Problem 1. Consider the infinite series:

\[\sum_{n=3}^{\infty} \frac{1}{n \ln(n) [\ln(\ln(n))]^p} \]

For what values of \(p \) does this series converge?

Hint: Make use of the fact that

\[\frac{d}{dx} \left(\frac{[\ln(\ln(x))]^{1-p}}{x \ln(x) [\ln(\ln(x))]^p} \right) = \frac{1 - p}{x \ln(x) [\ln(\ln(x))]^p}. \]

Problem 2. According to the theory of Special Relativity, if a particle with mass \(M \) starting at rest at \(x = 0 \) at time \(t = 0 \) is acted on by a constant force \(F \), then its displacement at time \(t \) is given by:

\[x = \frac{Mc^2}{F} \left[\left(1 + \frac{F^2t^2}{M^2c^2} \right)^{1/2} - 1 \right], \]

where \(c \) is the speed of light. Find the resulting displacement \(x \) as a power series in \(t \), up to and including terms of order \(t^5 \). Compare your answer with the Newtonian (non-relativistic) result.

Problem 3. Expand \(\sin(x) \) in a Taylor series about the point \(x = \pi/4 \). Keep terms up to and including \((x - \pi/4)^3 \).

Problem 4. The dilogarithm function (also known as the Spence function) is denoted \(\text{Li}_2(x) \). It appears in high-energy physics and statistical mechanics calculations. It can be defined as:

\[\text{Li}_2(x) = - \int_0^x \frac{dt}{t} \ln(1 - t). \]

(a) Expand the above expression in an infinite power series in \(x \), of the form \(\sum_{n=1}^{\infty} c_n x^n \). (Give a general expression for the \(c_n \) in terms of \(n \), not just the first few terms.) This infinite series is an alternative definition for the dilogarithm.

(b) Use an appropriate convergence test to determine: for what real values of \(x \) is your answer to part (a) absolutely convergent?
(c) Compute the integral

\[I(a, x) = \int_0^1 \frac{dt}{t} \ln(1 - atx), \]

as an infinite power series in \(x \). By comparing it to your result for part (a), express it in terms of the dilogarithm function.

(d) Using your result in part (a), evaluate \(\text{Li}_2(1) \). [Hint: you may use the result for a special infinite series mentioned in class.]

(e) An approximation for the function \(\text{Li}_2\left(\frac{x}{1 + 2x}\right) \) when \(x \) is small is: \(x + c_2x^2 + c_3x^3 \). Find \(c_2 \) and \(c_3 \).