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This thesis investigates the structure-property relationship of two important classes
of transition metal oxides (the perovskite-type A-site substituted titanates
(Srix-yCaxNdy)TiO3 and manganites (Sr;xBa,)MnO3z). A thorough evaluation is
provided of their potential for prospective technological applications in heat recycling
and information technology by examining the thermoelectric and multiferroic prop-
erties, respectively. In the titanate compounds, we doped on the A-site with small
rare earth ions in order to generate mixed valent transition metals to increase band

Iling while the Ca doping maintained xed levels of distortions. In the case of the
manganites, A-site Sr ions were substituted with large Ba ions for the purpose of
increasing the materials strain and to promote ferroelectricity.

Crystal structure was investigated using high-resolution neutron powder di rac-
tion as a function of temperature and Nd/Ba doping. In the titanates, two series
were synthesized and designed to have a nominally constant tolerance factor at room
temperature. We determine the room temperature structures as tetragonal 14=mcm

and orthorhombic Pbnm for the Sr-rich and Ca-rich series, respectively. Three low






temperature orthorhombic structures, Pbnm; Ibmm and P bcm were also observed for
the Sr-rich series; whereas, the symmetry of the Ca-rich series remained unchanged
throughout the full measured temperature range.

Thermoelectricity in ternary (Sri.,CayNdy)TiO3z perovskites was investigated.
The double substitution at the A-site maintained a xed crystal distortion while Nd®*
doping modi ed the electronic properties of the materials via increased band lling.
Unigque compositions of cations allowed for increased A-site atomic mass disorder and
the lattice thermal conductivity was signi cantly suppressed to values as low as  1:5
W/K.m in some samples, approaching amorphous Silicon limit. Charge doping via
balanced formation of Ti** at the B-site has transformed materials into n-type semi-
conductors. | examined the range of applicability of various conduction models, viz.,
variable range hopping, semiconductor- type conductivity across band gap, and small
polaron hopping for the best description of the temperature variation of measured
resistivity. We succeeded in achieving a relatively high gure of merit ZT =0.07 at

400 K in the Sr-rich Srg76Cag.16Ndo.0s TiIO3 composition which is comparable to
that of the best n-type TE SrTiggoNbg 003 oxide material reported to date. With
an enhanced Seebeck coe cient at elevated temperatures and reduced thermal con-
ductivity, we predict that Srg76Cag.16Ndg.0s TiO3 and similar compositions have the
potential to become some of the best materials in their class of thermoelectric oxides.

We also report the structure-property phase diagram of unique single-ion type-1
multiferroic pseudocubic Sr;.«Ba,MnO3 perovskites. Employing a specially designed
multi-step reduction-oxidation synthesis technique, we have synthesized previously
unknown Sr;Ba,MnO3; compositions in their polycrystalline form with a signi cantly
extended Ba solubility limit that is only rivaled by a very limited number of crystals
and thin Ims grown under non-equilibrium conditions. Understanding the multifer-
roic interplay with structure in Sr;.«Ba,MnOj; is of great importance as it opens the

door wide to the development of newer materials from the parent (AA’)(BB’)O3 sys-



tem with enhanced properties. To this end, using a combination of time-of- ight neu-
tron and synchrotron x-ray scattering techniques, we determined the exact structures
and quanti ed the Mn and oxygen polar distortions above and below the ferroelectric
Curie temperature T¢c and the Neel temperature Ty. In its ferroelectric state, the
system crystalizes in the noncentrosymmetric tetragonal P4mm space group which
gives rise to a large electric dipole moment Ps, in the z-direction, of 18.4 and 29.5

C/cm? for x = 0.43 and 0.45, respectively. The two independently driven ferroelec-
tric and magnetic order parameters are single-handedly accommodated by the Mn
sublattice leading to a novel strain-assisted multiferroic behavior in agreement with
many theoretical predictions. Our neutron di raction results demonstrate the large
and tunable suppression of the ferroelectric order at the onset of AFM ordering and
con rm the coexistence and strong coupling of the two ferroic orders below Ty. The
re ned magnetic moments con rm the strong covalent bonding between Mn and the

oxygen anions which is necessary for stabilizing the ferroelectric phase.
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CHAPTER 1
INTRODUCTION

1.1 Perovskites: A Special Class of Simple But Diverse

Transition Metal Oxides

Transition-metal oxides are among the most studied materials that received,
over the last few decades after discovery of colossal magnetoresistive and high-T
superconductivity, constant attention devoted to the investigation of their structural
and physical properties. Perovskite, named in honor of the Russian mineralogist
L.A. Perovski, is the mineral CaTiO3z [1] and the term has been conventionally in
use since then to refer to a family of oxide materials that take the general chemical
formula ABO3; [2]. Beside the importance of these materials in understanding
and developing the fundamental concepts of solid state physics, perovskites are
proven structurally exible with novel and diverse phenomena that can be tailored
to speci c application area in addition to their sheer abundance as for instance the
case with MgSiOz compound which is one of the two main constituents of the earth’s
lower mantle [3,4].

Perovskite ABOg structure can be visualized as an in nite 3D network of ReO; -
like transition metal octahedra having an (A-site) center cavity which e ectively
couples with alkaline or rare earth elements as shown in Fig. 1.1(a). These BOg

octahedra are linked in each crystallographic direction via a bridging anion (usu-



ally an oxygen) whose atomic orbital overlapping with the transition metal plays a
central role in determining the electronic and magnetic properties of the material.
The simple perovskite structure can exist in many variants such as the double
perovskite (compared side by side with ABO3 in Fig.1.1) to minimize lattice energy
when the di erence in charge or size of ions is large [1]. The double perovskite
(A2,BBOg) is a clear demonstration of the structural exibility of perovskites to
tolerate the presence of substantial doping on multiple cationic sites [5] with B
and B’ representing two di erent transition metals (e.g. Ba,MgWOg) whose size

di erence does not admit mixing/disorder on a single lattice site.

Figure 1.1: (a) The ideal (cubic) perovskite crystal structure of the archetypal
SrTiO; (ABO;3) with B transition metal atoms centered at the corners of the unit
cell forming a cubic close packed structure. (b) A complex variant of ABO3 structure
found in double perovskite materials compared side by side. (c) The unit cell is
shown as in nite layers of ordered cation-anion sublattices along c axis in both
structures.



































































































































































































































































































































































































































































































