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Abstract

We study inference on parameters in censored panel data models, where the cen-
soring can depend on both observable and unobservable variables in arbitrary ways.
Under some general conditions, we characterize the information the model and data
contain about the parameters of interest by deriving the identified sets: Every pa-
rameter that belongs to these sets is observationally equivalent to the true parameter -
the one that generated the data . We consider two separate sets of assumptions (2
models): the first uses stationarity on the unobserved disturbance terms. The second
is a nonstationary model with a conditional independence restriction. Based on the
characterizations of the identified sets, we provide a valid inference procedure that
is shown to yield correct confidence sets based on inverting stochastic dominance
tests. Also, we also show how our results extend to empirically interesting dynamic
versions of the model with both lagged observed outcomes, and lagged indicators.
We also show extensions to models with factor loads. In addition, and for both
models, we provide sufficient conditions for point identification in terms of support
conditions.The paper then examines sizes of the identified sets, and a Monte Carlo
exercise shows reasonable small sample performance of our procedures.
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1 Introduction

We consider the problem of inference on β in the panel data model

y∗it = αi + x′itβ + εit, t = 1, . . . T i = 1, . . . , N

where αi is an individual specific and time-independent fixed (or random) effect that is

allowed to be correlated with both xi = (xi1, . . . , xiT) and εi = (εi1, . . . , εiT). The outcome

variable, y∗it, is only observed when it is greater than a censoring variable cit where cit

itself is only observed when it exceeds y∗it. The censoring variable ci = (ci1, . . . , ciT) is

allowed to depend on εi in an arbitrary way. We summarize this as follows:

we observe for i: (yit = max(y∗it, cit), 1[y∗it ≥ cit], xit) t = 1, . . . , T

where εi 6⊥⊥ ci|xi

The presence of this endogenous censoring represents a challenge for existing methods1

that are used for correcting for censoring since these methods usually assume that ci is

either observed or (conditionally) independent of the errors. There, the observed cen-

soring is motivated via some design or data limitation issue (such as top-coding), and

hence is assumed independent of the outcome. Here, the starting point is we want to

allow for this censored variable cit to be on equal footing as the outcome and so allow it

to be arbitrarily correlated with y∗it (but also accommodate fixed and independent cen-

soring2). This enlarges the set of models that are covered to include Roy-like competing

risks models, switching regression like models, and duration models with attrition that

are important in applied work3.

In addition, we consider identification also for a set of dynamic models where we allow

past outcomes to impact current outcomes. For example, we study models with some

forms of dynamics:

y∗it = αi + x′itβ + G(y∗i,t−1; cit) + εit

1This is especially the case when T is finite -typically T = 2-, as we assume throughout this paper.
2In the cross sectional setting this model is popular in duration analysis, as it relates to the Accelerated

Failure Time (AFT) model. See, e.g Khan and Tamer (2009) for more on this for cross sectional data. In the

panel data setting considered in this paper, t does not refer to the time period, but the spell in question.
3A canonical empirical example of this kind of censoring is a wage panel regression with an indicator

dummy of whether individual i belongs to a union in time t. The censoring occurs since a union member’s

nonunion wage in period t is censored but is presumed less than the observed union wage.
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where we let 1) G(y∗it−1; cit) = γyi,t−1 -a model with lagged observed outcomes, 2)

G(y∗it−1; cit) = γdi,t−1 - a model with lagged censoring indicator, and 3) G(y∗it−1; cit) =

γy∗i,t−1 -a model with lagged latent outcome- and analyze the inference question in these

models. In addition, we also consider the identification in a model with time varying

factor loads whereby the fixed effects enters as αi in the first period, whereas in period 2,

the fixed effect enters as γαi (and so on if T > 2). This allows returns to unobservable

“skills” to change over time. See Section 4 for details on these models.

Generally, point identification conditions in nonlinear panel data4 models with fixed

effects are often strong, partly since simple differencing techniques, used in linear mod-

els, are not available when the model is nonlinear in the unobserved individual spe-

cific variable. So, typical point identification strategies have relied on distributional

assumptions, and/or support conditions that are problem specific that often times rule

out economically relevant models and behaviors. This has motivated a complemen-

tary approach to inference in these models that recognizes the fact that though point

identification might not be possible under weaker assumptions, these models do con-

tain nontrivial information about β. So, instead of looking for conditions under which

point identification is guaranteed, we posit a model for the data generating process and

then analyze the question of what information does this model have about β given the

observed data.

The challenge in this bounds approach to identification analysis is to consider all the

information in the data and the model: that is, find the tightest bound that contains the

set of observationally equivalent parameter values. So, we analyze the question of what

can one learn about β under 2 sets of weak assumptions that generally do not point

identify β. The main results in the paper show how one can construct sharp sets for β:

there is no more information that the data contain about distinct β’s in the identified set

given the model assumptions, i.e., every parameter vector in these sets is observationally

equivalent to the true parameter β under the model assumptions. This analysis allows

us to determine under what conditions for example this set is the trivial set (data contain

no information about β) on the one hand, or also examine when this set shrinks to a

singleton, β. The usefulness in this approach is that we posit the model (or sets of

assumptions) first and then ask what information do these assumptions contain about β

4For the latest on methods for linear panel models in econometrics, see Arellano (2003).
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as opposed to the complementary approach based on point identification in which one

looks for a model (a set of assumptions) that guarantees point identification under the

weakest set of assumptions. Given this characterization of the identified set, we provide

valid inference approaches that allow us to build confidence regions for the true β.

There are a set of recent papers that deal with various nonlinearities in models with

(short T) panels. See for example the work of Arellano and Bonhomme (2009), Bester

and Hansen (2009), Bonhomme (2012), Chernozhukov, Fernandez-Val, Hahn, and Newey

(2010), Evdokimov (2010), Graham and Powell (2012) and Hoderlein and White (2012).

An important early work is the paper by Honoré (1992) which considers a panel model

with fixed censoring. See also the survey in Arellano and Honoré (2001).

Censored models play an important role in applied economics with panel data. The

models of the kind we consider here can be seen as a panel extension of the classic Roy

model (or switching regression model) where in every period, one chooses to work in

one of two sectors and this decision is based on whether the wage in the one sector

is higher than the wage in the other sector. It is crucial here to allow for endogenous

censoring since (unobserved) determinants of wage in one sector will effect the potential

wage in the other sector. Our model of censoring is also an example of a competing risks

model that is well studied in both economics (see for example the recent work of Honoré

and Lleras-Muney (2006)) and statistics where it is widely applied. Also, this model

can be used in duration analysis where outcomes such as unemployment spells can be

censored. Our setup also handles models with attrition in which outcomes are missing

nonrandomly5. Finally, censoring can also be a result of mechanical considerations such

as top-coding, and there, typically, the censoring is fixed (and hence exogenous - see

Honoré (1992)). In addition, our methods can be used in models that include dynamics,

such as lagged outcome variables or lagged sector specific variables as regressors, and

also models with time varying factor loads.

Generally, missing or interval outcome models were considered in a nonparametric

setup in the partial identification literature with cross section data. Manski and Tamer

(2002) considered inference on the slope vector in a linear model with interval outcomes

5 A typical situation is one where outcomes that are supposed to be measured at various prespecified

times, but then, individuals are lost, or do not show up. This would be a model of attrition in which we

observe the outcome until the individual drops out. Here, ct is equal to −∞ if the individual shows up,

and switches to +∞ when there is attrition.
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using a partial identification approach. With panel data, Honoré and Tamer (2006) con-

sidered bounds on parameters of interest in some interesting nonlinear panel models.

In this paper, our starting point is the panel model with endogenous censoring under

two sets of maintained assumptions (we consider both stationary and non-stationary

time and individual-specific errors). Our goal is to take assumptions that have been

previously used in the literature to obtain point identification (fixed censoring), but now

allow for arbitrary censoring that can be correlated with both the outcomes and the

covariates, with arbitrary individual unobserved time-invariant heterogeneity (fixed ef-

fects). On the other hand, weakening the assumptions even further can result in the

identification becoming trivial: any possible vector of parameters is consistent with the

distribution of observables. A similar trade-off is shown, for example, by Rosen (2012)

for quantile panel data models with fixed effects and small T. In particular, under a

conditional median independence assumption on εit, Rosen (2012) showed that a linear

panel model (with no censoring) contains no information on the true parameter β, so

that the identified set is the whole parameter space. This happens because εi1 is al-

lowed to be arbitrarily correlated with εi2 under the conditional median independence

assumption.

The first set of assumptions we employ (Model 1) uses stationarity on the distribution

of εit, but otherwise leaves the error distribution unconstrained (and hence allow for

cross sectional heteroskedasticity). Stationarity in nonlinear panel models has been used

extensively before since the work of Manski (1987) where there it was shown that the

binary choice panel model point identifies β under a stationarity and a set of support

conditions.

The second set of assumptions (Model 2) relaxes stationarity but instead imposes

independence between εi and xi. This non-stationary setup allows for the distribution of

the error terms to vary arbitrarily across time periods. Again, we construct another set

of conditional moment inequalities that is shown to sharply characterize the identified

set under the above non-stationarity assumption. Using the structure of those inequal-

ities, one can obtain conditions under which the model contains no information on the

parameter of interest.

Finally, for both Model 1 and Model 2, we provide sufficient conditions for the iden-

tified set to be equal to {β} (i.e. point identification). In addition, we show how our
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methods can be extended to allow for some kinds of dynamics in the model by ac-

commodating lagged censored and latent dependent variable, and lagged indicators of

censoring. In what follow, we assume that T = 2. The results we obtain can readily be

extended to a case of any fixed T ≥ 2.

Although the focus of the paper is the study of identification and characterization

of information on β under generalized censoring, the conditional moment inequality

restrictions that we construct to characterize this information for both models take the

same structure as conditional cumulative distribution functions (CDFs), and hence con-

ducting inference is similar to testing whether one CDF stochastically dominates another;

We then provide an inference approach to construct valid confidence regions for β based

on inverting a properly defined test statistics.

The remainder of the paper is organized as follows: In Section 2, we formally define

the stationary model and derive the set of inequalities that define the sharp identified set

for the parameter of interest β under stationarity assumptions. In Section 3 we replace

stationarity assumption with an independence condition and derive the sharp identified

set under these conditions. We also relax the independence assumption to a weaker

zero conditional median assumption and derive sharp identified set under those weaker

conditions. We provide sufficient conditions for point identification for both stationary

and non-stationary settings in the Appendix A.1. Section 4 extends sharp bounds results

to some dynamic panel data settings and to a model with time-varying factor loads.

In Section 5 we construct confidence sets for the identified set both under stationarity

(Model 1) and non-stationarity (Model 2) assumptions. Section 6 provides numerical

evidence on the size of the identified set in some examples; and Section 7 concludes. All

proofs are collected in the Appendix A.3.

2 Identification under Stationarity Assumption

n this section we study the problem of identification under conditional stationarity as-

sumption on the disturbance terms. As a reminder, the model we are considering is of

the form

y∗it = x′itβ + αi + εit, where t = 1, 2.
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Both y∗i1 and y∗i2 are only partially observed, and both εi1 and εi2 are unobserved. We

assume below that εi1 and εi2 have the same distribution conditional on the vector of

covariates xi = (xi1, xi2) and the fixed effect αi. In each period, a researcher observes

only (yit, dit, xit), where yit = max{y∗it, cit} and dit = 1{y∗it ≥ cit}.

