈ Θ for any τ ∈ [0, 1].

5The existence of such compact set Θ is implied by Assumption 4.
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As long as m→∞ as n→∞ and F̂t(·|Xi = x) is a consistent estimator of F (·|Xi = x)

for any x in the support of Xi, θ̂(τ) is a consistent estimator of θ(τ) for any τ ∈ (0, 1).

The convergence rate of θ̂(τ) is determined by the rate of convergence of F̂t(·|Xi = x).

In particular, if F̂t(·|Xi = x) is
√
n-consistent, then θ̂(τ) is also

√
n-consistent.

7 Conclusion

This paper offers a novel approach to the identification and estimation of the linear

quantile regression panel data models with fixed effects when the number of times T

each individual is observed is small. This approach is based on the identification and

estimation of moments of the conditional distribution of Yit conditional on Xit.

In particular, I show that if fixed effects αi are independent of individual time-

specific shocks Uit, the model is fully identified including the conditional distribution

of fixed effects. Also, when all covariates are discrete, the moments of those condi-

tional distributions can be estimated at a parametric rate. When the covariates are

continuously distributed, I show that the quantiles of conditional distribution of Yit can

be identified even when fixed effects are allowed to depend on individual time-specific

shocks Ui1 and Ui2.

The identification result in the paper can also be applied to a more general class

of random coefficients panel data models. I also show how one can use the approach

developed in this paper to test homogeneity of individual responses in such models.

Estimation of conditional quantiles θ(·) here relies on the estimation of the condi-

tional distribution of X ′itθ(Uit) conditional on Xi: once those conditional distributions

can be uniformly estimated, the estimation of the quantile slope coefficients is relatively

simple. To estimate those conditional distributions, I suggest some procedures based

on a discrete approximation result in Fox and Kim (2011). However, such an approach

may be computationally intensive if the number of explanatory variables in the model is

high. A more extensive treatment of inference in such models is left for future research.
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A Appendix

A.1 Proof of Theorem 4.1

For the ease of presentation, index i is omitted here. Let X = suppXi and consider any

x = (x1, x2) ∈ X . I’ll be using the following notation: for any random variable W ,

E(W |x) = E(W |X = x).

By Assumption 3, Ut and α are independent conditional on X = x. Note that m1(x, t) =

xtθµ, where θµ = E(θ(Uit). Therefore, m1(x, t) is identified if θµ is identified. But the

latter is identified from

E[Y2 − Y1|X = (x1, x2)] = (x2 − x1)′θµ,

if matrix E[(X2 −X1)(X2 −X1)′] has full rank.

This implies that a1(x) is also identified from

a1(x) = E[α|X = x] =
1

2
(E[Y1|X = x] + E[Y2|X = x]−m1(x, 1)−m1(x, 2)) .

Suppose now that for any j ∈ N, 1 ≤ j ≤ k − 1 both aj(x) and mj(x, t) are identified

and let’s define a0(x) = 1 and m0(x, t) = 1. I will show that then ak(x) and mk(x, t)

are also identified.

In order to do this, consider

E[Y1(Y1 − Y2)k−1|x] = E[Y1(x1θ(U1)− x2θ(U2))k−1|x]

= E

[
(x1θ(U1) + α)

k−1∑
j=0

(
k − 1

j

)
(−1)j (x′1θ(U1))

k−1−j
(x′2θ(U2))

j |x

]

= mk(x, 1) +
k−1∑
j=1

(
k − 1

j

)
(−1)jmk−j(x, 1)mj(x, 2)

+ a1(x)
k−1∑
j=0

(
k − 1

j

)
(−1)jmk−1−j(x, 1)mj(x, 2)

(16)
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where the last equality follows from independence of U1 and U2 and αi conditional on

x (Assumption 3.(ii)).

Then

mk(x, 1) = E[Y1(Y1 − Y2)k−1|x]−
k−1∑
j=1

(
k − 1

j

)
(−1)jmk−j(x, 1)mj(x, 2)

− a1(x)
k−1∑
j=0

(
k − 1

j

)
(−1)jmk−1−j(x, 1)mj(x, 2)

and similarly,

mk(x, 2) = E[Y2(Y2 − Y1)k−1|x]−
k−1∑
j=1

(
k − 1

j

)
(−1)jmk−j(x, 2)mj(x, 1)

− a1(x)
k−1∑
j=0

(
k − 1

j

)
(−1)jmk−1−j(x, 2)mj(x, 1)

are identified if all mj(x, t) are identified up to j ≤ k − 1 and if a1(x) is identified.

Since the choice of k is arbitrary, we showed that all the moments are identified for the

conditional distributions of Zit.

