Reading: Griffiths pages 77-93.

Problem 1 A long coaxial cable (see Fig. 2.26 in Griffiths) carries a uniform \textit{volume} charge density \(\rho \) within the solid inner cylinder of radius \(a \). It also has a uniform \textit{surface} charge density on the outer cylindrical thin shell of radius \(b \). This surface charge density is negative and of just the right magnitude so that the cable as a whole is electrically neutral. Find the electric field in each of the three regions:
(i) inside the inner cylinder \((r < a)\),
(ii) between the cylinders \((a < r < b)\), and
(iii) outside the cable \((r > b)\).

Problem 2 Find the potential \(V(r) \) for Problem 1, for all \(r \). You may choose any (fixed) convenient reference point for your potential.

Problem 3 An infinite plane slab has thickness \(2d \) and carries a uniform volume charge density \(\rho \). Its surfaces are planes of constant \(y \), namely \(y = d \) and \(y = -d \). Find the electric field as a function of \(y \), both inside and outside of the slab. (Note that \(y = 0 \) is the center of the slab.) Make a graph of \(E_y \) as a function of \(y \).

Problem 4 Find the potential \(V(\mathbf{r}) \) for Problem 3, for all \(\mathbf{r} \). You may choose any convenient reference point for your potential.

Problem 5 In some region of space, the electric potential is given in rectangular coordinates by \(V = k_1 x^2 + k_2 y^2 + k_3 z^2 \), where \(k_1 \), \(k_2 \) and \(k_3 \) are positive constants. What are the electric field and the volume charge density in that region? Where could the reference point for this potential be?