Physics 284 Modern Physics Laboratory

Spring 2015

Wednesdays, 12:00 - 2:50 PM, Faraday 121A

Instructor:

Professor George Coutrakon, Office: Faraday Hall 218 (up one flight of stairs and turn right) Phone: (815) 753-6481 Office hours: Tuesdays and Thursdays, 3:45 – 5:00 PM email: gcoutrakon@niu.edu

Web Site

http://webcourses.niu.edu (Blackboard course page) Grades and class materials such as lab instructions will be placed on the Blackboard course page.

Lab Instructions

Instructions for all the labs are available on the web and should be downloaded and read in before starting the lab.

Grading

The laboratory grade will be based on 7 equally weighted lab reports. There are six standard labs and one report that combines data from three of them to determine fundamental constants, h, e, and m_e. The reports should be approximately 4-6 pages in length (including figures and data tables). Limit the theory discussion to ½ page in the introduction. General guidelines for how to complete lab reports and a breakdown of how lab reports will be graded are provided on the class web page. Each lab instruction sheet will also have some specific guidelines. **Lab reports are due one week after the completion of the lab.** Reports submitted late without prior permission will be marked down 10% per week and will not be accepted more than 3 weeks after the due date or 1 week before the beginning of final exam week, whichever occurs sooner.

Lab Notebooks

All students are expected to keep a lab notebook. Since students will work in teams of two, or occasional three, they should either purchase a lab notebook with carbon paper, or make photocopies at the end of class, so that each student retains a copy of the notes. A copy of the relevant pages of the lab notebook should be attached to the back of each lab report. It is each student's responsibility to make sure that they obtain a copy of all the notes from each lab.

Calendar:	
Jan. 14	Introduction to 1 st two Labs, lab writing and error analysis
21	Photo-electric effect and spectrometer Labs
28	Photo-electric effect and spectrometer Labs
Feb. 4	Photo-electric effect and spectrometer Labs
11	Photo-electric effect and spectrometer Labs
18	E/M and Michaelson Morley Labs, Introduction lecture
25	E/M and Michaelson Morley Labs
Mar. 4	E/M and Michaelson Morley Labs
11	Spring Break
18	E/M and Michaelson Morley Labs, Intro. Talk on rad. lab
	Frank Hertz and Radioactive Isotope Labs, Radiation Safety
25	talk by RSO
April 1	Frank Hertz and Radioactive Isotope Labs
8	Frank Hertz and Radioactive Isotope Labs
15	Frank Hertz and Radioactive Isotope Labs
22	

Optics Labs

Michaelson Interferometer Spectrometer with diffraction Grating Photoelectric Effect

Atomic and Nuclear Labs

Frank-Hertz Experiment Electron charge to mass ratio Radioactive Decay

Some Independent Project Lab Ideas (feel free to come up with your own)

- a) Comparison of the spectrum of a fluorescent light bulb with an incandescent light bulb using the spectrometer.
- b) Electronic measurement of light intensity using a photodiode.
- c) Observation of the Meissner effect in a superconductor.
- d) Automation of an experiment using the Labview software and an interface board.
- e) Observation of magnetic domains.
- f) Measurement of the spectrum of a star using the observatory.
- g) Measurement of the flux or energy spectrum of cosmic rays.
- h) Measurment of the spectrum of beta particles.
- i) Observation of alpha-decay tracks in a cloud chamber.
- j) Measurement of Compton scattering of x-rays.
- k) Measurement of electron diffraction with electron microscope. (Need to obtain permission from Dr. Ito)
- 1) Try to use a Michelson interferometer to measure the width of the Hg line. Compare this with an estimation based on a diffractometer.
- m) Put together measurements from the e/m experiment, the spectrum of hydrogen with the spectrometer (which provides a value of the Rydberg constant) and the h/e experiment (photoelectric affect) to obtain values for m, e and h independently instead of just their ratios.
- n) Compare the accuracy of the spectrometer used in the spectrometer lab with a newer model spectrometer the department is thinking of buying to replace them. See if the new one is better or worse.