Additionally, we can identify all the moments of the conditional distribution of αi as

ak(x) = E[Y k−1
1 Y2|X = x]−m1(x, 2)

k−1∑
j=0

(
k − 1

j

)
mk−1−j(x, 1)aj(x)

−
k−2∑
j=0

(
k − 1

j

)
mk−1−j(x, 1)aj+1(x).

2

A.2 Proof of Theorem 4.3

Assumption 3 together with the assumption that matrix E[(Xi2−Xi1)(Xi2−Xi1)′] has

full rank imply that all moments of the conditional distribution of Zit = X ′itθ(Uit) are

identified (Theorem 4.1).
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Continuity Assumption 4 ensures that Assumption 1 is satisfied, which together with

identification of all conditional moments of Zit ensures that the conditional distribution

of Zit is identified (Corollary 4.2).

Finally, when matrix E(XitX
′
it) has full rank, for any τ ∈ [0, 1], θ(τ) is a unique solution

to the following minimization problem:

θ(τ) = argmin
θ

Eρτ (Zit −X ′itθ) (17)

where ρτ (u) = u(τ − 1(u < 0)). Since the conditional distribution of Zit given Xit is

identified, the objective function in (17) is also identified. This, in turn, implies that

the solution to (17) is identified. That is, for any τ ∈ [0, 1], θ(τ) is identified. 2

A.3 Proof of Theorem 5.1

We only need to show that all moments mk(x, t) are identified under the conditions of

Theorem 5.1. Then the proof of identification of quantile coefficients θ(·) is exactly the

same as in Theorem 4.3. Again, index i is omitted here.

For any k, mk(x, t) is a homogeneous polynomial of degree k in xt,1, . . . , xt,d. That is,

it can be represented as

mk(x, t) =
∑

l1+...+ld=k

cl1,...,ld(k)xl1t,1 . . . x
ld
t,d. (18)

That is, it is sufficient to show that under the conditions of Theorem 5.1 the coefficients

{cl1,...,ld(k), l1+. . .+ld = k} are identified for any k. I will show now that we can identify

those coefficients from a sequence of linear (in coefficients cl1,...,ld(k)) regressions.

When matrix E[(Xi2−Xi1)(Xi2−Xi1)′] has full rank, we can identify m1(x, t) (see the

proof of Theorem 4.3). Now suppose that for any 1 < j ≤ k−1 and any x = (x1, x2) in

the support of X, mj(x, 1) and mj(x, 2) are identified. Since U1 and U2 are independent

conditional on X, then for any k

E[(Y2 − Y1)k|X = x] =
k∑
j=0

(
k

j

)
(−1)jmk−j(x, 1)mj(x, 2).
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Therefore, we have:

mk(x, 1) + (−1)kmk(x, 2) = E[(Y2 − Y1)k|X = x]−
k−1∑
j=1

(
k

j

)
(−1)jmk−j(x, 1)mj(x, 2)

(19)

The right-hand side of equation (19) is identified since we know mj(x1) and mj(x2) for

any x ∈ X and any 1 ≤ j ≤ k − 1. The right-hand side of equation (19) is linear in

vector C(k) whose typical element is cl1,...,ld(k). That is,

mk(x, 1) + (−1)kmk(x, 2) = w(k)′C(k),

where dim(w(k)) =
(
d+k−1
d−1

)
and the typical element of the vector w(k) is

xl11,1 . . . x
ld
1,d + (−1)kxl12,1 . . . x

ld
2,d

When Xt has at least (d − 1) continuous components and there is no constant term

in Xit, the matrix E[W (k)W (k)′] has full rank for any k, and therefore vector C(k)

is identified. In other words, {cl1,...,ld(k), l1 + . . . + ld = k} are all identified, which

immediately implies that mk(x, 1) and mk(x, 2) are also identified for any x ∈ X .

The rest of the proof follows the proof of Theorem 4.3. 2

A.4 Proof of Theorem 5.2

Arguments similar to those used in the proof of Theorem 5.1 can be used here to show

that for each k, E[(X ′itβit|Xi] is identified. Together with Assumption 6 this implies that

the conditional distribution of ′itβit conditional on Xi is identified. The identification

result for the distribution of βit immediately follows from Beran, Feuerverger and Hall

(1996). 2
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A.5 Proof of Theorem 5.3

Without loss of generality, assume that Xit = (X ′1,it, X
′
2,it)

′, βit = (β′1,it, β
′
2,it)

′ and that

β2,it ≡ β2. But β2,it ≡ β2 if and only if for any Xi,

0 = V ar[X ′2,itβ2,it|Xi]

= E[(X ′2,itβ2,it)
2|Xi]−

(
E[X ′2,itβ2,it|Xi]

)2

Here E[X ′2,itβ2,it|Xi] can be easily identified and estimated
√
n-consistently from a linear

regression of Yi1 − Yi2 on Xi1 −Xi2.

