Process Control for Additive Manufacturing

Lesson 1
Acoustic Emission Monitoring
Outline

• Need for Mass Flow Monitor in AM
• Current Use of AE in Welding Processes
• Discoveries Critical to AE Monitoring of Powder Flow
• System Testing Protocol
• Future Research Goals
Powder Flow Rates

- Powder mass flow balanced with laser power controls build quality in direct laser sintering
- Current DED systems run open loop on mass flow
- Powder flow rates are fixed set-points
 - Calibrated before build campaign (no recommended practice on frequency)
 - Rogue full, or partial, blockage between hopper and build head ignored
- Flow related discontinuities may, or may not, be discovered during post-build inspection(s)
- Build quality index identifies
 - Level of post-build inspection
 - Pinpoints location(s) for inspection
Non-Invasive Monitoring

- Current flow sensors can disrupt laminar gas flow, or alter mass flow rates
 - Turbine, vortex
- Existing multi-phase mass flow meters rely on empirical data to achieve optimal flow
 - Fracking, oil, steel industry
- Need for
 - In-situ flow monitor
 - Non-intrusive
Direct Flow Measurement

• Current powder flow rate measured indirectly
 – Impeller rotational speed
 – Cannot detect if powder supply tube is restricted or completely clogged
 – Effect of flowability of powder cannot be considered

• AE data has correlation coefficient greater than .95 with respect to actual flow rate
AE in Manufacturing

- Widely used to track quality in welding processes
 - Monitors structural integrity based on analyzing acoustic signature of a manufacturing process
- ASTM E749-07 provides guidelines for AE monitoring of weldments
- AE is proven monitoring technique in bridge, pressure vessel, and pipe monitoring
Project Discoveries

• Proper sensor placement produces linear root mean square response to powder mass flow rate is changed
 – Straight bore cavity for unimpeded powder flow
 – AE sensor covers multiple bore diameters for signal averaging & high signal-to-noise ratio
 – AE sensor acoustically isolated from build head and build platform motion noise
Normal Build Conditions

- AE data from normal build conditions
- RMS ≈ 625 µV
- Satisfactory outcome
Excessive Gas Pressure

- AE data from build with excessive argon gas pressure
- RMS $\approx 1150 \mu V$
- Unsatisfactory outcome
Experimental Methods

- Flexible tubing attached to each nozzle
- Tubes send powder to reservoirs
- Scale weighs reservoir assembly as powder feeder settings are adjusted (@ 10Hz)
- AE sensor recording
Order of Operations of Signal Conditioning

1. RMS of AE
2. Resample
3. Lag Shift
4. Regression
Results

• Mathematical relationship AE RMS to powder mass flow rate

\[\dot{m} = \beta_3 \text{rms}^3 + \beta_2 \text{rms}^2 + \beta_1 \text{rms} + \beta_0 \]

Equation 1: Function of RMS

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_3)</td>
<td>8.16e-15</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>1.76e-9</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>7.8e-6</td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>.822</td>
</tr>
</tbody>
</table>
Results

- $r^2 > .97 \rightarrow$ Very strong Correlation

![Graph showing flow rate measured and flow rate calculated from AE (rms)]

- Polynomial: $8.1607e-15 \text{rms}^3 + 1.7592e-09 \text{rms}^2 + 7.8019e-06 \text{rms} - 0.82221$

Correlation Coefficient (r^2): 0.97448
User Interface

Motor Setting

Set Flow Rate

Actual Flow Rate From AE Data
Future AE Development

- Frequency Spectrum Analysis
- Two sensor time difference
- Individual nozzle monitoring
- Real-time powder feed control system
Resources

Northern Illinois University (NIU)
Additive Manufacturing Lab
Federico Sciammarella, Director
sciammarella@niu.edu

Northwestern University
Mechanical Engineering Department
McCormick School of Engineering
Jian Cao
jcao@northwestern.edu

National Institute of Standards and Technology (NIST)
Engineering Laboratory
Kevin Jurrens, Deputy Division Chief
kevin.jurrens@nist.gov

This work was performed under the following financial assistance award 70NANB13H194 from the U.S. Department of Commerce, National Institute of Standards and Technology. The views expressed do not necessarily reflect the official policies of NIST; nor does mention by trade names, commercial practices, or organizations imply endorsement of the U.S. Government.