Remark 2.1 One can also assume (for example, in the case of a two sector Roy model) that

the censoring variable cit is generated in a way similar to y∗it: cit = x′itγ + κi + νit. However,

unless some assumptions are made about the stochastic relationship between (αi, εi1, εi2) and

(κi, νi1, νi2), imposing a linear structure on cit does not help in the identification of β, as can be

seen from proofs of sharp identification results (theorems 2.1 and 3.1). Therefore, we leave the

censoring variable cit completely unspecified.

The question is: how do we map assumptions made on the joint distribution of

εi1, εi2 conditional on xi and αi to information about the parameter β? In cross sectional

models with fixed censoring at zero, Powell (1984) showed that a conditional median

independence assumption made on the distribution of εi|xi along with some full rank

conditions map into point identification. In our setup, it is not easy to reach point

identification without stronger assumptions. On the one hand, maintaining a conditional

median independence assumption on εit|xi for every t will not allow us to place any

meaningful bounds on β even in the absence of censoring. This is so because we do

not place any restrictions on the correlation structure of vector (εi1, εi2) (see the recent

work in Rosen (2012) where this point was made for panel models with no censoring).

So, then, we know that with censoring, stronger assumptions are needed to obtain any

non-trivial bounds on β. One of the main contributions of this paper is to show that the

bounds we derive under Model 1 assumptions below are sharp, i.e., every parameter in

the bound is one that could have generated the data under the model assumptions. For

other recent work on attaining sharpness for a class of models, see Beresteanu, Molinari,

and Molchanov (2011).

Assumption 1 (Model 1: Stationarity). εi1 + αi and εi2 + αi have the same distribution

conditional on xi.

Heuristically, the change in the conditional distribution of outcomes from period 1

to period 2 is only due to the change in the values of the regressors, and so we use this
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variation to garner information about β. As discussed in Arellano and Honoré (2001), the

strict stationarity assumption generalizes the conditional exchangeability assumption in

Honoré (1992) which itself is more general than an i.i.d. assumption. Obviously, the

censoring complicates the problem and so below, we provide the information that the

observed data contains about β under Model 1.

Next, we define the following variables6:

yU
it = yit,

yL
it = dityit + (1− dit)(−∞)

These (observed) variables yL
it and yU

it constitute natural lower and upper bounds on y∗it,

so that we always have

yL
it ≤ y∗it = x′itβ + αi + εit ≤ yU

it (2.1)

Note that conditional on xi = (xi1, xi2), and given Model 1 above, the random variables

αi + εi1 and αi + εi2 have the same distribution. We have then that

P{εi1 + αi ≤ τ|xi} = P{εi2 + αi ≤ τ|xi} ∀τ

Therefore, the inequalities in (2.1) naturally imply that the parameter β satisfies the

following set of conditional moment inequalities for all values of τ and xi:

P{yU
i1 − x′i1β ≤ τ|xi} ≤ P{yL

i2 − x′i2β ≤ τ|xi}

P{yU
i2 − x′i2β ≤ τ|xi} ≤ P{yL

i1 − x′i1β ≤ τ|xi}
(2.2)

We define the identified set BI as

BI = {b ∈ B : for every τ ∈ R and xi, (2.2) holds with β = b} (2.3)

What is crucial in studying identification of finite dimensional parameters in a model

such as the one above is that the conjectured identified set be shown to be the tightest

possible set. Heuristically, this entails showing that for every parameter in the identified

set, there exists a model obeying Model 1 assumptions above, that can generate the

observed data. Before we formally state the sharp identification result for this model, we

want to introduce another assumption.

6If a lower bound on the support of y∗it is finite and known, one can replace −∞ in the expression for

yL
it with this bound.
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Assumption 2 (Continuous Distribution). εit + αi is continuously distributed conditional on

xi.

Assumption 2 is not a necessary condition for the sharpness of the identified set defined

in (2.3). Rather, we use it to show that placing continuity restrictions on the error terms

εit + αi does not help to shrink the identified set. This condition implies that the con-

ditional moments P{yL
it − x′itβ ≤ τ|xi} and P{yU

it − x′itβ ≤ τ|xi} that enter in (2.2) are

continuous functions of τ for all xi in the support.

Theorem 2.1 (Stationary Model). Under Assumptions 1 and 2, any b ∈ BI defined in (2.3) is

observationally equivalent to β and so BI is the sharp set.

Remark 2.2 The set BI above is non empty since under the correct specification the true param-

eter β belongs to the set. Also, the stationarity assumptions (although restrictive) does allow for

correlation between ε1 and ε2, and, more importantly, also allows for cross sectional heteroskedas-

ticity.

We want to note that the arguments assume very little between the relationship between

cit, xit, and εit. Notably we allow the censoring variable to be correlated with xit and εit.

This is why we refer to this setup as endogenous censoring. This is in contrast to the

procedure proposed in Honoré, Khan, and Powell (2002). Naturally, we also allow fixed

and independent censoring as special cases.

Remark 2.3 The sharp identification result of Theorem 2.1 can be extended to a case T ≥ 2.

Having more than two time periods will add more conditional moment inequalities to (2.2), which

should in general shrink the identified set. For example, if T = 3, the identified set is given by

P{yU
it − x′itβ ≤ τ|xi} ≤ P{yL

is − x′isβ ≤ τ|xi} for t, s ∈ {1, 2, 3}

That is, if T = 3 we will have six conditional moment inequalities instead of only two for T = 2.

An immediate corollary to Theorem 2.1 follows.

Corollary 2.1 In addition, the model contains no information on the coefficients of time invariant

regressors ( i.e. regressors such that xi1 = xi2).
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This is immediate since if xi1 = xi2, then for every b in the parameter space, b also belongs

to BI since it will obey the inequalities above (so, parameters for time invariant regressors

can be “set” to zero). Finally, in Appendix A.1 we provide sufficient conditions for point

identification in a stationary model.

As we conclude this section, we note that one drawback of the approach discussed

here is the stationarity condition. As discussed in Chen and Khan (2008), this condition

rules out models with with time varying heteroskedasticity, and does not allow for time

varying factor loads. In the next section we relax the stationarity assumption in Model 1

above, and replace it with an independence assumption that allows for a wider range of

dependence between ε1 and ε2.

3 Identification under Non-Stationarity Assumption

Most of the existing work in the literature on nonstationary nonlinear panel data models

requires a large number of time periods- see e.g. Moon and Phillips (2000). One excep-

tion is Chen and Khan (2008), who assumed correlated random effects. Here we look

for assumptions motivated from the previous literature that aim at relaxing stationarity.

The issue is that standard mean and median independence assumptions on the marginal

distributions of εit’s do not allow us to provide any restrictions on β, i.e. , the sharp set

is the trivial set (the original parameter space itself). The intuition is that the marginal

median independence assumption places no restriction on the conditional median of

(εi1− εi2). Also, mean independence assumptions do not provide any identifying power

with censored data without support restrictions. So, in this paper, we relax stationarity

but impose statistical independence as in Model 2 below:

Assumption 3 (Model 2: Non-Stationary). Vector (εi1, εi2) is independent of xi.

Notice that here, the fixed effects does not enter the above formulation and so the distri-

bution of αi is left completely unspecified. In addition, the random variables εi1 and εi2

are assumed to be jointly independent of the regressors. However, since the distribution

of fixed effects αi’s is left unspecified, the identifying power of the assumption in Model

2 is equivalent to the identifying power of Model 2’ below:
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Assumption 4 (Model 2’: Non-Stationary). The difference ∆εi = εi2 − εi1 is independent of

xi = (xi1, xi2).

Note that Model 2 assumption does not require the errors to be distributed inde-

pendently of fixed effects αi’s. As before, we impose no structure on variables cit, thus

allowing for censoring to be to correlated with regressors and outcomes. This handles

both randomly endogenous censoring and fixed censoring as special cases.

We start with constructing a sharp identified set for β. Assumptions 3 or 4 do not im-

pose any restrictions on the distribution of fixed effects αi’s, and so we have to difference

out αi’s and get the following inequalities (here we use the notation from the previous

section):

yL
i2 − yU

i1 ≤ ∆x′i β + ∆εi ≤ yU
i2 − yL

i1

where ∆xi = xi2 − xi1 and ∆εi = εi2 − εi1. Since we assume that εi is independent

of xi this means that ∆ε is independent of xi. This will allow us to place inequality

restrictions on distributions. The following theorem characterizes the sharp identified

set for β under Model 2′ above.

Theorem 3.1 (Non-Stationary Model). For any b in the parameter set B, define

LB(τ, xi, b) = P{yU
i2 − yL

i1 −4x′ib ≤ τ|xi}

and

UB(τ, xj, b) = P{yL
j2 − yU

j1 −4x′jb ≤ τ|xj}

Then under Assumptions 3 and 2, the set

BI = {b ∈ B : for all xi, xj and τ LB(τ, xi, b) ≤ UB(τ, xj, b)} (3.1)

is the sharp identified set for β.

Similar to the stationary model, having more time periods in general will result in a

smaller identified set, as more conditional moment inequalities will enter the definition

of BI .

The inequalities in (3.1) must hold for all pairs (xi, xj). That is, slope coefficients for

regressors that do not change over time cannot be separated from the fixed effects α′is,

and therefore cannot be identified.
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The size of the identified set BI also depends on the proportion of observations that

are censored. If dit ≡ 1 for all i and t, i.e. no censoring occurs, then BI = {β}, i.e.

parameter β is point identified. However, for the identification to be trivial, i.e. the

model contains no information about β, one does not require dit ≡ 0 for all i and t.

The following result shows that in certain cases of heavy censoring, the identified set BI

coincides with the parameter space B, and so the bounds are the trivial ones.

Theorem 3.2 (Heavy Censoring). For t = 1, 2 denote the probability of censoring by pc
t(xi) =

1− P(dit = 1|xi) = P{yit < cit|xi}. If for all xi and xj we have pc
1(xi) + pc

2(xj) ≥ 1, then any

b ∈ B is observationally equivalent to β, so that BI = B.

This result basically says that even under the independence assumption, Model 2

(non-stationarity) provides no information on the parameter of interest, β, if there is a

lot of censoring. For example, if for each xi in the support at least 50% of observations

are censored, then we cannot learn anything about β under the assumptions of Model 2

without making some additional assumptions.

As in the previous section, we provide next sufficient conditions for the β to be point

identified (see Appendix).

It might be useful to characterize the above identified set as the optimizer of some

objective function, and hence express the above problem as an M or U-estimation prob-

lem with a possibly non-unique optimum. It turns out that this identified set BI can also

be characterized as a set of zeros (or the Argmin set, which is the same in this case) of

a particularly defined objective function. For instance, let τ1i, τ2i be two i.i.d. random

variables that are continuously distributed on (−∞,+∞) and that are independent of

xi, xj. Let wL
i = yL

i2− yU
i1 and wU

i = yU
i2− yL

i1. Also, let τi = (τi1, τi2). For any b ∈ B, define

Q(b) = Eτ,x

[
1{τ2j −4x′jb ≥ τ1i −4x′ib}1{P{wU

i ≤ τ1i|xi, τi} > P{wL
j ≤ τ2j|xj, τi}}

]
The following result shows that the identified set BI defined above can be characterized

as the set of zeros or the Argmin set of function Q(b).

Theorem 3.3 (Sharp Set and Optimization Problem). Assume that random variables τ1i and

τ2i are independent and identically continuously distributed with support (−∞,+∞). Further,

assume that τ1i and τ2i are independent of xi and xj. Let BQ = {b : Q(b) = 0}. Then

BI = BQ = Arg min
b∈B

Q(b).
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The above objective function is rank based, but in the case where the regressors

have continuous support, the function contains conditional probabilities inside indicator

functions, and these conditional probabilities need to be estimated nonparametrically in

a first step as was done in Khan and Tamer (2009). Note also, that the objective function

Q(·) defined above will admit a unique minimum under the conditions of Theorem A.2

(sufficient conditions for point identification) in the Appendix. So, maintaining these

sufficient point identification conditions, one is able to obtain a consistent estimator of β

by taking the argmin of an appropriate sample analogue of Q(·).

3.1 Zero Conditional Median Model

Note that in the preceding discussion of the identification under non-stationarity we

did not restrict the relationship between transitory error terms (εi1, εi2) and fixed effects

αi’s. Therefore, the key identifying assumption is that the vector of error terms (εi1, εi2)

is statistically independent of the vector of regressors xi can be relaxed, without any

loss of the identifying power, to the assumption that only the difference ∆εi = εi2 − εi1

is independent of xi. In this subsection, we further relax the statistical independence

assumption and consider identification under the median independence assumption on

the difference in the errors. That is, we assume that Med(∆εi|xi) = 0. In this case the

identified set is also characterized by a set of conditional inequalities.

Assumption 5 (Model 3: Zero Conditional Median). Med(∆εi|xi) = 0.

Theorem 3.4 (Zero Conditional Median Model). Suppose that Assumption 5 holds. Then a

sharp identified set BI is given by BI = {b ∈ B : for every xi, xj Med(yL
i2 − yU

i1|xi)− ∆x′ib ≤
0 ≤ Med(yU

j2 − yL
j1|xj)− ∆x′jb}.

Assumption 5 (Model 3) is not easy to characterize in terms of restrictions on the cor-

relation between idiosyncratic error terms ε1 and ε2. For example, if ε1 is independent

and identically distributed to ε2 (conditional on x’s), then their difference is distributed

symmetrically around 0. However, this is not the necessary condition for the zero condi-

tional median assumption. Another example would be when ε1 has a symmetric around

0 distribution, while ε2 = ρε1 + κ, where κ is independent of ε1 and also is symmetrically

distributed around 0.
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4 Extensions

In this section we consider extension of our results for various dynamic panel data

models, and a model with time varying factor loads. In particular, we look at what

can be learned in some dynamic panel data models under the assumption of stationarity

(Model 1). Also, we show that a time varying factor loads model implies non-stationarity

(Model 2).

4.1 Dynamic Panel Data Models

One of the limitations of the models considered in the previous sections was the strict ex-

ogeneity condition imposed on the explanatory variables. This assumption rules out any

type of dynamic feedback, such as including lagged dependent variable as an explana-

tory variable. Although there is much progress in dynamic linear panel data models,

see Hsiao (1986), Baltagi (1995), and especially Arellano and Bond (1991), there are very

few results for censored models like those considered here. Honoré (1993), Honoré and

Hu (2004), and Hu (2002) all provide results for panel data dynamics with fixed censor-

ing, while none of these allow for the random, endogenous censoring considered here,

nor do they attain the sharp bounds when point identification is not attainable. Con-

sequently, in this section we will consider dynamic censored panel data models (with

no restrictions on censoring variable). We allow the dynamic feedback to enter in three

different ways: through lagged observable variables (either the (potentially censored)

outcome itself or the censoring indicator) or through the lagged latent outcome (which

is only partially observable). The approach is very similar to the static censored panel

data models treated in previous sections, so for the purpose of illustration we focus

mostly on a stationary setting. In the non-stationarity setting, the only substantial dif-

ference between the static and the dynamic setup is for the model with lagged latent

outcome, so we treat this case separately.
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4.1.1 Lagged Observed Outcome

The first dynamic panel model we consider is with a lagged observed outcome as one of

the explanatory variables:

y∗it = γyi,t−1 + x′itβ + αi + εit (4.1)

where yit = max{y∗it, cit} so, unlike y∗it, it is observed. The parameters of interest are γ

and β, and in this section we will impose a conditional stationarity assumption on the

disturbance terms εit. The autoregressive parameter γ is a determinant of the persistence

of the process and is often the object of interest in empirical applications. For example,

y∗it is current wage in sector 1 in a two sector economy, and yit−1 is last period’s observed

wage (regardless whether individual i was employed in sector 1 or 2).

In the dynamic setting, stationarity condition on the error terms translates into the

following assumption.

Assumption 6 (Stationarity). Error terms εi1 + αi and εi2 + αi are identically distributed

conditional on (xi1, xi2, yi0).

Assumption 6 is similar to the stationarity condition used in e.g. Hu (2002) for a dynamic

censored panel data model.

Using the notation introduced previously, we construct conditional moments inequal-

ities that place restrictions on β and γ as follows:

P{yU
i1 − gyi0 − x′i1b ≤ τ|xi, yi0} ≤ P{yL

i2 − gyi1 − x′i2b ≤ τ|xi, yi0}

P{yU
i2 − gyi1 − x′i2b ≤ τ|xi, yi0} ≤ P{yL

i1 − gyi0 − x′i1b ≤ τ|xi, yi0}
(4.2)

Theorem 4.1 (Dynamic Model with Lagged Observed Outcome). Suppose that Assump-

tion 6 holds. Let (g, b) ∈ Θ = Γ× B satisfy the inequalities in (4.2) for all τ ∈ R and all xi and

yi0 in the support. The (g, b) is observationally equivalent to the true parameter value (γ, β).

That is, the sharp identified set is

ΘI,1 = {(g, b) ∈ Θ : for every τ ∈ R and every xi and yi0 (4.2) hold.}
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4.1.2 Lagged Censoring Indicator

The second dynamic panel data model we consider is when a lagged value of the cen-

soring indicator variable dit as used an explanatory variable, and we maintain the initial

conditions assumption as before (i.e., we observe di0). This is an interesting model where

the dynamics of the outcome process is through the sector specific lagged variable:

y∗it = γdi,t−1 + x′itβ + αi + εit (4.3)

Specifically, for the first two periods we have:

y∗i1 = αi + γdi0 + x′i1β + εi1

y∗i2 = αi + γdi1 + x′i2β + εi2

Here the stationarity condition is summarized by Assumption 7.

Assumption 7 (Stationarity). Error terms εi1 + αi and εi2 + αi are identically distributed

conditional on (xi1, xi2, di0).

Assumption 7 gives us a set of conditional moment inequalities analogous to what

we had before:

P{yU
i1 − gdi0 − x′i1b ≤ τ|xi, di0} ≤ P{yL

i2 − gdi1 − x′i2b ≤ τ|xi, di0}

P{yU
i2 − gdi1 − x′i2b ≤ τ|xi, di0} ≤ P{yL

i1 − gyi0 − x′i1b ≤ τ|xi, di0}
(4.4)

The identified set for θ = (γ, β′)′ given by the inequalities in 4.4 is sharp according to

the result below.

Theorem 4.2 (Dynamic Model with Lagged Censoring Indicator). Suppose that Assump-

tion 7 holds. Let (g, b) ∈ Θ = Γ× B satisfy the inequalities in (4.4) for all τ ∈ R and all xi and

yi0 in the support. The (g, b) is observationally equivalent to the true parameter value (γ, β).

That is, the sharp identified set is

ΘI,2 = {(g, b) ∈ Θ : for every τ ∈ R and every xi and di0 (4.4) hold.}
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4.1.3 Lagged Latent Outcome

The third model we consider is when the lagged value of the latent outcome y∗it is one of

the explanatory variables:

y∗it = γy∗i,t−1 + x′itβ + αi + εit (4.5)

Following Hu (2002) we assume that y∗i0 is observed (i.e., there is no censoring in the

initial period). For the first and second period we have

y∗i1 = αi + γy∗i0 + x′i1β + εi1

y∗i2 = αi + γy∗i1 + x′i2β + εi2

where y∗i1 is not necessarily observed.

Assumption 8 (Stationarity). Error terms εi1 + αi and εi2 + αi are identically distributed

conditional on (xi1, xi2, y∗i0).

First, we assume that γ ≥ 0 (same assumption is made in Hu (2002)). Then we have the

following inequalities:

yL
i1 − γy∗i0 − x′i1β ≤ εi1 + αi ≤ yU

i1 − γy∗i0 − x′i1β

yL
i2 − γyU

i1 − x′i2β ≤ εi2 + αi ≤ yU
i2 − γyL

i1 − x′i2β

It is easy to see that Assumption 8 implies that for every τ and xi, y∗i0, the following

inequalities must hold:

P{yU
i1 − gy∗i0 − x′i1b ≤ τ|xi, y∗i0} ≤ P{yL

i2 − gyU
i1 − x′i2b ≤ τ|xi, y∗i0}

P{yU
i2 − gyL

i1 − x′i2b ≤ τ|xi, y∗i0} ≤ P{yL
i1 − gy∗i0 − x′i1b ≤ τ|xi, y∗i0}

(4.6)

However, unlike the static panel data model with stationarity assumption, here the

inequalities in (4.6) do not give us the sharp identified set. On the one hand, we can

show that any vector of parameters (g, b) that is observationally equivalent to true pa-

rameters (γ, β) will also satisfy the inequalities in (4.6) (with γ and β replaced by g and

b, respectively). However, the upper and lower bounds in (4.6) with respect to partially
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observed y∗i1 are not independent, and therefore we cannot expect that any parameters

that satisfy inequalities in (4.6) are observationally equivalent to the true parameters.

However, if we consider a dynamic analog in a non-stationary setting, then with T = 2

periods we can characterize the identified set through a set of conditional moment in-

equalities as before. The set defined in (4.6) can only be shown to contain the identified

set7. In the Appendix A.2 we characterize the sharp identified set under the stationarity

assumption.

4.1.4 Lagged Latent Outcome in a Non-Stationary Model

In the dynamic analog of the non-stationary case, one can construct a set of conditional

inequalities that give a sharp set when T = 2. Here we construct the identified set for

a dynamic model with lagged latent outcome under the non-stationarity assumption of

Section 3.

Suppose that we know γ. If we subtract first-period equation from the second-period

equation, we have

y∗i2 − (1 + γ)y∗i1 + γy∗i0 = ∆x′i β + εi2 − εi1

We make the following assumption (similar to Assumption 3) about the error terms:

Assumption 9 (Non-Stationary Dynamic Model). Vector (εi1, εi2) is independent of xi.

