
February 6, 2019

Fast Multipole Method Manual

1 Description

This is a reasonably well-optimized code for our differential algebraic multilevel fully adaptive
3D fast multipole method for the Laplace kernel of point particles in Cartesian basis. The
data structures are coded in standard, portable C++ to allow dynamic memory management
and bit-level operations, in addition to speed and easier parallelization. The expansions and
translations are done in a compact COSYScript code to take advantage of the following:

• DA data types that allow automatic high-order truncated Taylor expansions with ma-
chine precision.

• Efficient function composition.

• Fast polynomial evaluation.

2 Instructions

The file “fmm mpi.fox” is the COSY script for running FMM. It may be ran in serial using
cosy fmm mpi
or in parallel using COSY compiled for OpenMPI using
mpirun -np 4 mpi cosy.gnu.large fmm mpi
Here, it is assumed that the Michigan State University “COSY” program has been built or
installed beforehand, and that a file “COSY.bin” has been saved from an earlier execution
of the “cosy.fox” script. If not, please go to the COSY Website

(http://www.bt.pa.msu.edu/index cosy.htm).
The current COSY implementation of FMM requires a C++ program that creates the ap-
propriate data for its (FMM) execution in COSY. The C++ source files for this program
can be found inside 3D fmm.zip within the fmmcpp directory. To compile, first extract the
files listed below to a folder and use the makefile provided to compile the program.

main.cpp, octree.h, particles.h, timers.h, getopt.h, particles.cpp, octree.cpp, timers.cpp,
getopt.c

You will need the GNU g++ or Intel C++ compiler installed. Using the included make-
file, the program is compiled with GNU g++ or Intel icpc and named “fmmcpp.gnu” or
“fmmcpp.intel”, respectively. See the header of the makefile for instructions on its options.
Because the script “fmm.fox” executes the C++ program, there must be a way to supply
the C++ program with the parameters required for its execution. This is done by preparing
a file named “fmm.input” that contains the following information:

1

http://www.bt.pa.msu.edu/index_cosy.htm

Line 1: name of output directory for temporary files (must include
path delimiter)

Line 2: name of source file

Line 3: name of charge file

Line 4: number of source particles

Line 5: name of target file

Line 6: number of target particles

Line 7: particle limit

Line 8: name of fmmcpp executable file

Line 9: fmm order

Line 10: binary input 0 for asci, 1 for binary, 2 for cosy binary

Line 11: load balancing 1 for on 0 for off

A value of 0 in lines 4 and/or 6 implies taking all particles included in the files from lines 3
and 5.

If the charge values are different from protons, electrons, positrons or antiprotons, the line
3 must be appropriately replaced with the specific charge file. e.g data\charges 1k.dat On
successful execution, the results are saved in the output files “fields” and “potentials”. The
fmm mpi.summary file includes input parameters and the timing information for each of the
main sections of fmm mpi.fox. Additional run-time information is also saved in several log
files.

proc 1 1.log information about the processor number 1
fmmcpp 1.status indicates whether the data structuring in C++ is suc-

cessful. For instance, if the value is 0, then the fmm.fox
will not be executed.

fmmcpp 1.output contains contents of fmmcpp.input with updated particle
limit from each process on line 12.

3 Instructions for the C++ program

The minimum input required for standalone C++ program is position and charge information
for charged-particle sources. The current version expects this information to be found in text
files: for positions each line contains the Cartesian coordinates of a source/target separated
by spaces; for charges one integer per line equal to the source charge value in units of the
absolute value of the elementary charge. The syntax for executing the C++ program is as
follows: fmmcpp.gnu -s <source file> [-t <target file>] [options]

The other command-line options for the C++ program are as follows:

2

-p <output directory, default = tmp/>

-S <number of source particles, default = all>

-T <number of source particles, default = all>

-q <particle limit, default = 5% of number of source particles>

-o <COSY order, default = 2>

-N <number of processors, default = 1>

-b <option, a=asci, b=binary, c=cosy binary>

-s <source data file, default=NULL>

-t <target data file, default=NULL>

The output directory is where the data generated by the C++ program are written, and
where COSY FMM expects them to be found. The “-S” and “-T” options are useful in
processing subsets of source and target particles that are actually available in the named
files.

