Narayan S. Hosmane

Representative Publications

Special Dedicated Issue of Journal of Organometallic Chemistry

Conversion of Carbon Dioxide to Few‑Layer Graphene. Chakrabarti, A.; Lu, J.; Skrabutenas, J.C.; Xu, T.; Xiao, Z.; Maguire, J.A.; Hosmane, N.S.(2011) J. Mater. Chem., 21: 9491–9493.

Nano and Dendritic Structured Carboranes and Metallacarboranes: From Materials to Cancer Therapy. Hosmane, N. S.; Yinghuai, Z.; Maguire, J. A.; Kaim, W.; Takagaki, M. (2009) J. Organomet. Chem., 694: 1690–1697.

Synthesis, Characterization and Polymerization of a Neutral Tantalacarborane Sandwich Complex Derived from Quintanionic exo‑Polyhedrally Linked Bis(C2B10‑carborane) Ligands. Yinghuai, Z.; Nong, L. C.; Zhao, L. C.; Widjaja, E.; Hwei, C. S.; Cun, W.; Tan, J.; Van Meurs, M.; Hosmane, N. S.; Maguire, J. A. (2009) Organometallics, 28: 60–64.

Silicon (IV) and Germanium (IV) Moieties Stabilized by Charge‑Compensated Carborane Ligand, [9‑SMe2‑7,8‑C2B9H10]: Synthetic and Structural Investigation. Vladimir Meshcheryakov, V.; Zheng, C.; Kudinov, A. R.; Maguire, J. A.; Hosmane, N. S.(2008) Organometallics, 27: 5033–5037.

Boron‑Based Nanostructures: Precursors to Modern Materials. Yinghuai, Z.; Yan, K. C.; Maguire, J. A.; Hosmane, N. S. (2008) Polymer Preprints (American Chemical Society), 49: 857–858.

Iridium(0) Nanoparticles Used as Catalysts for Phenylborylation Reaction. Yinghuai, Z.; Chenyan, K.; Peng, A. T.; Emi, A.; Monalisa, W.; Louis, L. K‑J.; Hosmane, N. S.; Maguire, J.A. (2008) Inorg. Chem., 47: 5756–5761.

Synthesis of a New Class of Carborane‑Containing Star‑Shaped Molecules via Silicon tetrachloride Promoted Cyclotrimerization Reactions. Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S. (2008) Org. Lett., 10: 2247–2250.

Latest Developments in the Catalytic Applications of Nano‑Scale Particles Comprising Late Transition Metal Catalysts. Yinghuai, Z.; Nong, L. C.; Yifan, H.; Hosmane, N. S.; Maguire, J. A. (2008) Chemistry: An Asian Journal, 3: 650–662.

Gadolinium Neutron Capture Therapy for Malignant Brain Tumors. Takagaki, M.; Hosmane, N. S. (2007) Aino Journal, 6: 39–44.

Inorganic Compounds for Cancer Therapy

The stable isotope of boron 10B (19.8 percent natural abundance) readily captures neutrons, while the 11B isotope does not. Biomolecules and drugs containing 10B‐enriched carborane and borane substituents (which preferentially localize in tumor cells and rapidly clear from normal cells) can thus be used for cancer therapy. When the 10B nuclei are bombarded by thermal or epithermal neutrons, they undergo a fission reaction that produces high energy α particles. Since these α particles travel only about 10 µm or less, they selectively destroy cancer cells where the 10B nuclei are localized. This process, schematically depicted below left, is known as boron neutron capture therapy (BNCT). It has been shown to significantly prolong the lifespan of patients with brain tumors and a number of BNCT reagents are currently in Phase I and II clinical trials.

bnct process illustrationOur research is focused on synthesizing cage‐functionalized carbon nanotubes and fullerenes and evaluating them as potential agents for BNCT drug delivery. Also of interest are certain gadolinium complexes currently used as contrast agents and which may have applications in the treatment of brain tumors (such as glioblastoma multiforme, GBM) and other aggressive forms of cancer. Preliminary distribution studies have shown (see Zhu et al., J. Am. Chem. Soc. 2005, 127: 9875; and the figure below) that some of these derivatives preferentially concentrate in tumor cells, indicating that they are useful additions to the arsenal of tumor‐targeting biomolecules such as porphyrin substrates, epidermal growth factors, liposomes, etc., that have been investigated, with varying degrees of success, as BNCT agents.

graph of boron tissue distributions as time elapsess
Boron tissue distributions of a BNCT compound incorporating a substituted carborane cage appended to a single‑walled carbon nanotube (image from Zhu, et al., J. Am. Chem. Soc. 2005, 127: 9875).

We are also engaged in the synthesis and chemistry of cage compounds composed of boron, carbon, transition, lanthanide and main‐group elements. Examples include carboranes and metallacarboranes containing SiMe3 and/or biofunctionalities and metal–metal bonds. Studies of molecular structure and physical properties are carried out by various crystallographic and spectroscopic methods, electron diffraction, magnetic susceptibility, cyclic voltammetry and other methods. Important aspects of this research are the stepwise construction of a number of half‐ and full‐sandwich metallacarborane species and evaluation of their potential applications as catalysts for Ziegler–Natta olefin polymerization, in selective removal of radioactive metal ions from nuclear waste, as semiconductors or conductors and as precursors to conducting materials.

Narayan S. Hosmane

Faraday Hall 305

Educational Background

Research Associate, University of Virginia, 1977–1979

Research Associate, Auburn University, 1976–1977

Postdoctoral Fellow, Queen's University of Belfast, 1974–1975

Ph.D., Edinburgh University, 1974

M.S., Karnatak University, 1970

B.S., Karnatak University, 1968

Curriculum Vitae

Research Interests

Synthetic and structural chemistry of polyhedral boron cage biomolecules and nanostructured materials for cancer therapy, catalysis and extraction of radionuclides.