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ABSTRACT 

DIFFERENTIAL ALGEBRAIC METHODS FOR SPACE CHARGE 

MODELING AND APPLICATIONS TO THE UNIVERSITY OF 

MARYLAND ELECTRON RING 

Edward W. Nissen, Ph.D. 
Department of Physics 

Northern Illinois University, 2011 
Dr. Bela Erdelyi, Director 

The future of particle accelerators is moving towards the intensity frontier; the 

need to place more particles into a smaller space is a common requirement of nearly 

all applications of particle accelerators. Putting large numbers of particles in a small 

space means that the mutual repulsion of these charged particles becomes a signifcant 

factor; this e ect is called space charge. In this work we develop a series of di erential 

algebra-based methods to simulate the e ects of space charge in particle accelerators. 

These methods were used to model the University of Maryland Electron Ring, a 

small 3.8 meter diameter 10 KeV electron storage ring designed to observe the e ects 

of space charge in a safe, cost-e ective manner. The methods developed here are 

designed to not only simulate the e ects of space charge on the motions of the test 

particles in the system but to add their e ects to the transfer map of the system. 

Once they have been added, useful information about the beam, such as tune shifts 

and chromaticities, can be extracted directly from the map. In order to make the 

simulation self-consistent, the statistical moments of the distribution are used to 

create a self-consistent Taylor series representing the distribution function, which is 
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combined with pre-stored integrals solved using a Du y transformation to fnd the 

potential. This method can not only fnd the map of the system, but also advance 

the particles, under most conditions. For conditions where it cannot be used to 

accurately advance the particles a di erential algebra-based fast multipole method 

is implemented. By using di erential algebras to create local expansions, noticeable 

time savings are found. 
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CHAPTER 1 

INTRODUCTION 

Ever since J. J. Thompson proved that so-called “Cathode Rays” were in fact 

charged particles [1], particle accelerators of various sizes and energies have allowed 

scientists to study a variety of phenomena, and engineers to create a number of 

useful processes and technologies [2]. While large-scale experiments such as the 

Large Hadron Collider and Fermilab’s Tevatron are what most people think of when 

they think of particle accelerators, there are also technologies which use the particle 

beams in accelerators to create intense X-rays and laser beams [3], cancer treatments 

[4], accurate views of molecular structures [5], and commercial semiconductors with 

well-defned and placed impurities [6]. 

When dealing with large-scale experimental accelerators two of the main quanti-

ties of interest in the beam are energy and luminosity, essentially how fast the par-

ticles are moving and how close together they are. The increase in energy increases 

the amount of energy available to create the exotic particles that these machines 

are trying to detect, while an increase in luminosity increases the likelihood that 

one of the exotic particles an experimenter is trying to detect will be created [7]. In 

particle colliders, the luminosity L is given as 

n1n2L = f , (1.1) 
4πσxσy 
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where f is the collision frequency, n1 and n2 are the number of particles in each 

colliding bunch, and σx and σy are the transverse standard deviations of the size of 

the beam. 

One of the other major uses of large-scale particle accelerators is the creation of 

X-rays. These range from a basic low-energy source caused by bremsstrahlung that is 

used in a doctor’s oÿce, to high-intensity light sources such as the Advanced Photon 

Source at Argonne National Lab. These light sources use synchrotron radiation to 

create high-power X-rays with a narrow frequency spectrum. They work by sending 

the particles, usually electrons, through a series of alternating dipoles that cause the 

electrons to accelerate, and thus emit synchrotron radiation. The actual frequency 

spectrum is diÿcult to determine, and is machine specifc, but it is suÿcient to know 

that the frequency is inversely proportional to the bending radius of the magnets, 

while the power scales between n and n2 in particle number. Since the frequency is 

inversely proportional to the bending radius of the beam, which depends on both 

the feld strength of the magnet and the energy of the particle, keeping the spread 

in the energy of the electrons at a minimum will narrow the frequency spectrum, 

ensuring that more of the photons are at the frequency desired. 

In both of the cases mentioned above the ultimate goal is to have the largest 

possible number of particles taking up the smallest possible volume. For single par-

ticles going through the machine one at a time, magnetic and electrostatic elements 

can be used like lenses to focus the particles down into a very small area. The math-

ematics of this can be performed in a number of ways, but are well understood and 

can be easily modeled both analytically and computationally [8, 9]. Once we want 

to determine how the many particles moving through the beam interact with each 

other, there are signifcant bottlenecks. Since these particles are all the same charge, 

there is a mutual repulsion between them. This leads to two e ects, space charge 
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and intra-beam scattering. Intra-beam scattering concerns the individual particles 

interacting with each other, while space charge deals with the overall e ects of this 

mutual repulsion. Space charge is so named because it assumes that the individual 

charged particles are so spread out and numerous that they can be treated as a 

smooth distribution. 

There are currently several ways to model the motion of particles as they interact 

with each other while moving through a system. The simplest method is to use point-

to-point Coulomb interactions to model the system as it evolves. This is as accurate 

as a model can get, and it can theoretically model both space charge and intra-beam 

scattering. Unfortunately this method’s strengths are also its weaknesses; since it 

has to determine the e ect on each particle caused by every other particle, the 

number of operations is of the order n(n − 1). Since beam bunches frequently have 

n between 109 and 1013 particles it is frequently referred to as O(n2). Furthermore, 

in order to model the e ects of intra-beam scattering, the step size over which each 

evaluation must be made becomes very small, since the particles must be able to 

move close to one another so that they can bounce o of each other, and too large 

a stepsize will allow the particles to pass through each other without scattering. 

The point-to-point method’s main advantage is that it is as accurate as is theo-

retically possible. The main purpose of these models is to simulate many possible 

machine confgurations on a computer, in order to determine the best design for a 

desired purpose. Since a computer is being used there is now a hard limit on the 

accuracy of any quantity being calculated, as computers only store numbers up to 16 

decimal places. Since there is a limit to the accuracy of a simulation, it is no longer 

necessary to expend vast resources to simulate a beam to infnite accuracy, and time 

saving measures can be employed. Another time saving measure that is common to 

all methods is to replace the particles in question with macro particles. In essence 
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we are defning each of the test particles in the simulation as some number of the 

particles in question. A simulation of a proton ring might have each macroparticle 

represent 105 protons. This will speed processing times, but will make any intra-

beam scattering measurements suspect since if one macroparticle is lost it is diÿcult 

to say that 105 have been lost. 

Space charge modeling methods all make a great use of the fact that the user is 

willing to accept some degree of inaccuracy in exchange for a fast answer [10]. The 

methods that currently exist for space charge modeling fall into three categories. 

The frst is the direct point-to-point method mentioned earlier. The second is a 

particle mesh method which distributes the charge in the system onto set grid points 

and then uses some sort of expansion to model the feld. This is usually a fast 

Fourier transformation, but other methods exist, with the number of operations 

O(N +M log(M)), where M is the number of mesh points. The third is a hierarchical 

tree method where the set of particles is divided into smaller and smaller subregions, 

such that distant particles can be approximated by simpler expansions and close 

particles using more direct methods. This scales as n log n. Furthermore there are 

a number of ways that these methods can be combined with each other [11]. 

Modeling these e ects is important for the design and optimization of an acceler-

ator. An accurate simulation regarding quantities like the dynamic aperture or the 

overall beam size can give a designer a good idea of just how large the beam pipe or 

the magnet poles need to be. An accurate answer will show whether a given design 

can be a ordably built and operated without spending too much time or money on 

the design. No matter how accurate the Poisson solver is, there is one fnal method 

that has not been mentioned, and that is to use what can best be described as an 

analogue computer [12]. An analogue beam physics computer is simply an experi-
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mental setup; this can be either used to benchmark code, or to excite phenomena 

that the user wishes to study. 

In order to experimentally measure the e ects of space charge on a particle beam 

in a cost-e ective manner, the University of Maryland Electron Ring (UMER) was 

built by the Institute for Research in Applied Physics at the University of Maryland. 

This is a small electron storage ring that operates at low energy, which allows the 

electrons to experience the e ects of space charge that would normally only be felt in 

a heavy ion accelerator [13, 14, 15, 16]. While this design allows for a compact and 

inexpensive experimental setup, it presents issues of its own. The earth’s magnetic 

feld must be taken into account when tracking particles through the machine, while 

its novel geometry poses modeling issues [17]. A number of studies have been per-

formed by others at UMER on the ring, including waves propagating longitudinally 

along the beam, and phase space tomography on the transverse parts of the beam 

[18, 19]. 

This research required the creation of a number of new tools to model the unique 

characteristics of UMER. Due to the unique injection geometry and external felds, 

an initial investigation was made of the single particle dynamics of UMER [20]. Once 

that had been completed, a study of the multiple particle e ects was performed. The 

ring was modeled using the code COSY Infnity 9.0 which uses di erential algebras 

to determine exact numerical derivatives to arbitrary order. The method developed 

for this study uses the statistical moments of the particles in question to determine a 

Taylor series which represents that distribution. This Taylor series is then composed 

with a series of pre-stored integrals to fnd the potential of the distribution, as well 

as its electric felds. This method works in a manner opposite to most self-consistent 

space charge codes. In other codes, for each particle, we calculate the e ects of space 

charge on it caused by every other particle. In this method we calculate for each 
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particle its e ect on space charge as a whole, producing a space charge algorithm 

that can be massively parallelized, which scales linearly with particle number. 

The method used to add space charge to the map, from now on referred to as 

the moment method, will run into problems with distributions that are not easily 

modeled using a Taylor series [21, 22]. Because of this, for distributions which are 

diÿcult to model, we have implemented a di erential algebra-based version of the 

fast multipole method. This method divides the region of interest into a series of 

boxes. For boxes far away from the point in question, the multipole expansions 

are combined to form a local Taylor series of the far feld. This series is combined 

with the point-to-point Coulomb interactions of the nearby particles to determine 

the potential and electric felds of the point in question. In this work the expansion 

of the multipole expansions to local ones is performed using di erential algebraic 

techniques which allow for an increase in speed. 

First Chapter 2 examines the mathematical background of these methods. Then 

Chapter 3 develops the mathematical tools that we use, while Chapter 4 examines 

how these codes match up to other methods. Chapter 5 looks at some applications 

of the methods, and Chapter 6 examines some of the experiments performed on 

UMER. 



�

�

CHAPTER 2 

BACKGROUND INFORMATION 

The tools and experiments used in this research require a number of mathe-

matical principles that are not widely known outside or even inside the accelerator 

physics community. The information presented in this chapter is the general back-

ground information that is used in all of the subsequent chapters. The research 

performed involves the use of objects known as transfer maps which are explained 

in Section 2.1. These maps are created using the code COSY Infnity 9.0. COSY In-

fnity creates these maps using mathematical objects known as di erential algebras 

which are explained in Section 2.2. COSY Infnity also analyzes these maps using 

methods known as normal form methods, which are shown in Section 2.3. COSY 

Infnity itself is examined in Section 2.4. Finally the method used to add external 

e ects to these maps, known as Strang splitting, is discussed in Section 2.5. This 

will be followed in Section 2.6 by an overview of the University of Maryland Electron 

Ring which was used to perform a number of experiments as part of this research. 

2.1 Transfer Maps 

A transfer map is a method of moving a particle from its initial position to its 

fnal position in a system without having to follow the particle all the way through 

[23]. In the linear case, the map takes the form of a simple matrix equation, and for 

a one-dimensional linear map the equation is 
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      

xf (x|x) (x|a) xi 
      
  = 

    . (2.1) 
pxf (a|x) (a|a) pxi 

A good frst-order approximation is to think of the elements in a beam as a 

collection of thin lenses with a drift, a focusing lens, and a defocusing lens, given as 

      

1 ℓ 1 0 1 0 
     MD = 
  , Mf = 

  , Mdf = 
  . (2.2) 

0 1 −K 1 K 1 

If we wanted to determine how a series of lenses and drifts work together we 

would combine their maps together. If we wanted to start halfway between a lens, 

pass through a drift, pass through another lens, and then a drift, and fnally another 

half lens, we would have 

M = Mf3 MD2 Mf2 MD1 Mf1 (2.3) 
        

1 0 1 ℓ2 1 0 1 ℓ1 1 0 
       M = 
       

(2.4) 
−K3 1 0 1 −K2 1 0 1 −K1 1 

By assuming that K1 =K3, which each model half of a lens, we get the map for 

an object known as a FODO lens, which stands for FOcusing De-fOcusing. Most 

accelerators operate as a series of FODO sections added together to form what is 

often referred to as a lattice. 

In a linear machine these focusing lenses would be made of quadrupole magnets. 

These do allow the user to have a focusing section in one plane, with the drawback 
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that it will be defocusing in the perpendicular plane; if it is focusing for the horizontal 

it will be defocusing in the vertical. This would mean that in the example above, 

K2 would have an opposite sign to K1 and K3. 

In order to keep the beam from expanding out to infnity, it is necessary to adjust 

the focusing strengths with respect to the drift lengths so that the beam stays within 

an understood boundary. These boundaries are determined by a quantity known 

as the Twiss parameters α, β, and γ [24]. These three quantities defne an ellipse 

in phase space that represents the trajectory of a particle as it moves through the 

lattice. β determines the outer boundary of the beam in physical space, γ is the 

largest angle or momentum, and α determines the amount of coupling between the 

angle and the position. With the physical size of the beam determined by the 

emittance, this relation is shown in Figure 2.1. 

Figure 2.1: This is an example of the way the Twiss parameters describe an orbit 
in phase space. 
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In COSY Infnity, nonlinear maps can also be calculated. Instead of linear matrix 

elements, each fnal state is represented by a Taylor model with the initial state as 

inputs. This expands the equation from matrix multiplication to a composition of 

the Taylor models with the initial state 

  
P P P P 

i k 
  j ℓ 

 (xCijkℓ)x p y px y 
 i k j ℓxf 
  xi 

    
P P PP  

  i j k ℓ   
  

  (px Cijkℓ)x pxy py  pxf   pxi 
  i j k ℓ   

  
  = ◦ 

  . (2.5) 
 

PP P P 
  i j k ℓ   
 yf  



 (yCijkℓ)x pxy py 


 
 yi  

 

 i j ℓ  k 
 

  
P PP Ppyf i j k ℓ pyi (py Cijkℓ)x p y px y 
i j k ℓ 

These nonlinear maps allow us to model many di erent nonlinear beam elements 

as well as the nonlinear aspects of space charge [25]. 

2.2 Di erential Algebras 

Di erential algebraic (DA) methods are ways to determine exact numerical 

derivatives on a computer without truncation errors. This is a large feld of study, so 

we will focus on using them to create Taylor models of fows of di erential equations. 

Some examples are shown to allow the reader to better understand how useful these 

can be. The method works by creating objects known as DA vectors which have 

their basic mathematical relations redefned [25]. 

In the simplest case, a frst-order, one-variable structure 1D1, with its elements 

being an ordered set of two real numbers (q0, q1), is defned by the following relations: 
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(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1), (2.6) 

t(q0, q1) = (tq0, tq1), (2.7) 

(q0, q1) · (r0, r1) = (q0r0, q0r1 + q1r0), (2.8) 

n n−1(q0, q1)
n = (q0 , nq0 q1), (2.9) 

where t and n are scalars. 

2.2.1 Computation of Derivatives 

Assuming we are using the 1D1 structure; the DA vector x is shown as (x0, x1). 

In this example we have the function f and its derivative, 

f(x) = x 3 + 3x − 
2 

, (2.10) 
x + 1 

f ′ (x) = 3x 2 + 3 + 
2 

, (2.11) 
(x + 1)2 

which at x = 3 gives 

1 
f(3) = 35 , (2.12) 

2 

f ′ (3) = 30 
1 
. (2.13) 

8 

If instead we evaluate the function replacing x with (3, 1), we will get 
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2 
f((3, 1)) = ((3, 1))3 + 3(3, 1) − ,

(3, 1) + 1
(2.14) 

2 
f((3, 1)) = (27, 3(3)21) + (9, 3) − ,

(4, 1)
(2.15) 

1 −1 
f((3, 1)) = (27, 27) + (9, 3) − 2( , ),

4 16 
(2.16) 

1 1 
f((3, 1)) = (35 , 30 ). (2.17) 

2 8 

The frst entry (or the constant part) in the vector is the value the function takes 

at that particular point, and the second entry is the derivative at the same point. 