4 Particle limit

The particle limit is calculated based on the particle limit fraction in three ways. Hence, it
can be set to any desired value as explained below.

1. If the particle limit fraction is greater than or equal to 1, the particle limit is the integer
part of the particle limit fraction. If this particle limit is, however, greater than the
number of source particles you will get an error message saying ERROR: particle limit
exceeds the number of sources.

For example, assume that the number of source particles is 1000. If the particle limit fraction
is 4.5, then the particle limit will be 4. If the particle limit fraction is 1001.12, then the
particle limit, 1001, will exceed the number of source particles and the error message
will be displayed.

2. If the particle limit fraction is greater than zero (but less than 1), the particle limit
is calculated as the product between the number of source particles and the parti-
cle limit fraction and assigned the integer part of that value to the particle limit. e.g
If the particle limit fraction is 0.0251 and the number of source particles is 1000 then
the particle limit will be 25.

3. If the particle limit fraction is zero (default setting) or negative, the particle limit
is calculated as the product between the number of source particles and the DE-
FAULT PARTICLE LIMIT (default value is 0.05) and assigned the integer part of
that value to the particle limit. e.g If the particle limit fraction is -1 and the number
of source particles is 1000 then the particle limit will be 50.

3

5 Examples

Example 1: This first example is to show the different types of input the fmm may accept.
The fmm.input file for this first example is as described in 2. Its contents follow.

1 tmp/
2 input / po s i t i on s2000 . s sv
3 input / charges2000 . s sv
4 2000
5 input / po s i t i on s2000 . s sv
6 2000
7 40
8 . / fmmcpp . gnu
9 2
10 0
11 0

In this case, the input data is assumed to be in ASCI format. Input data is also provided in
binary and cosy binary formats. The fmm.input file must be modified for binary data (left)
and cosy binary (right) are below as follows.

1 tmp/
2 input / po s i t i on s2000 . bin
3 input / charges2000 . bin
4 2000
5 input / po s i t i on s2000 . bin
6 2000
7 40
8 . / fmmcpp . gnu
9 2

10 1
11 0

1 tmp/
2 input / po s i t i on s 2000 c o sy . bin
3 input / charges2000 cosy . bin
4 2000
5 input / po s i t i on s 2000 c o sy . bin
6 2000
7 40
8 . / fmmcpp . gnu
9 2
10 2
11 0

The output in all of these cases should match that of fields 1.txt and potentials 1.txt.

If using windows (as in the next two examples), each forward slash (/) must be replaced by
two backslashes (\\) within fmm.input.

Example 2: Use N 1k.ssv for both source particle data and target particle data. This data
are normally distributed. The fmm.input file should contain the following parameters.

1 tmp\\
2 N 1k . s sv
3 charges 1k . dat
4 1000
5 N 1k . s sv
6 1000
7 100
8 fmmcpp . gnu
9 9

10 0
11 0

4

The output should match that of fields 2.txt and potentials 2.txt.

Example 3: Use sourcedata.ssv and targetdata.ssv for source particle and target particle
data, respectively. The former data are normally distributed whereas the latter is uniformly
distributed. The fmm.input file should contain the following parameters.

1 tmp\\
2 sourcedata . s sv
3 charge s 2 . dat
4 2000
5 ta rge tdata . s sv
6 2401
7 100
8 fmmcpp . gnu
9 9

10 0
11 0

The output should match that of fields 3.txt and potentials 3.txt.

5

	Description
	Instructions
	Instructions for the C++ program
	Particle limit
	Examples