If 1 + γ ≥ 0, then we can work with the following inequalities:

yL
i2 − (1 + γ)yU

i1 + γy∗i0 ≤ y∗i2 − (1 + γ)y∗i1 + γy∗i0 ≤ yU
i2 − (1 + γ)yL

i1 + γy∗i0

Again, we start by assuming that 1 + γ ≥ 0. Then for a candidate (g, b) we can subtract

∆x′ib and check whether the following inequalities hold for every τ, xi, xj, y∗i0 and y∗j0:

P{yU
i2− (1+ g)yL

i1 + gy∗i0−∆x′ib ≤ τ|xi, y∗i0} ≤ P{yL
j2− (1+ g)yU

j1 + gy∗j0−∆x′jb ≤ τ|xj, y∗j0}

(4.7)

A set of parameters that satisfy (4.7) gives the identified set, as summarized below.
7Following Hu (2002), we can also assume conditional independence between εi1 and εi2, which implies

that ∆εi = εi2 − εi1 is symmetrically distributed conditional on xi and exploit additional conditional

moment inequalities imposed by the symmetry. This potentially can shrink the set in (4.6), but it does not

guarantee the sharpness of the set.
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Theorem 4.3 (Non-Stationary Dynamic Model). Suppose that Assumption 9 holds, and as-

sume that 1 + γ > 0. Let (g, b) ∈ Θ = Γ× B, 1 + g > 0 satisfy the inequalities in (4.7) for all

τ ∈ R and all xi, xj, y∗i0 and y∗j0. Then (g, b) is observationally equivalent to the true parameter

value (γ, β). That is, the sharp identified set is

ΘI,4 = {(g, b) ∈ Θ, 1 + g > 0 : for every τ ∈ R and every xi, xj, y∗i0 and y∗j0 (4.7) hold.}

4.2 Time Varying Factor Loads

A particular nonstationary panel data model that has received interest in empirical set-

tings is one where a time varying factor loads onto the individual specific effect. Main-

taining our notation, we can express the latent equation as:

y∗it = γtαi + x′itβ + εit

where γt denotes the time varying factor load. This parameter is of interest in labor

economics as it represents the returns to unobserved skills, which may change over time

(see, e.g. Chay and Honoré (1998)). We can easily modify our approach to attain bounds

on β and γt, assuming cross sectional homoskedasticity

We illustrate the idea using two periods as we did before. Note here we can only

identify the ratio γ2/γ1 = γ, so we normalize γ1 ≡ 1 and γ2 = γ. Then the equations

for periods t = 1 and t = 2 become

y∗i1 = αi + x′i1β + εi1

y∗i2 = γαi + x′i2β + εi2

We assume that γ 6= 0 and so we can divide both sides of the second equation by γ.8

y∗i2/γ = αi + x′i2β/γ + εi2/γ

This division immediately results in the nonstationarity of the error terms. However,

if we assume independence (a non-stationarity assumption), we can place meaningful

8Here γ = 0 would imply that the fixed effect does not enter in time period 2, which does not seem

plausible.
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restrictions on the model’s parameters β in γ. In particular, assume first that γ > 0.

Then we can difference out αi, so that the upper and lower bounds on εi2/γ− εi1 are

yL
i2/γ− yU

i1 − (x′i2/γ− xi1)
′β ≤ εi2/γ− εi1 ≤ yU

i2/γ− yL
i1 − (x′i2/γ− xi1)

′β

Then under Assumption 3 and assuming that γ > 0, the identified set is summarized

by the following conditional moment inequalities that must hold for all values of τ and

all xi, xj in the support:

P{yU
i2/g− yL

i1− (xi2/g− xi1)
′b ≤ τ|xi} ≤ P{yL

j2/g− yU
j1− (xj2/g− xj1)

′b ≤ τ|xj} (4.8)

If γ < 0, the identified set is given by

P{yL
i2/g− yL

i1 − (xi2/g− xi1)
′b ≤ τ|xi} ≤ P{yU

j2/g− yU
j1 − (xj2/g− xj1)

′b ≤ τ|xj}

This is summarized by the following claim.

Theorem 4.4 (Time Varying Factor Loads). Suppose that Assumption 3 holds, and assume

that γ > 0. Let (g, b) ∈ Θ = Γ× B, g > 0 satisfy the inequalities in (4.8) for all τ ∈ R and all

xi, xj. Then (g, b) is observationally equivalent to the true parameter value (γ, β). That is, the

sharp identified set is

ΘI,TVFL = {(g, b) ∈ Θ, g > 0 : for every τ ∈ R and every xi and xj (4.8) hold.}

Having more than T = 2 time periods adds to the number of inequalities that define

the identified set. However, it adds more parameters, too. Therefore we cannot say any

longer that observing more time periods helps to shrink the identified set (as we were

able to say before). For example, for T = 3 we now have three parameters: γ2, γ3 and β.

The equations for periods 1, 2 and 3 now are

y∗i1 = αi + x′i1β + εi1

y∗i2 = γ2αi + x′i2β + εi2

y∗i3 = γ3αi + x′i2β + εi2
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and the identified set for (γ2, γ3, β) is given by (assuming e.g. that γ2, γ3 > 0):

P

{
yU

i2
g2
− yL

i1 −
(

xi2

g2
− xi1

)′
b ≤ τ|xi

}
≤ P

{
yL

j2

g2
− yU

j1 −
(

xj2

g2
− xj1

)′
b ≤ τ|xj

}

P

{
yU

i3
g3
− yL

i1 −
(

xi3

g3
− xi1

)′
b ≤ τ|xi

}
≤ P

{
yL

j3

g3
− yU

j1 −
(

xj3

g3
− xj1

)′
b ≤ τ|xj

}

P

{
yU

i3
g3
−

yL
i2

g2
−
(

xi3

g3
− xi2

g2

)′
b ≤ τ|xi

}
≤ P

{
yL

j3

g3
−

yU
j2

g2
−
(

xj3

g3
−

xj2

g2

)′
b ≤ τ|xj

}

That is, now we have three inequalities instead of only one for T = 2, but we now also

have one additional parameter.

5 Inference

This section provides an approach for statistical inference given the identification results

in previous sections. We suggest methods that can be used to build confidence regions

for β, taking into account the fact that this parameter, in most of the cases above, might

not be point identified. We provide assumptions under which the large sample distri-

bution of a test statistic is derived and used to construct confidence regions on the true

parameter. There has been a lot of work on the statistical inference of models that are

partially identified, and so this section mostly adapts some methods from the recent lit-

erature. We focus on the case when covariates x have discrete distribution with a finite

support9.

We construct confidence intervals for β under stationarity or non-stationarity restric-

tions based on pointwise testing inequalities in (2.2) and (3.1) correspondingly. That is,

the confidence set for β will collect all candidate parameter values for which one failed

to reject the null hypothesis that this candidate value belongs to the identified set. In

both Model 1 and 2, we use a Kolmogorov-Smirnov type test statistic that is based on

9The case of continuous covariates will require a non-parametric estimation of conditional moment

inequalities for any fixed value of τ, which, together with continuous τ, is too involved and is beyond the

scope of this paper. Some discussion of moment inequalities models with continuous covariates can be

found in, for example, Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Kim (2007), and

Ponomareva (2010).
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the corresponding conditional moment inequalities. Before we proceed, we introduce

additional assumptions that will be used throughout this section:

Assumption 10 (Random Sampling). Observations {(yit, dit, x′it)
′; t = 1, 2, i = 1 . . . , n}

are i.i.d. across individuals.

Assumption 11 inf
x∈X

P{xi = x} ≥ δ > 0 for some δ > 0.

Assumption 10 is a standard random sampling assumption, and Assumption 11 is a

regularity condition that ensures that we can estimate conditional moments that enter

(2.3) at n1/2-rate.

5.1 Inference in the Stationary Model

According to Theorem 2.1, each β in the identified set BI should satisfy the following

inequalities for all values of τ and xi:

P{yU
i1 − x′i1β ≤ τ|xi} ≤ P{yL

i2 − x′i2β ≤ τ|xi}

P{yU
i2 − x′i2β ≤ τ|xi} ≤ P{yL

i1 − x′i1β ≤ τ|xi}
(5.1)

For a candidate value β, we define D1(τ, xi; β) = P{yU
1 − x′1β ≤ τ|x} − P{yL

2 − x′2β ≤
τ|x} and D2(τ, x; β) = P{yU

2 − x′2β ≤ τ|x} − P{yL
1 − x′1β ≤ τ|x}. Therefore, testing

whether or not a candidate parameter value β belongs to the identified set amounts to

testing the following null vs alternative hypotheses:

HS,0 : D1(τ, x; β) ≤ 0, and D2(τ, x; β) ≤ 0 for all (τ, x) ∈ R×X

HS,a : max{D1(τ, x; β), D2(τ, x; β)} > 0 for some (τ, x) ∈ R×X
(5.2)

Assume for a moment that we have a test of size α of H0 against Ha for each value of β.

Then the (1− α) · 100% confidence set for β will collect all values of beta for which we

failed to reject H0. Below we describe a test of HS,0 against HS,a.

22



The sample analogs of D1(τ, x; β) and D2(τ, x; β) are:

D̂1(τ, x; β) =
1
n

n

∑
i=1

[
1{yU

i1 − x′i1β ≤ τ, xi = x} − 1{yL
i2 − x′i2β ≤ τ, xi = x}

]
/P̂{xi = x}

D̂2(τ, x; β) =
1
n

n

∑
i=1

[
1{yU

i2 − x′i2β ≤ τ, xi = x} − 1{yL
i1 − x′i1β ≤ τ, xi = x}

]
/P̂{xi = x}

where P̂{xi = x} = 1
n

n

∑
i=1

1{xi = x}

To test the null hypothesis in (5.2) we use the following Kolmogorov-Smirnov type test

statistic:

TS
n (β) = max{ sup

(τ,x)∈R×X

√
nD̂1(τ, x; β), sup

(τ,x)∈R×X

√
nD̂2(τ, x; β)}

The limiting distribution of TS
n (β) under the null hypothesis is given in the result below.

Theorem 5.1 (Distribution of Test Statistic in a Stationary Model). Suppose that Assump-

tions 1,2, 10 and 11 hold. Then under HS,0, the limiting distribution of TS
n (β) is first-order

stochastically dominated by the distribution of

max{ sup
(τ,x)∈R×X

G1(τ, x; β), sup
(τ,x)∈R×X

G2(τ, x; β)}

where GS(τ, x; β) = (G1(τ, x; β), G2(τ, x; β)) is a two-dimensional gaussian process with zero

mean and continuous sample paths in `∞(R,X ) and the following covariance kernel:

Cov(GS(τ1,x1; β), GS(τ2, x2; β)) =

=

(
Cov(δi1(τ1, x1; β), δi1(τ2, x2; β)) Cov(δi1(τ1, x1; β), δi2(τ2, x2; β))

Cov(δi2(τ1, x1; β), δi1(τ2, x2; β)) Cov(δi2(τ1, x1; β), δi2(τ2, x2; β))

)
where

δi1(τ, x; β) =
1{yU

i1 − x′i1β ≤ τ, xi = x} − 1{yL
i2 − x′i2β ≤ τ, xi = x}

P{xi = x}

δi2(τ, x; β) =
1{yU

i2 − x′i2β ≤ τ, xi = x} − 1{yL
i1 − x′i1β ≤ τ, xi = x}

P{xi = x}

We can now use the limiting distribution of TS
n (β) to construct confidence set for the

parameter of interest, β.
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Corollary 5.1 (Confidence Set in a Stationary Model). Suppose that assumptions of Theorem

5.1 hold. Let cS
1−α(β) denote the (1− α) · 100% quantile of the distribution of

max{ sup
(τ,x)∈R×X

G1(τ, x; β), sup
(τ,x)∈R×X

G2(τ, x; β)}

and define the (1− α) · 100% confidence set for β as

CSn,1−α = {β ∈ B : TS
n (β) ≤ cS

1−α(β)}

Then lim
n→∞

P{β ∈ CSn,1−α} ≥ 1− α.

