Managing and Connecting with Students in Large Classes

COURTNEY GALLAHER
GEOGRAPHY & CSWGS

Think through your own experiences of being a student in a large lecture class...

Our goal as instructors
Convey information effectively in a way that still engages students

But how?
- Organization of material
- Create a connection with students

Organization
All about managing expectations
Minor inconveniences in small classes become big annoyances in large classes

Examples?

Organization
Being organized gives you the space to get to know your students in other ways
Areas of focus for getting organized:
- Syllabus
- Communication policy
- Attendance/Participation
- Blackboard
- Layout/organization
- Communicating with Blackboard
- Automating quizzes/assignments
- Managing grades
- Assignment guidelines
- Exams and quizzes (deadlines and formats)

Syllabus
This message brought to you by every instructor that ever lived.
www.factcomics.com
Syllabus

Key ingredients:

• Instructor contact info and office hours
• Learning objectives
• Course outline
• Grading policy
• Communication policy
• Attendance/participation policy

Example syllabi

Blackboard

Things to consider:

• Layout/organization
• Communicating with Blackboard
• Automating quizzes/assignments
• Managing grades

Example blackboard courses

Blackboard

Layout/organization

Relabel content areas so it is obvious what is contained in each section

Blackboard

Announcements serve as a semester-long record of communication

Time saving devices:

Automating online quizzes and assignments

Setting up your gradebook
Course Organization

Clear assignment guidelines
• Minimizes questions before and conflicts after
• Helps students to perform at higher level
• Creates a pattern of regularity so students can improve

Examples of unclear vs. clearer assignment guidelines

Course Organization

Designing and administering exams/quizzes
• Purpose of exams/quizzes
• Frequency
• Format in small versus large classes
• Helping students to prepare
• Dealing with absences, family crises, etc.

Lecturing to a large class

Setting the tone—humanize yourself
• Tell students a little about who you are to help set the stage

Example from first day of class

Lecturing to a large class

Lecturing versus storytelling— which should you be doing?

Use stories to illustrate key points
Personal stories help your students connect to you and the material better
Humor— even bad jokes— can be appreciated
Lecturing to a large class

Effective use of powerpoint

The carbon cycle is the way carbon is stored and replaced on Earth. Some of the main events take hundreds of millions of years, others happen annually.

The main way that carbon gets into the carbon cycle are volcanoes, and the burning of fossil fuels like coal and gas. Though in small amounts, carbon is added to the atmosphere by the burning of wood and other plant materials. By far the biggest source of carbon entering the carbon cycle by people is the burning of fossil fuels - coal, oil, and gas. The amount of carbon dioxide (CO2) that people have added to the air by burning fossil fuels in the last hundred years is about a hundred times more than volcanoes have added over the same period. That is, for every ton of CO2 added to the air by volcanoes, about 100 tons of CO2 have been added to the air by people.

The main way carbon gets taken out of the atmosphere is by photosynthesis by living organisms. Some of this gets stored as plants, and decomposes, but a proportion is buried in sediment. This is shown in the diagram. Sediment becomes rock, and it is the carbonate rocks like limestone which contain the now-solid CO2. Some of the carbon from plants also becomes part of the soil, where it can stay for a long time before decomposing.

Another process takes CO2 out of the air. Weathering by rain washes out CO2 in the form of dilute carbonic acid. This reacts with rock, helping to dissolve and destroy it. This in turn ends up as sediment.

"Weathering is a large consumer of the atmospheric carbon dioxide essential for dissolving rocks." Some CO2 is also dissolved in the oceans. Right now, the oceans are taking in more CO2 than they are releasing, every year. However, this is making the oceans more acidic.

The store of carbon in sedimentary rock is far greater than the CO2 in the atmosphere (this is not shown in the diagram). Eventually it returns to the air as a cooler plate subducts in plate tectonics. At the margins of plate boundaries (and some other places) volcanoes form and spew out CO2. This completes the cycle.

The Carbon Cycle

Lecturing to a large class

Making notes and study guides available

Advantages:

Disadvantages:

Examples on Blackboard

Interacting with students in a large lecture class

I.e. Strategies to make a big class feel smaller

• What techniques do you already use?
• Effective use of discuss sections
• Examples of small class activities that mimic the small class experience
 - Think pair share
 - 1-minute powerpoint
 - Diagramming
 - Small group activities
 - Other favorites from the group?
“Flipping” the classroom

Course Transformation Project (CTP) at NIU

What does a “flipped” course look like?
• Move lecture material online
• In-class time spent reinforcing key ideas and doing small group activities
• Active learning versus passive listening

Lessons from my CTP Geography 101 course:

Pros:
• Students were more ‘awake’ and engaged with the material
• Got to know individual students in a large class well
• Better grasp of key ideas

Cons:
• Logistically very complicated to coordinate
• Lots of grading due to small group activities
• Conflicts amongst group members
• Online content a challenge