NORTHERN ILLINOIS UNIVERSITY

PHYSICS DEPARTMENT

Physics 283 – Modern Physics

Fall 2025

Problem Set #7

Problem Set Due: Thurs., Oct. 30, 2025

Read Krane: Chapter 7.1-7.8

OpenStax University Physics Vol. 3: Section 1.7: Problem 64
OpenStax University Physics Vol. 3: Section 1.7: Problem 65

3. OpenStax University Physics Vol. 3: Section 2.1: Problem 26 (see solution to #27)

4. Krane: Problem 20 page 234 (just show calculation)

5. Krane: Problem 21 page 234 (just show calculation)

6. Krane: Problem 24 page 234 (sketch energy level diagram)

7. Krane: Problem 26 page 234 (sketch energy level diagram)

8. Krane: Problem 27 page 234 (sketch energy level diagram)

Take home Quiz #2 extension worth 25 points on Quiz #2 (open book/open internet problem)

See next page:

For the integrals, use only the trigonometric identities below (<u>do not use integral tables</u>):

(i)
$$\tan A = \frac{\sin A}{\cos A}$$

(ii)
$$\sin^2 A + \cos^2 A = 1$$

(iii)
$$\sin 2A = 2\sin A\cos A$$

(iv)
$$\cos(2A) = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A = 2\cos^2 A - 1$$

(v)
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

(vi)
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

- 9. Heisenberg Uncertainty Relation: An electron is trapped in an infinitely deep one-dimensional well of width L.
- (a) Using a symmetry argument, what is the average momentum, $\,p_{ave}$, of the electron? Carefully explain your answer.
- (b) Using the operator form for momentum, $\hat{p}=-i\hbar\frac{d}{dx}$, find p_{ave} using the definition:

$$p_{ave} = \left\langle \hat{p} \right\rangle = \left\langle \psi \, \middle| \, \hat{p} \, \middle| \, \psi \right\rangle = \int_{-\infty}^{\infty} \psi(x) \hat{p} \, \psi^*(x) \, dx \, .$$

- (c) What is $\left(p^2\right)_{ave}$ using your knowledge of what $\left(p^2/2m\right)_{ave}$ is?
- (d) Show that your result for part (c) agrees with the calculation using the momentum operator:

$$(p^2)_{ave} = \langle \hat{p}^2 \rangle = \langle \psi | \hat{p}^2 | \psi \rangle = \int_{-\infty}^{\infty} \psi(x) \hat{p}^2 \psi^*(x) dx.$$

- (e) Do Krane: Problem 39(c) page 176.
- (f) Using Krane: Problem 38 page 176, what is the product $\Delta x \Delta p$? Does it obey the Heisenberg uncertainty relation? (that is, is it greater than or equal to $\hbar/2$?)