For higher orders and larger variable numbers the vectors become longer and more 

complicated, but conceptually the same procedure is followed. The vector eventually 

takes the form of essentially a high-order multivariate Taylor series of the function 

f . 

2.2.2 Integration 

An antiderivative can be quickly determined through simple polynomial integra-

tion of the DA vector. Assuming a vector q, 

q = (q0, q1, q2, q3, ...), (2.18) 

its integral Q can be determined simply through a coeÿcient change, 
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q1 q2 q3
Q = (c, q0, , , , ...), (2.19) 

2 3 4 

where c is an arbitrary constant. Furthermore, since DA vectors work by redefning 

mathematical relations, other basic programs like a Runge-Kutta integrator will 

carry the DA vectors through; this would allow in our case for a Taylor series of 

the potential for an entire region to be calculated using only an integration of a 

reference particle. 

Another way that this can be used is in the case of a function such as sin(x). It 

can be calculated as sin(x + dx) in DA. On the other hand, sin(x + dx) can also be 

rewritten as sin(x) + sin ′ (x)dx, or sin(x) + cos(x)dx. 

2.2.3 DA-ODE Integration 

One method that has been a tremendous speed boost in this work is the use of 

DA methods to solve ordinary di erential equations (ODEs). This method uses DA 

integration to solve a system of frst-order ODEs. The method works in cases with 

no explicit s dependence, since any frst-order ODE of this type can be written as 

d~z 
ds 

= ~F (~z), (2.20) 

~z (si) = ~zi. (2.21) 

This equation is then recast as an integral equation, 
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Z sf 

~F )ds, (2.22) ~z (sf ) = i + ( 
si 

and solved using DA-integration as shown above in 2.2.2. 

2.3 Normal Form Methods 

~z 

Normal forms are just a coordinate transformation from the particle optical 

~z 

coordinates ~z = (~q, ~p) to action angle coordinates ~j. A representation of this process 

is shown in Figure 2.2. 

Figure 2.2: On the left is a picture of a set of phase space orbits; on the right is 
those same orbits in action angle coordinates. 

~z= A( 

angle coordinates undergo a transformation N they move in circles with radius 

This is done with a transformation A, such that ~j ). When these action 

~j| 

A ◦M ◦A−1 . This transformation generates a map of the form: 

|. The normal form N is related to the original map M by the relation N = 
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where 

  
N1 0 

  
  

N =  
 N2 

 , 
 (2.23) 

  
0 N3 

  

Nm = 
 

~cos(θm(j)) ~sin(θm(j)) 
 
 . (2.24) 

~− sin(θm(j)) ~cos(θm(j)) 

~This makes θ of the form θ(j) = θ0 + aj1 + bj2 + cj1j2 + dj1
2 + . . . where θ0 is the 

tune and a, b, c, d, . . . are the amplitude-dependent tune shifts. If energy is declared 

a parameter δ, i.e., θ0 → θ0(δ), then there will be an expansion θ1δ + θ2δ
2 + . . . 

where θ1 is the chromaticity. The normalizing map A gives the resonance driving 

terms, and can be used to obtain the matching conditions [25]. 

In the linear case, this would mean that the previous map would be transformed 

by 

      √ 
β 0 cos θ sin θ 1√ 0 

β    M = 
√√α−√ 

     √
1 α 

 
 , (2.25) 

− sin θ cos θ β 
β β β 

where α and β are two of the Twiss parameters. 
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2.4 COSY Inifnity 9.0 

This research used the accelerator physics code COSY Infnity 9.0. This code uses 

both di erential algebras and normal form methods to model and analyze charged 

particle beams. The software uses di erential algebras to create high-order Taylor 

maps of the given elements and to compose them with one another to determine a 

beam line [26]. For example, if we wanted to produce the map of a simple drift-

quadrupole-drift system, we would write; 

INCLUDE ’COSY’;{This includes the COSY beam libraries.} 

Procedure run; {This sets up the list of tasks we wish to perform in 

our simulation, it is the equivalent of main in a c++ program.} 

OV 3 2 0; {This sets the order and number of variables, in this case 

third order with two space dimensions (four phase space dimensions) 

and no extra variables.} 

RPE .1; UM;{ This sets the particle type in this case electrons and 

the particle energy, in this case 100 KeV.} 

DL .04;{ This creates a drift with a length of 4cm.} 

MQ .02 .05*.02 .02;{ This creates a Quadrupole with a length of 

2cm, a pole tip flux of .0006 tesla meters and an aperture of 2cm.} 

DL .08; 

MQ .02 -.05*.02 .02; 

DL .04; 

PM 6;{ This will print the map to the screen, other numbers will 

send it to different types of file.} 

ENDPROCEDURE; 
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RUN; End;{This executes the tasks and ends the program.} 

The output to the screen would be of the kind shown in Figure 2.3. 

If we change the third and fourth lines to read: 

Figure 2.3: This is an example of a map generated using COSY Infnity. The map 
represents the system in the example code to third order. 

OV 3 2 1; 

RPE .1*para(1); UM; 

then we will have declared the energy of the particles to be a variable. This gives 

a map like the one seen in Figure 2.4. This map shows how the various dimensions 

change with respect to the energy, which has an additional column added to it. 

If we now have the more complete code: 

INCLUDE ’COSY’; 

Procedure run; 

VARIABLE MU 100 3;{ This declares an array named MU with three 

entries with 100 double precision memory blocks allocated to each.} 

OV 3 2 1; 
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Figure 2.4: This is an example of a map generated using COSY Infnity. The map 
represents the system in the example code to third order with the addition of energy 
as a parameter; its exponent is in the farthest right column. 

RPE .1*para(1); UM; 

DL .04; 

MQ .02 .0006 .02; 

DL .08; 

MQ .02 -.0006 .02; 

DL .04; 

TS MU;{ This determines the Betatron Tunes.} 

WRITE 6 MU(1) MU(2);{This prints the betatron tunes to the screen.} 

PM 6; 

ENDPROCEDURE; RUN; End; 

we will receive as output the betatron tunes, which are seen in Figure 2.5. The frst 

entries are simply the x and y tunes, while the subsequent entries are the higher 
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order derivatives of the tune with respect to the energy; the frst-order derivatives 

of the betatron tune are referred to as the chromaticities. 

Figure 2.5: These are the tunes calculated with energy as a variable. 

2.5 Strang Splitting 

Strang splitting is a way of taking a system where there are multiple physi-

cal e ects that can each be separately described by a di erential equation in the 

coordinates ~z = (~q, ~p): 

d~z ~ = g~ 1(~z, s) =⇒ f1(s), (2.26) 
ds 
d~z ~ = g~ 2(~z, s) =⇒ f2(s), (2.27) 
ds 

where s is the independent variable, g~ 1(~z, s) and g~ 2(~z, s) are arbitrary smooth vector 

functions, and the initial conditions are known. This method works for any set of 

di erential equations, and does not necessarily require them to be Hamiltonian. 

Since the dominant forces in this e ect are the horizontal and vertical magnetic 
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felds, an Az can always be derived to account for these felds, and symplecticity is 

not an issue. While there is a small longitudinal feld, COSY has a routine that will 

symplectify the map [27]. While the method can be adapted for non-autonomous 

systems [28, 29, 30], for numerical purposes the system was broken into sections small 

~ ~enough to be considered autonomous. Assuming known solutions (f1(s), f2(s)) to 

the separate equations, Strang splitting shows that a good approximation of the 

solution is [31, 32] 

d~z s s ~ ~ ~ 3),= g~ 1(~z) + g~ 2(~z) =⇒ f1( ) ◦ f2(s) ◦ f1( ) + O(s (2.28) 
ds 2 2 

which gets increasingly accurate with decreasing s. 

In order to change as little as possible the existing COSY elements, we apply 

Strang splitting with the following identifcations: 

~f1(s) 7−→ M(s), (2.29) 

~f2(s) 7−→ K(s), (2.30) 

where K is a kick (due to the earth’s feld or space charge), M is the COSY-generated 

map for the element, and s is (a fraction of) the length of the element. 

2.6 UMER Design and Overview 

The University of Maryland Electron Ring is a small-radius, low-energy electron 

storage ring located at the University of Maryland College Park campus. In most 
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large-scale electron beams the electron’s low mass means that it can be accelerated 

very quickly. Since the force caused by space charge scales as 
γ 
1 
2 , space charge is 

generally not a major issue with normal intensities. However, for ion beams their 

much larger masses mean that it takes a much longer time for the particles to get 

to a speed where space charge no longer matters. The purpose of UMER is to use 

electrons moving at a low enough energy that they will feel signifcant space charge 

e ects as a proxy for a higher energy ion beam [33, 34, 35]. A COSY Infnity-

generated diagram of the ring is shown in Figure 2.6, while the important elements 

of the ring are shown in Table 2.1 [36]. 

Table 2.1: Beam values for various apertures in UMER 
Aperture 

pencil 
6 mA 
21 mA 
80 mA 
100 mA 

Current Emittance r0 (mm) r0 
′ (mr) Average r 

(mA) (mm-mr) at aperture at aperture (mm) 
0.6 7.6 0.25 −1.3 1.56 
6.0 25.5 0.875 −4.3 3.33 
21.0 30.0 1.5 −6.7 5.11 
78.0 58.9 2.85 −12.7 9.5 
104.0 64.0 3.2 −14.3 10.91 

The beam uses a 10 KeV electron gun to inject electrons into the ring. The peak 

current of the beam is controlled using a series of metal apertures that are rotated 

in front of the electron gun. These electrons then pass through a matching section 

before being injected into the ring. The injection re-circulation section, referred to 

as the Y-section, has a unique geometry where the injected and recirculated beams 

both enter the section with an o set. This section is shown in Figure 2.7. 

There are three main diagnostics that can be used on UMER: current monitors, 

phosphor screens and beam position monitors. There are two kinds of current 

monitors in use on UMER: a Bergoz coil in the matching section, and induction 

gap current monitors in the main ring. These are connected to oscilloscopes; an 

example of the readout is shown in Figure 2.8. 

https://58.92.85
https://�6.75.11
https://�4.33.33
https://�1.31.56
https://0.67.60.25
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Figure 2.6: A simplifed diagram of the ring made using COSY Infnity’s graphics 
package. The sections labeled RC 1, 2, etc., have diagnostic chambers containing 
phosphor screens and beam position monitors. RC 4, 10 and 16 do not have beam 
position monitors to make room for other diagnostics. 

Figure 2.7: A diagram of one particular operating point steering the beam through 
both injection (green) and recirculation (red) sections. 



23 Figure 2.8: This is a screenshot of the oscilloscope used to monitor the current monitors. The yellow track is the 
induction gap current monitor in the ring, while the purple track is the Bergoz coil in the injection line. 
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The phosphor screens are mounted below the beam position monitors and are 

intercepting. The data is collected using a camera apparatus mounted to the outside 

of the ring. An example of the apparatus and the type of image that appears is 

shown in Figure 2.9. 

Figure 2.9: On the left is a picture of the camera setup that was used for a number 
of distribution pictures. The picture on the right shows what a beam looks like on 
the phosphor screen. 

The beam position monitors are of the parallel plate type and can be read using 

an oscilloscope, and stored using an automated Matlab script. The automated 

method is used to collect large amounts of data for analysis. An example of one 

experiment being performed on the ring using the automated method is shown in 

Figure 2.10. 

The entire setup is controlled through a central GUI which allows the user to 

enter magnet strength settings using either individual numbers or pre-defned fles. 

An example of the GUI is shown in Figure 2.11. 

UMER’s cost-e ective and user-friendly structure allows it to be used for a wide 

variety of beam dynamics experiments. While the low-energy structure leads to 



Figure 2.10: This is a screenshot of the GUI for the automated beam position monitor recording program. The blue line 
shows the horizontal and the red line the vertical excursion from the centerline of the BPM. 

25 



26 

Figure 2.11: This is a screenshot of the GUI developed to control the magnets in the ring. This directly controls the 
power supplies for each magnet. 
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some confounding factors not present in other machines, it also allows for a degree 

of experimentation with machine settings that are not available with higher energy 

machines where any particles hitting the beam pipe can cause radioactive activation. 
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CHAPTER 3 

TOOLS DEVELOPED 

In order to fully model the University of Maryland Electron Ring, a number of 

tools had to be developed and implemented in COSY Infnity. In some cases it was 

meant to fll holes in the original COSY framework that UMER’s unique structure 

brought forth; in other instances it was meant to dramatically increase the abilities 

of the code. 

First a set of tools are developed to analyze the single-particle physics in the 

University of Maryland Electron Ring. This is shown in Section 3.1. In order to 

simulate the single-particle physics in the ring, new elements such as a UMER short 

solenoid and the steering dipoles are implemented in subsections 3.1.1 and 3.1.3 

respectively. This section will also explore how to include the e ects of Earth’s 

magnetic feld in the simulations of the ring. This is described in subsection 3.1.2. 

Next the tools needed to add the e ects of space charge to the system are de-

scribed. The purpose of this research is to add the e ects of space charge to the 

transfer map of the system. The way this is done is shown in Section 3.2. In order 

for this method to remain self-consistent, the e ects of space charge on the particles 

needs to be included in their trajectories. While this normally can be done using the 

map calculated, it was not immediately apparent that it could be used this way back 

when the research frst began. Therefore another method of advancing the particles 

with space charge was developed as an implementation of the fast multipole method 

(fmm), which is outlined in Section 3.3. 
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The moment and fast multipole methods have been implemented as their own 

stand-alone add-on to COSY Infnity in order to make sure that only one set of code 

needs to be changed for each version update. To make the code as user friendly as 

possible we have created a new binary fle which is used in place of the COSY fle 

which is called COMFY. Therefore in order to use these methods the user need only 

have the frst line of code read: 

INCLUDE ’COMFY’; 

This plugin is explained in detail in Appendix A. 

3.1 Single Particle Tools 

COSY infnity is a single-particle design code. While this should make the act of 

modeling the single-particle dynamics of UMER a trivial matter, there were several 

complications that required a fair amount of tailoring of the original COSY routines. 

3.1.1 Short Solenoid 

Immediately after the aperture of the electron gun in UMER is a short solenoid. 

This solenoid is almost entirely fringe felds, and its feld profle does not conform 

to any of the pre-stored felds used in the various solenoids that COSY possesses. 

The feld profle of the UMER solenoid is shown in Figure 3.1. 

This feld was calculated by the UMER sta as following the equation [37]: 

� � 
− z 2 z z 

d2Bz(z) = B0e sech( ) + c0sinh2( ) , (3.1) 
b b 
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Figure 3.1: This is a plot of the feld profle of the UMER short solenoid. 

where B0 is the feld at the center of the solenoid, and the parameters d, b, and c0 are 

ftted as 4.8197cm, 3.4274cm, and 0.016976 respectively. The profle was then added 

into the COSY beam package integrator. COSY determines its maps by integrating 

the path of a reference particle through a potential defned in one specifc routine. 

An example of this addition is shown: 

PROCEDURE CMU B ld lb lc D L; {UMER Magnetic Solenoid} 

NPOL:=1; PPOL(1):=B PPOL(2):=ld; 

PPOL(3):=lb; PPOL(4):=lc; PPOL(5):=L; 

MPOL(1):=20; NSDP:=15; LOFF:=1; CE:=’CMU’; 

DSDED -7.5*D -7.5*D -7.5*D 7.5*D+L 1e-4*D 3*D D; ENDPROCEDURE; 

The NDSP number is called in the actual element; this tells the integrator which 

feld profle to use. 



�

�

�

31 

3.1.2 Earth’s Magnetic Field 

Due to UMER’s low energy, the earth’s magnetic feld becomes a nontrivial 

confounding factor. The vertical feld is so strong that it actually accounts for 15% 

of the bending in the system. The feld lines vary around the ring due to placement 

of metal equipment as well as e ects from other experiments in the same building. 

The feld is measured at each dipole using a Gauss meter that fts into a special 

enclosure, ensuring that the feld is measured at the same point at each dipole. The 

periods of data taking at UMER were approximately 21 months apart. Because of 

this the feld was measured at both occasions. The two di erent feld profles are 

shown in Figure 3.2. 

In order to properly model this feld it was necessary to use the data given for 

each dipole and interpolate the values of the feld for the elements in between. Linear 

interpolation was used since the values measured were not in a straight line. A series 

of tests was performed to determine how many magnetic feld kicks were required to 

accurately model each element. For quadrupoles, 15 kicks were required, while for 

every other element six were required. A similar method was used to examine the 

e ect of image charge forces on the beam during injection. This method is outlined 

in Appendix B. In Figure 3.3 we see an example of a feld-free UMER section, and 

one in which the earth’s feld is included. 

In order to keep the correct magnetic felds aligned with the correct elements, the 

feld values were stored in fles. The elements of the ring were arranged in sections 

each containing four quadrupoles and two dipoles. For each of these sections an 

array is created which has as its elements strings containing the names of the fles 

that contain the proper magnetic feld values. 
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Figure 3.2: This is a plot of the measured Earth’s magnetic feld taken at two 
di erent times. 
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Figure 3.3: On the left is an example of the feld-free double FODO cell used in 
UMER. On the right the e ects of the earth’s magnetic feld are added. 

3.1.3 Steering Dipole 

In order to counteract the e ects of the earth’s magnetic feld, the angle values 

for the bending dipoles must be changed. However COSY uses a method of creating 

bending dipoles that does not directly allow this [38]. The code asks for the angle 

and the bending radius and then calculates the magnetic felds required for the 

desired angle by itself. This means that if a beam enters the dipole straight through 

the center it will exit straight through the center no matter what the actual bending 

feld is. This was remedied by creating a wrap-around routine that makes sure that 

the bending radius scales based on the angle and the length of the element, and 

there is also a geometric correction to the exiting beam so that it will have a proper 

angle with respect to the exiting plane. A diagram of this change is shown in Figure 

3.4. 

�

�
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Figure 3.4: This is a diagram of the changes made to the dipoles in COSY to model 
UMER. 

3.1.4 Parallelization 

A rudimentary form of parallelization was implemented for the single-particle 

studies. As will be seen in later sections, most of the single-particle simulations 

involved scanning across a number of operating points and simulating the entire 

ring for each of them. This is an example of an embarrassingly parallel system since 

no communication between computers is necessary. Since a heterogeneous collection 

of computers were available for this task, it became necessary to create a method 

for the machines to perform these simulations as they became available. 

This was accomplished by creating a master fle which contains a number or series 

of numbers that tell each computer which operating point to simulate. When the 

computer reads this number it then replaces it with the next in the series, until the 

fnal machine replaces it with a number pre-determined that will end the simulation. 
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This has allowed for a diverse group of computers to be able to quickly perform all 

of their required tasks in an eÿcient manner. 

3.2 Multiple Particle Tools: Moment Method 

Since the e ects of space charge are nontrivial, we need to examine how they 

can be modeled. Currently methods such as particle-in-cell or frozen distributions 

are used for space charge calculations. Frozen distribution methods work by as-

suming the beam maintains a certain specifc distribution which scales in size but 

doesn’t change its overall shape [39]. Unfortunately while this is a very fast method 

the accuracy goes down since the distribution may deviate from the assumed one. 

Particle-in-cell methods work by dividing a distribution into a series of grids, and 

then averaging the charge over these cells to provide a far-feld distribution for each 

particle. 

Any reasonably accurate space charge method will have to act in a self-consistent 

manner, meaning that it will need to take into account the changing nature of the 

charge distribution like a particle-in-cell method, but will also need to be valid 

throughout the region of the beam to be useful for a map like a frozen distribution 

method. 

For this reason we assume that the distribution is a smooth function which can 

be expanded as a series of smooth functions of the type ϕ(x): 

∞ ∞ 
X X 

f(x, y) = Dij ϕi(x)ϕj (y), (3.2) 
i=0 j=0 
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with coeÿcients Dij. The task is to choose some specifc basis functions and to 

determine the corresponding coeÿcients based on some limited information available 

about f . 

3.2.1 Determining the Expansion Coeÿcients 

One example of information that can be gathered from a sample of test particles 

which obey a smooth distribution function is the various statistical moments of f . 

The moments may be known exactly to all orders, or only approximately to some 

fnite order. The challenge is to extract the coeÿcients Dij as accurately as possible. 

There are several ways that this can be done. Here we examine two methods. 

One method involves calculating the moments of the distribution to fnd a sum of 

monomials; the other involves casting the distribution as a series of projections onto 

orthogonal polynomials. 

There are other options for smooth particle approximation of the density func-

tion, which are an ongoing feld of study. 

3.2.1.1 Use of High-Order Moments to Find Taylor Series 

This method uses the fact that if two numerical distributions have the same 

statistical moments then they are mathematically indistinguishable [40]. This will 

allow us to transform a distribution made up of a collection of delta functions into a 

Taylor series. If the moments up to a given order are known, the series coeÿcients 

up to the same order can be determined. We assume that the higher the maximum 

order, the more accurate the approximation will be. Nevertheless, the answers will 
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i 

still not be unique, though it can be shown that among all single-variable probability 

density functions ρ with the same frst 2p moments as f satisfy the relation [41], 

1 |f (x) − ρ (x)| ≤ , (3.3) 
VT (x) M−1 

p p Vp (x) 

where Vp (x) = (1, x, x2 , . . . , xp) and 

  
m1 m2 · · · mp 

  
  
 m2 m3 · · · mp+1  
  
  
Mp = 
 m3 m4 · · · mp+2 

 , 
 (3.4) 

  
 . . . . . . . .  
 . . . .  
  

mp+1 mp+2 · · · m2p 

mi being the moments that the functions have in common. Thus, the tail probabil-

ities will become indistinguishable frst, followed by core probabilities. Convergence 

speed scales with x−2p. This is useful in providing practical guidance about the 

truncation orders to be employed in practice. 

The statistical moments are defned as 

Z Zxu yu 

Mnm = x n y mf(x, y)dxdy. (3.5) 
xℓ yℓ 

In our case the test particle distribution f(x, y) is merely a sum of delta functions 
P 

δ(x − xi)δ(y − yi). The moments can be directly calculated from the distribution, 

X 
= x n m . (3.6) Mnm i yi 

i 
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In the code this is accomplished with algorithm 1. We can also determine, assuming 

the basis functions are monomials, that the moments for a generic Taylor series are 

calculated as 

for k=1,Number of Particles do 

ℓ = 0 
for i=0,max order do 

for j=0,max order-i do 

Moment(ℓ + j) = Moment(ℓ + j)+xk
j yk

i 

end for 

ℓ = ℓ + j 
end for 

end for 

Z Zxr yr 
XX 

n m iMnm = x y Cijx yjdxdy. (3.7) 
−xr −yr i j 

we combine the two, 

Z Z 
X xr yr 

X X 
n m n m i xi yi = x y Cij x yjdxdy, (3.8) 

−xr −yri i j 

the integrals on the right are trivially solved, 

X X X 
n m xi yi = N(n+i)(m+j)(xr, yr)Cij, (3.9) 

i i j 

where 

k+1 l+1 

Nkl(x, y) = 
x y 

((1 − (−1)k+1)(1 − (−1)l+1)). (3.10) 
(k + 1)(l + 1) 
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In the code we assume that xr = yr = 1. This is because, since we are using 

very high-order powers of these bounds of integration, we want to minimize numer-

ical problems from the system; if we used small-scale bounds of integration, the 

high-order terms would go to zero, whereas if we used large bounds of integration, 

the high-order terms would drown out the lower order ones. This method, using 

xr = yr = 1, is represented using algorithm 2. This leads to a matrix equation equat-

ing a vector containing the moments to a matrix containing the integrals times a 

vector containing the Taylor coeÿcients. In order to fnd the Taylor coeÿcients it 

is necessary to invert the matrix; however, the matrix that results is of the form 

seen in (3.11), which is an ill-conditioned matrix. Because of this, a singular value 

decomposition must be performed to invert the matrix [42]. When the matrix is 

inverted and multiplied by the calculated moments, the coeÿcients of the Taylor 

series are extracted: 

m=0 
for k=1,max order do 

for l=1,max order-(k-1) do 

n=0 
for i=1,max order do 

for j=1,max order-(i-1) do 
(1−(−1)k+i−1 )(1−(−1)l+j−1 )=T(j+n)(l+m) (k+i−1)(l+j−1) 

end for 

n=n+j 
end for 

end for 

m=m+l 
end for 



40 

  
1 

 0 1 
3 0 1 

5 0 · · · 1 
p+1 

 
  
 0 
 

1 
3 0 1 

5 0 · · · 1 
p+1 

0 
 

  
 1 
 

3 0 1 
5 0 · · · 1 

p+1 0 
. . . 

 
 

  
 
 0 
 

1 
5 0 · · · 1 

p+1 0 
. . . 

 
 
 

 
 1T = 
 5 0 · · · 1 

p+1 0 
. . . 

 
 . 
 (3.11) 

  
 
 0 · · · 1 

p+1 0 
. . . 

. . . 
 
 

  
 . 
 . . 
 

1 
p+1 0 

. . . 
. . . 

 
 
 

  
 1 
p+1 0 · · · · · · · · · · · · · · · 0  

 
  

3.2.1.2 Use of Legendre Polynomials 

Another way to approximate the distribution is using a series of Legendre poly-

nomials as the ϕ in (3.2). This is accomplished using the orthogonality relations, 

Z 1 2 
Pℓ(x)Pm(x)dx = δℓm, (3.12) 

2ℓ + 1 −1 

and assuming that the distribution function can be characterized as 

X 
ρ(x, y) = C̃  

ijPi(x)Pj (y). (3.13) 
i+j≤n 

The coeÿcients C̃  
ij can be calculated as 
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Z 1 Z 1 

Pi(x)Pj (y)ρ(x, y)dxdy = C̃  
ij 

2 2 
. (3.14) 

2i + 1 2j + 1 −1 −1 

We are essentially calculating the Legendre polynomial moments of the distribu-

tion instead of the monomial moments used in the moment method. On the other 

hand, if we assume we already know the monomial moments, it is easy to calculate 

the Legendre coeÿcients directly, as follows. The same moment matching conditions 

are applied; that is, we require that the moments of ρ are the same as the actual 

moments of f up to a fxed order n. Since every product of Legendre polynomials 

can be re-expanded into a power series, 

X 
Pi(x)Pj (y) = aklx k y l , (3.15) 

k+l≤i+j 

the left-hand side of (3.14) can be written as a linear combination of these moments, 

and we obtain 

(2i + 1) (2j + 1) 
C̃  

ij 
~ ~ = A · M, (3.16) 

4 

~where A is a coeÿcient vector built from akl. Hence, we obtain an approximation 

of the original distribution as a series of Legendre polynomials without the need to 

invert any matrices. 

3.2.2 Using the Series to Find the Potential 

The methods used previously allow us to determine an approximation of the 

distribution function of the system using smooth functions; now we intend to use 

these functions to determine the potential of the system also described as a set of 
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smooth functions. Using the di erential algebraic methods that were outlined in 

Section 2.2 we will create a di erential algebraic vector which represents the poten-

tial of the distribution out to its edges. The gradient can then be determined using 

di erential algebras, thus creating two DA vectors that will describe the electric 

felds throughout the region in question. 

3.2.2.1 Determining the Integrals 

Once the distribution function has been determined it should be a simple matter 

to integrate the distribution times the proper Green’s function to determine the 

potential. Unfortunately this integral can be problematic since the expansion point 

is inside the distribution. While it should be technically possible to integrate with 

the stepsize changed such that it skips over the singular point, it is time consum-

ing, it reduces accuracy, and it must be re-computed for each integral. If we are 

interested in a 25th-order expansion then we would need to solve 325 integrals, and 

have the singular points skipped in each. Since each of these integrals go to zero 

at di erent rates, the time and accuracy savings of having an adaptable stepsize 

become signifcant. For this reason a Du y transformation has been implemented 

[43]. 

If an analytic charge distribution function is denoted by ρ and the potential is 

evaluated at the point (x0, y0), the value of the integral, 

Z d Z b 
p

I = ρ(x, y) ln( (x − x0)2 + (y − y0)2)dxdy, (3.17) 
c a 

is the potential at that point. We assume that the support of ρ is inside the rectangle 

[a, b]× [c, d] and we are interested in the potential inside this region. 
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First, the rectangle is subdivided into four rectangles as shown in Figure 3.5, 

which moves the singularity from the interior of the domain to the corners of four 

regions. 

Figure 3.5: The full integration region is subdivided into four smaller regions with 
one of their corners on the expansion point. 

The total integral is now transformed into four integrals which can have their 

limits of integration rearranged such that the equation becomes 

Z c Z a 
p

I = ρ(x, y) ln( (x − x0)2 + (y − y0)2)dxdy 
y0 x0 

Z c Z b 
p

− ρ(x, y) ln( (x − x0)2 + (y − y0)2)dxdy (3.18) 
y0 x0 

Z d Z a 
p

− ρ(x, y) ln( (x − x0)2 + (y − y0)2)dxdy 
y0 x0 

Z d Z a 
p 

+ ρ(x, y) ln( (x − x0)2 + (y − y0)2)dxdy. 
y0 x0 
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These are now all the same kind of integrals, merely with di erent bounds of inte-

gration. Henceforth we will look at the frst integral in the series, remembering that 

all four will be solved in the same way. We continue by rescaling the rectangles to 

unit squares by the coordinate transformation, 

x − x0 
u1 = , (3.19) 

a − x0 

y − y0 
u2 = , (3.20) 

c − y0 

dx = (a − x0)du1, (3.21) 

dy = (c − y0)du2. (3.22) 

For expedience we will use λ1 = (a − x0) and λ2 = (c − y0). The frst integral in 

(3.18) now becomes 

Z Z 
q1 1 

Iac = λ1λ2ρ(λ1u1 + x0, λ2u2 + y0) ln( λ1
2u1

2 + λ2
2u2

2)du1du2. (3.23) 
0 0 

As shown in Figure 3.6, we cut the square into two triangles that are integrated 

separately: 

Z Z1 u1 q 
λ2 2 2Iac = λ1λ2ρ(λ1u1 + x0, λ2u2 + y0) ln( 1u1 + λ2

2u2)du1du2 
0 0 

Z Zu2 1 q 
+ λ1λ2ρ(λ1u1 + x0, λ2u2 + y0) ln( λ2

1u1
2 + λ2

2u2
2)du1du2. (3.24) 

0 0 
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Figure 3.6: This shows how the integration region is further subdivided into trian-
gles. 

In order to fnish the Du y transformation the triangles are now converted to 

squares yet again. This is accomplished with the transformation 

u1 = w1, (3.25) 

u2 = w1w2, (3.26) 

in the frst integral in (3.24), which makes the integral take the following form: 

Z Z1 1 q 
2 2 2λ1λ2w1ρ(λ1w1 + x0, λ2w1w2 + y0) ln( λ2

1w1 + λ2
2w1w2)dw1dw2. (3.27) 

0 0 

This is simplifed to 
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Z Z1 1 q 
λ1λ2 ρ(λ1w1 + x0, λ2w1w2 + y0)(w1 ln(w1) + w1 ln( λ2

1 + λ2
2w2

2))dw1dw2. 
0 0 

(3.28) 

Since lim w1 ln(w1) = 0, and the argument of the other logarithm is never zero, the 
w1→0 

singularity is removed. A similar transform is made to the second triangle (and the 

second term in [3.24]), 

u1 = w1w2, (3.29) 

u2 = w2, (3.30) 

converting it into the following: 

Z Z1 1 q 
λ1λ2 ρ(λ1w1w2 + x0, λ2w2 + y0)(w2 ln(w2) + w2 ln( λ2

2 + λ1
2w1

2))dw1dw2. 
0 0 

Assembling the partial results, we fnally obtain a singularity-free formula for 

the computation of the potential, 

4 Z 1 Z 1 
X 

φ(x0, y0) = λ1,nλ2,n dw1dw2 
0 0 n=1 

  
q 

 ρ(λ1,nw1 + x0, λ2,nw1w2 + y0)(w1 ln(w1) + w1 ln( λ1
2 
,n + λ2

2 
,nw2

2)) 
 × . 

 q  
λ2 2+ρ(λ1,nw1w2 + x0, λ2,nw2 + y0)(w2 ln(w2) + w2 ln( + λ2 w1))) 2,n 1,n 

(3.31) 
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3.2.2.2 Scaling the Integrals 

It was previously shown that for high-order distributions a large number of inte-

grals would be required. Having to recompute each integral for each section would 

be prohibitive in a system that requires a large number of potential evaluations. It 

would be useful to be able to perform the integrals once and then simply combine 

them with the Taylor coeÿcients that have been calculated. If we assume the region 

that is being investigated is a square, then we can pre-store the integrals and then 

scale them to the size needed. 

The scaling of the integrals is given using dimensional analysis. If the distribu-

tions are given as 

ρa.u.(xa.u., ya.u.) = C00 + C10xa.u. + C01ya.u. + ..., (3.32) 

ρS.I.(xS.I., yS.I.) = D00 + D10xS.I. + C01yS.I. + ..., (3.33) 

= [[ρ]]/ℓn+m+2 = [[ρ]]/ℓn+m+2 

Then, assuming that xS.I. = axa.u. and yS.I. = aya.u. with the same scaling factor a, 

the potentials will be given as 

the coeÿcients are going to have a form Cnm a.u. and Dnm S.I. . 
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Z 1 Z 1 
X 

) = x n y mφa.u.(x0,a.u., y0,a.u. Cnm a.u. a.u. 
−1 −1n,m 

q 
× ln( (xa.u. − x0,a.u.)2 + (ya.u. − y0,a.u.)2)dxa.u.dya.u., (3.34) 

Z a Z a 
X 

n mφS.I.(x0,S.I., y0,S.I.) = Dnm xS.I.yS.I. 
−a −a n,m 

q 
× ln( (xS.I. − x0,S.I.)2 + (yS.I. − y0,S.I.)2)dxS.I.dyS.I.. (3.35) 

The integral can be scaled in the following way: 

ZZ 1 1 

)mInm,S.I. (x0, y0) = (axa.u.)
n(aya.u. 

−1 −1 
q 

× ln( (axa.u. − ax0,a.u.)2 + (aya.u. − ay0,a.u.)2)adxa.u.adya.u., (3.36) 

Z 1 Z 1 
n+m+2 n mInm,S.I. (x0, y0) = a x a.u.ya.u. ln(a) 

−1 −1 
q 

n m+ xa.u.ya.u. ln( (xa.u. − x0,a.u.)2 + (ya.u. − y0,a.u.)2)dxa.u.dya.u., (3.37) 

n+m+2(
(1 − (−1)n+1)(1 − (−1)m+1)

Inm,S.I. (x0, y0) = a ln(a)
(n + 1)(m + 1) 

Z Z1 1 q 
n m+ x y ln( (xa.u. − x0,a.u.)2 + (ya.u. − y0,a.u.)2)dxa.u.dya.u.), (3.38) a.u. a.u. 

−1 −1 

Inm,S.I. (x0, y0) = 
� � 

� �(1 − (−1)n+1)(1 − (−1)m+1) x0. y0n+m+2 a ln(a) + Inm,a.u. , . (3.39) 
(n + 1)(m + 1) a a 
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Combined with the scaling of the coeÿcients, the potential becomes 

φS.I.(x0, y0) = 
� � 

� � 
X (1 − (−1)n+1)(1 − (−1)m+1) x0 y0

Cnm ln(a) + Inm,a.u. , , (3.40) 
(n + 1)(m + 1) a a 

nm 

where Inm,a.u. (x, y) have been pre-computed and stored. 

3.2.3 Using the Potential to Find the Map 

Once the potential has been calculated it is necessary to add it to the actual 

map. Since the potential has been calculated as a DA object taking its gradient 

is a trivial procedure. Now that the electric felds have been calculated they can 

be used to solve the equations of motion to determine the kick that will be applied 

in (2.28). Since we are assuming that this is a zero-length kick, the equations of 

motion become [25] 

x ′ = 0, (3.41) 
� � 

1 + η p0 Ex Bz p0 By ps 
a ′ = + b − (1 + hx) + h , (3.42) 

1 + η0 ps χe0 χm0 ps χm0 p0 

y ′ = 0, (3.43) 
� � 

1 + η p0 Ey Bz p0 Bx
b ′ = − a + (1 + hx), (3.44) 

1 + η0 ps χe0 χm0 ps χm0 

where η = 
mc 
E 

2 , χm and χe are the magnetic and electric rigidities respectively, and 

P
P 

0 

s 
is the total momentum over the longitudinat momentum. Furthermore, h is the 
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inverse radius of curvature, and Ex,y and Bx,y are the electric and magnetic felds 

respectively. These equations are solved using the COSY routine DAFLO which 

uses a fow integration mechanism, as outlined in 2.2.3 [44]. 

3.2.4 Parallelization 

The structure of this method readily lends itself to parallelization. Since no 

gridding or particle passing is required in this method, the test particles can be 

evenly distributed across all of the machines that are available. Parallelization is 

achieved using the ploop command in COSY Infnity, which is still undergoing beta 

testing [45]. Since all of the information about the distribution of the particles is 

contained in the statistical moments, this is the only information that needs to be 

passed between nodes. The relationship can be shown in Figure 3.7, where we see 

that for each evaluation of the potential only one communication between nodes is 

required. 

Figure 3.7: This shows how the parallel version of the moment method is produced 
from the serial version of this method. 
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Since the method does not involve binning, and any particle can be placed on 

any node, this algorithm can be massively parallelized. Since the particles can be 

divided up onto any node, the scaling of execution time with respect to number of 

CPUs is roughly n−1 while the scaling of the execution time with respect to particle 

number is on the order n. These e ects can be seen in Figures 3.8 and 3.9. The 

script used to implement the parallel version is shown in Appendix C. 

Figure 3.8: This shows how the parallel version of the moment method scales with 
the number of CPUs. 

3.3 Multiple Particle Tools: Fast Multipole Method 

While under the proper circumstances the map generated in Section 3.2 can be 

used to advance the particles through the element, some types of distributions can 

be problematic. For those types of distributions it is necessary to use another type 
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Figure 3.9: This shows how the parallelized version of the moment method scales 
with particle number. 

of Poisson solver. In order to advance particles under space charge in a fast and 

accurate manner, a version of the fast multipole method has been implemented. 

The fast multipole method was frst developed in 1985 by Greengard and Rokhlin 

as a way to solve the n-body problem; it works by using multipole expansions to 

determine the potential from distant particles and direct Coulomb interactions for 

near particles [46]. This has produced a fast method that has been heralded by 

SIAM as one of the top ten algorithms of the 20th century [47]. 

3.3.1 Overview of FMM 

The fast multipole method (FMM) will determine the potential and electric felds 

of a distribution at a specifc point using multipole expansions for distant particles, 
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and Coulomb interactions for close particles. The method works by dividing up the 

reion of interest into a grid as can be seen in Figure 3.10. 

Figure 3.10: The region containing the particles is subdivided into boxes. In this 
instance it is a two-dimensional region divided into sixteen boxes. The orange box 
denotes the region containing the particles in question, the green boxes are the 
nearest neighbors, and the blue boxes are the distant boxes. The distant boxes all 
contribute their multipole expansions to the local expansion in the orange box. 

For distant regions, shown in blue, a multipole transformation is calculated, 

∞ 
X ak

φ(z) = Q log(z) + , (3.45) 
zk 

k=1 

where 

m m −qizi 
X X k 

Q = qi and ak = , (3.46) 
k 

i=1 i=1 

with z = x + iy, and qi,zi is the charge and complex position of each test particle. 

The expansion is truncated at order m. These multipole transformations are then 

converted to a local Taylor expansion for the box in question, 
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∞ 
X 

φ(z) = bℓz ℓ , (3.47) 
ℓ=0 

using 

X 
b0 = a0log(−z0) + 

∞ 
a 

k

k 
(−1)k , (3.48) 

z0k=1 

whereas for ℓ ≥ 1, 

∞ � � 
Xa0 1 ak ℓ + k − 1 

bℓ = − + (−1)k . (3.49) 
ℓzℓ zℓ zk k − 10 0 0k=1 

For close regions simple Coulomb point-to-point interactions are given: 

n 
X 

φ(z) = qi log(z − zi), (3.50) 
i=1 

where n is the number of particles in the nearby region. Then for each particle 

the local expansion is combined with the sum of the point particles from the near 

regions to determine the potential, as shown in fgure 3.11. 

3.3.2 Overview of DA expansion 

The process for creating the local expansion in (3.47) is a time-consuming one; 

therefore, it was decided to use di erential algebras to speed up the process of 
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Figure 3.11: This is a closeup of the box in question and its nearest neighbors. The 
potential is determined by the local expansion and, as is shown here, the point-to-
point Coulomb interactions of the particles in the box and their nearest neighbors. 

creating the local expansion. This was done by evaluating the multipole expansions 

of each distant box at the center of the box in question. The di erential algebraic 

vectors then create an expansion that is valid throughout the region in question. 

The expansion is then calculated using 

∞ 
X ak

φ(z + dz) = Q log(z + dz) + , (3.51) 
(z + dz)k 

k=1 

where z is the distance to the local expansion point from the center of the distant 

box. 

3.3.3 Overview of FMM with Multiple Species 

One advantage that the FMM has is that since it calculates the dynamics of each 

particle it can use particles with di erent masses and charges together in the same 
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beam. The particulars of this are outlined in Appendix A. The method works by 

taking an input fle composed of four numbers for each particle: 

<charge per macroparticle (elementary charges)> <Energy (MeV)> 

<Mass (amu)> <charge per particle (elementary charge)> 

Internally it creates a di erent fle which has as its elements in S.I. units: 

<charge per macroparticle> <Magnetic Rigidity> 

<Relativistic eta> <charge per nucleon> 

This is used in conjunction with COSY’s DA methods; it is possible to set the 

magnetic rigidity as a variable, then the maps of all of the elements can be calculated 

with a variable magnetic rigidity allowing the e ects of the di erent particles to be 

carried through the system. 
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CHAPTER 4 

BENCHMARKING 

Now that we know what we want to model, and have developed the framework 

with which to model it, we need to determine the best ways to use these tools to 

model the system. For example, in Section 2.5 we mentioned that the kicks would 

have to be performed in such a manner that the magnetic feld in each section can 

be considered autonomous; we therefore need to fnd the best ways to use each of 

our tools, both for accuracy and for speed. 

First, in Section 4.1, we will examine how to get the greatest accuracy out of the 

method we use to model the earth’s magnetic feld. In Section 4.2 we benchmark 

the moment method, and in Section 4.3 we benchmark the fast multipole method. 

4.1 Earth’s Magnetic Field Benchmarking 

The e ects of the earth’s magnetic feld need to be included in any accurate 

model of the University of Maryland Electron Ring. The model used the measured 

values for the earth’s magnetic feld; as shown in Figure 3.2, the vertical component 

is the largest one and matters most to the dynamics. These values were measured 

at the locations of each of the dipoles using a magnetometer. Since each element 

will include the e ects of the earth’s magnetic feld, it was necessary to fnd the 

value of the felds at each point where we would like to have a kick. We used linear 

interpolation to fnd the values in between the measured points. The number of kicks 
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required was measured by sending a particle through the map and determining how 

many kicks it took such that the location of the particle at the end was constant 

out to the number of signifcant fgures that were available for the earth’s feld. It 

was found that dipoles and drifts require six kicks and that quadrupoles require 15 

kicks. An example of the e ects of the earth’s feld on a test trajectory is shown in 

Figure 3.3. 

4.2 Moment Method Benchmarking 

Now that the moment method has been implemented it is necessary to compare 

it with outside calculations to make sure that it is operating properly, and that 

the results it produces correspond to those predicted by other theories. It is also 

necessary to determine how big the moments and integration order have to be. 

4.2.1 Comparison with Theory 

One method of benchmarking involves comparing the results from this method 

to an outside example with an analytic solution. The moment method is comprised 

of a number of parts which we need to test one at a time. First we need to look 

at how the Du y transformation works with respect to distributions with known 

quantities; these are shown in Figures 4.1 and 4.2. 

Next we will compare how the potentials of an easily integrated distribution 

compare using the various methods we have available; this can be seen in Figure 

4.3. 

�

�
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Figure 4.1: This shows the results of a direct DA integration of a uniform spher-
ical distribution using the Du y transformation. We use an analytic distribution 
function given by ρ(x, y, z) = (1 − tanh(20(x2 + y2 + z2 − 1)))/2. 

Figure 4.2: This the potential of a directly integrated Gaussian distribution in 3 
dimensions using the Du y transformation. This used the analytic distribution 
function ρ(x, y, z) = (27/(2π)2

3 
) exp(−(9/2)(x2 + y2 + z2)). 
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Figure 4.3: Comparison of various expansions of the potential of a uniform square of charge distribution. The left column 
shows the Du y integration of the exact distribution. The middle column uses the moment method with the moments 
calculated exactly from the analytical distribution, truncated at order 16. The column on the right shows the potential 
expansion obtained from sample moments using one million test particles sampled from the exact distribution function, 
truncated at the same order. 
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4.2.1.1 Expansion Method 

It was mentioned in Sections 3.2.1.1 and 3.2.1.2 that there were two types of 

smooth functions that could be used to expand the potential: a sum of monomials, 

and a sum of orthogonal polynomials. For this purpose we used Legendre polynomi-

als, but there are other kinds which are being examined for possible use at this time. 

The two objects of interest are execution time and accuracy, with accuracy being 

more important. The frst comparison is between the potentials calculated using 

analytical distribution functions with a numerical integrator to determine the po-

tential expansion; the comparison between the monomial and Legendre polynomial 

expansions is shown in Figure 4.4. As can be seen in this comparison the Legendre 

polynomial version is more accurate at higher order. 

The purpose of this method is to determine the density function and hence the 

potential for a system of test particles, not analytic distributions. We therefore 

compared the two using a set of test particles, the results of which can be seen in 

Figure 4.5. As can be seen there is a distinct di erence, and a drop o in quality at 

high order when comparing the monomials to the Legendre polynomials. 

The use of particles presents an inherent graininess to the distribution, which can 

be thought of as an error in the right-hand side of two systems of linear equations. 

The error in the system is proportional to the condition number, κ, of the matrix 

[48], 

~ ~C = NM, (4.1) 

~ ~k δC k k δM k ≤ κ(N) . (4.2) 
~ ~k C k k M k 
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Figure 4.4: Comparison of the exact moment method on the right with the Legendre 
method on the left at 15th and 23rd order. These simulations used a uniform dis-
tribution with the red square denoting the region of integration. The potential was 
found both analytically using direct expansion around each point, and then it was 
determined using either the moment or Legendre methods to the indicated order, 
with the absolute di�erence indicated on the contour plot. 
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Figure 4.5: Comparison of the sample moment method on the right with the Leg-
endre method on the left at 15th and 23rd order. These simulations used a uniform 
distribution of particles with one million test particles. The potential was found 
both analytically using direct expansion around each point, and then it was deter-
mined using either the moment or Legendre methods to the indicated order, with 
the absolute di�erence indicated on the contour plot. 
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Since the moment method uses truncated SVD methods to invert its matrix, it 

reduces the condition number, thus making the moment method more accurate 

for particle systems at high moment orders. Combined with its higher speed, the 

moment method is the method of choice for the extensive simulations. 

4.2.1.2 Particle Advancement 

Now we wish to put the potential, and by extension the electric felds, to the 

test by advancing a set of test particles through a system. The example shown 

involves tracking a 100 KeV laminar electron beam with an initial radius of 5mm 

and a current of 1 amp. This beam is propagated over a distance of 20cm and 

approximated using 1× 106 test particles. This has an analytic solution for the fnal 

beamsize as a multiple of the initial beamsize given by [49], 

rm I z 
)2 = 1 + 5.87 × 10−5 ( , (4.3) 

r0 (γ2 − 1) 
3 r02 

which predicts a beam size growth of 1.33, or 33%. When these conditions are 

applied using the moment method, a method for determining what the initial and 

fnal beam size is needs to be ascertained. The two methods employed involved 

placing test particles on the edge, and comparing their initial and fnal positions as 

well as looking at the horizontal and vertical linear map elements. A comparison 

of the initial to fnal distribution can be seen in Figure 4.6 and a comparison of the 

fnal results can be seen in Table 4.1. 

As can be seen, the two methods neatly bracket the analytic solution. A slightly 

higher credence should be given to the point comparison. First, by looking at the 
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Figure 4.6: A comparison of the initial and fnal horizontal and vertical test particle 
positions in the 20cm drift. Purple indicates the initial points, blue the fnal. 

Table 4.1: Table of di�erent methods for fnding the increase in size from beginning 
to end in the described problem. 

Method Growth 
Edge Point x 35.27 % 
Edge Point y 35.30 % 

Map Element x 31.21 % 
Map Element y 31.34 % 
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fgure it appears to be accurate, and second, since the map itself is nonlinear, the 

linear part will not be a complete representation of the size. 

