Ph.D. Qualifying Examination D Differential Equations January 2016

Instructions: In this three-hour examination, Part A and Part B carry equal weight in determining your overall performance. Please use separate blue books for Part A and Part B.

Answer all 4 questions in Part A and 4/5 questions in Part B.

PARTA

- A1. Let $f(t,x) \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$, and that f satisfies a local Lipschitz condition in x. Assume f(t,0) = 0. If x(t) is a solution of the equation $\dot{x} = f(t,x)$ such that $x(0) \neq 0$, show that $x(t) \neq 0$ for any $t \in \mathbb{R}$.
- A2. Show that for some $\mu \neq 0$, the system

$$\dot{x} = \mu x - y + xy - xy^{2} - x^{3}$$
$$\dot{y} = x + \mu y - x^{2} - y^{3}$$

has a nonconstant periodic orbit.

A3. Consider the system $\dot{x} = Ax$, where

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right).$$

Let x(t) be a solution of the above system. We say x(t) grows linearly if $\lim_{t\to\infty}\frac{|x(t)|}{t}=c>0$, and grows superlinearly (faster than linearly) if $\lim_{t\to\infty}\frac{|x(t)|}{t}=\infty$. Find all initial conditions x(0) such that the respective solutions x(t)

- (a) Are bounded.
- (b) Grow linearly.
- (c) Grow superlinearly.
- A4. Consider

$$\ddot{x} + \alpha \dot{x} + q(x) = 0 \tag{1}$$

with $\alpha > 0$, g a C^1 function with xg(x) > 0 for $x \neq 0$, $\int_0^{-\infty} g(x) dx = \infty$, and $\int_0^{\infty} g(x) dx = c < \infty$. Prove that every bounded solution x(t) of equation (1) satisfies

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \dot{x}(t) = 0$$

and that every solution x(t) is bounded on $t \in (0, \infty)$.

PART B

- B1. (i) Let Ω be a domain in \mathbb{R}^N , $N \geq 1$, given $u \in L^p(\Omega)$, $p \geq 1$, define $\frac{\partial u}{\partial xi}$ $1 \leq i \leq N$, the weak derivatives of first order for u and hence, the Sobolev Space $W^{1,p}(\Omega)$.
 - (ii) For $u(x) = \frac{1}{|x|^{\alpha}}$, $\alpha > 0$, what are the values for α and p in terms of N, would u belongs to $W^{1,p}(\Omega)$? If you wish, you may identify Ω with B(0,1), the unit ball in \mathbb{R}^N .
- B2. Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 1$ which has a C^1 boundary $\partial \Omega$ and consider the Poission Dirichlet problem,

$$\left\{ \begin{array}{ll} \Delta u = f & \text{in} & \Omega, f \in L^p(\Omega), p \ge 1 \\ u = 0 & \text{on } \partial \Omega & \text{in the sense of trace.} \end{array} \right.$$

Suppose we formulate the solution by seeking $u \in W_0^{2,p}(\Omega)$ such that $-\Delta u = f$, criticize this formulation and if you don't agree with the formulation, how would you reformulate it? Explain your answer.

B3. Consider the non-homogeneous Poission Dirichlet problem,

$$\left\{ \begin{array}{ll} \Delta u = f & \text{in } B(0;R), \\ u = g & \text{on } \partial B(0;R) \end{array} \right. \text{ the ball with radius } R \text{ in } \mathbb{R}^N \text{with } N \geq 2,$$

Prove that, for its solution u, we have the mean-value formula,

$$u(0) = \frac{1}{\omega_N R^{N-1}} \int_{\partial B(0,R)} g(\xi) dS_\xi + \frac{1}{(N-2)\omega_N} \int_{B(0,R)} (\frac{1}{R^{N-2}} - \frac{1}{|\xi|^{N-2}}) f(\xi) d\xi.$$

where $\frac{1}{\omega_N R^{N-1}} \int_{\partial B(0,R)} g(\xi) dS_{\xi}$ being the mean value of g over the sphere $\partial B(0,R)$, and ω_N is the area of the spherical surface of radius 1 in \mathbb{R}^N .

B4. Consider the PDE of the Neuman type,

$$\begin{cases} \Delta u = 1 & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$

Where n is the exterior unit normal vector at $\partial\Omega$, prove that this problem has no solution.

B5. (i) Solve the 1-D Wave Cauchy Problem

$$\begin{cases} u_{tt} - 4u_{xx} = 0, -\infty < x < \infty, t > 0, \\ u(x, 0) = \sin x, -\infty < x < \infty, \\ u_t(x, 0) = \cos x, -\infty < x < \infty. \end{cases}$$

(ii) Consider now the wave equation in the \mathbb{R}^N setting, $N \geq 2$,

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 & \text{in } \Omega, t > 0, c > 0, \\ u(x,0) = g(x), u_t(x,0) = h(x), x \in \Omega, \\ u(x,t) = f(x), x \in \partial \Omega. \end{cases}$$

Prove that u is unique (Hint: Let u and v both be solutions and set w=u-v, show that w=0).