Derivation of the Hybrid NK Wage Phillips Curve with Backward Wage Indexation

This derivation follows Holmberg (2006). Let x represent the wage set by firms that are able to adjust their wages and τ represent the proportion of firms that are not able to reset their wages. Then,

$$\hat{W}_t = (1 - \tau)x_t + \tau\hat{W}_{t-1}.$$ \hspace{1cm} (A1)

Subtracting \hat{W}_{t-1} from both sides of (A1) yields the following expression for wage inflation:

$$\pi^w_t = \hat{W}_t - \hat{W}_{t-1} = (1 - \tau)(x_t - \hat{W}_{t-1}).$$ \hspace{1cm} (A2)

Let η represent the proportion of firms resetting wages that index their wages to lagged wage inflation, x^b_t represent the wage set by backward-looking firms, and x^f_t represent the wage set by forward-looking firms. Then

$$x_t = \eta x^b_t + (1 - \eta)x^f_t.$$ \hspace{1cm} (A3)

Solving (A1) for x_t and substituting this expression into (A3) yields

$$\frac{1}{1 - \tau}\hat{W}_t - \frac{\tau}{1 - \tau}\hat{W}_{t-1} = \eta x^b_t + (1 - \eta)x^f_t.$$ \hspace{1cm} (A4)

Let β represent the discount factor and $\hat{W}_{t+j}^{*,e}$ represent firms’ expectation of the optimal wage in period $t+j$ when they set wages in period t. Then the wage set by forward-looking firms can be expressed as,

$$x^f_t = (1 - \beta \tau) \sum_{j=0}^{\infty} \beta^j \tau^j E_t \hat{W}_{t+j}^{*,e}$$ \hspace{1cm} (A5)

$$x^f_t = (1 - \beta \tau)\hat{W}_t^* + \beta \tau E_t x^f_{t+1}.$$ \hspace{1cm} (A6)
Backward-looking firms are assumed to set wages equal to the wage set last period by firms that adjusted wages, indexed to lagged wage inflation, where the λ’s represent the weight given to each lag of wage inflation in the indexation process. Thus, the wage set by backward-looking firms is

$$x_t^b = x_{t-1} + \sum_{i=1}^{T} \lambda_i \pi_t^{w_i}.$$ \hspace{1cm} (A7)

Combining (A1) and (A7) yields

$$x_t^w - \hat{W}_t = -\pi_t^w + \frac{\tau}{1 - \tau} \pi_{t-1}^w + \sum_{i=1}^{T} \lambda_i \pi_{t-1}^{w_i}.$$ \hspace{1cm} (A8)

Substituting (A15) from Campbell (2018) into (A6) yields the relationship,

$$x_t^f = (1 - \beta \tau) \left(\hat{W}_t - \frac{e_{wu} - e_u}{e_{ww}} du_t \right) + \beta \tau E_t x_{t+1}^{f,e}$$

$$x_t^f - \hat{W}_t = -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{ww}} du_t - \beta \tau \hat{W}_t + \beta \tau E_t x_{t+1}^{f,e}.$$ \hspace{1cm} (A9)

From (A4)

$$\frac{\tau}{1 - \tau} \pi_t^w = \eta (x_t^b - \hat{W}_t) + (1 - \eta)(x_t^f - \hat{W}_t)$$

$$x_t^f = \frac{\tau}{(1 - \tau)(1 - \eta)} \pi_t^w - \frac{\eta}{1 - \eta} (x_t^b - \hat{W}_t) + \hat{W}_t$$

$$E_t x_{t+1}^f = \frac{\tau}{(1 - \tau)(1 - \eta)} E_t \pi_{t+1}^w - \frac{\eta}{1 - \eta} (E_t x_{t+1}^b - E_t \hat{W}_{t+1}) + E_t \hat{W}_{t+1}.$$

Substituting (A8) yields

$$E_t x_{t+1}^f = \frac{\tau}{(1 - \tau)(1 - \eta)} E_t \pi_{t+1}^w - \frac{\eta}{1 - \eta} \left[-E_t \pi_{t+1}^w + \left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi_t^w + \sum_{i=1}^{T-1} \lambda_{t+i} \pi_{t-i}^w \right] + E_t \hat{W}_{t+1}$$

$$E_t x_{t+1}^f = \frac{\tau + (1 - \tau) \eta}{(1 - \tau)(1 - \eta)} E_t \pi_{t+1}^w - \frac{\eta}{1 - \eta} \left(\left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi_t^w + \sum_{i=1}^{T-1} \lambda_{t+i} \pi_{t-i}^w \right) + E_t \hat{W}_{t+1}. \hspace{1cm} (A10)$$
Substituting (A10) into (A9) yields

