Physics 370 Homework 3 Due Friday, February 10, 2017

Reading: Griffiths pages 59-75.

Problem 1 A line charge distribution extends along the x-axis from $x = -2L$ to $x = L$. It has a uniform (constant) charge density per unit length λ. Find the electric field at points on the positive z-axis, as a function of z. Check that your answer is the expected one for $z \gg L$. Also interpret your result in the limit $z \ll L$. In each of these two limiting cases, keep the leading non-zero term.

Problem 2 A flat annular disc region of inner radius a and outer radius b lies in the xy plane with its center at the origin. The disc carries a uniform (constant) surface charge density, with total charge Q. What is the surface charge density σ? Find the electric field a distance z above the center. Check that your answer is the expected one for $z \gg R$, uskeeping the leading non-zero term.

Problem 3 A hollow spherical shell carries charge density $\rho = kr$ in the region $a \leq r \leq b$. Use Gauss' Law in integral form to find the electric field in the three regions: (i) $r < a$, (ii) $a < r < b$, (iii) $r > b$. Check your answers by computing $\nabla \cdot \vec{E}$ everywhere. Make a graph of $|\vec{E}|$ as a function of r.

Problem 4 Consider two concentric thin spherical shells with radii R and $2R$, carrying charges $-Q$ and $2Q$ respectively. There is also a point charge Q located at $r = 0$ (the center of the spheres). Use Gauss' law to find the electric field everywhere. You must consider separately the three regions $r < R$, $R < r < 2R$, and $r > 2R$.

Problem 5 Suppose that in some region of space the electric field is found to be $\vec{E} = kr\hat{r}$, in cylindrical coordinates. (k is a constant.)
(a) What are the metric system units of k?
(b) Find the charge density ρ in the region.
(c) Find the total charge enclosed in a cylinder of radius R and length L, centered on the z axis, by using Gauss' Law in integral form applied to the given \vec{E}.
(d) Find the total charge enclosed in a cylinder of radius R and length L, again. But this time do it by integrating the result you found in part (b).