Since P{xi = x} needs to be estimated, we have to estimate the covariance structure

of the gaussian process GS(τ, x; β), and then we can sample from that estimated pro-

cess. We can consistently estimate the above covariance structure using sample covari-

ances, and replacing the unknown P{xi = x} with its consistent estimator P̂{xi = x}.
Finally, to estimate critical values cS

1−α(β), we can approximate the gaussian process

(G1(τ, x; β), G2(τ, x; β) with Ĝ1(τ, x; β, Z), Ĝ2(τ, x; β, Z)) defined by

Ĝ1(τ, x; β, Z) =
1√
n

n

∑
i=1

(δ̂i1(τ, x; β)− D̂1(τ, x; β))zi

Ĝ2(τ, x; β, Z) =
1√
n

n

∑
i=1

(δ̂i2(τ, x; β)− D̂2(τ, x; β))zi

where Z = (z1, . . . , zn) and {z1, . . . , zn} are i.i.d. draws from a standard normal distribu-

tion, and

δ̂i1(τ, x; β) =
1{yU

i1 − x′i1β ≤ τ, xi = x} − 1{yL
i2 − x′i2β ≤ τ, xi = x}

P̂{xi = x}

δ̂i2(τ, x; β) =
1{yU

i2 − x′i2β ≤ τ, xi = x} − 1{yL
i1 − x′i1β ≤ τ, xi = x}

P̂{xi = x}

Finally, similar to Jun, Lee, and Shin (2011), we can estimate cS
1−α(β) using the (1−

α) · 100% quantile of the empirical distribution of

max{ sup
(τ,x)∈R×X

Ĝ1(τ, x; β, Z), sup
(τ,x)∈R×X

Ĝ2(τ, x; β, Z)}

The inference procedure described above may result in the conservative coverage due

to using the distribution that first-order dominates the limiting distribution of TS
n (β).
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To improve the coverage, one can follow Linton, Song, and Whang (2010) and take

the supremum of the above gaussian process over “contact sets” rather than the whole

support for x and τ. A contact sets is defined as the set of all values (τ, x) that set

inequalities in (5.1) to equalities. In particular, we can define the contact sets as

B1(β) = {(τ, x) ∈ R×X : D1(τ, x; β) = 0}

B2(β) = {(τ, x) ∈ R×X : D2(τ, x; β) = 0}

Then under the condition of Theorem 5.1, we have

TS
n (β)⇒ max{ sup

(τ,x)∈B1(β)

G1(τ, x; β), sup
(τ,x)∈B2(β)

G2(τ, x; β)}

Those contact sets can be consistently estimated by

B̂1(β) =

{
(τ, x) ∈ R×X : |D̂1(τ, x; β)| ≤ an√

n

}
B̂2(β) =

{
(τ, x) ∈ R×X : |D̂2(τ, x; β)| ≤ an√

n

}
where {an > 0 : n = 1, 2, . . .} is a deterministic sequence such that an → 0, an/

√
n → 0

and
√

ln ln n/an → 0. Though it is feasible to estimate these contact sets above, using the

distribution where we take the supremum over all (τ, x) is easier to construct, especially

in the case where x has discrete support.

5.2 Inference in the Non-Stationary Model

For a non-stationary model, the identified set for β is given by the following set of

inequalities (see Theorem 3.1):

P{yU
i2 − yL

i1 − ∆x′ib ≤ τ|xi} ≤ P{yL
j2 − yU

j1 − ∆x′jb ≤ τ|xj} (5.3)

For a fixed candidate β, we define

D(τ, x, x̃; β) = P{yU
i2 − yL

i1 − ∆x′i β ≤ τ|xi = x} − P{yL
j2 − yU

j1 − ∆x′jβ ≤ τ|xj = x̃}

Then the null and the alternative hypotheses for testing that this candidate β belongs to

the identified set BI in this case can be stated as

HNS,0 : D(τ, x, x̃; β) ≤ 0 for all (τ, x, x̃) ∈ R×X ×X

HNS,a : D(τ, x, x̃; β) > 0 for some (τ, x, x̃) ∈ R×X ×X
(5.4)
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D(τ, x, x̃; β) can be consistently estimated with

D̂(τ, x, x̃; β) =
1
n

n

∑
i=1

1{yU
i2 − yL

i1 − ∆x′i β ≤ τ, xi = x}/P̂{xi = x}

− 1
n

n

∑
j=1

1{yL
j2 − yU

j1 − ∆x′jβ ≤ τ, xj = x̃}/P̂{xj = x̃}

To test the null hypothesis we again use the Kolmogorov-Smirnov type test statistic:

TNS
N (β) = sup

(τ,x,x̃)∈R×X×X

√
nD̂(τ, x, x̃; β)

The limiting distribution of this test statistic is summarized in the result below.

Theorem 5.2 (Distribution of Test Statistic in a Non-Stationary Model). Suppose that As-

sumptions 3(4),2, 10 and 11 hold. Then under HNS,0, the limiting distribution of TNS
n (β) is

first-order stochastically dominated by the distribution of

sup
(τ,x,x̃)∈R×X×X

GNS(τ, x, x̃; β)

where GNS(τ, x, x̃; β) is a gaussian process with zero mean and continuous sample paths in

`∞(R,X ,X ) and the following covariance kernel:

Cov(GNS(τ1, x1, x̃1; β), GNS(τ2, x2, x̃2; β)) = Cov
(
δij(τ1, x1, x̃1; β), δij(τ2, x2, x̃2; β)

)
where

δij(τ, x, x̃; β) =
1{yU

i2 − yL
i1 − ∆x′i β ≤ τ, xi = x}

P{xi = x} −
1{yL

j2 − yU
j1 − ∆x′jβ ≤ τ, xj = x̃}

P{xj = x̃

We use the limiting distribution of TNS
n (β) to construct confidence set for the param-

eter of interest, β.

Corollary 5.2 (Confidence Set in a Non-Stationary Model). Suppose that assumptions of

Theorem 5.2 hold. Let cNS1− α(β) denote the (1− α) · 100% quantile of the distribution of

sup
(τ,x,x̃)∈R×X×X

GNS(τ, x, x̃; β)

and define the (1− α) · 100% confidence set for β as

CSn,1−α = {β ∈ B : TNS
n (β) ≤ cNS

1−α(β)}

Then lim
n→∞

P{β ∈ CSn,1−α} ≥ 1− α.

26



As in the stationary case, one can approximate the gaussian process GNS(·, ·, ·; β) and

sample from this approximation to estimate critical values cNS1− α(β). We can also

improve the coverage by taking the supremum over estimated contact sets instead of the

whole support.

6 Simulations

This section provides evidence on the size of the identified sets in some stylized panel

models with censoring. The first set of simulations are meant to shed light on the size of

the identified set in some examples, without issues of sample uncertainty (done with a

very large sample size). Second, we provide small sample evidence using our inference

approach to construct confidence regions on the parameters in some models also in the

following section.

All the simulations (for the identified sets and the confidence regions) are based on

the two period model and its dynamic variant:

y∗t = α + β1x1t + β2x2t + εt t = 1, 2 (6.1)

where β1 = β0 = 1. We use two regressors both with a discrete distribution with support

on {−1, 0, 1} in the non-dynamic models, and in the dynamic models, we only have one

regressor (in addition to the lagged variables).

6.1 Identified Set Simulations

The sets of simulations here are meant to provide evidence on the size of the identified set

in certain stylized designs. The identified set simulations are useful in their own rights:

1) for the simple models we simulate with random censoring and under various assump-

tions, it is not known whether the model is point identified, and 2) in many cases with

endogenous censoring and/or heteroskedasticity, and though the model is not likely

to be point identified, the identified sets are tight in our designs which is suggestive

that under weaker conditions, these models do contain information. So, our approach

then allows us to examine the sensitivity of our model to these strong assumptions. We
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first simulate various versions of the above under Model 1 and Model 2. We start with

Model 1.

6.1.1 Identified Set in Model 1

For this model, we plot the set of parameters (b1, b2) that satisfy the inequalities in (2.2).

These inequalities were simulated with a sample of size 20000 for each x value (a total

sample size of 16*20000) to minimize the issues of sampling uncertainty. We plot the

identified set as contour plots where we use a grid point to look for parameters that do

not violate any of the inequalities. For τ, we use a grid on [−20, 20] with various grid

sizes. Throughout, the fixed effect was generated as αi = N (0, 1) ∗ (∑t=1,2;k=1,2 xkt). We

start in Figure 1(a) with the panel data with fixed censoring at zero. Here, ε1 is normal

with mean zero and variance 2, and similarly to ε2. The two random variables ε1 and

ε2 are correlated with correlation coefficient of 1/2. This case obeys the assumptions

of Honoré (1992) and hence we expect this to be point identified and this is confirmed

in the top panel of Figure 1. The second Figure, we plot the identified set also for the

case with independent random censoring in which c is N (0, .25). The identified set here

appears to be tight. For both of these designs, the level of censoring was around 30%. In

the bottom panel of Figure 1, we plot the identified set for the random endogenous cen-

soring in which c ∼ N (0, 1) + .5ε2. Here, we see that the identified set is larger. There

also, we plot the case with covariate dependent censoring that does not depend on ε.

Here, c1 ∼ N(0, 1) + (x21 − x11) and as we can see, the identified set is smaller than the

case with endogeneity. Figure 2 provides the identified set for the case with covariate

dependent endogenous censoring and the bottom panel graphs the case for fixed censor-

ing at zero where the density of ε is heteroskedastic. Also, we have heteroskedasticity

and endogenous censoring, while in the last graph in Figure 2, we allow the censoring

to depend on the covariates. Note that the largest identified sets in these designs seem

to be in models with endogenous censoring, and that having the censoring depend on x

in our design reduces the size of the identified set.
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6.2 Identified Set in Model 2:

This is the independent non-stationary model. So, we simulate ε1 as a random normal,

and ε2 ∼ u× ε1 +
1
2 z where u is a uniform random variable on [−1, 1], and z is a standard

normal independent of u and ε1. On the top of Figure 3, we plot the identified set for the

fixed censoring case where we have 30% censoring in period 1 and 15% in period 2. Next,

we simulate the same model but with random independent censoring that isN (−1
2 , 1) in

period 1 and N (−1, 1) in period 2 which resulted in 40% and 26% censoring in periods 1

and 2 respectively. As we can see, in this design, the random censoring shrinks somehow

the identified set. In the bottom of Figure 3, we have design with endogenous random

censoring where the censoring in period 1 is c1 = N (0, 1) + 2ε2 + .5 while in period 2

it is c2 = N (0, 1) − .1ε1 + 1 which got us around 20% censoring in period 1 and 15%

censoring in period 2. The last graph in Figure 3 provides a case where the censoring in

addition to being endogenous, is also covariate dependent. Here, the censoring in both

periods increase to 40% and 30% and so we see that the identified set is larger. As we

can, the model with non-stationarity still contains information about the parameters of

interest. We also simulated cases with at least 50% censoring that resulted in a model

with no information about β as our results above suggest.

6.3 Identified Set in Dynamic Models

Here, we first simulate the following dynamic model in which a lagged observed variable

is on the right hand side:

y∗it = γ0vit−1 + x′itβ0 + αi + εit

Here, we assume that the initial period is observed, is N (0, 1) and is independent of

all variables in the model. In addition, we simulate the fixed effects and the errors as

above. On top of Figure 4, we have the model censored at -1 which resulted in almost

30% censoring in each period. For the random independent censoring case, we use

random normal censoring with mean -1, and for the endogenous censoring we have

cit = N (−1, 1) + .2εit. In addition, the covariate dependent model adds the sum of the

covariates across time periods to cit. As we can see, the presence of lagged yit does not

result in a complete lack of identification for the above model.
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Next, we turn to the dynamic model with lagged sector specific variables as regres-

sors which is provided in Figure 5. There, we plot the identified set for (β, γ) in the

following model:

y∗it = αi + γ0dit + x′itβ0 + εit

where again, dit = 1[y∗it ≥ cit], an observed binary sector indicator variable. The model

is simulated with the same values as the previous models. As we can see from the plots

in Figure 4, the sizes of the identified set seems similar and more importantly, it is clear

that a stationary dynamic model does not generally identify the parameter of interest in

this design, but do contain information.

