Handout 6: Theories of Meaning

Philosophy 404/504: Philosophy of Language
Professor Geoff Pynn
Northern Illinois University
Spring 2011

WHAT IS A THEORY OF MEANING?

1. Distinguishing two questions:
 I. The Meaning Question. For some sentence ‘S’ in language L, what does ‘S’ mean in L?
 II. The Foundational Question. What explains why ‘S’ means what it does in L?

2. This handout concerns different approaches to the Meaning Question. Our next two readings (Grice’s ‘Meaning’ and Dummett’s ‘Language and Communication’) concern the Foundational Question. Obviously, the two questions are intimately related, and how we answer one will almost certainly affect how we answer the other.

PROPOSITIONAL THEORIES

1. Propositional theories answer the Meaning Question by assigning to S a proposition as its meaning.

2. Theoretical work for propositions in philosophy of language
 (a) Propositional attitudes / indirect speech reports (‘S believes / said that p’)
 (b) Quantification over things said / believed (e.g. ‘There are three things we agree on’)
 (c) Synonymy, translation, saying the same thing in different ways

3. Big task for such theories is to get clear about what propositions are. Broadly, two approaches:
 (a) Structured conceptions of propositions
 i. Russellian: complex of objects, properties, and relations
 ii. Frege: complex of senses (= ways of thinking of objects, properties, relations)
 iii. Soames: complex mental event (e.g., meaning of ‘a is F’ = mental event of predicating F of a)
 (b) Possible-worlds conceptions of propositions
 i. Function from possible worlds into truth-values
 ii. Set of possible worlds

4. Challenges for such theories
 (a) Metaphysical challenges can be raised specific to each conception
 i. Challenge for proponent of structured propositions: what explains the unity of a proposition?
 ii. Challenge for proponent of possible-worlds propositions: what is a possible world? (Answer can’t involve propositions, since we are using possible worlds to explain what propositions are!)
 (b) General concerns:
 i. Standard nominalistic worries about abstract objects
 ii. Does assigning propositions to sentences actually explain anything about their meaning?
1. How can we say what ‘S’ means without assigning an entity to ‘S’ to serve as its meaning? Non-propositional theories approach the Meaning Question in terms of understanding: to know what ‘S’ means is to understand ‘S’. So we want an account of what a speaker must know to understand ‘S’ in L.

2. Verificationist theories. Basic idea: to understand ‘S’ in L is to know what empirical observations would confirm ‘S’ (i.e., to know the ‘verification condition’ for ‘S’).

 (a) Associated with logical positivism (esp. A. J. Ayer; see his 1946 Language, Truth, and Logic.)

 (b) Meant to apply only to sentences that are not analytic; analytic sentences ('Bachelors are unmarried men') get a different treatment

 (c) Makes meaning an epistemic phenomenon

 (d) Problems, problems, problems

 i. Classic problem I: what is the verification condition for “To understand ‘S’ is to know what observations would confirm ‘S’”? I don’t know, but I’m pretty sure I understand the thesis!

 ii. Classic problem II: the Verifying Machine. The Verifying Machine works like this: you enter ‘S’ and it tells you ‘true’ or ‘false’. The Verifying Machine is always right. Now you know, for any ‘S’, at least one empirical observation that would confirm ‘S’. Do you understand ‘S’?

 iii. Classic problem III: Quine-Duhem thesis. Which observations would confirm ‘S’ depends on what auxiliary hypotheses we assume. So there are no determinate verification conditions associated with any sentence. Thus either verificationism is false or sentences do not have determinate meanings (Quine took the second horn).

 iv. Classic problem IV: just a really inaccurate theory! E.g., smelling cigar smoke on Sandy would confirm ‘Sandy was just smoking a cigar,’ but that sentence’s meaning doesn’t seem to have anything to do with smells. In general, the verification-conditions of sentences are distinct from what we take those sentences to mean.

3. Truth-conditional theories. Basic idea: to understand ‘S’ in L is to know what it is for ‘S’ to be true in L (i.e., to know the ‘truth condition’ for ‘S’ in L).

 (a) This is Davidson’s very influential approach. To understand L, on this picture, is to be able to derive every true sentence of the following form (we call these ‘T-sentences’):

 (T) ‘S’ is true in L if and only if p (...where p is the truth-condition for ‘S’).

 To understand ‘S’ in L is to know the T-sentence for ‘S’ in L (though see the problem of coextensive terms below—problem (b)—for a possible complication).

 (b) The standard semantics for classical logic gives us a model for how we are able to derive T-sentences. Here is a toy language; let’s call it TL:

 Vocabulary of TL

 a, b, and c are individual constants.

 F, G, and H are one-place predicate letters.

 ¬ and & are connectives.

 Formation Rules of TL

 i. If α is an individual constant and Φ is a one-place predicate letter, then Φα is a formula.

 ii. If α is a formula, then ¬α is a formula.

 iii. If α and β are formulas, then α & β is a formula.

 iv. If α is a formula, it can be formed by a finite number of applications of rules i., ii., and iii.
SEMANTIC RULES OF \mathcal{L}

A domain D is a non-empty set of objects.

An interpretation function I maps exactly one object in D to each individual constant in \mathcal{L}, and a set of objects in D to each one-place predicate letter in \mathcal{L}.

A formula $\Phi \alpha$ is true on I if and only if $I(\alpha) \in I(\Phi)$.

A formula $\neg \alpha$ is true on I if and only if it is not the case that α is true on I.

A formula $\alpha \land \beta$ is true on I if and only if α is true on I and β is true on I.

If you know the vocabulary, formation rules, and semantic rules of \mathcal{L}, then for every formula α in \mathcal{L}, provided you know I, you are in a position to derive:

$$(T_{\mathcal{L}}) \alpha \text{ is true on } I \text{ if and only if } I(\alpha)$$

(c) You know the vocabulary and formation rules (together: the syntax) of English. Now assume the following semantic rule: an English sentence of the form ‘a is F’ is true if and only if the object denoted by ‘a’ exemplifies the property denoted by ‘F’. (A plausible assumption.) This enables us to derive T-sentences for all sentences of the form ‘a is F’, provided we know the denotations of ‘a’ and ‘is F’.

(d) E.g., consider the sentence ‘Al is fat’. Our theory tells us:

‘Al is fat’ is true in English if and only if the object denoted by ‘Al’ in English exemplifies the property denoted by ‘is fat’ in English.

‘Al’ in English denotes Al, and ‘is fat’ in English denotes the property of being fat. So, more directly:

‘Al is fat’ is true in English if and only if Al is fat.

Semantic rule, plus axioms stating denotations of lexical items in ‘Al is fat’, enabled us to derive T-sentence for ‘Al is fat’. Knowing that stuff, you understand ‘Al is fat’. Davidson’s idea: if we have a theory big enough to do this for all sentences in English, then we have a theory of meaning for English, and can do without ‘meanings’ or propositions.

(e) Problems. Davidson’s program is plausible if (A) knowing a T-sentence for ‘S’ suffices for understanding ‘S’, and (B) whether adequate T-sentences for all sentences in the language can be found. Both requirements are problematic. Problem (i) below concerns requirement A; problems (ii) and (iii) concern requirement B.

i. Coextensive terms that differ in meaning. All and only renates are cordates (renates are creatures with livers, and cordates are creatures with hearts). So here is T-sentence for ‘Al is a renate’:

$$(T_1) \text{ ‘Al is a renate’ is true in English if and only if Al is a cordate.}$$

T_1 is true, but knowing T_1 does not suffice for understanding ‘Al is a renate’.

Lycan responds on behalf of the Davidsonian:

[T]he meaning of a target sentence is given, not by just the T-sentence directed upon that target sentence, but by the T-sentence together with its derivation from the axioms of the truth theory (Lycan, 121).

The idea here seems to be that you don’t count as understanding ‘S’ just by knowing a true T-sentence about ‘S’, but by being able to derive it from the truth theory. Presumably the truth theory for English would contain as an axiom something like ‘Renates denotes renates, and not ‘Renates denotes cordates. So T_1 would not be derivable from the truth theory, and hence knowing it doesn’t suffice for understanding ‘Al is a renate’. In general, the idea is that the theory should deliver all and only ‘homophonic’ T-sentences; e.g.,

$$(T_2) \text{ ‘Al is a renate’ is true in English if and only if Al is a renate.}$$

It is plausible that knowing a ‘homophonic’ T-sentence does suffice for knowing the meaning of the target sentence. But some ‘S’s don’t give up their T-sentences easily...

ii. Context-sensitive expressions. Try to supply a T-sentence for ‘I am hungry,’ ‘John is here,’ or ‘Yesterday we all went to a local bar’ (let alone a ‘homophonic’ T-sentence!). Davidson relativizes truth to speaker and time, which helps with ‘I’ and ‘now’ and maybe ‘here’ (e.g. ‘I am happy’ is true in English when uttered by speaker S if and only if S is happy), but not clear how that enables us to deal with ‘this’, ‘that’, and many other expressions.
iii. *Indirect speech reports and propositional attitude ascriptions.* Consider the following sentence:

\[(H)\] Heraclitus said that everything was in flux.

What is H’s truth-condition? It’s not that Heraclitus said, “Everything is in flux”; Heraclitus didn’t speak English, so never said *that*. How can we specify the truth-condition of H without making reference to the meaning of what Heraclitus said?

Davidson’s gives what he calls a ‘paratactic’ theory of indirect speech reports. Prescinding from complexities, the account says that H is true if and only if:

\[\exists x (\text{Heraclitus uttered } x \text{ and } x \text{samesays 'Everything is in flux'})\]

’samesays’ is introduced as a technical term that holds between two utterances if they ‘mean the same thing’—but ‘mean the same thing’ is here just a figure of speech, since there are no “things” that sentences "mean".

Similar theory for belief reports (e.g., ‘Heraclitus believed that everything was in flux’).

But does the ‘samesays’ relation rely on tacit appeal to meanings / propositions?