4.2.2 Accuracy 

What order we calculate the moments at is an important consideration. Since 

the moment calculation is one of the slower parts of the method, the order at which 

a given accuracy is desired should be minimized. Also since the number of particles 

needed also causes issues, how quickly a series converges will be an issue that needs 

to be investigated. 

Accuracy is our foremost concern. This was tested by frst creating a set of 

initial conditions of uniform density with a circular cross section. We then set about 

determining a radial baseline for comparison by calculating the potential using strict 

Coulomb interactions. This was done by calculating the potential at a set radius 

at 10 equally spaced points around the center of expansion. The radius is then 

increased in 100 equal increments out to 1.5 times the size of the integration region. 

This process is repeated for each potential calculated using the di erent integration 

and moment orders. The average di erences between the Coulomb potential and 

the moment calculated potential are summed up to a desired radius. These are then 

averaged and used as the error magnitude in Figure 4.7. 

As can be seen in Figure 4.7, the accuracy only converges when the integration 

order is greater than or equal to the moment order. This follows from the fact 

that the values for each of the Taylor coeÿcients in the potential are dependent on 

what order the moments are, and if the moments are larger than the integration 

order, the higher order terms will not be included. We would assume that there 
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Figure 4.7: This calculated the potential of a uniform circular distribution for di er-
ent integration and moment orders. This was done by creating a grid of the orders: 
the darker the area, the higher the accuracy. The contours show the region between 
zero and .002. 
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would be increasing accuracy with increasing order, but when we examine the data 

there appears to be a drop-o in accuracy in the high teens. This is caused by the 

ill-conditioned nature of the matrix that gets inverted; in the high teens and low 

twenties the SVD algorithm can no longer fully cast the matrix into something that 

is well conditioned. This gives us a small band of moments in which we get optimum 

performance. 

4.2.3 Kick Number 

The method updates the shape of the beam each time the potential is calculated, 

so the more kicks per element the more accurate the method is. However, this is 

time consuming. An examination was made by comparing the analytical results 

from Section 4.2.1 for di erent numbers of kicks, with saturation for distances per 

kick equal to 3 times the initial radius. An example of this e ect is shown in Figure 

4.8. 

�

�

�

�Figure 4.8: This is a demonstration of a drift with the e ects of space charge added 
to the map with one kick shown on the left, and 17 kicks shown on the right. 
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4.2.4 Integration Region 

The region over which the transformation matrix is calculated has a strong in-

fuence on what the fnal answer will be. Since we are using a Taylor series to 

approximate the distribution, it is necessary to choose the region being studied 

carefully. The series must converge within that region fairly well, so bounds must 

contain the points needed and not too much empty space. In distributions such as 

KV where there is a defnite edge the di�erence is not as strong, but in continuous 

distributions such as Gaussian this can cause complications. Examples of this sort 

of behavior are shown in Figure 4.9. 

Horizontal Phase Space Horizontal Phase Space Horizontal Phase Space 
a a a 

0.04 0.04 0.04 

0.02 0.02 0.02 

x x x 
-0.004 -0.002 0.002 0.004 -0.004 -0.002 0.002 0.004 -0.004 -0.002 0.002 0.004 

-0.02 -0.02 -0.02 

-0.04 -0.04 -0.04 

Figure 4.9: In all fgures the blue represents the expected kick for each particle 
while the purple shows the moment method calculated one. The left picture shows 
integration bounds that are too small, the center shows good bounds, the rightmost 
shows bounds that are too large. 

In the example where the region of integration is too small, many particles enter 

the region where the Taylor series diverges, and they are thrown away or pulled in in 

a non-physical manner. If the region chosen is too large, however, the higher order 

terms are washed away and a very simple model emerges. Unfortunately the size 

which gives good values changes based on the distribution type, with a side-by-side 

comparison between multiple distributions shown in Figure 4.10. For the purposes 

of the implementation we use 5.25 standard deviations. 
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Figure 4.10: These plots show the accuracy of the potential for integration radii as 
measured in standard deviations for three di erent distributions. 
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4.2.5 Timing 

The timing of this method is infuenced by a number of factors. Due to COSY 

Infnity’s original design as a single-particle code there are some limitations to the 

manner in which particles can be tracked. At the Fortran level there is a hard ceiling 

to the number of particles that can be stored, which is currently 50,000. However, 

we would like to be able to store larger numbers of particles than that, so a fle-based 

tracking system was developed that reads in the particles in batches of 1,000, applies 

any transformations that are needed to them, and then writes them to a di erent 

fle. As can be seen in the single CPU comparisons in Figure 4.11, there is a large 

di erence between the way the times scale when using the fle-based system and the 

vector-based system; one scales linearly, the other scales quadratically. 

Execution Time Comparison 
Execution Time HsecondsL 

50 

40 

30 

20 

10 

Particle Number 

Figure 4.11: The blue line shows the execution time using the vector system, while 
the purple line uses the fle system. 

10 000 20 000 30 000 40 000 50 000 
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4.3 Fast Multipole Method Benchmarking 

Another set of studies was done to examine how accurately the fast multipole 

method agrees with theory. Some of the tests shown for the moment method will 

not work in exactly the same manner since there is no analytic counterpart the way 

there is with the moment method, so all benchmarking has to be performed using 

particles. 

4.3.1 Comparison with Theory 

Since we have to use only test particles for our comparisons, the simplest check 

will be to compare the potential calculated using the fast multipole method to the 

potential calculated using point-to-point Coulomb potentials. The results for three 

di erent potentials are shown in Figure 4.12. 

A series of tests similar to 4.6 was performed for the fast multipole method, and 

it too had a respectable degree of accuracy, as is shown in Figure 4.13. 

4.3.2 Accuracy 

We wanted to determine what expansion order and what number of boxes would 

give us the optimum accuracy. For this purpose we created a system of particles and 

performed a space charge kick on them using the fast multipole method at a variety 

of expansion orders and box numbers while creating a point-by-point comparison of 

the angle change for the same set of particles. The average di erence between the 

�

�
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Figure 4.12: These graphs show a series of potentials determined for three di�erent 
distributions, in descending order, uniform parabolic and Gaussian. The left column 
contains the point-to-point Coulomb potentials, the second column contains the 
FMM-determined potential, while the third contains the di�erence. The edge e�ects 
for the FMM-determined potential were caused by a time saving measure which 
doesn’t create a local expansion for boxes that don’t contain particles. 
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Figure 4.13: This plot shows the initial conditions (purple) and the fnal conditions 
(blue) of a set of particles under the same conditions used in Section 4.2.1. The red 
circle is the analytically determined fnal radius. 

angular kicks for between the fast multipole method and the point-to-point method 

were used to judge the relative accuracy of the system. In Figure 4.14 we see that 

for the distribution examined, the accuracy becomes saturated at and above ffth 

order. 

4.3.3 Timing 

As can be seen in Figure 4.15, for the regions we are interested in there are 

noticeable time savings with the di erential algebraic methods we have developed. 

The timing of the code has been measured using quantities such as number of 

particles, multipole order and number of boxes. As can be seen in Figure 4.16, the 

time required to advance the particles scales between N , N2 , and N log N . The 

experiment shown in Figure 4.16 uses a fxed order and box number with a varying 

number of particles. The results show that for a small number of particles the timing 
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Figure 4.14: This is a plot of the accuracy of the fast multipole method with di erent 
numbers of boxes and di erent expansion orders. The order value becomes saturated 
at ffth order. 

scales with N2; this occurs when the number of particles in a given box are small, 

and it becomes more time consuming to make a local expansion than to simply 

expand each particle. At a certain point, in this case 20,000 particles, the expansion 

is no longer more trouble than it’s worth and the rate of growth slows down, until 

as the number rises it becomes N log N , asymptotically. 

The DA methods involved are capable, within the larger COSY framework, of 

applying the felds of the given elements to particles with di erent masses or energies. 

This also carries through to the e ects of space charge using the FMM. 
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Figure 4.15: This graph shows a comparison of the amount of time needed to deter-
mine the potential of a distribution of 20000 particles. The surface shows the time 
taken using the di erential algebraic method, while the points represent the time 
taken by the method in the section entitled FMM Basics. As can be seen, the DA 
method is faster through tenth order. 
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Figure 4.16: This log-log plot shows in green the measured time of a fxed order, 
fxed box number distribution as the number of particles are increased. The orange 
line represents N2 , while the red line represents N , with the blue line representing 
N log N . 
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CHAPTER 5 

APPLICATIONS 

Chapter 3 developed a number of mathematical tools for simulating a beam 

with space charge, while Chapter 4 determined the operating points at which to use 

them. Now it is time to examine how these tools can be used to analyze a beam, 

and at some point design one. Some of these tools are the same kind that most 

beam physics codes have available to them, while others are unique to COSY, and 

still more require the tools that have been specifcally developed here. 

5.1 UMER Single-Particle Studies 

Since UMER has a unique operating point and geometry, an in-depth study of the 

single-particle dynamics was necessary to fully understand any space charge e ects 

that might become an issue. A simulation of the entire UMER ring from cathode 

through as many turns as desired was created for these studies; an overview of this 

model is examined in Appendix D [50]. 

The matching settings for the injection line were determined using a set of 5000 

particles arranged for a given aperture that were sent through the solenoid, then 

matched to the ring’s Twiss parameters as generated by COSY, and the steering 

dipoles were then ftted to move the beam through the injection line to the center 

of the beam pipe with zero angle. The two quadrupoles in the injection section keep 

the same values that were determined for the ring matching, but the pulsed dipole 
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can be varied to steer the beam towards its closed orbit. The matching algorithm 

uses the linear elements of the map, and takes linear coupling into account. This 

was performed with COSY’s internal optimization algorithms. 

5.1.1 Betatron Tunes 

The large quadrupoles in the Y-section were used to control the betatron tune. 

The tune that would result if instead of an injection section with 17 ring sections the 

ring was made of 18 identical sections (i.e., the optimal value for the fully symmetric 

layout) is called the ideal tune. We use the magnetic feld, quadrupole and dipole 

settings of the other 17 sections combined with a similar set for the 18th section. 

The ideal tunes were calculated to be (µ1, µ2) = (6.76457, 6.63717). The di erences 

in the quadrupole strengths greatly a ect the steering of the beam since the beam 

enters them o -center. Therefore the tune matters not only as the operating point, 

but also as part of the steering. We see that the x-tune can be varied more according 

to this study than the y-tune. 

5.1.2 Chromaticities 

Using the DA normal form methods that are an integral part of COSY, it is very 

simple to calculate the chromaticities. The chromaticities are shown in Table 5.1. 

These compare the calculated values for four operating points that were the default 

settings used for four currents during March of 2009. The labels are historical in 

nature, as the beam current in the simulation only a ects the image charge force, 

which has a very small e ect. The reason these settings are di erent, is that they 
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must be matched in a di erent manner which a ects the steering through injection 

and ultimately the betatron tune. The addition of the higher order terms can help 

further distinguish operating points; if we compare the chromaticities for the pencil 

beam and the 7 mA beam, the pencil is only larger by 57%, whereas the next term 

is not only four times larger in magnitude but also opposite in sign. The beams 

were distinguished by peak current, with the pencil beam being the lowest at 0.6 

mA. In the simulations, the chromaticities depend heavily on the quadrupoles in 

the Y-injection section, as that was the major change for the repetitive portions of 

the ring. 

Table 5.1: Betatron tune predictions for four operating points. The frst column 
, 2nd µcontains the order of the term: 0th order is the tune itself, 1st is dµ is d

dδ 

2

2 , etc. dδ 
The second column is the value predicted by COSY. The four operating points are 
labeled above the terms. 

Pencil Beam 
Order 

0 
1 
2 
3 

23 mA Beam 
Order 

0 
1 
2 
3 

µ(δ) 
.747 

-7.1058 
111.479 

-4787.3359 

µ(δ) 
.6796 
-6.172 

-11.2667 
2034.3401 

7 mA Beam 
Order 

0 
1 
2 
3 

80 mA Beam 
Order 

0 
1 
2 
3 

µ(δ) 
.63722 
-4.4947 
-25.83 

-969.6789 

µ(δ) 
.6900 

-5.0174 
-31.2928 

-1221.4241 

5.1.3 Dispersion 

Another quantity that needs to be understood is the maximum dispersion of 

the various operating points. Since the dipole settings within the ring remain the 
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same for all of the operating points, it is the steering settings through the Y-section 

that contribute to the di erences. It is also informative to investigate the manner 

in which the dispersion changes as the map is generated element by element; this 

behavior is shown in Figure 5.1. Furthermore, if the beam is measured at various 

places around the beam, the levels of dispersion will di er. The behavior of the 

one-turn dispersion element is plotted as a function of distance around the ring in 

Figure 5.2. There is a distinct repetitive pattern to the dispersions of the various 

maps as we move around the ring, with the range of values going through periods 

being small, and then quite large. A comparison of the manner in which this range 

of values is distributed with respect to tune space is shown in Figure 5.3. These four 

plots show that the morphology of the distribution in tune space is not a function 

of the range of variables, since the two on the left side share similar morphologies 

while having very di erent ranges of values. 

Figure 5.1: A plot of the progression of the dispersion as the one turn map is 
generated FODO section by FODO section. 
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Figure 5.2: A plot showing the dispersion of the 81 operating points used in this 
study. All are superimposed to show the variability in the dispersion of the one-
turn map as calculated around di erent points of the ring. The colors denote the 
positions of the contour plots shown in Figure 5.3 in order. 

5.1.4 Amplitude-Dependent Tune Shifts 

Using the normal form methods available in COSY it is possible to calculate 

amplitude-dependent tune shifts; these lead to footprints of the kind seen in Figure 

5.4. Other operating points have di erent patterns, and some do not display this 

behavior altogether. Within the tune scan that was performed as part of this analysis 

it was the operating points with higher y-tunes that showed the fewest examples of 

amplitude-dependent tune shifts, and when they were calculated for default UMER 

settings, the ones detected were very small. 
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Figure 5.3: Four contour plots of the dispersion across the scanned tune space. 
Darker areas denote lower levels of dispersion. The values are contoured between 
−.02m and .08m. The locations for the upper left, upper right, lower left, and lower 
right are marked with the light blue, red, dark blue, and green points in Figure 5.2 
respectively. The green ⋄ symbol represents the location of the ideal tunes. 
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Figure 5.4: The left side shows a well behaved tune footprint, while the right 
side shows a more di use tune footprint. The di erences are caused by di erent 
quadrupole settings. Superimposed are the resonance lines up to sixth order: red 
indicates 2nd order, orange indicates third order, green indicates fourth order, light 
blue indicates ffth order, and dark blue indicates sixth order. 

5.1.5 Momentum Compaction 

It is also possible to measure the momentum compaction of the operating points; 

the comparison is shown in Figure 5.5. The momentum compaction values range 

from −.0006 to .0005 and can be seen to be connected to both the x and y tunes. 

5.1.6 Tracking 

In order for the beam to be used for long-term studies, accurate steering both 

at injection and during recirculation is necessary. Steering through the injection 

line is accomplished using steering dipoles, whereas steering throughout the ring 

is accomplished by varying the current through the bending dipoles. Determining 
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Figure 5.5: A contour plot of the momentum compaction across the scanned tune 
space. Darker areas denote a smaller compaction factor. The range of values is 
between −.0006 to .0005. The green ⋄ symbol represents the location of the ideal 
tunes. 
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a closed orbit that stays close to the centerline of the machine is important, and 

the earth’s magnetic feld makes this task much more diÿcult. The initial round 

of simulations involved steering through each two-dipole section by assuming that 

the beam would enter the section at the center of the beam pipe with zero lateral 

velocity, and the dipoles were changed such that the beam would exit the section at 

the center of the beam pipe also with zero lateral velocity. Also, the beam would 

enter and leave each section moving straight through the section without any angle 

with respect to the centerline of the beam pipe. 

Previous steering solutions [51] for the ring had used the earth’s magnetic feld 

data to try to reduce the dipole currents by an amount equal to the equivalent of the 

earth’s integrated feld, which gave similar predictions as can be seen in Figure 5.6. 

