

Yttrium Speciation in an Inductively Coupled Plasma Utilizing Acousto-Optic Tunable Filter Hyperspectral Imaging (AOTF-HSI)

Courtney A. Cherok and Jon W. Carnahan

Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115 **Kirk Duffin**

Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA

Abstract

- - How/where they reside/interact throughout the plasma • Increase knowledge of plasma chemistry
 - Allow for the ability to understand observed results found using other ICP instruments
- Observe yttrium atom and ion lines as well as YO molecular bands • CCD camera used to take analytical and background images of the plasma
- Obtain spatially resolved emission images in real time • Known Y(I), Y(II), and YO bands optimized using a 1M monochromator
- Found using AOTF-HSI system
- Results indicate that this system can be used for yttrium speciation
- Future work would involve additional elemental speciation

1. Acousto-Optic Tunable Filter

Acts as a a narrow bandpass transmission filter

- High frequency variable stress is applied to an optically transparent medium
- Perturbation produces periodic variations in the medium
- These packets of energy are known as phonons • Light is directed through the medium
- Photons of the light interact with the phonons in the crystal medium diffracting the light

•The central wavelength of transmitted light is described by the equation:

 $\lambda_d = \frac{v\Delta n}{\sin^4 \theta_i + \sin^2 2\theta_i}$

- Diffraction can occur for radiation in which the phase is not perfectly matched with that of the phonon
- Radiation of wavelengths slightly greater and less than λ will be transmitted • The bandpass is the wavelength range of the diffracted radiation band

• This relationship indicates that better resolution occurs at shorter wavelengths.

• Bandpass $\Delta\lambda$ is defined as the full width at half-maximum intensity of the diffracted light described by

- assuming all other terms to be approximately constant, $\Delta\lambda$ is proportional to the square of the diffracted wavelength
- IntraAction Corporation AOTF Specifications

2. Hyperspectral Imaging

- Mode of data acquisition belonging to chemical imaging
- Hyperspectral imaging collects the same picture on many bands of the light spectrum to generate a "datacube" • Which can reveal objects and information that more limited

Highly detailed spectral information in a short period of time

- scanners cannot pick up.
- Non-invasively analyze proximal or distal objects
- Software Dependent Many potential applications
- Addition of AOTF makes HSI more accessible
- Solid-state design

Rapid wavelength accessibility

Sony XCD-X710

- 1024 x 768 pixels Sensitivity= 4 lux

3. ICP-AOTF-HSI System

4. Wavelength / Frequency Calibration

light undergoing AOTF diffraction (λd) corresponds to the applied frequency Calibration aided with the use of Ar, Sc, Sr, and Y emission lines.

5. Sr Atom and Ion Spectral Emission Lines

Sr atom line [50ppm Sr(I) at 460.73 nm]

Sr ion line [50ppm Sr(II) at 407.77 nm]

were in the ICP's analytical region.

6. Sr Atom and Ion Emission Images

offline plasma images of a 50ppm Sr solution

7. System Software

- Automation of frequency change with image gathering Frequency range 75-150 MHz with steps as small as 0.01 MHz Each final image is a average of three images
- Images can be taken at multiple resolutions and screen sizes
- Gathered images analyzed at one pixel throughout all images Images can be analyzed by averaging multiple pixels throughout all images (frequencies/wavelengths) Pixel data can be exported as a graph, image, or region
- Data can then be manipulated using additional programs Multiple images taken at one wavelength

Height / width of highlighted region of pixels i.e 3= 3x3 pixel region

8. Yttrium Speciation Study

- Necessary to understand plasma chemistry
 - Understand observed results using other ICP techniques Helpful to look at images of emission lines
 - Ion, atom, and molecular bands
 - Visualize interactions/residences
- Visualize effects of changes in plasma parameters
- Correctly Identify Y(I) and Y(II) emission lines, and YO emission bands Collect data for these three Y emissions using the AOTF-HSI system • Determine emission trends while changing the plasma rf power
 - 0.88 kW-1.12 kW with a 0.04 kW step • Determine emission trends with the addition of H₂ - Addition of 5% H₂
- $YO+H\rightarrow Y+OH$
- Compare data to that of a 1M monochromator • Use same conditions

9. ICP-Monochromator System

10. Yttrium Emission Line Identification

Yttrium Lines using AOTF-HSI

11. Yttrium Atom and Ion Emission Lines

YO Molecular Band AOTF

Wavelength (nm)

12. YO Emission Band Identification

13. Hydrogen Addition

14. RF Power Study

Y(II) Emission Line

YO Emission Bands

15. Conclusions / Future Work

Conclusions

- This ICP-AOTF-HSI system is capable of elemental speciation
- Y(I), Y(II), and YO hydrogen addition trends found with the AOTF-HSI system are similar to those found with the
- Y(I), Y(II) plasma rf power trends are similar with both the AOTF and monochromator system
- Plasma rf power YO trends are very different between the AOTF and monchromator system
- Probably a spatial issue • Need to separate and differentiate plasma heights

Future Work

- Focus on plasma chemistry and characterization • Determine trends in different regions of the plasma
- Attempt speciation experiments with other elements
- Compare speciation capabilities with multiple nebulizers

A Special Thanks To

Northern Illinois University: Department of Chemistry and Biochemistry