6.4 Monte Carlo Evidence: Confidence Regions

In this section, we use our inference results to construct confidence regions for parame-

ters in the stationary model that we used above:

y∗t = α + β1x1t + β2x2t + εt t = 1, 2

where β1 = β0 = 1 with varying sample sizes and under different assumptions on the

censoring mechanism. In particular, we first calculate P̂{xi = x}, then, we calculate for

a given parameter vector b, D̂1(τ, x; b) and D̂2(τ, x; b) and evaluate those on a sequence

of random τ grids from −4 to 4 of size 10. We then calculate δ̂i1(τ, x, b), δ̂i2(τ, x, b) and

Tn(β). To get the critical values, we simulate the gaussian process GNS in a simple way

as follows. We simulate {uis, i = 1, . . . , n} from a standard normal distribution. Then,

for j = 1, 2 :

Ĝs,j(τ, x; β) =
1√
n

n

∑
i=1

(δ̂ij(τ, x; β)− ∆̂1(τ, x; β))uis

and then we construct the (1− α).100%CS for β in the following way:

CSn,1−α = {β ∈ B : Tn(β) ≤ cS
n,1−α(β)}

where cS
n,1−α(β) is the (1− α).100% quantile of the empirical distribution of

sup
(τ,x)∈R×χ

max{Ĝs,1(τ, x; β), Ĝs,2(τ, x; β)}
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The way we do that is we construct a grid for (β1, β2) and then performing the test

pointwise. We report in the tables, projections of the confidence region onto the two axes.

So, the coverage of these “rectangular” confidence regions is at least (1− α).100% where

here we set that equal to 95%. The various Models we report are simulated similar to the

previous section, so the Random Independent Censoring model is one where c is N (0, .25),

while the Random Covariate Dependent Censoring is one where c1 is N (0, 1) + (x21 − x11).

As we can see from Table 1, our estimation approach seem to perform well10 in small

samples. Here, again, the CI were constructed by inverting the test statistic Tn and for

example in the fixed censoring case where we know the model is point identified, the

(conservative) confidence regions are well behaved but tend to be slightly non-symmetric

with respect to the truth of (1, 1).

7 Conclusion

This paper considers identification and inference in a class of censored models in panel

data settings. Our main contribution is to provide the tightest sets on the parameter of

interest that we can learn from data at hand under two sets of assumptions. Throughout,

we allow the censoring to be completely general with no restrictions on the relationship

between the censoring variable and the other variables in the model. In the specific set-

ting resulting in a randomly censored regression model our results nest existing work on

censoring in both panel and cross section settings, such as Honoré (1992), Honoré, Khan,

and Powell (2002), and Honoré and Powell (1994). The paper also contains novel results

on identification for dynamic models where various kinds of “lagged” behavior is allowed

such as having a lagged indicator, a lagged observed outcome, and a lagged latent out-

come. In addition, we provide characterizations of the identified set in a model with

factor loads. The area of panel data Roy models with dynamics is not well understood

in the literature as conditions for point identification under reasonable assumptions are

not available. Hence, our results provide a step in that direction in that we construct the

identified set for such dynamic models under weak assumptions.

In addition, our characterization of the identified sets are constructive in that they can

10The simulations were all conducted using Matlab on a generic office computer and the time each took

ranged from 1.5 hours to 8 hours.
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Table 1: 95% Confidence Regions for Stationary Model n = 180, 360, 600, T = 2.

Model Marginal 95% CI

β1 β2

Fixed Censoring

N = 180 [.4, 2.4] [−.2, 2.6]

N = 360 [.7, 1.7] [.5, 1.9]

N = 600 [.85, 1.45] [.75, 1.76]

Random Independent Censoring

N = 180 [.35, 2.3] [−.21, 2.9]

N = 360 [.72, 1.66] [.54, 1.92]

N = 600 [.91, 1.15] [.85, 1.26]

Random Covariate Dependent Censoring

N = 180 [.35, 2.3] [−.21, 2.9]

N = 360 [.72, 1.72] [.5, 1.9]

N = 600 [.83, 1.29] [.81, 1.32]

Random Endogenous Censoring

N = 180 [.35, 2.3] [−.21, 2.9]

N = 360 [.7, 1.7] [.5, 1.9]

N = 600 [.761.25] [.75, 1.46]
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be estimated from the sample. We then provide a practical approach to constructing con-

fidence regions that control size and can be used to get correct confidence regions. The

proposed inference method is based on conditional moment inequalities that is adaptive

to point identification conditions in the sense that the objective function is minimized

at the identified set (which can be a singleton in the point identified case), depending

on the features of the data generating process. We also provide guidance on how one

might construct confidence regions for the identified set based on recent contributions to

the theory of stochastic dominance tests (for example, Jun, Lee, and Shin (2011), Linton,

Maasoumi, and Whang (2005) and Linton, Song, and Whang (2010)).
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A Appendix

A.1 Point Identification

A.1.1 Point Identification in a Stationary Model

In this section we establish sufficient conditions for point identification in a stationary

model: we show that under certain assumptions one can come up with a set of moment

conditions that point identify the parameter of interest. Those moment conditions are

similar to the moment conditions used maximum score estimator in Manski (1985) or in

partial rank estimator in Khan and Tamer (2007).

We assume that the following conditions hold.

Assumption 12 (Large Support). Conditional on all other components (denoted by subscript

−k), the distribution of kth component of vector ∆xi is absolutely continuous on R with respect

to Lebesgue measure, supp(∆xi,k|∆xi,−k) = R, and βk 6= 0. Also, the support of ∆xi is not

contained in any proper linear subspace of Rk.

Assumption 13 (Bounded Censoring). There exist (random) variables τi1 and τi2 with a

known distribution such that the τit is independent of xi, εit, αi, and cit, τi1 and τi2 are inde-

pendent, and the set Ξ = {x ∈ X : P(cit ≤ τit |xi = x) = 1} is non-empty. Also,

inf
x∈Ξ

P{dit = 1|xi = x} > 0.

Assumption 12 is a standard identifying condition used in in settings where maximum-

score type settings. Assumption 13 ensures that we can come up with some exogenous

censoring procedure that dominates the endogenous censoring at least on some subset

of the support of xi. For example, Assumption 13 holds if censoring variable cit is en-

dogenous, but bounded above by some constant M. Another example would be the case

when censoring is exogenous: then we can choose τit = cit. Second part of Assumption

13 makes sure that there is not too much censoring.

Theorem A.1 (Point Identification in a Stationary Model). Assume that Assumptions 1, 12

and 13 hold. Let Fη(·|xi) denote the conditional distribution of αi + εit conditional on xi and

assume that Fη(·|xi = x) is strictly increasing for each x in the support of xi. Then BI = {β}
and so β is point identified.
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Theorem A.1 implies that one can consistently estimate β using a maximum rank corre-

lation type estimator.

A.1.2 Point Identification in a Non-Stationary Model

In this section we establish sufficient conditions for point identification in a non-stationary

model. As we noted previously, if no censoring occurs for a subset of the support of xi

such that the corresponding subset of the support of ∆xi is not contained in any proper

linear subspace of Rk, then BI = {β}. However, it is possible to point identify β or some

components of it without requiring y∗it being fully observed in both period for a subset

of the support of xi.

We start by defining

p(xi) = P{y∗i1 > ci1, y∗i2 > ci2|xi}

Quantity p(xi) represents the fraction of population that is uncensored in both periods

for a set of covariates xi. Then, given the definition of the upper bound UB(τ, xi, b) in

Theorem 3.1, we have

UB(τ, xj, b) ≤ P{∆εj ≤ τ + ∆x′j(b− β)|xj}+ 1− p(xj)

Similarly, given the definition of the lower bound in Theorem 3.1, we get the following

inequality for the lower bound:

LB(τ, xi, b) ≥ P{∆εi ≤ τ + ∆x′i(b− β)|xi} − 1 + p(xi)

Therefore, for all b ∈ BI it must hold that

F∆ε(τ + ∆x′i(b− β)|xi)− F∆ε(τ + ∆x′j(b− β)|xj) ≤ 2− p(xi)− p(xj) (A.1)

for all τ, xi and xj, where F∆ε(·|xi) denotes the conditional distribution of ∆εi given xi.

This motivates the following sufficient condition for point identification of β.

Assumption 14 (“Not Too Much Censoring”).

(i) There exists 0 < q < 1 such that for all xi, xj it holds that 2− p(xi)− p(xj) < q.
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(ii) For any xi,−k, sup
xi,k∈R

p(xi,k, xi,−k) = 1.

For example, if for each xi at least 51% or more of observations are uncensored in both

periods, then condition (i) with any q between .98 and 1. Further, we want to note that

the first part of Assumption 14 is partially testable (in that we can test the null hypothesis

that 2− p(xi)− p(xj) < q if we fix some small value q).

The following theorem uses identification at infinity argument to point identify either

β or its kth component. Note that Assumption 14 is by no means necessary for point

identification.

Theorem A.2 (Point Identification in a Non-Stationary Model). Let Assumptions 3, 12 and

14(i) hold, and suppose that b ∈ B is such that bk 6= βk. Then

1. β is identified relative to b.

2. Additionally, if assumption Assumption 14((ii) holds, then β is point identified, so that

BI = {β}.

The point identification result above relies on variation at infinity to shrink the set BI

to a single point. Notice that although it requires large supports, this type of point iden-

tification is robust in that if in fact the regressors do not have large support, the identified

set is non-trivial as was shown previously. For more on robust point identification, See

Khan and Tamer (2010).

A.2 Stationary Model with Lagged Latent Outcome

In this section, we characterize the sharp set in the lagged outcome model. The char-

acterization here is tedious since the latent y’s (the y∗’s) are included on the rhs which

makes the model harder. In essence, the reason why is because here y∗1 which is gener-

ally censored not only appears in the lhs in time period 1, but it also appears on the rhs

in T = 2. So, deriving the identified set must take account of that.

If we observe the latent outcome in the first period, y∗1i, then

αi + εi1 = y∗i1 − γy∗i0 − x′i1β
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The upper and lower bounds on αi + εi12 are, as before,

yL
i2 − γy∗i1 − x′i2β ≤ αi + εi2 ≤ yU

i2 − γy∗i1 − x′i2β

If conditional on xi and αi the distribution of εit is stationary, the following inequalities

must hold11:

P{yU
i2 − γy∗i1 − x′i2β|xi} ≤ P{y∗i1 − γy∗i0 − x′i1β|xi} ≤ P{yL

i2 − γy∗i1 − x′i2β|xi}

Therefore, the sharp identified set here can be characterized as follows: let ỹi be a

random variable with the (continuous conditional on xi) distribution such that

ỹi =

{
yi1 if y∗i1 > ci1

ui ≤ ci1 if y∗i1 ≤ ci1

where the ui is a continuous random variable with distribution that can potentially de-

pend on xi and has to obey the above support conditions. Let (g, b) ∈ Θ = Γ× B be such

that the inequalities

P{yU
i2 − gỹi − x′i2b|xi} ≤ P{ỹi − gy∗i0 − x′i1b|xi} ≤ P{[yL

i2 − gỹi − x′i2b|xi} (A.2)

hold for all xi in the support of xi. Then (g, b) is observationally equivalent to (γ, β).

Unfortunately, the probabilities in (A.2) depend on the choice of the distribution for

ỹi, and hence those inequalities cannot be thought of as a set of conditional moment

inequalities that can be calculated from the data once parameters g and b are given. An

approach to building the sharp set in this case would be collect (g, b)’s that correspond

to all (conditional) distributions ui that satisfy the above support conditions.

