Steve Martin's Home Page 
Stephen P. Martin
Distinguished Research Professor Distinguished Teaching Professor Physics Department Northern Illinois University DeKalb, IL 60115 spmartin@niu.edu NIU Office: 214 La Tourette (formerly Faraday West) Fermilab Office: Wilson 3rd floor 
Today's anagram of Stephen Patrick Martin is: parents impact thinker
Spring 2017 class: Physics 370 Electricity and Magnetism I
My
research publications
from the inSPIRE database.
"A Supersymmetry Primer" is
my introduction to supersymmetry.
Some pedagogical summer school lectures I've given: slides for the ICTP 2013 Summer School on Particle Physics and notes for my TASI 2011 lectures on twocomponent fermions and supersymmetry. TSIL (Twoloop Selfenergy Integral Library) and 3VIL (3loop Vacuum Integral Library) are computer program libraries that Dave Robertson and I wrote and maintain. They perform the numerical computation of Feynman integrals for, respectively, 2loop selfenergy and 3loop vacuum diagrams, with arbitrary masses. TSIL is based on the papers hepph/0307101 and hepph/0501132, while 3VIL is based on hepph/1610.07720. SMH is a computer program library that computes the mass of the Standard Model Higgs boson at complete 2loop order with leading 3loop corrections. It also minimizes the Standard Model effective potential in the same approximation. It was also written with Dave Robertson, as an application of TSIL, and is based on the paper 1407.4336. Another application of TSIL is the 2loop SUSYQCD contributions to the gluino and squark pole masses, recently implemented in SOFTSUSY 3.7.0 by Ben Allanach, Dave Robertson, Roberto Ruiz de Austri, and me. For a description of this, see the manual: 1601.06657. Here is the web page (including errata, and a version with the +++ metric) for the review paper 0812.1594, "Twocomponent spinor techniques and Feynman rules for quantum field theory and supersymmetry", by Herbi K. Dreiner, Howard E. Haber, and me. The current v5 is very close to the one published in Physics Reports. 
Other classes I have previously taught at NIU:
Physics 470/570 Electricity and Magnetism II (Fall 2015) Physics 485/585 Methods of Mathematical Physics II (Spring 2003) Physics 661 Quantum Mechanics II (Spring 2009) Physics 686 Phenomenology of Particle Physics (Fall 2016) Physics 751 General Relativity (Spring 2015) Physics 786 Gauge Theories and Supersymmetry (Spring 2004)
Fermilab Theoretical Physics Group