From an operations standpoint, the relative smoothness or jaggedness of the current 

settings are inconsequential. Attempts that were made to smooth the setting (global, 

polynomial, running averages, etc.) deteriorated the steering of the beam. The ring 

steering as calculated with COSY assumed that the beam centroid would enter the 

frst turn at the center of the pipe with zero angle, and a ftting algorithm was used to 

have it exit the turn at the center of the pipe with zero angle. Therefore the steering 

algorithm was designed such that the beam centroid would leave the electron gun 

aperture and enter the ring under those conditions. This involves both the steering 

dipoles and the matching quadrupoles working together to bring the beam into the 

ring. For recirculation the simulations used a combination of the bending dipole on 

the recirculation side of the ring, the recirculation steering dipole, and the pulsed 

dipole. All elements are at fxed locations. The purpose of this optimization was 

to make all perturbations as local as possible. An example of the closed orbit for 

one particular operating point is shown in Figure 5.7. In this fgure it can be seen 

that with a good set of dipole corrections the deviation of the closed orbit from the 
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center can be kept in the horizontal plane to the sub-millimeter scale. The number of 

vertical steering degrees of freedom made optimization of the vertical trajectory more 

challenging. One method that increased the speed at which a solution was found, 

was to add the position and angle terms to the objective function in quadrature. In 

the vertical direction the displacement is a few millimeters. 

Figure 5.6: A comparison of values for the ring steering. In order to account for the 
earth’s magnetic feld, the ring-bending dipoles must be altered from their physical 
bending setting of 10 degrees. This is a plot of that change. The black line is 
the previous method of reducing the dipole currents by the amount equal to the 
equivalent of the integrated magnetic feld over the section. The blue line is the 
result of having COSY Infnity steer the beam to the center of the pipe with zero 
angle at the end of each FODO section. We attempted to smooth out the settings 
but every attempt made the steering signifcantly worse. 

5.1.7 Dynamic Aperture 

A total of 81 values for the betatron tune, centered on the ideal tune, were 

investigated to determine how much beam remained within the beam pipe, a measure 

of the dynamic aperture, after a set number of turns. These values cover a square 

of tunespace with a magnitude of .08 per side. This method of measuring the 

dynamic aperture involved creating a set of initial conditions at the location of the 
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Figure 5.7: A plot of the closed orbits for one operating point both horizontally and 
vertically. 
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electron gun’s aperture, and following the particles through the beamline as they go 

through injection and into the ring for a set number of turns, the number of initial 

conditions that remain in the beam pipe (2.95 cm radius) is used to determine 

the dynamic aperture. The initial conditions had a uniform distribution in space, 

using the cathode radius of 4 mm, and were Gaussian in angle distribution, using 

a temperature of 1100◦C. In the study shown in Figure 5.8 that number could be 

as much as 100% of the particles, or as low as 0%. Large di erences are seen in the 

survival rates of the di erent tunes. The best operating point seems to be in the 

vicinity of the ideal tune. Figure 5.8 also has the low-order resonance lines shown 

in it; it should be noted that this contour plot is created by interpolating a grid of 

81 operating points. This means that even if a low-order resonance seems to show 

a small e ect, that does not mean that it is weak, only that there was no operating 

point calculated on that resonance. 

5.1.8 Resonance Strengths 

The strengths of the various resonances can also be calculated. In Figure 5.9 

the resonance strengths for four operating points are shown; the 7 mA operating 

point has smaller resonance strengths than the others. The four operating points 

in Figure 5.9 have di erent steering and magnet settings which lead to di erent 

resonances being dominant. However, the (1, 2), (1, 0) and (2, 1) resonances are 

prominent in each operating point, which is most likely the resonances excited by 

the 17 ring sections since these are not changed as signifcantly as the injection 

line and the Y-section between the operating points. Note the absence of large 
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Figure 5.8: A contour plot of the scanned tune space. Darker areas denote less of 
the beam surviving after 100 turns. The green ⋄ symbol represents the location of 
the ideal tunes. The lines follow the same color scheme as Figure 5.4 
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high-order resonances in any of the operating points. It is interesting to note that 

operationally the 7 mA beam seems to be the most well-behaved beam. 

Figure 5.9: A plot of up to sixth-order resonance strengths for the four current 
values examined. Strengths are based on a 50 µm emittance and all vertical axes 
are to the same scale. Colors are for visual di erentiation only. 



�

�

�

�

91 

5.2 Moment Method Applications 

Now that the single particle dynamics have been analyzed we would like to look 

at how space charge a ects the system. This is done using the moment method both 

to calculate the map and to advance the particles through the system; for simple 

distributions this works well, for more complex distributions an alternate method 

of advancing the particles is needed. This is shown in Section 5.3 when we look at 

the fast multipole method. 

5.2.1 Betatron Tunes 

The addition of the e ects of space charge to the transfer map of a system allows 

the user to directly calculate the betatron tune in a manner which includes space 

charge. The tune shift can then be calculated by subtracting the bare tune from the 

shifted tune. If we look at the change in the tune over a single cell of UMER we can 

see the e ects of space charge directly on the tune in Figure 5.10. As we can see, 

the e ect scales both with the current of the beam and with the initial emittance 

of the beam. 

Furthermore we can use the closed-form versions of the Laslett tune shift to de-

termine what we should expect. For a circular machine such as UMER the equation 

for the tune shift is [49] 

IR 
�ν = , (5.1) 

β2γ2I0ǫn 
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Tunes for Initial Emittance 10.9 mm-mr 
Tune 

0.005 0.010 0.015 0.020 
Current A 

0.15 
0.20 
0.25 
0.30 
0.35 

Tunes for Initial Emittance 12.8 mm-mr 
Tune 

0.005 0.010 0.015 0.020 
Current A 

0.20 
0.25 
0.30 
0.35 
0.40 

Tunes for Initial Emittance 25.1 mm-mr 
Tune 

0.38 
0.36 
0.34 
0.32 

Current A 
0.005 0.010 0.015 0.020 

Figure 5.10: This shows the tune shift caused by space charge in an example of the 
UMER lattice. 
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Table 5.2: Table of calculated tune shifts 
Name Laslett Tune shift COSY tune shift x COSY tune shift y 
pencil −.5134 −.3285 −.45807 

Table 5.3: Table of calculated tune shifts using a Gaussian instead of a uniform 
distribution. 

Name Bare Tune COSY tune Tune shift 
pencil x 0.16644 0.28843 −0.87801 
pencil y 0.88433 0.34253 −0.5418 

where I is the current, R is the radius of the ring, I0 is the Alfven current, ǫn is the 

normalized emittance, and β and γ are the relativistic factors. For both of these 

cases a uniform cylindrical distribution has been used that has been matched to the 

lattice being observed. This gives tune shifts for the smallest space charge value 

shown in Table 5.2. The tune shift that is calculated for the same matching settings 

but using a Gaussian distribution is shown in Table 5.3. 

5.2.2 Chromaticities 

Another quantity that can be directly extracted from the map of the beam is the 

chromaticity, which is the derivative of the tune with respect to energy. If a particle 

does not have the same energy as the rest of the beam then it will see a di erent 

betatron tune. As can be seen in Figure 5.11, the change is not a large one, but 

the e ects of space charge on the chromaticity will become saturated. This is to be 

expected since as the current increases space charge will become a greater infuence 

on the beam than the lattice. 
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Chromaticities for Initial Emittance 10.9 mm-mr 
Chromaticity MeV-1 

0.005 0.010 0.015 0.020 
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-0.180 
-0.175 
-0.170 

Chromaticities for Initial Emittance 12.8 mm-mr 
Chromaticity MeV-1 

0.005 0.010 0.015 0.020 
Current A 

-0.185 
-0.180 
-0.175 
-0.170 

Chromaticities for Initial Emittance 25.1 mm-mr 
Chromaticity MeV-1 

0.005 0.010 0.015 0.020 
Current A 

-0.185 
-0.180 
-0.175 

Figure 5.11: This shows the change in chromaticity for a series of initial conditions 
over one section of the UMER lattice. 
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5.2.3 Resonance Strengths 

The e ects of space charge can strengthen resonances within the beam to the 

point that they can cause instabilities. An example of this is shown in Figure 5.12. 

Figure 5.12: This shows the resonance strengths for 0, 1, and 2 mA beam currents. 

5.2.4 Long-Term Tracking 

The abilities of the moment method to quickly track large numbers of particles 

through a ring in an accurate manner with the e ects of space charge included can 

be seen in Figure 5.13. With lower levels of space charge, the e ects largely balance 

out within the frst few turns. Furthermore the emittances stay very stable over the 

large number of turns. 

5.3 Fast Multipole Method Applications 

The moment method provides a large number of opportunities to measure phe-

nomena that it was diÿcult to simulate before. The fact that it can not only 
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Long Term Tracking 
Emittance mm-mr 
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Turn 

15.0 
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16.0 

Figure 5.13: This shows the horizontal and vertical emittances of the 6mA beam in 
an idealized UMER lattice. 

determine the map of a system, but also advance particles through it would lead 

us to believe that that is all we need to fully simulate a beam. However there are 

some cases where the moment method is not a complete enough way to model the 

system. In the following subsections several uses of the fast multipole method are 

shown for systems we may wish to simulate, but would be unable to using only the 

moment method. 

5.3.1 Multimodal Distributions 

Here we can use some of the new features of the FMM to analyze systems that 

it would not be possible to understand with the moment method. The example we 

show here allows an examination of both a multimodal distribution, and di erent 

species of particles evolving through a system. In this instance we start with two 



�

�

�

97 

parallel beams: one of electrons, one of positrons. As they move through a drift, 

their evolution is shown in Figure 5.14. This ability can be used to model many dif-

ferent phenomena, from heavy ion beams with multiple isotopes, to electron cooling 

systems. 

5.3.2 Di use Halo 

The moment method works well when the distribution function is easily approx-

imated with a 16th-order Taylor series. However, in some cases, such as a di use 

halo, there will be complications. An example is shown in Figure 5.15. It is clear 

that the Taylor series that is being used to fnd the potential has its edge e ects 

intercepting the beam, causing them to undergo non-physical motion. The fast 

multipole method does not have this sort of constraint; therefore, it can be used for 

distributions which are not easily modeled using a Taylor series. 

5.3.3 Long-Term Tracking 

As with the moment method, it is desireable to track statistical information re-

garding a beam as it makes a series of trips around the ring. This was performed 

using the fast multipole method for 10,000 particles over a simple model of the 

UMER lattice. The results of this tracking are shown in Figure 5.16. The distribu-

tion was a smaller subset of the one used for the moment method long-term tracking 

simulation, and is matched to the space charge free lattice. As can be seen from the 

fgure the emittances quickly reach their equilibrium values and oscillate there. 
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Figure 5.14: This shows the evolution of two parallel beams: one of electrons and 
one of positrons; annihilations are not modeled. 
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Figure 5.15: On the left are the initial conditions of the system, in the center is the 
moment method attempt, and on the right is the fast multipole method. 

Figure 5.16: This graph shows the emittances of a beam over a number of turns, the 
blue line shows the emittance of the vertical dimension, the black line the horizontal. 
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CHAPTER 6 

UMER EXPERIMENTS 

In order to make sure that the tools that have been developed to simulate in-

tense particle beams in general, and the University of Maryland Electron Ring in 

particular are accurate, a series of experiments were run over two time periods. The 

frst set of experiments measured single-particle e ects and were performed during 

the frst half of March in 2009 [50]. These are shown in Sections 6.1, 6.2, and 6.3. 

The second set of experiments attempted a series of multiple-particle experiments, 

and were performed during early December of 2010. These are shown in Sections 

6.4 and 6.5. 

6.1 Particle Tracking 

The frst experiment was to compare the results of the steering solution pro-

vided by COSY and the previous magnetic feld compensation values, as described 

in Section 5.6. The results of simulating both steering settings, as well as their 

measured values, are shown in Figure 6.1. We see fairly good agreement between 

the predicted and measured values as they progress around the ring. The relative 

movement between the previous values and the COSY derived values in both the 

measured and predicted cases are similar. Technical diÿculties prevented accurate 

tracking through the 11th beam position monitor. Therefore, most tracking studies 

were only performed up through RC 9. These technical issues prevented a full ex-
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amination of the tracking predictions, but the data that was taken can be used as a 

tool to diagnose misalignments [52]. Since the steering solution is o -center in most 

of the ring elements, all non-linear e ects are present due to feed-down. Hence, a 

good agreement between measured and predicted steering solutions is indicative of 

an accurate modeling of the full non-linear dynamics. 

Figure 6.1: A comparison of the predicted and measured ring steering trajectories. 
The black line is the previous magnetic feld compensation value, while the light 
blue line is the one calculated in this study. The dark blue line is the predicted 
trajectory for the previous compensation value, while the red line is the predicted 
trajectory for the settings determined in this study. 

The COSY predicted settings compared with the UMER calculated settings, 

as well as another set of UMER settings based on a LOCO-type response matrix 

steering algorithm [53], were used to provide a common basis for comparison of the 

steering solutions; see Figure 6.2. The original steering solution in COSY assumed 

that the beam would be injected straight along the centerline, which is not neces-

sarily the case, so a new steering solution was devised based on the UMER stock 

matching settings. As can be seen in Figure 6.3, there was signifcant improvement. 
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Figure 6.2: Steering solution using the default values for the UMER ring; a com-
parison of measured (black) to predicted values (blue). 

Figure 6.3: The blue line is the predicted value for the new steering settings, while 
the black line is the measured trajectory. 
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6.2 Tune Measurements 

The tunes were measured directly in the ring at each BPM using a four-point 

method outlined in [54]. It works assuming that there is BPM data for four subse-

quent turns, with the tune calculated with 

xn − xn+1 + xn+2 − xn+3 
cos(2πµ) = . (6.1) 

2(xn+1 − xn+2) 

This method is useful since it requires only four measurements per BPM and 

is immune to calibration o sets since every o set is subtracted out. Unfortunately, 

sometimes if the measurements come out a certain way, they can give non-physical 

results. A series of tune measurements were performed on di erent sets of operating 

points and currents on the UMER ring; these results are shown in Table 6.1. 

The large standard deviations shown in Table 6.1 do show that there is still some 

uncertainty in the measurements taken. Theoretically the beam position monitors 

are accurate to 0.1 mm; however, the measured values correspond more closely to 1 

to 2 mm. A major factor in this has to do with signal to noise ratios in the beam 

position monitoring equipment which can add a great deal of error to the measured 

voltage across the BPM plates. 

6.3 Chromaticity Measurements 

The chromaticities were measured for the ring by changing the voltage across 

the electron gun and measuring the tune using (6.1). The chromaticity is defned 
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Table 6.1: Measured horizontal tunes measured in the UMER ring using the four-
point method. Some measurements cannot give a good tune, so those have been left 
blank. The averages and standard deviations do not include these missing values. 

BPM Pencil Beam 7mA 20mA 80 mA 
RC1 .429265 .439089 .251808 
RC2 .469785 .455473 .322365 
RC3 .249922 .285294 
RC5 .429028 .443181 .324413 
RC6 .240492 .43788 .348265 .373094 
RC7 .257451 .362942 .434079 .298863 
RC8 .09181 .421028 .358952 .303061 
RC9 .265539 .410606 .415081 .120793 
RC11 .294148 .415142 .30992 
RC12 .292334 .40613 .406399 
RC13 .327488 .421758 .474573 .332532 
RC14 .292729 .404955 .401591 .348996 
RC15 .245612 .417701 
RC17 .195635 .422057 .409515 .397896 
AVG .250324 .407014 .416927 .305753 
σµ .06663 .050635 .038423 .069966 

as the change in tune with respect to the energy of the system, so a simple ftting 

method will work to fnd the chromaticity from measured tunes. The results of these 

measurements are shown in Table 6.2. 

The 80mA settings had a great deal of beam scraping in the o -energy particles 

leading to some issues with gaining accurate measurements; for this reason those 

are not shown. 

6.4 Distribution Tracking 

An initial test that can be performed is to simply simulate the ring as it moves 

through each section and observe the distribution. This was performed for RC1, 

RC2, and RC3 using the 6mA beam. These can be contrasted with the COSY-
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Table 6.2: Measured horizontal tunes measured in the UMER ring using di erent 
accelerating voltages in the electron gun to help fnd the chromaticity. 

Energy (kev) 
9.7 
9.8 
9.9 
10.0 
10.1 
10.2 
10.3 

dµ 
δ 

Pencil Beam 7mA 20mA 
.279371 .317212 .406874 
.33028 .359018 .434898 
.271305 .366088 .449118 
.334731 .407014 .435164 
.368859 .435358 .411967 
.351122 .441598 .385869 
.364947 .422368 .358888 

6.3299 2.8719 -2.0682 

generated distributions that come out of the system. It is important to note that 

currently the space charge method in COSY is a two-dimensional method, so e ects 

of dispersion are not included. The distribution arrived at experimentally, and 

computationally as well as the vertical profles of the beam both experimentally and 

computationally are shown in Figures 6.4 and 6.5 for the phosphor screens at RC1 

and RC2 respectively. 

