NORTHERN ILLINOIS UNIVERSITY

PHYSICS DEPARTMENT

Physics 283 – Modern Physics

Fall 2025

Problem Set #8

Problem Set Due: Thurs., Nov. 6, 2025

Read Krane: Chapter 8.1-8.6

There will be a Quiz #3 on Tuesday, November 11

OpenStax University Physics Vol. 3: Section 2.2: Problem 37
 OpenStax University Physics Vol. 3: Section 2.3: Problem 45
 OpenStax University Physics Vol. 3: Section 2.4: Problem 55

4. Krane: Problem 1 page 266 (just show calculation)

5. Krane: Problem 6 page 267 (just show calculation)

6. Krane: Problem 7 page 267 (just show calculation)

7. Krane: Problem 14 page 267

(sketch energy level diagram & transitions for (a) & (c)

(sketch energy level diagram & transitions for (a) & (c))

8. Krane: Problem 17 page 267 (just show calculation)

9. Krane: Problem 22 page 267 (just show calculation)

Problem # 10 is on the next page

10. Selection rules for an infinite square well potential: Recall in Lecture that the electric dipole is defined as $\vec{\mathbf{p}} = Q\vec{\mathbf{r}}$ where $\vec{\mathbf{r}}$ is the distance between a pair of positive and negative charges +Q and -Q. Thus, the average electric dipole, or expectation value of the electric dipole, is $\langle \vec{\mathbf{p}} \rangle = \langle Q\vec{\mathbf{r}} \rangle$ which in one-dimensions becomes $\langle p_x \rangle = \langle ex \rangle$ for an electron cloud about a nucleus. We can use this to construct a general condition necessary for an atom in an excited state to radiate a photon (electromagnetic waves):

$$\int_{-\infty}^{\infty} x \psi_i \psi_f^* dx \neq 0$$
 (allowed transitions)
$$\int_{-\infty}^{\infty} x \psi_i \psi_f^* dx = 0$$
 (forbidden transitions)

where i = initial state, f = final state. The wave function for an infinite square well potential is

$$\psi = A \sin\left(\frac{n\pi x}{L}\right)$$
 $\left(n = 1, 2, 3, ...\right)$ and $\left(0 < x < L\right)$

- (a) Show whether $\Delta n = \pm 1$ transitions are allowed by examining the $n = 2 \rightarrow n = 1$ transition.
- (b) Show whether $\Delta n = \pm 2$ transitions are allowed by examining the $n = 4 \rightarrow n = 2$ transition.
- (c) Show whether $\Delta n = \pm 3$ transitions are allowed by examining the $n = 4 \rightarrow n = 1$ transition.
- (d) Generalize the selection rules for any Δn , and show all the allowed transitions in the energy level diagram below: