PHYS273
Fundamentals of Physics II:
Electromagnetism

Michel van Veenendaal
Department of Physics (Tourette 223), Northern Illinois University
e-mail: veenendaal@niu.edu

CATALOGUE DESCRIPTION

Course Summary: Physical laws governing electricity and magnetism using calculus. Primarily for majors in the physical and mathematical sciences and engineering. One three-hour laboratory a week.
Not available for credit to students with credit in PHYS 211, PHYS 251, or PHYS 251A.
Prerequisites: PRQ: PHYS 250A or PHYS 253, CRQ: MATH 230

INSTRUCTORS
Michel van Veenendaal
LaTourette Hall, room 223
e-mail: veenendaal@niu.edu, The best way to reach me is via e-mail.

CLASS MEETINGS & OFFICE HOURS

This class meets on Tuesdays and Thursdays from 9.30am to 10:45am in Faraday Hall 143. I am available to answer your questions or discuss matter related to this course anytime from 11am to noon on Tuesdays and Thursdays. For other times and/or days please send me an e-mail to schedule a meeting.

COURSE DESCRIPTION & OUTCOME

This course enables students to learn about the electrical and magnetic properties of matter in terms of basic laws of nature. Students will develop problem-solving techniques and acquire skills to describe physical situations using mathematical descriptions to solve problems. The lectures incorporate discussion/solving sessions and experimental demonstrations. The PHYS273 class is supplemented by lab sessions that provides students opportunities to develop experimental skills, learn how to use basic laboratory equipment, and gain experience with redacting scientific reports summarizing their experiments. Students completing this course are expected to develop essential foundations in physical concepts that will prepare them for upper level courses in Science and Engineering.

TEXTBOOK
Note: Although the Fourth Edition is recommended, the assignments will all be on blackboard and generally the third edition of Giancoli is sufficient.

PREREQUISITES

The official prerequisites are given in the catalogue description. Typical mathematical methods that will be used are

- Working with symbols. Many derivations will be done using symbols as opposed to inserting numbers early on.
- Vector addition in two and three dimensions.
- Trigonometry in particular in relation to vector projection.
- Calculus (integration, differentiation, setting up integrals in cartesian, spherical and cylindrical coordinates).
- Simple differential equations (say, Newton’s law).
- Concepts from classical mechanics, such as Newton’s equation of motion, conservation of energy, potential energy, work, etc.

ASSESSMENT & GRADING

The assessment will consist of weekly homework, three exam, and a final. The grading will be as follows:

Homework 10% of overall grade (only if lab. grade ≥ 60%)
Exams 40% of overall grade (each exam counts for 10%)
Labs 25% of overall grade
Final exam 25% of overall grade

Students taking PHYS252 will have their grades assigned given the following weights: Homework: 13.33%, Exams: 53.33%, Final exam: 33.33%.

The numeric averaged grade will be computed given the above Table and a letter grade will be assigned following the table below.

Letter grade Percentage points.

A ≥ 92%
A− ≥ 85%
B+ ≥ 80%
B ≥ 75%
B− ≥ 69%
C+ ≥ 62%
C ≥ 55%
D ≥ 50%
F < 50%
A minimum average lab grade of 60% is required. You will fail the course if your lab score is below this mark.

It is likely that the scales will be adjusted downwards (curved).

Further information on NIU grading system can be found at: http://www.niu.edu/regrec/grading/gradingfaqs.shtml

There will be no make-up tests. Tests cannot be taken at times other than the class test time.

Only basic calculators can be used during tests. No other electronic devices are allowed.

HOMEWORK

The homework sets will be available on blackboard.

LABS & LAB REPORTS (PHYS273 ONLY)

The lab syllabus is provided separately and will be discussed in your lab section by your respective TA during the first lab session. During the laboratory experiments you will be working in small groups to perform the relevant experiments and acquire the associated data. Subsequent to the laboratory session, each student is expected to analyze alone the acquired data, performed the relevant analysis, and redact his/her own report. The team work should be limited to performing the experiment and acquiring the data only. Each student is expected to write an individual formal report due within a week after the lab session took place.

For TA information, see the lab syllabus.

BLACKBOARD

All information on the course and the labs will be posted on blackboard. Everything will be posted under “Content” and there is no need to look under different Sections.

During class, the digital projector is used and the notes written during class are posted on blackboard.

Again, to keep things simple, all graded work is treated as tests on blackboard. Therefore, homework is a mini test worth one point out of a hundred. There is no limitation on the number of attempts for the homework, but no attempts can be taken after the due date. The due date and other information on the test becomes visible when clicking on the test (this does not yet start the test).

STUDENT RESPONSIBILITIES

The students are expected to be engaged learners, to attend the lectures, laboratory session, and participate in the problem solving and/or assist the instructor in experimental demos. Plagiarism
and cheating are serious academic offenses and offenders will be directly referred to the University’s judicial office.

ACCESSIBILITY

If you need an accommodation for this class, please contact the Disability Resource Center (RDC) as soon as possible. The DRC coordinates accommodations for students with disabilities. It is located on the 4th floor of the Health Services Building, and can be reached at 815-753-1303 (V) or drc@niu.edu. Also, please contact me privately as soon as possible so we can discuss your accommodations. The sooner you let us know your needs, the sooner we can assist you in achieving your learning goals in this course.

SYLLABUS

The (approximate) lesson plan is as follows:

- Lesson 1: General introduction. Electrostatic: static electricity, electric charges. Coulomb’s law, electric fields.
- Lesson 2: Coulomb forces, electric field, continued.
- Lesson 3: Coulomb forces, electric field, continued.
- Lesson 4: Electric flux & Gauss’s law.
- Lesson 5: Electric flux & Gauss’s law, continued.
- Lesson 6: Electric potentials.
- Lesson 7: Electric potentials, continued.
- Lesson 8: Capacitors.
- Lesson 9: Capacitors, continued.
- Lesson 10: Ohm’s law.
- Lesson 11: Ohm’s law, continued.
- Lesson 12: DC circuits
- Lesson 13: DC circuits, continued.
- Lesson 13: Magnetic fields.
- Lesson 14: Magnetic fields, continued.
- Lesson 15: Sources of magnetic fields.
- Lesson 16: Sources of magnetic fields.
- Lesson 17: Induction.
- Lesson 18: Induction, continued.
- Lesson 19: AC circuits.
- Lesson 20: AC circuits, continued.
- Lesson 21: Maxwell’s equations.
- Lesson 22: Maxwell’s equations, continued.

Note the lesson plan is approximate and does not follow the classes exactly. Some subject might take longer, time is needed for in class tests, reviews, etc.

IMPORTANT NOTES ON PLAGIARISM
As indicated in the "LABS and LAB REPORTS" section no form of plagiarism will be
tolerated in this class.