2 Degree of Freedom Helicopter System
Vijay Rana, Jonathan Cepeda, Ryan Tuohy
Advisor: Hasan Ferdowsi, German Ibarra
Electrical Engineering, and Mechanical Engineering

Abstract
- **Objective**: Learn how to use control system in a laboratory environment.
- **Cost efficient** and **accessible** to any engineer.
- **Simulates** a helicopter control system.
- Needs to give **accurate data** and **feedback** to show the **motion** of the system.

Methods and Material

Construction of System:
- PVC Pipe
- Aluminum Box
- 3D Filament
- Acrylic Sheet
- Motors
- Encoders
- Raspberry Pi
- Motor Driver

Results
A CAD model was used to build the system’s design. The data inputted and received was through Matlab/Simulink interface with the Raspberry Pi 4.

Discussion
- Will be used by **students** and **faculty members**.
- Can **recreate** this system and **modify** it to their use based on the **instructions** given.
- Will be more **cost effective** than existing systems.

Conclusions
- There are **existing systems** available in the **market** like this.
- These systems can be very **expensive**, difficult to **maintain**, and hard to **modify**.
- Our system is **cost efficient**, **easily maintained**, and **easily modified**.

Acknowledgements
Team 13 would like to thank the Northern Illinois University Engineering Department for their contribution towards this project. As well as MWRD for helping us with the build of the system. A special thank you goes to Dr. Hasan Ferdowsi and German Ibarra for not only their guidance and advice, but for their dedication towards helping Team 13 with the project.