The biggest problem that has been encountered is the lack of modeling of dis-

persion in the ring, which signifcantly narrows the horizontal spread of the beam. 

As can be seen in Figures 6.4 and 6.5, when the horizontal dimensions are scaled 

up with respect to the vertical, we get a much closer agreement between simulation 

and observation. The somewhat unique beam profle seen in the simulations and 

the data are caused by the hollow velocity distribution that UMER possesses [55]. 

The next experiment was an attempt to examine how a series of distributions 

would evolve through the machine over time. In order to have a set of readymade 

distributions and watch how they evolve over a period of repeating cells, the frst 

quadrupoles after the beginning of the injection line, labeled QR2 and QR3, were 

scanned across a series of values giving a series of di erent distributions at RC1. 

Images of the beam at RC2 and RC3 were taken, allowing for a series of measure-
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Figure 6.4: The frst image is a vertical beam profle using the simulated UMER 
ring, with the positions normalized to the center of the beam bunch. The second 
image is the vertical profle measured from the data taken on the ring. The third 
image is a density plot in position space using the simulated beam, and the fourth 
is the image taken at RC1. 
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Figure 6.5: The frst image is a vertical beam profle using the simulated UMER 
ring, with the positions normalized to the center of the beam bunch. The second 
image is the vertical profle measured from the data taken on the ring. The third 
image is a density plot in position space using the simulated beam, and the fourth 
is the image taken at RC2. 
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ments to be taken of the way a beam evolves as it moves through various FODO 

sections. This setup is shown in Figure 6.6. 

Figure 6.6: This closeup view of the ring shows the area used for the distribution 
experiments. 

This was done so that a comparison of di erent distributions moving through 

the ring could be made and compared to the simulations. The results for RC1 are 

shown measured in Figure 6.7 and simulated in Figure 6.8. The results for RC2 are 

shown in Figure 6.9 with the simulated results shown in Figure 6.10. Finally, the 

measured results for RC3 are shown in Figure 6.11 and the measured results are 

shown in Figure 6.12. Once again the issue of the horizontal spread being smaller 

than expected is seen. However the vertical sizes once again match closely. 

6.5 Distribution Scraping 

In order to measure how the e ects of space charge depend on the shape of the 

beam, an experiment was carried out to scrape o part of the beam as it passed 

through RC9. The intent of the experiment was to alter the shape of the beam and 

then observe how this new version of the beam propagated through the system. Data 

was then taken at subsequent phosphor screens. The results are shown in Figures 
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Figure 6.7: This shows data taken from the ring at RC1. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, while QR2 is scanned horizontally. 
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Figure 6.8: This shows data simulated in the ring at RC1. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, QR2 is scanned horizontally. 
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Figure 6.9: This shows data taken from the ring at RC2. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, while QR2 is scanned horizontally. 
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Figure 6.10: This shows data simulated in the ring at RC2. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, while QR2 is scanned horizontally. 
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Figure 6.11: This shows data taken from the ring at RC3. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, while QR2 is scanned horizontally. 
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Figure 6.12: This shows data simulated in the ring at RC3. The quadrupoles QR2 
and QR3 are scanned between .75 and 2.25 in equal increments. QR3 is scanned 
vertically, while QR2 is scanned horizontally. 
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6.13 and 6.14. The beam was scraped using a hand-controlled fast phosphorus screen 

that was put in RC9. Unfortunately this fast phosphorus screen is diÿcult to take 

data from, so a best guess had to be made regarding the initial distribution that 

would be scraped; furthermore, since the beam size needed for multiple scraping 

distances necessitated the 21 mA beam, steering issues prevented an accurate set of 

initial conditions for the beam. For the purposes of the simulation, the size of the 

scraped region was calculated using pixel values from fast phosphor screen images. 
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Figure 6.13: On the top are the simulated distributions and on the bottom are the recorded distributions for RC11. 
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Figure 6.14: On the top are the simulated distributions and on the bottom are the recorded distributions for RC12. 
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CHAPTER 7 

CONCLUSIONS 

In this work we have developed a number of new tools that allow the user to 

add the e ects of space charge to the map of a system. By adding the map to 

the system we are able to extract information from the system that had only been 

found analytically for very specifc sets of conditions, for any system that we choose. 

Furthermore, this method can also be used to advance particles in a self-consistent 

manner that will allow a very fast simulation that includes space charge. This 

method does have some circumstances where it does not work perfectly; under those 

conditions a fast multipole method has been implemented to advance the particles. 

These tools and methods were used to successfully model the University of Mary-

land Electron Ring. By using low-energy electrons as proxies for high-energy heavy 

particles, UMER allows the user to have access to a space-charge-dominant machine 

on a very fexible schedule. Furthermore, due to its small size and power require-

ments it has a distinct availability and cost advantage over other accelerators. Fi-

nally, since the electrons are low energy, if a potential steering solution is incorrect, 

the prospects of machine damage or radioactive activation are non-existent. It is 

also capable of operating beams with space charge regimes signifcantly beyond cur-

rent large accelerators; for instance, the Fermilab booster has a Laslett tune shift of 

0.3 while the lowest current beam in UMER has a tune shift of 0.5. 

In order to fully understand the unique design and dynamics of beams in UMER 

we had to develop a number of new tools with which to analyze the single- and 

multiple-particle e ects. The low-energy nature of the machine means that the 
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earth’s magnetic feld is no longer a triviality, and must be treated as a source of 

15% of the bending in the system. Based on measurements of the earth’s feld, a 

kick-based method was developed to model the e ects of the earth’s feld throughout 

the ring. Using this model, a series of experiments was run that could not only ex-

amine many of the long-term high-order e ects of the beam, but could also produce 

trajectories which match recorded data on the beam. 

Once the single-particle dynamics had been examined, it was necessary to look 

into multiple-particle e ects, more specifcally space charge. Since the particles in 

the beam all want to repel each other, the dynamics of the beam will be altered in a 

number of ways. In order to provide new ways to analyze a beam-based system, we 

have developed a method of adding the e ects of space charge to a beam map. This 

allows the system to be analyzed using normal form methods which can extract 

useful information directly from the transfer map. There are a number of other 

methods to simulate the movements of particles through a system by themselves. 

The methods developed in this work have allowed us to not only track the movements 

of test particles, but also to determine the transfer map of the system with space 

charge included. 

Using the new tools developed it was possible to simulate tunes, chromaticities, 

and long-term emittances, and how they are directly related to the strength of space 

charge in the system. These quantities are normally measured using analytical 

approximations that assume that the distribution of the beam always follows the 

same distribution function. The method developed here allows these quantities to 

be extracted from the map in a self-consistent manner, adapting to changes in the 

distribution of the beam. The method also has a degree of parallelizeability that 

allows for the use of very large numbers of computers to work together in an eÿcient 
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manner to simulate beams with particle numbers far larger than was previously 

thought to be feasible. 

The method is currently implemented in two dimensions, and has been found 

to have its maximum accuracy when using a sixteenth-order polynomial series to 

simulate space charge. Above this the accuracy decreases; therefore, if the distri-

bution function cannot be accurately modeled using a sixteenth-order polynomial, 

there will be a loss of accuracy. In order to be able to advance particles under these 

conditions, a di erential algebraic version of the fast multipole method has been 

developed. This method uses di erential algebras to simplify the creation of local 

expansions to help speed up the process. 

This work will allow for an increased understanding of the ways that space 

charge not only evolves the distribution of test particles in a beam, but also how 

this evolution a ects other physical quantities in the beam. This will allow for a 

greater understanding of multiple-particle dynamics in charged particle beams, as 

well as self-consistent methods to advance very large numbers of particles. 
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A.1 Introduction 

This is a guide to the use of the COMFY expansion to COSY Infnity 9.0. 

This expansion allows the user to calculate the transfer map of a beam system 

which includes the e ects of space charge. This operates by sending a group of 

test particles through the system, converting their distribution into a charge density 

function, and then calculating the electric felds for the beam. These electric felds 

are added to the map. Furthermore this expansion also includes a fxed-level fast 

multipole method to advance particles under circumstances that might be diÿcult 

for the map itself. 

A.2 Setup and First Use 

In order to use COMFY for the frst time, simply take the folder you wish to use 

your code in, and make sure it contains COSY.bin. Then install the fle COMFY.fox 

as well as the folder COMFYFILES. First compile COMFY.fox. Now when you use 

your program, write INCLUDE ’COMFY’; as the frst line, and you are ready to 

begin. 

A.3 Using COMFY 

We will compare the use of a basic COSY code to one that uses COMFY and 

then discuss the di erence. A generic COSY simulation takes the form, 

INCLUDE ’COSY’; 
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procedure run; 

OV 6 2 0; 

RPE .1; um; 

DL .2; 

pm 6; 

endprocedure; run; end; 

whereas the space charge version takes the form, 

INCLUDE ’COMFY’; 

procedure run; 

variable radii 1 2; 

variable scratch 1 2; 

COV 6 2 0 16; 

RPE .1; um; 

radii(1):=.01; radii(2):=.01; 

scratch(1):=.005; cratch(2):=.005; 

comfyinit 1 30000 .005 radii scratch; 

CDL .2; 

pm 6; 

endprocedure; run; end; 

The frst di erence is the use of COV instead of OV to set the order and variables. 

OV NO NV NP; 

uses NO number of orders,NV number of dimensions, and NP number of parameters. 

COV NO NV NP OM; 

uses the same NO, NV and NP, but OM is the order that the space charge 

distribution will be calculated to. If you want the order of the transfer map and the 

https://radii(2):=.01
https://radii(1):=.01
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order of the space charge model to be the same, then COV is not necessary; merely 

use OV as you normally would. However, the space charge model is most accurate 

at 16th order. 

The next di erence is the use of the line: 

COMFYINIT <distribution type> <particle number> 

<distribution radius> <aperture array> <moment order> 

<current> <scratchspace> 

The entries and their meanings are given in Table A.1. 

Table A.1: The entries used in the COMFYINIT command, as well as descriptions 
of what they do. 

Entry 
<distribution type> 

<particle number> 

<distribution radius> 

<aperture array> 

<moment order> 

<current> 

<scratchspace> 

Description 
Determines the distribution used in the simulation, 
options are discussed in A.4. 
This is the number of particles, above 1,000,000 
particles there will be no increase of accuracy, 
above 50,000 particles the hard disk must be used 
causing an increase in the amount of time required. 
For ftting or large machines smaller numbers 
should be used. 
This is the range within which the 
distribution is populated, see A.4. 
This is a two dimensional array giving the size of 
the beam pipe for particle removal. Positive values 
give a rectangle, while negative values give an ellipse. 
This is the order of moments that are 
calculated for the space charge model. 
this is the beam current, COMFY currently models 
an infnitely long beam, so peak current is used. 
This is used for some of the distributions (see A.4). 

If you are restarting a section over and over again (i.e., as part of an optimization 

routine) you can use the procedure: 

COMFYREINIT <distribution type> <particle number> 

<distribution radius> <aperture array> <current> <scratchspace> 
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Finally we replace the element DL with the element CDL. CDL uses the space 

charge algorithms for a list of supported elements; see Section A.5. There are a 

number of operating modes which are discussed in Section A.6. 

A.4 Distribution Options 

There are multiple actions that can create the initial conditions of the beam. 

If you have a set of initial conditions that you wish to use put them in a fle with 

x,a,y,b on each line separated by a single space (COSY does not recognize tabs) 

then in the <distribution type> section of the COMFYINIT line put the string 

literal of the flename. If you do this distribution radius and scratchspace are not 

called. 

A.4.1 Integer Distributions 

The basic distributions are given in Table A.2. There is also an outlier, that is 

distribution 0. In this case the <initrad> would take the value Rx&Ra&Ry&Rb, 

while scratch would be a DA vector that contains the desired distribution function. 

If you wish to have a zero value for one of the elements, simply zero out its radius. 

Table A.2: The di erent possible integer distributions and their descriptions. �

number name scratch 
1 
2 
3 

Uniform ellipse 
Gaussian 
Parabolic 

Array with two entries containing the x and y semi-axes. 
Array with two entries containing σx and σy. 
Array with two entries containing the limits of x and y. 
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A.4.2 Two-Integer Distributions 

If you wish to have a di erent distribution for the position distribution from the 

angle distribution, then combine the two. If we wanted to have a distribution that 

was uniform in xy and Gaussian in ab we would use the following line: 

COMFYINIT 1&2 nparticles Rxy&Rab aperturearray moment 

order current scratch 

where scratch is a four-part array: 

scratch(1)=xradius 

scratch(2)=σa 

scratch(3)=yradius 

scratch(4)=σb 

A.4.3 Four-Integer Distribution 

This allows for di erent distributions for all four distributions. We would use it 

in this manner (allocate memory accordingly): 

COMFYINIT 0&1&2&3 nparticles Rx&Ra&Ry&Rb aperturearray moment 

order current scratch 

scratch(1)=DA vector 

scratch(2)=a radius 

scratch(3)=σy 

scratch(4)=b outer radius 
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A.5 Supported Elements 

In Table A.5 we see the COSY element and the COMFY element; they both 

take the same arguments. If you want to use an element that is not available, a 

stand-alone kick has been implemented with the routine, 

UPSKICKER length h positionsin positionsout 

where length is the length over which you wish to kick, h is the inverse of the radius 

of curvature, and positionsin and positionsout are deprecated. 

Table A.3: Table of supported COMFY elements and their COSY equivalents. 

COMFY element COSY element 
CDL DL 
CMQ MQ 
CMH MH 
CMO MO 
CMD MD 
CMZ MZ 
CM5 M5 
CMM MM 
CMS5 MS 
CDP DP 
CDI DI 

A.6 Operating Modes 

There are currently fve operating modes that are supported using COMFY. 

The frst is the default mode, where COMFY will advance the particles through the 

system and calculate the space charge kick. If the procedure, 

USEFMM nbins ncoef chargemass 
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is called, the e ects of space charge will be applied to the system using the fast 

multipole method, while the map will still be calculated using the moment method. 

For more information, see Section A.8. If the procedure, 

COMFYOFF 

is called, the simulation will revert to simple COSY elements, no particles will be 

advanced, and space charge will not play a role in the system. This could be used if 

you wanted to compare the maps of a given system with space charge and without. 

To begin advancing particles again, call the procedure, 

COMFYON 

If you would like to advance the particles without using the space charge map 

calculation, you can call the procedure, 

COMFYPAUSE 

To start calculating the space charge map again, use the procedure, 

COMFYUNPAUSE 

Finally, if you are interested in tracking the particles using the FMM you can call 

the procedure, 

COMFYFMMTRACK 

after the COMFYINIT line. This will advance particles using the space charge deter-

mined by the FMM but will not calculate the space charge map. 

A.7 Parallel COMFY 

In order to use COMFY in parallel, the bin fle COMFY_MPI has been created. 

You will see signifcant time savings when dealing with the map method. Please 

note that it currently does not support the FMM method in parallel. 
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The only di erence has to do with input and output fles. If you are using an 

input fle you should make one for each processor core you are using, with its number 

appended to the beginning, and with the correct number of particles for each node. 

For example, if I want to use 40,000 particles on four nodes I would make four fles 

with 10,000 particles each, with the names, ’1initial.dat’ ’2initial.dat’ ’3initial.dat’ 

’4initial.dat’ then I would initialize COMFY with the line, 

COMFYINIT ’initial.dat’ nparticles 0 aperturearray 

moment order current 0 

with the other entries what they would be normally. Second, the output fles are a 

little di erent, but the command is the same: 

OUTPUTFILE Filename suffix; 

As in the previous case you will get four fles, that are named, 1Filename.suÿx 

2Filename.suÿx 3Filename.suÿx 4Filename.suÿx At this point I just use a short 

program to stitch them all together into one. 

