Problem 1 A particle of charge q enters a region of uniform magnetic field \vec{B} pointing into the page, as shown in Figure 5.8 of the textbook. The field deflects the particle a distance d above the original line of flight, as shown. Is the charge positive or negative? In terms of a, d, B, and q, what is the momentum of the particle just before it entered the field region?

Problem 2 Find the force on a square wire loop with side a, placed near an infinite straight wire as shown in Figure 5.24(a) in the textbook, but let the square loop carry a steady current I_1 and the straight wire carry a steady current I_2.

Problem 3 A wire loop consists of two quarter-circular segments and two straight radial segments. The radius of the larger quarter circle is b and that of the smaller is a, as shown in Figure 5.23(a) of the textbook. The wire loop carries current I as shown.
(a) Find the direction and magnitude of the magnetic field \vec{B} at the point P.
(b) A point particle with positive charge Q is moving through the point P with velocity v straight to the right (in the plane of the page). Find the force acting on the particle.