Chemistry 110 Section 3

Practice Exam 4 (Ch 7[Rate\&Equilibrium], 8, and 9)

Note:

1. Sit according to the seat number assigned (ask the TA or the instructor).
2. Use a softhead pencil, fill in you name, z-number, department name (CHEM), course name (110), and today's date () in the scantron sheet.
3. Use the following Periodic Table for the problems involving atomic mass and group names in this exam.
4. This is a close-book exam. You cannot use your textbook or notes. However, you should use a calculator. Cell phones are not allowed during the exam. The following data may be helpful to you.

Avogadro's number: $\quad \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}=1$ mole
Gas constant $\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} /(\mathrm{mol} \mathrm{K})$
pH definition:
Water ion-product constant
Acid-Base titration equation

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \\
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& \mathrm{n}_{\mathrm{H}}\left(\mathrm{M}_{\text {acid }}\right)\left(\mathrm{V}_{\text {acid }}\right)=\mathrm{n}_{\mathrm{oH}}\left(\mathrm{M}_{\text {base }}\right)\left(\mathrm{V}_{\text {base }}\right)
\end{aligned}
$$

$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\mathrm{q}=(\mathrm{amt})(\Delta \mathrm{T})($ Specific heat $)$

Periodic Table of the Elements:

Choose the most appropriate answer.

1. Which of the following will not affect the rate of a reaction:
A.Equilibrium constant
B. Concentration of reactants
D.Physical state of reactants
E. Presence of a catalyst
C. Temperature of reactants
2. For the following reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{D}$, it was determined the reaction was first order with respect to A and second order with respect to B , the correct general rate law for this reaction would be:
A. rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
B. rate $=k[A]^{2}[B]$
C. rate $=k[A][B]^{2}$
D. rate $=k[A]^{3}[B]^{3}$
E. rate $=\mathrm{k}$
3. The rate law for a reaction is: rate $=k[I]^{2}$. If the concentration of $[I]$ is doubled, the rate will
A. increase 2 -fold
B. increase 4-fold
C. decrease 2-fold
D. decrease 4 -fold
E. not change
4. The rate law for a reaction is: rate $=k[A]$. If the concentration of $[A]$ is halved, the rate will
A. increase 2 -fold
B. increase 4-fold
C. decrease 2-fold
D. decrease 4 -fold
E. not change
5. Which energy difference in the energy profile below corresponds to ΔH° ?