A.3 Proofs

A.3.1 Proof of Theorem 2.1

Suppose that b ∈ BI . We will construct ỹ∗it and c̃it such that (i) ỹit = max{ỹ∗it, c̃it} has

the same distribution conditional on xi as yit for t = 1, 2 and (ii) ỹ∗it = x′itb + α̃i + ε̃it,

where α̃i + ε̃i1 and α̃i + ε̃i2 are identically distributed conditional on xi. For the ease of

presentation, we define ηit ≡ αi + εit and η̃it ≡ α̃i + ε̃it.

11This is for T = 2. A similar procedure works for T > 2.
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Note that

P{yL
it − x′itb ≤ τ|xi} = P{ηit ≤ τ + x′it(b− β), y∗it > cit|xi}+ P{y∗it ≤ cit|xi}

and

P{yU
it − x′itb ≤ τ|xi} = P{ηit ≤ τ + x′it(b− β), y∗it > cit|xi}+ P{cit − x′itb ≤ τ, y∗it ≤ cit|xi}

Let c̃it = cit and define η̃it as follows:

• If y∗it ≥ cit: η̃it = ηit + x′it(β− b).

• If y∗it < cit: η̃it = uit < cit − x′itb, where uit is a random variable that can depend on

xit, cit, and ηit.

In this case, ỹit = yit and d̃it = dit for t = 1, 2, where d̃it = 1{ỹ∗it ≥ c̃it}. We want

P{η̃i1 ≤ τ|xi} = P{η̃i2 ≤ τ|xi}. For each t = 1, 2, the sharp upper bound on P{η̃it ≤
τ|xi} is P{ηit ≤ τ + x′it(b− β), y∗it ≥ cit|xi}+ P{y∗it < cit|xi} = P{yL

it − x′itb ≤ τ|xi}, while

the sharp lower bound (over all possible distributions of uit such that uit < cit − x′itb) is

P{ηit ≤ τ + x′it(b− β), y∗it ≥ cit|xi}+ P{cit − x′itb ≤ τ, y∗it < cit|xi} = P{yU
it − x′itb ≤ τ|xi}.

Any (continuous) distribution between these upper and lower bounds can be generated

by some distribution of uit. Finally, since b satisfies conditional inequalities (2.2), then

we can find ui1 and ui2 distributed in such a way that P{η̃i1 ≤ τ|xi} = P{η̃i2 ≤ τ|xi}
(i.e., those composite error terms satisfy Assumption 1). Therefore, b is observationally

equivalent to β. �

A.3.2 Proof of Theorem 3.1

We can re-write lower bound as LB(τ, xi, b) = P{yU
i2− yL

i1−∆x′ib ≤ τ|xi} = P{yU
i2− yL

i1−
∆x′ib ≤ τ, y∗i2 ≥ ci2, y∗i1 ≥ ci1}+ P{yU

i2 − yL
i1 − ∆x′ib ≤ τ, y∗i2 ≥ ci2, y∗i1 < ci1|xi}+ P{yU

i2 −
yL

i1 − ∆x′ib ≤ τ, y∗i2 < ci2, y∗i1 ≥ ci1|xi}+ P{yU
i2 − yL

i1 − ∆x′ib ≤ τ, y∗i2 < ci2, y∗i1 < ci1|xi} =
P{∆εi + ∆x′i β ≤ τ + ∆x′ib, y∗i2 ≥ ci2, y∗i1 ≥ ci1|xi} + 0 + P{ci2 − y∗i1 ≤ τ + ∆x′ib, y∗i2 <

ci2, y∗i1 ≥ ci1|xi}+ 0. So that

LB(τ, xi, b) = P{∆εi + ∆x′i β ≤ τ + ∆x′ib, y∗i2 ≥ ci2, y∗i1 ≥ ci1|xi} (A.3)

+P{ci2 − y∗i1 ≤ τ + ∆x′ib, y∗i2 < ci2, y∗i1 ≥ ci1|xi}
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Similarly, we can re-write upper bound as UB(τ, xj, b) = P{yL
j2 − yU

j1 − ∆x′jb ≤ τ|xj} =
P{yL

j2 − yU
j1 − ∆x′jb ≤ τ, y∗j2 ≥ cj2, y∗j1 ≥ cj1|xj}+ P{yL

j2 − yU
j1 − ∆x′jb ≤ τ, y∗j2 ≥ cj2, y∗j1 <

cj1|xj}+ P{yL
j2 − yU

j1 − ∆x′jb ≤ τ, y∗j2 < cj2, y∗j1 ≥ cj1|xj}+ P{yL
j2 − yU

j1 − ∆x′jb ≤ τ, y∗j2 <

cj2, y∗j1 < cj1|xj} = P{∆εj + ∆x′jβ ≤ τ + ∆x′jb, y∗j2 ≥ cj2, y∗j1 ≥ cj1|xj} + P{y∗j2 − cj1 ≤
τ + ∆x′jb, y∗j1 < cj1, y∗j2 ≥ cj2|xj}+ P{y∗j1 ≥ cj1, y∗j2 < cj2|xj}+ P{y∗j1 < cj1, y∗j2 < cj2|xj}. So

that

UB(τ, xj, b) = P{∆εj + ∆x′jβ ≤ τ + ∆x′jb, y∗j2 ≥ cj2, y∗j1 ≥ cj1|xj} (A.4)

+P{y∗j2 < cj2|xj}+ P{y∗j2 − cj1 ≤ τ + ∆x′jb, y∗j2 ≥ cj2, y∗j1 < cj1|xj}

Suppose that b ∈ BI , that is

LB(τ, xi, b) ≤ UB(τ, xj, b) for all τ, xi, xj.

Now let c̃i1 = ci1, c̃i2 = ci2 and define ∆ε̃i and α̃i as follows:

• If y∗i2 ≥ ci2, y∗i1 ≥ ci1, then α̃i = αi + x′i1β− x′i1b, and ∆ε̃i = ∆εi + ∆x′i β− ∆x′ib.

• If y∗i2 ≥ ci2, y∗i1 < ci1, then α̃i = y∗i2 − ∆ε̃i − x′i2b, and ∆ε̃i = γi(∆εi + ∆x′i β) + (1−
γi)(y∗i2 − ci1)− ∆x′ib + ui1, where 0 ≤ γi ≤ 1 and ui1 > 0.

• If y∗i2 < ci2, y∗i1 ≥ ci1, then α̃i = αi + x′i1β− x′i1b, and ∆ε̃i = λi(∆εi + ∆x′i β) + (1−
λi)(c21 − y∗i1)− ∆x′ib− ui2, where 0 ≤ λi ≤ 1 and ui2 > 0.

• If y∗i2 < ci2, y∗i1 < ci1, then ∆ε̃i = ∆εi + ∆x′i β − ∆x′ib − ui3 and α̃i = min{ci1 −
x′i1b, ci2 − ∆εi − ∆x′i β + ∆x′ib + ui3} − ui4, where −∞ < ui3 < +∞ and ui4 > 0.

Here ui1, ui2, ui3, ui4, λi, and γi are random variables that may depend on xi, ∆εi,

αi etc. Let ỹi1 = max{x′i1b + α̃i + εi1, c̃i1} and ỹi2 = max{x′i2b + α̃i + ∆ε̃i, c̃i2}. Then

(ỹi1, ỹi2) = (yi1, yi2).

Now, P{∆ε̃i ≤ τ|xi} = P{∆εi + ∆x′i β ≤ τ + ∆x′ib, y∗i2 ≥ ci2, y∗i1 ≥ ci1|xi}+ P{γi(∆εi +

∆x′i β) + (1− γi)(y∗i2 − ci1) ≤ τ + ∆x′ib− ui1, y∗i2 ≥ ci2, y∗i1 < ci1|xi}+ P{λi(∆εi + ∆x′i β) +

(1− λi)(ci1 − y∗i1) ≤ τ + ∆x′ib + ui2, y∗i2 < ci2, y∗i1 ≥ ci1|xi}+ P{∆εi + ∆x′i β ≤ τ + ∆x′ib +

ui3, y∗i2 < ci2, y∗i1 < ci1|xi}.

Then lower (sharp) bound on P{∆ε̃i ≤ τ|xi} over all possible distributions of ui1, ui2,

ui3, ui4, λi, and γi is equal to LB(τ, xi, b), and upper (sharp) bound on P{∆ε̃j ≤ τ|xj} is
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equal to UB(τ, xj, b). Therefore, it is possible to find such a distribution of ui1, ui2, ui3, ui4,

λi, and γi (conditional on xi etc) so that for every τ, xi, and xj we have P{∆ε̃i ≤ τ|xi} =
P{∆ε̃i ≤ τ|xj} = F(τ) for some F(τ) such that LB(τ, xi, b) ≤ F(τ) ≤ UB(τ, xj, b), and

this distribution is independent of xi. That is, we constructed ỹit and c̃it such that: (a)

vector (ỹi1, ỹi2, d̃i1, d̃i2) is distributed as (yi1, yi2, di1, di2); and (b) Assumption 3 (or 4) is

satisfied for ỹ∗i1 = xi1b + α̃i + εi1 and ỹ∗i2 = xi2b + α̃i + ∆ε̃i. �

A.3.3 Proof of Theorem 3.2.

Proof: Let wL
i = yL

i2− yU
i1 and wU

i = yU
i2− yL

i1. Then the sharp identified set can be written

as BI = {b : for every τ, xi, xj P{wU
i − ∆x′ib ≤ τ|xi} ≤ P{wL

j − ∆x′jb ≤ τ|xj}}. Note that

for every τ1, τ2, P{wL
j − ∆x′jb ≤ τ1|xj} ≥ pc

2(xj) and P{wU
i − ∆x′ib ≤ τ2|xi} ≤ 1− pc

2(xi).

Therefore, if 1− pc
2(xi) ≤ pc

1(xj) for all xi and xj, then we have P{wU
i − ∆x′ib ≤ τ|xi} ≤

1− pc
1(xi) ≤ pc

1(xj) ≤ P{wL
j − ∆x′jb ≤ τ|xj} for every b ∈ B, so the bounds are trivial. �

A.3.4 Proof of Theorem 3.3

Note first that for all b, Q(b) ≥ 0, so that BQ = arg min
b

Q(b). Next, let b ∈ BI and recall

that BI is defined by the following set of inequalities:

P{wU
i − ∆x′ib ≤ τ|xi} ≤ F(τ) ≤ P{wL

j − ∆x′jb ≤ τ|xj}} (A.5)

for some cumulative distribution function F. Inequalities (A.5) imply that if for some

constants τ1 and τ2 we have τ2−∆x′jb ≥ τ1−∆x′ib, then P{wU
i ≤ τ1|xi} ≤ P{wL

j ≤ τ2|xj}.
Therefore, if b ∈ BI , then Q(b) = 0, so that BI ⊆ BQ.

Now suppose that there exists b ∈ BQ such that b /∈ BI . That is, for this b there exist

τ̃, x̃i and x̃j such that

P{wU
i ≤ τ̃ + ∆x̃ib|x̃i} > P{wL

j ≤ τ̃ + ∆x̃jb|x̃j} (A.6)

Let τ̃2j = τ̃ + ∆x̃jb and τ̃1i = τ̃ + ∆x̃ib. Then τ̃2j − ∆x̃jb = τ̃1i − ∆x̃ib = τ̃ and P{∆wui ≤
τ̃1i|x̃i} > P{∆wl j ≤ τ̃2j|x̃j}. By continuity of τ and strict inequality in (3.1), there exist

the set U of positive probability measure such that for all (τ1i, τ2i, xi, xj) ∈ U we have:

1. τ2j − ∆x′jb ≥ τ1i − ∆x′ib,
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2. P{∆wui ≤ τ1i|xi} > P{∆wl j ≤ τ2j|xj},

so that Q(b) > 0, which implies that if b /∈ BI , then Q(b) > 0. Therefore, BI = BQ. �

A.3.5 Proof of Theorem 3.4

The proof uses similar arguments as the ones in Theorem 2.1 or Theorem 3.1 and there-

fore is omitted.