\[
x'_i - \hat{W}_i = -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{wu}} du_i - \beta \tau \hat{W}_i + \beta \tau E_i x'_{i+1}
\]

\[
x'_i - \hat{W}_i = -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{wu}} du_i - \beta \tau \hat{W}_i
+ \beta \tau \left[\frac{\tau + (1 - \tau) \eta}{(1 - \tau)(1 - \eta)} E_i \pi^w_{i+1} - \frac{\eta}{1 - \eta} \left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi^w_i + \sum_{j=1}^{T-1} \lambda_{i+j} \pi^w_{i+j} \right] + E_i \hat{W}_{i+1}
\]

\[
x'_i - \hat{W}_i = -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{wu}} du_i
+ \beta \tau \left[\frac{\tau + (1 - \tau) \eta}{(1 - \tau)(1 - \eta)} E_i \pi^w_{i+1} - \frac{\eta}{1 - \eta} \left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi^w_i + \sum_{j=1}^{T-1} \lambda_{i+j} \pi^w_{i+j} \right] + E_i \pi^w_{i+1}
\]

\[
x'_i - \hat{W}_i = -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{wu}} du_i
+ \beta \tau \left[\frac{1}{(1 - \tau)(1 - \eta)} E_i \pi^w_{i+1} - \frac{\eta}{1 - \eta} \left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi^w_i + \sum_{j=1}^{T-1} \lambda_{i+j} \pi^w_{i+j} \right]
\]

Substituting (A8) and (A11) into (A4) yields

\[
\frac{\tau}{1 - \tau} \pi^w_i = \eta (x_i^b - \hat{W}_i) + (1 - \eta) (x'_i - \hat{W}_i)
\]

\[
\frac{\tau}{1 - \tau} \pi^w_i = \eta \left(-\pi^w_i + \frac{\tau}{1 - \tau} \pi^w_{i+1} + \sum_{j=1}^{T-1} \lambda_j \pi^w_{i+j} \right) + (1 - \eta) \left\{ -(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{wu}} du_i
+ \beta \tau \left[\frac{1}{(1 - \tau)(1 - \eta)} E_i \pi^w_{i+1} - \frac{\eta}{1 - \eta} \left(\frac{\tau}{1 - \tau} + \lambda_i \right) \pi^w_i + \sum_{j=1}^{T-1} \lambda_{i+j} \pi^w_{i+j} \right] \right\}
\]
\[\tau \pi^w_t = \eta \left(-(1 - \tau) \pi^w_t + \tau \pi^w_{t-1} + (1 - \tau) \sum_{i=1}^{T} \lambda_i \pi^w_{i-t} \right) - (1 - \eta)(1 - \tau)(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{ww}} du_t \]

\[+ \beta \tau E_t \pi^w_{t+1} - \beta \tau \eta \left(\tau + (1 - \tau) \lambda_i \right) \pi^w_t + (1 - \tau) \sum_{i=1}^{T-1} \lambda_i \pi^w_{i-t} \]

\[\tau \pi^w_t = -(1 - \eta) \eta \pi^w_t + \tau \eta \pi^w_{t-1} + (1 - \eta) \eta \sum_{i=1}^{T} \lambda_i \pi^w_{i-t} - (1 - \eta)(1 - \tau)(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{ww}} du_t \]

\[+ \beta \tau E_t \pi^w_{t+1} - \beta \tau \eta \left(\tau + (1 - \tau) \lambda_i \right) \pi^w_t - \beta \tau \eta(1 - \tau) \sum_{i=1}^{T-1} \lambda_i \pi^w_{i-t} \]

\[\left[\tau + \eta(1 - \tau) + \beta \tau \eta \left(\tau + (1 - \tau) \lambda_i \right) \right] \pi^w_t = -(1 - \eta)(1 - \tau)(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{ww}} du_t \]

\[+ \beta \tau E_t \pi^w_{t+1} - \beta \tau \eta(1 - \tau) \sum_{i=1}^{T-1} \lambda_i \pi^w_{i-t} + \tau \eta \pi^w_{t-1} + (1 - \eta) \sum_{i=1}^{T} \lambda_i \pi^w_{i-t} \]

\[\pi^w_t = \frac{-(1 - \eta)(1 - \tau)(1 - \beta \tau) \frac{e_{wu} - e_u}{e_{ww}} du_t + \beta \tau E_t \pi^w_{t+1} + \tau \eta \pi^w_{t-1} + \eta(1 - \tau) \sum_{i=1}^{T} (\lambda_i - \beta \tau \lambda_{i+1}) \pi^w_{i-t}}{\tau + \eta(1 - \tau) + \beta \tau \eta \left(\tau + (1 - \tau) \lambda_i \right)} . \]

References