A. $\mathrm{x}+\mathrm{y}$
B. $x-y$
C. $\mathrm{x} \div \mathrm{y}$
D. x
E. y
6. At equilibrium of the following reaction, the concentration of dinitrogen tetroxide is 0.022 M and the concentration of nitrogen dioxide is 0.010 . Calculate the value of the equilibrium constant $\left(\mathrm{K}_{\text {eq }}\right) .2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
A. 0.022
B. 1.0
C. 4.5×10^{-3}
D. 2.2×10^{2}
E. 2.2×10^{4}
7. What is the equilibrium constant expression for the following reaction $2 \mathrm{NH}_{3}(g) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
A. $\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}$
$\left[\mathrm{NH}_{3}\right]^{3}$
B. $\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$
$\left[\mathrm{NH}_{3}\right]^{2}$
C. $\left[\mathrm{NH}_{3}\right]^{2}$
$\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$
D. $\left[\mathrm{NH}_{3}\right]$
E. None of the above
$\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]$
8. Write the equilibrium expression for the following reaction: $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
A. $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
B. $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
C. $\frac{\left[\mathrm{Ca}^{2+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]^{2}}{\left[\mathrm{CaCO}_{3}\right]}$
D. $\left[\mathrm{Ca}^{2+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]^{2}$
E. None of the above
9. A reaction was determined to have an equilibrium constant $\mathrm{K}=1 \times 10^{16}$. The reaction can be described as being favored to the \qquad ; the concentration of products is relatively \qquad
A. the left; small
B. the right; large
C. the right; small
D. the left; large
E. neither direction; large
10. Given this equilibrium: $2 \mathrm{NH}_{3}(g)+$ heat $\rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$, which action will increase the relative number of moles of N_{2} present at equilibrium?
A) heating the equilibrium mixture
B) adding a catalyst.
C) adding hydrogen to the reaction chamber
D) decreasing the volume of the reaction chamber
E) removing NH_{3} from the mixture
11. Given the equilibrium system: $\mathrm{Pb}^{2+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q) \rightleftharpoons \mathrm{PbCO}_{3}(s)$, after equilibrium, addition of $\mathrm{CO}_{3}{ }^{2-}(a q)$:
A) causes no effect
B) causes the amount of $\mathrm{PbCO}_{3}(s)$ to decrease, and the $\mathrm{Pb}^{2+}(a q)$ concentration to decrease
C) causes the amount of $\mathrm{PbCO}_{3}(s)$ to increase, and the $\mathrm{Pb}^{2+}(a q)$ concentration to decrease
D) causes the amount of $\mathrm{PbCO}_{3}(s)$ to increase, and the $\mathrm{Pb}^{2+}(a q)$ concentration to increase
E) causes the amount of $\mathrm{PbCO}_{3}(s)$ to decrease, and the $\mathrm{Pb}^{2+}(a q)$ concentration to increase
12. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-8} \mathrm{M}$?
A) $1 \times 10^{2} \mathrm{M}$
B) $1 \times 10^{-6} \mathrm{M}$
C) $1 \times 10^{-8} \mathrm{M}$
D) $1 \times 10^{-7} \mathrm{M}$
E) $1 \times 10^{-5} \mathrm{M}$
13. What is the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.1 \times 10^{-10} \mathrm{M}$?
A) -9.51
B) $4.7 \times 10^{-7} \mathrm{M}$
C) 9.51
D) 7.98
E) 10.8
14. In which of the following are the pH values arranged from the most acidic to the most basic?
A) $7,10,14,4,3,1$
B) $14,10,7,4,3,1$
C) $2,5,7,9,14,11$
D) $14,10,7,1,3,5$
E) $1,3,6,8,11,14$
15. What is the pH of a 0.20 M HCl solution?
A.) <0
B) 0.70
C). 1.61
D). 12.39
E.) 13.30
16. What is the $\left[\mathrm{OH}^{-}\right]$for a solution at $25^{\circ} \mathrm{C}$ that has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.23 \times 10^{-2} \mathrm{M}$?
A) $>10^{-5} \mathrm{M}$
B) $1.22 \times 10^{-6} \mathrm{M}$
C) $8.23 \times 10^{-12} \mathrm{M}$
D) $1.22 \times 10^{-13} \mathrm{M}$
E) $8.23 \times 10^{-16} \mathrm{M}$
17. Select the pair of substances which is not a conjugate acid-base pair.
A) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{HNO}_{2}, \mathrm{NO}_{2}^{-}$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HSO}_{4}^{-}$
D) $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~S}^{2-}$
E) $\mathrm{NH}_{3}, \mathrm{NH}_{2}{ }^{-}$
18. Select the pair of substances in which an acid is listed followed by its conjugate base.
A) $\mathrm{H}^{+}, \mathrm{HCl}$
B) $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$
C) $\mathrm{HPO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
D) $\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}{ }^{2-}$
E) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$
19. A strong acid dissociation reaction will react \qquad , and will be expected to have a \qquad equilibrium
constant
A. partially; large
B. Completely; small
C. partially; small
D. Completely; large
E. partially; intermediate
20) In which of the following are the pH values arranged from the most acidic to the most basic?
A) $7,10,14,4,3,1$
B) $14,10,7,4,3,1$
C) $2,5,7,9,14,11$
D) $14,10,7,1,3,5$
E) $1,3,6,8,11,14$
21) Which of the following is a neutralization reaction?
A) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
B) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{LiOH} \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C) $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
D) $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
E) $\mathrm{AgNO}_{3}+\mathrm{HCl} \rightarrow \mathrm{AgCl}+\mathrm{HNO}_{3}$
22) What are the spectator ions in the reaction $\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \square \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$?
A) K^{+}and NO_{3}^{-}
B) $\mathrm{H}_{2} \mathrm{O}$
C) HNO_{3}
D) KOH
E) H^{+}and OH^{-}
23) In a buffer system of HF and its salt, NaF ,
A) F^{-}neutralizes added base.
B) HF neutralizes added acid
C) HF is not necessary.
D) F^{-}neutralizes added acid.
E) F^{-}neutralizes added Na^{+}.
24) Which statement about nuclear reactions is true?
A) The rate of a nuclear reaction is increased by the addition of a catalyst.
B) Energy changes in nuclear reactions are much greater than in ordinary chemical reactions.
C) Nuclear reactions do not change in the nucleus of an atom.
D) A nuclear reaction is the same no matter what isotope is used
E) Nuclear reactions normally do not occur at very low temperature
25) Which is the best description of a beta particle?
A) charge 0 ; mass of 0 amu ; high penetrating power
B) charge +2 ; mass of 4 amu ; low penetrating power
C) charge -1 ; mass of 0 amu ; medium penetrating power
D) charge +1 ; mass of 0 amu ; high penetrating power
E) charge +2 ; mass of 4 amu ; high penetrating power
26) The nuclear reaction shown below is an example of what type of process?

$$
{ }_{90}^{224} \mathrm{Th} \rightarrow{ }_{88}^{220} \mathrm{Ra}+{ }_{2}^{4} \mathrm{He}
$$

A) alpha emission
B) fission
C) beta emission
D) fusion
E) translation
27) What is the unknown isotope X in the following nuclear reaction?

$$
X \rightarrow{ }_{90}^{234} T h+{ }_{2}^{4} \mathrm{He}
$$

A) alpha particle
B) beta particle
C) ${ }_{90}^{238} \mathrm{Th}$
D) ${ }_{92}^{238} \mathrm{Th}$
E) ${ }_{92}^{238} U$

- end -
(Sign and write down your seat number in the back of the scantron. Hand in the scantron and keep this copy for your record)