The proof of Theorem 5.1 suggests that the second moment E[(X ′itβit)
2|Xi] is also

identified and can be
√
n-consistently estimated from the appropriate linear regression.

But

E[(X ′itβit)
2|Xi] = E[(X ′1,itβ1,it)

2|Xi] + E[(X ′2,itβ2,it)
2|Xi] + 2E[(X ′1,itβ1,it)(X

′
2,itβ2,it)|Xi]

(20)

All three components of the right-hand side in (20) are polynomials of degree 2 in

components of only X1,it, only X2,it and both X1,it and X2,it, correspondingly. That is,

E[(X ′2,itβ2,it)
2|Xi] is identified and can be estimated

√
n-consistently. We can use these

estimators2

A.6 Proof of Theorem 6.1

The majority of the proof follows the proof of the similar result in Beran and Hall

(1992). Let x = (x1, x2) be any point in X = supp(X). By Assumption 8(ii), X is a

finite set. Therefore, it is sufficient to show that the claim is true for a given x ∈ X .

The proof also includes uniform estimation of the conditional moments of αi.

Recall that

â1(x) = 1
2

(
Ên[Y1|X = x] + Ên[Y2|X = x]− m̂1(x, 1)− m̂1(x, 2)

)
,

m̂k(x, 1) = Ên[Y1(Y1 − Y2)k−1|x]−
k−1∑
j=1

(
k−1
j

)
(−1)jm̂k−j(x, 1)m̂j(x, 2)

−â1(x)
k−1∑
j=0

(
k−1
j

)
(−1)jm̂k−1−j(x, 1)m̂j(x, 2)
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Define the following set

Ak,1(x) =

{
|m̂j(x, t)−mj(x, t)|+ |âj(x)− aj(x)| ≤ (n−1 log n)1/2C

j∑
l=1

l
, 1 ≤ j ≤ k − 1

}
(21)

We have mk(x, t) = E[Y k
t |X = x]−

k∑
j=1

(
k
j

)
mk−j(x, t)aj(x), so that

m̂k(x, t) + âk(x) = Ên[Y k
t |X = x]−

k−1∑
j=1

(
k

j

)
m̂k−j(x, t)âj(x),

and therefore

|m̂k(x, t)−mk(x, t)|+ |âk(x)− ak(x)| ≤ |Ên[Y k
t |X = x]− E[Y k

t |X = x]|

+
k−1∑
j=1

(
k

j

)
|m̂k−j(x, t)âj(x)−mk−j(x, t)aj(x)|

(22)

Let M > 1 denote the upper bound on each of ess sup |x′tθUt| and ess sup |α| conditional

on Xi = x for any x ∈ X . By Bernstein’s inequality, for any s we have

P{|Ên[Y k
t |X = x]− E[Y k

t |X = x]| ≥ n−1/2Mks} ≤ 2e−s
2/4 (23)

Note that the second term of the right-hand side of (22) is bounded by:

k−1∑
j=1

(
k

j

)
|m̂k−j(x, t)âj(x)−mk−j(xt)aj(x)|

≤Mk

k−1∑
j=1

(
k

j

)
(|m̂j(x, t)−mj(x, t)|+ |âj(x)− aj(x)|)

≤Mk(2k − 2)(n−1 log n)1/2C

k−1∑
j=1

j

(24)

Now let’s consider the event Ak,2(x) = {|Ên[Y k
t |X = x] − E[Y k

t |X = x]| ≤

(n−1 log n)1/2C

k∑
j=1

j

}. If C ≥ 4M then for any k, Mk(2k − 2)C

k−1∑
j=1

j

≤ C

k∑
j=1

j

and also

C

k∑
j=1

j

> 4Mk. Then it follows from Borel-Cantelli lemma and Bernstein’s inequality
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in (23) that the event Ak,2(x) occurs with probability 1 for all sufficiently large n. For

this event we have

|m̂k(x, t)−mk(x, t)|+ |âk(x)− ak(x)| ≤ (n−1 log n)1/2C

k∑
l=1

l

Finally, for any δ > 0 we can choose η = δ
logC

> 0 such that with probability 1,

max
1≤k≤(η logn)1/2

(|m̂k(x, t)−mk(x, t)|+ |âk(x)− ak(x)|) ≤ n−1/2+δ

for all sufficiently large n. 2
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