A.8 FMM Use 

The fast multipole method used here is a method of calculating the potential 

and electric felds that will work for any distribution. In order to use this method, 

before the COMFYINIT line you must use, 

USEFMM nbins ncoef chargemass 

where nbins is the number of bins on a side, and ncoef is the number of coeÿcients to 

calculate the DA vector (note, you must declare the order for COSY to be greater 

than or equal to this number). Chargemass is a method for involving multiple 

species in the simulation; inputting the number 0 will use the species defned as 
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the reference particle. If you wish to use a set of predetermined particles, frst you 

must add a parameter in the OV procedure. COMFY automatically uses para(1) 

for this method. Then you must use the RPR procedure to defne the particle by 

its magnetic rigidity. The line should look like this: 

RPR χm*para(1) M0 Z0; 

Next put the string literal for a fle which contains in space separated columns: 

(Charge per Macroparticle [in elementary charge units]) 

(Particle energy in MeV) 

(particle mass [in amu]) 

(Particle charge) 

As an example, if we wanted a distribution of carbon 12 at 10MeV where each 

macroparticle represents 1000 atoms, the line would read, 

6000 10 12 6 

If we wanted some carbon 14, it would read, 

6000 10 14 6 

It should be noted that since this method uses a Taylor expansion the di erence 

should not be large if magnetic elements are desired. 

These are read separately from the initial conditions so, if you want a random 

spread of particles to go along with the separately assigned particles, this can be 

done. Simply make sure there are enough entries for the particles you want. Please 

note that this signifcantly increases the amount of time required for each kick. 
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In order to properly account for the e ects of image forces on the beam it becomes 

important to determine the magnitude of the force in order to apply a kick. We 

assume a perfectly conducting straight cylindrical beam pipe, and a beam which 

has cylindrical symmetry, with a constant longitudinal charge density that is long 

enough for end e ects to be neglected; see Figure B.1. This is a good approximation 

for UMER. Using a cylindrical coordinate system, the di erential equation is of the 

form: 

qλ ξ¨ ξ − = 0, (B.1) 
2πǫ0m R2 − ξ2 

where ξ is the o set from the center of the beam pipe, R is the radius of said beam 

pipe, q is the charge of an electron, λ < 0 is the charge density along the beam 

pulse, m is the mass of the electron and ǫ0 is the electric permittivity. This models 

the forces on the centroid of the beam. 

Figure B.1: Diagram of the coordinate system in use for deriving the e ects of image 
charge on the motion of the beam. 
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Since the di erential equation is of the form ξ ′′ +G ′ (ξ) = 0 it has the conservation 

law, 

1 
ξ ′2 + G(ξ) = E. (B.2) 

2 

We assume ξ ′ = 0 at ξ = 0, since the image charge in a cylinder only a ects 

o -center beams. This leads to 

s 
qλ R2 − ξ2 

where ξ is the magnitude of the displacement and equal to 2 + y2 . Using a, b to 

ξ ′ = ± − 
2πǫ0m 

ln( 
R2 

), (B.3) 

p 
x 

represent the angles while assuming that the particles are non-relativistic, we get 

their kick strength equal to 

s 
x qλ R2 − (x2 + y2)

�a = p − ln( ), (B.4) 
2 R2 v0 x2 + y 2πǫ0m 
s 

y qλ R2 − (x2 + y2)
�b = p − ln( ). (B.5) 

v0 x2 + y2 2πǫ0m R2 

Now we derive the equation of motion for an individual (test) electron in the 

beam so that the image force can be applied to an arbitrary set of initial conditions. 

So we defne the variable � as the line between the particle in question and the 

image charge; see Figure B.2. 

Once again we get that 
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Figure B.2: Diagram of the coordinate system in use for deriving the e ects of image 
charge on a test electron in the beam. 

qλ 1¨ � − = 0. (B.6) 
2πǫ0m � 

This is solved in a similar manner to the centroid problem: 

r 
qλ 

�̇ = 2C + ln(�). (B.7) 
πǫ0m 

Now we defne the coordinates of the image charge and the particle. The position 

of the image charge is based on the location of the beam centroid with coordinates 

(xc, yc), and the location of the test electron will be (xe, ye). This leads to 

R2xc
�x = − xe, (B.8) 

ξ2 

R2yc
�y = − ye, (B.9) 

ξ2 
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p

where in the notation just introduced ξ = xc 
2 + yc 

2 . This entails 

s 
q R2 R2 xexc + yeyc

�2 )2 − 2 2 2+ �2 = ( ( ) + x + y . (B.10) x y e eξ ξ ξ 

Inserting this into (B.7) we obtain 

v 
s 

u 
u qλ R2 R2 xexc + yeyc

�̇ = tC + ln( ( )2 − 2 ( ) + x2 
e + ye 

2). (B.11) 
πǫ0m ξ ξ ξ 

To determine the value of C, we require that if the test electron coincides with 

˙ ξ̇.the centroid of the beam, xe = xc, ye = yc, then � = The solution for C is 

re-inserted in the equation, where we apply the unit vectors to get the direction of 

the kick, and we scale it to the particle optical coordinates a and b. Finally, we 

obtain 

x(s) = xi, (B.12) 
R
ξ 

2 
xc − ξxi 

a(s) = ai + p × (B.13) 
R4 − 2R2(xixc + yiyc) + (x2 

i + yi 
2)ξ2 

s 
qλ R6 − 2R4(xixc + yiyc) + (xi 

2 + yi 
2)R2ξ2 1 × ln( ) ,

2πǫ0m (R2 − ξ2)3 v0 

y(s) = yi, (B.14) 
R2 − ξyiξ yc 

b(s) = bi + p × (B.15) 
R4 − 2R2(xixc + yiyc) + (xi 

2 + yi 
2)ξ2 

s 
2 2)R2ξ2qλ R6 − 2R4(xixc + yiyc) + (x + y 1 × ln( i i ) . 

2πǫ0m (R2 − ξ2)3 v0 
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The kick K is given by evaluating at s = ℓ. 

From a programming perspective, it is possible, when ftting, for ξ to become 

greater than R. For this reason the software was written so that if ξ was greater 

than R the procedure would return a zero kick, and the objective function for the 

kick would be increased by a set amount. 
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In order to properly execute a simulation in parallel it is necessary to use a proper 

script to set up the environment. An example of the script most often used is given. 

#!/bin/bash 

if [ "0$1" == "0" ]; then 

echo "Usage: $0 nproc" 

exit 0; 

else nnproc=$1 

nproc= ‘expr $1 / 2‘ 

echo $nnproc 

mpdboot -v -f machines.Linux -n $nproc 

mpdtrace -l 

time mpiexec -n $nnproc mpicosy >> "Timing.dat" 

mpdallexit 

fi 

As can be seen in the example, the mpicosy routine is called using twice as many 

CPUs have been set aside as have nodes that have been activated. This is because 

there are two CPUs per node, and the MPI exec function launches threads; that 

way two executions will be put on each node, thus using both CPUs. This type of 

script can then be placed into a larger script, as is seen in this example: 

#!/bin/bash 

echo 3 > "Timing.dat" 

for j in 1000000 #2000000 3000000 4000000 

do 

for i in 50 #48 50 52 54 56 #2 4 8 10 18 
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do 

nproc=$i 

echo $j >"particlenumber.dat" 

echo $j >>"Timing.dat" 

echo $i $j 

./vstartII.bat $nproc 

done 

done 

These scripts are designed to be used with the NICADD Beowulf cluster; it 

contains 56 dual core processor nodes connected through a 100Mbit network. It 

uses Fedora Linux, and its nodes use AMD Athlon 2400+ with 1GB of RAM per 

node. 
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A series of modifcations had to be made in order to properly simulate UMER. In 

order to ease programming, the ring was divided up into repeating sections. In order 

to properly start and stop at the regions which contain the beam position monitors 

and phosphor screens, these sections were split into two. An example of this is given. 

procedure MNSEC1 I1 I2 D1 D2 theta VD1 VD2 ind value maggy label; 

variable dummy 1; 

MFD .05183 theta .04726 maggy(1) 6; 

MDL .00235 maggy(2) 6; 

if ind=1; dummy:=value; 

elseif ind#1; dummy:=I1; 

endif; 

MMQ .05164 dummy .0295 maggy(3) 15; 

MDL .03508 maggy(4) 6; 

MBD .0382 .02872 D1 VD1 maggy(5) 6; 

MDL .03508 maggy(6) 6; 

if ind=2; dummy:=value; 

elseif ind#2; dummy:=I2; 

endif; 

MMQ .05164 dummy .0295 maggy(7) 15; 

MDL .02718 maggy(8) 6; 

endprocedure; 

The elements MFD, and MBD are fange dipoles and bending dipoles with the 

earth’s magnetic feld included; MDL and MMQ are drifts and quadrupoles with 

the earth’s magnetic feld included. The term “maggy” is an array which contains 

the string that names the fle which contains the magnetic feld data for the given 
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element. As an example of how this is implemented, an example of the bending 

dipole is shown. 

procedure MBD L D dtheta atheta file order; 

variable i 1; variable j 1; variable k 1; 

variable data 1 3; variable input 1; 

variable R 1; 

variable ell 1; 

ell:=LSYS; 

R:=((180*L)/((abs(dtheta-atheta)+.0000000000001)*PI)); 

openf 20 file ’OLD’;{ Here file is the string contained 

in the array maggy from the previous set of code.} 

if dtheta<0; 

CB; 

endif; 

i:=order; 

loop j 1 i;{ This loops over the number of kicks.} 

loop k 1 3;{ This loops over the number of field 

elements contained.} 

read 20 input;{This reads in each magnetic field number} 

input:=input*.0000001;{This scales it to S.I. units} 

data(k):=input; 

endloop; 

DP R abs(dtheta-atheta)/(2.0*i) D; 

if j=1; 

LSYS:=0; 
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endif; 

MKICK L/i data(1) data(2) data(3) D i/L; 

if j=order; 

LSYS:=ell; 

endif; 

DP R abs(dtheta-atheta)/(2.0*i) D; 

endloop; 

if dtheta<0; 

CB; 

endif; 

closef 20; 

TA -atheta 0.0; 

SA -L*(tan(((atheta)*PI)/360.0)) 0.0; 

endprocedure; 

There are other sections for the injection and re-circulation lines which also 

include the e ects of image charges that are outlined in B. If we wanted to simulate 

an entire turn of the ring from cathode to the end of the recirculation section the 

code would look like this: 

STRAIGHT1 SOL SD1 IQ1 SD2 IQ2 SD3 IQ3 IQ4; 

STRAIGHT2 SOL SD1 SD1V IQ1 SD2 SD2V IQ2 SD3 SD3V IQ3 IQ4; 

STRAIGHT3 SOL SD1 IQ1 SD2 IQ2 SD3 IQ3 IQ4; 

MINJY SD4V IQ5 SD5 SD5V IQ6 SD6 YQD -pdvq QR1 YSEC1 obj; 

MNSEC1 curr(1) curr(2) 10.0 10.0 vert(1) steer(1) steer(2) 
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switch(1) supp(1) NSEC1 ’RC1’; 

MNSEC2 curr(3) curr(4) 10.0 10.0 vert(1) steer(1) steer(2) 

switch(1) supp(1) NSEC1 ’RC1’; 

MNSEC1 curr(5) curr(6) 10.0 10.0 vert(2) steer(3) steer(4) 

switch(2) supp(2) NSEC2 ’RC2’; 

MNSEC2 curr(7) curr(8) 10.0 10.0 vert(2) steer(3) steer(4) 

switch(2) supp(2) NSEC2 ’RC2’; 

MNSEC1 curr(9) curr(10) 10.0 10.0 vert(3) steer(5) steer(6) 

switch(3) supp(3) NSEC3 ’RC3’; 

MNSEC2 curr(11) curr(12) 10.0 10.0 vert(3) steer(5) steer(6) 

switch(3) supp(3) NSEC3 ’RC3’; 

MNSEC1 curr(13) curr(14) 10.0 10.0 vert(4) steer(7) steer(8) 

switch(4) supp(4) ISEC1 ’RC4’; 

MNSEC2 curr(15) curr(16) 10.0 10.0 vert(4) steer(7) steer(8) 

switch(4) supp(4) ISEC1 ’RC4’; 

MNSEC1 curr(17) curr(18) 10.0 10.0 vert(5) steer(9) steer(10) 

switch(5) supp(5) NSEC4 ’RC5’; 

MNSEC2 curr(19) curr(20) 10.0 10.0 vert(5) steer(9) steer(10) 

switch(5) supp(5) NSEC4 ’RC5’; 

MNSEC1 curr(21) curr(22) 10.0 10.0 vert(6) steer(11) steer(12) 

switch(6) supp(6) NSEC5 ’RC6’; 
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MNSEC2 curr(23) curr(24) 10.0 10.0 vert(6) steer(11) steer(12) 

switch(6) supp(6) NSEC5 ’RC6’; 

MNSEC1 curr(25) curr(26) 10.0 10.0 vert(7) steer(13) steer(14) 

switch(7) supp(7) NSEC6 ’RC7’; 

MNSEC2 curr(27) curr(28) 10.0 10.0 vert(7) steer(13) steer(14) 

switch(7) supp(7) NSEC6 ’RC7’; 

MNSEC1 curr(29) curr(30) 10.0 10.0 vert(8) steer(15) steer(16) 

switch(8) supp(8) NSEC7 ’RC8’; 

MNSEC2 curr(31) curr(32) 10.0 10.0 vert(8) steer(15) steer(16) 

switch(8) supp(8) NSEC7 &’RC8’; 

MNSEC1 curr(33) curr(34) 10.0 10.0 vert(9) steer(17) steer(18) 

switch(9) supp(9) NSEC8 ’RC9’; 

MNSEC2 curr(35) curr(36) 10.0 10.0 vert(9) steer(17) steer(18) 

switch(9) supp(9) NSEC8 ’RC9’; 

MNSEC1 curr(37) curr(38) 10.0 10.0 vert(10) steer(19) steer(20) 

switch(10) supp(10) ISEC2 ’RC10’; 

MNSEC2 curr(39) curr(40) 10.0 10.0 vert(10) steer(19) steer(20) 

switch(10) supp(10) ISEC2 ’RC10’; 

MNSEC1 curr(41) curr(42) 10.0 10.0 vert(11) steer(21) steer(22) 

switch(11) supp(11) NSEC9 ’RC11’; 

MNSEC2 curr(43) curr(44) 10.0 10.0 vert(11) steer(21) steer(22) 
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switch(11) supp(11) NSEC9 ’RC11’; 

MNSEC1 curr(45) curr(46) 10.0 10.0 vert(12) steer(23) steer(24) 

switch(12) supp(12) NSEC10 ’RC12’; 

MNSEC2 curr(47) curr(48) 10.0 10.0 vert(12) steer(23) steer(24) 

switch(12) supp(12) NSEC10 ’RC12’; 

MNSEC1 curr(49) curr(50) 10.0 10.0 vert(13) steer(25) steer(26) 

switch(13) supp(13) NSEC11 ’RC13’; 

MNSEC2 curr(51) curr(52) 10.0 10.0 vert(13) steer(25) steer(26) 

switch(13) supp(13) NSEC11 ’RC13’; 

MNSEC1 curr(53) curr(54) 10.0 10.0 vert(14) steer(27) steer(28) 

switch(14) supp(14) NSEC12 ’RC14’; 

MNSEC2 curr(55) curr(56) 10.0 10.0 vert(14) steer(27) steer(28) 

switch(14) supp(14) NSEC12 ’RC14’; 

MNSEC1 curr(57) curr(58) 10.0 10.0 vert(15) steer(29) steer(30) 

switch(15) supp(15) NSEC13 ’RC15’; 

MNSEC2 curr(59) curr(60) 10.0 10.0 vert(15) steer(29) steer(30) 

switch(15) supp(15) NSEC13 ’RC15’; 

MNSEC1 curr(61) curr(62) 10.0 10.0 vert(16) steer(31) steer(32) 

switch(16) supp(16) ISEC3 ’RC16’; 

MNSEC2 curr(63) curr(64) 10.0 10.0 vert(16) steer(31) steer(32) 

switch(16) supp(16) ISEC3 ’RC16’; 
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MNSEC1 curr(65) curr(66) 10.0 10.0 vert(17) steer(33) steer(34) 

switch(17) supp(17) NSEC14 ’RC17’; 

MNSEC2 curr(67) curr(68) 10.0 10.0 vert(17) steer(33) steer(34) 

switch(17) supp(17) NSEC14 ’RC17’; 

MIYSEC curr(69) curr(70) QR1 YQD 10.0 steer(35) pdv 0 SD6 0.0 YSEC1 

ofs tlt obj; 

The frst three sections give the injection and matching line, and MINJY is the 

injection side of the Y-section. The seventeen ring sections are then shown, followed 

by the element MIYSEC which is the recirculation side of the Y-section. 
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