A.3.6 Proof of Theorem 4.1

First, of (γ, β) are the true parameter values, then by construction (γ, β) ∈ ΘI,1. Let

ηit = αi + εit, for t = 1, 2. For any (g, b) ∈ ΘI,1, let ỹ∗it = gyi,t−1 + x′itb + η̃it, c̃it = cit. For

η̃it we have:

• If y∗it ≥ cit: η̃it = ηit + (γ− g)yi,t−1 + x′it(β− b).

• If y∗it < cit: η̃it = uit < cit − gyi,t−1 − x′itb for some random variable uit that can

depend on yi0, xit, cit, and ηit.

With this choice, we have ỹit = yit, c̃it = cit and d̃it = 1{ỹ∗it ≥ c̃it} = dit. As before (see

Theorem 2.1), we want P{η̃i1 ≤ τ|yi0, xi} = P{η̃i2 ≤ τ|yi0, xi} (i.e., we want Assumption

6 to be satisfied by η̃i1 = ε̃i1 + α̃i and η̃i2 = ε̃i2 + α̃i. The proof then follows the proof of

Theorem 2.1. �

A.3.7 Proof of Theorem 4.2

The proof is similar to Theorem 4.1 and therefore is omitted.

A.3.8 Proof of Theorem 4.3

For any (g, b) ∈ ΘI,4, let ỹ∗it = gỹ∗i,t−1 + x′itb + α̃i + ε̃it, ε̃i1 = 0, c̃it = cit, and ỹ∗i0 = y∗i0.

Let’s define α̃i and ε̃i2 in a following way:
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• If y∗i1 ≥ ci1, y∗i2 ≥ ci2: α̃i = αi + εi1 + (γ− g)y∗i0 + x′i1(β− b); and ε̃i2 = ∆x′i(β− b) +

εi2 − εi1 + (γ− g)(αi + γy∗i0 + x′i1β + εi1 − y∗i0).

• If y∗i1 < ci1, y∗i2 ≥ ci2: α̃i = ui, where ui < ci1 − gy∗i0 − x′i1b; and ε̃i2 = αi + εi2 − α̃i +

(γy∗i1 − gỹ∗i1) + x′i2(β− b).

• If y∗i1 ≥ ci1, y∗i2 < ci2: α̃i = αi + (γ− g)y∗i0 + x′i1(β− b) + εi1; and ε̃i2 = wi, where

wi < ci2 − α̃i − gy∗i1 − x′2ib.

• If y∗i1 < ci1, y∗i2 < ci2: α̃i = ui, where ui < ci1 − gy∗i0 − x′i1b; and ε̃i2 = wi, where

wi < ci2 − α̃i − gỹ∗i1 − x′2ib.

Then the lower and upper bounds on the conditional distribution of ε̃i2|xi, ỹ∗i0, obtained

by varying distributions of ui and wi within their bounds, are P{yU
i2− (1+ g)yL

i1 + gy∗i0−
∆x′ib ≤ τ|xi, y∗i0} and P{yL

i2 − (1 + g)yU
i1 + gy∗i0 − ∆x′ib ≤ τ|xi, y∗i0}, correspondingly. In-

tersecting these bounds over the support of xi allows us to find the distribution of ε̃i2

that is independent of xi and ỹ∗i0, so that Assumption 9 is satisfied. �

A.3.9 Proof of Theorem 4.4

The proof closely follows the proof of Theorem 3.1 with the following choices: c̃it = cit,

ỹ∗it = gtα̃i + ε̃it + x′itb, where g1 = 1, g2 = g, ε̃i1 = 0 and

• If y∗i1 ≥ ci1, y∗i2 ≥ ci2: α̃i = αi + x′i1(β − b) + εi1; and ε̃i2 = (γ − g)αi + (xi2 −
gxi1)

′(β− b) + εi2 − gεi1.

• If y∗i1 < ci1, y∗i2 ≥ ci2: α̃i = ui, where ui < ci1 − x′i1b; and ε̃i2 = γαi − gα̃i + x′i2(β−
b) + εi2.

• If y∗i1 ≥ ci1, y∗i2 < ci2: α̃i = αi + x′i1(β− b) + εi1; and ε̃i2 = wi, where wi < ci2− gα̃i−
x′2ib.

• If y∗i1 < ci1, y∗i2 < ci2: α̃i = ui, where ui < ci1 − x′i1b; and ε̃i2 = wi, where wi <

ci2 − gα̃i − x′2ib.

Then the upper and lower bounds on the conditional distribution of ε̃i2/g|xi,obtained

by varying distributions of ui and wi within their bounds, are P{yL
i2/g− yU

i1 − (x′i2/g−

46



xi1)
′b ≤ τ|xi} and P{yU

i2/g− yL
i1 − (x′i2/g− xi1)

′b ≤ τ|xi}, correspondingly. Intersecting

these bounds over the support of xi allows us to find the distribution of ε̃i2 that is

independent of xi. �

A.3.10 Proof of Theorem 5.1

Assumption 10 together with Assumption 11 and the weak law of large numbers implies

that P̂{xi = x} converges in probability to P{xi = x} uniformly over x ∈ X . Next,

consider the following empirical processes indexed by (τ, x):

ν1,n(τ, x; β) =

√
n

[
1
n

n

∑
i=1

(
1{yU

i1 − x′i1β ≤ τ, xi = x} − 1{yL
i2 − x′i2β ≤ τ, xi = x}

)
− D1(τ, x; β)

]
ν2,n(τ, x; β) =

√
n

[
1
n

n

∑
i=1

(
1{yU

i2 − x′i2β ≤ τ, xi = x} − 1{yL
i1 − x′i1β ≤ τ, xi = x}

)
− D2(τ, x; β)

]

The class of functions 1{zi ≤ τ, xi = x} is a VC-class, and therefore is P-Donsker. That

is,

(ν1,n(·, ·; β), ν2,n(·, ·; β))⇒ (G1(·, ·; β), G2(·, ·; β))

Under the null hypothesis, D1(·, ·; β), D2(·, ·; β) ≤ 0. Together with the weak convergence

result above and the continuous mapping theorem for empirical processes, this implies

the asymptotic first-order dominance result for the distribution of TS
n (β). �

A.3.11 Proof of Theorem 5.2

The proof of this result closely follows the proof of Theorem 5.1 and therefore is omitted

here. �

A.3.12 Proof of Theorem A.1

We construct the following random variables: dL
i2 = I{yL

i2 ≤ τi2} and dU
i1 = I{yU

i1 ≤
τi1}, where τi1 and τi2 satisfy conditions of Theorem A.1. As before, let ηit = αi + εit.
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Then E[dL
i2|xi, τi2] = P{yL

i2 ≤ τi2|xi, τi2} = 1− P{yL
i2 > τi2|xi, τi2} = 1− P{x′i2β + ηi2 >

ci2, x′i2β + ηi2 > τi2|xi, τi2} = 1− P{x′i2β + ηi2 > max{ci2, τi2}|xi2, τi2} = P{ηi2 < τi2 −
x′i2β|xi, τi2} Here the last equality follows from Assumption 13.

Similarly, E[dU
i1|xi, τi1] = P{max{x′i1β+ ηi1, ci1} ≤ τi1|xi, τi1} = P{x′i1β+ ηi1 ≤ τi1, ci1 ≤

τi1|xi, τi1} = P{ηi1 ≤ τi1 − x′i1β|xi, τi1}.

Finally, taking into account that ηi1 = εi1 + αi and ηi2 = εi2 + αi are identically

distributed conditional on xi, we have: E[dL
i2|xi, τi2] = Fη(τi2− x′i2β|xi) and E[dU

i1|xi, τi1] =

Fη(τi1 − x′i1β|xi), where Fη(·|xi) is a c.d.f. of ηit conditional on xi. Now, taking into

account that Fη is a strictly monotone function for any value of xi, we have

E[dU
i1 − dL

i2|xi, τi1, τi2] > 0 if and only if ∆τi < ∆x′i β, (A.7)

where ∆τi = τi2 − τi1 and ∆xi = xi2 − xi1. Consequently, point identification follows

from identical arguments used in Khan and Tamer (2007). �

A.3.13 Proof of Theorem A.2

Part 1. Suppose that b ∈ B is such that bk 6= βk. Then assumption Assumption 12 implies

that ∆x′i(b− β) and ∆x′j(b− β) are unbounded on the support of xi. Therefore, for any

0 < δ < 1 and any τ we can find such values of xi and xj that F∆ε(τ + ∆x′i(b− β)|xi)−
F∆ε(τ + ∆x′j(b − β)|xj) > δ. Let q < δ < 1. Then we have F∆ε(τ + ∆x′i(b − β)|xi) −
F∆ε(τ + ∆x′j(b− β)|xj) > q for some xi and xj, which is a contradiction to Assumption

14(i). Therefore, β is identified relative to b.

Part 2. Suppose now that b ∈ B is such that bk = βk but b 6= β. Assumption 12 ensures

that there exist some γ2 < γ1 such that the sets X γ1 = {xi,−k : such that ∆x′i(b− β) =

∆x′i,−k(b−k− β−k) > γ1} and X γ2
= {xj,−k : such that ∆x′j(b− β) = ∆x′j,−k(b−k− β−k) <

γ2} are nonempty. Then there exist ρ > 0 and τ̃ such that H(xi,−k, xj,−k) ≡ F∆ε(τ̃ +

∆x′i(b− β)|xi)− F∆ε(τ̃ + ∆x′j(b− β)|xj) > ρ on Xγ1,γ2 = X γ1 ×X γ2
. Hence, the left-hand

side of (A.1) is bounded away from zero for τ = τ̃ on Xγ1,γ2 for all values of xi,k and xj,k

in the support. On the other hand, Assumption 14(ii) implies that the right-hand side of

(A.1) can be made less than any ρ > 0 with a proper choice of xi,k and xj,k. Therefore, β

is identified relative to any b 6= β, so that BI = {β}. �
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Model 1: Covariate Dependent Random Censoring
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Figure 1: Fixed and Random Independent Censoring (top) Endogenous censoring and

covariate dependent censoring (bottom)
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Model 1: Fixed Censoring with Heteroskedasticity
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Model 1: Heterokedasticity and Endogenous Censoring
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Model 1: Heteroskedasticity and Endogenous Covariate Dependent Censoring
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Figure 2: Model 1: Covariate dependent endogenous censoring, fixed censoring with

heteroskedasticity (top) Heteroskedastic endogenous censoring and heteroskedastic co-

variate dependent censoring (bottom)
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Figure 3: Model 2: Fixed censoring and random independent censoring (top) endoge-

nous censoring and endogenous covariate dependent censoring (bottom)
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Dynamic Model with Lagged Observed Outcomes: Random Censoring
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Endogensously Censored Dynamic Model with Lagged Outcomes
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Cov. Dependent Endogenously Censored Dynamic Model with lagged Outcomes
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Figure 4: Dynamic Model with Lagged Outcomes: Fixed censoring and random inde-

pendent censoring (Top) Endogenous and covariate dependent censoring (Bottom)
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Covariate Dependent Endogensouly Censored Dynamic Model with Lagged Sector Indicators
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Figure 5: Dynamic Model with Lagged Sector Indicators: Fixed Censoring and Random

Independent Censoring (Top) Endogenous Censoring (Bottom)
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