Physics 284 Modern Physics Laboratory
Spring 2013

Tuesday, 12:30 – 3:10, Faraday 121A

Instructor:
Professor Laurence Lurio,
Office: FW 202 (Physics Department Office, in back),
Phone: (815) 753-6470
Cell: (815) 260-4900
Office hours: Tuesday & Friday 10:30 – 11:30.
email: llurio@niu.edu

Web Site
http://webcourses.niu.edu (Blackboard course page)
Grades and class materials such as lab instructions will be placed on the Blackboard course page.

Lab Instructions
Instructions for all the labs are available on the web and must be downloaded and read in advance of showing up for class. There will be a pre-lab assignment due before the lab begins, based on the lab instructions. Pre-labs will be collected at the beginning of class and will count for approximately 10% of the lab grade.

Grading
The laboratory grade will be based primarily on the lab reports. There will be 7 lab reports of 4-5 pages in length (including figures and data tables). The pre-lab assignment will count for 10% of the lab grade. General guidelines for how to complete lab reports and a breakdown of how lab reports will be graded are provided on the class web page. Each lab instruction sheet will also have some specific guidelines. Lab reports are due one week after the completion of the lab. Reports submitted late without prior permission will be marked down 10%.

Lab Notebooks
All students are expected to keep a lab notebook. Since students will work in teams of two, they should either purchase a lab notebook with carbon paper, or make photocopies at the end of class, so that each student retains a copy of the notes. A copy of the relevant pages of the lab notebook should be attached to the back of each lab report. It is each student’s responsibility to make sure that they obtain a copy of all the notes from each lab.
Independent Project

The last laboratory will be an independent project of the students choosing. Students should discuss ideas for their independent lab with the instructor. The project will be graded based on only the lab notebook. Even if your independent project does not succeed, it is sufficient to demonstrate that you have made a careful effort, kept good notes, and proceeded in a scientific manner. While students are encouraged to come up with their own ideas, a short list of some suggested projects is included at the end of the syllabus. Students can work in groups of up to four on their independent project.

Calendar:

<table>
<thead>
<tr>
<th>Jan. 15</th>
<th>No Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Statistics Lab</td>
</tr>
<tr>
<td>29</td>
<td>Intro to Optics Labs (Lecture)</td>
</tr>
<tr>
<td>Feb. 5</td>
<td>Interference/Diffraction/PhotoElectric</td>
</tr>
<tr>
<td>12</td>
<td>Interference/Diffraction/PhotoElectric</td>
</tr>
<tr>
<td>19</td>
<td>Interference/Diffraction/PhotoElectric</td>
</tr>
<tr>
<td>26</td>
<td>Intro to Radiation Safety (Lecture)</td>
</tr>
<tr>
<td>5-Mar</td>
<td>Intro to Atomic and Nuclear Labs (Lecture)</td>
</tr>
<tr>
<td>19</td>
<td>Frank Hertz/Photo Electric and E/M Labs</td>
</tr>
<tr>
<td>26</td>
<td>Frank Hertz/Photo Electric and E/M Labs</td>
</tr>
<tr>
<td>2-Apr</td>
<td>Frank Hertz/Photo Electric and E/M Labs</td>
</tr>
<tr>
<td>9</td>
<td>Independent Project</td>
</tr>
<tr>
<td>16</td>
<td>Independent Project</td>
</tr>
<tr>
<td>23</td>
<td>Independent Project</td>
</tr>
<tr>
<td>30</td>
<td>No Lab</td>
</tr>
</tbody>
</table>

Optics Labs
Michaelson Interferometer
Diffraction Grating
Photoelectric Effect

Atomic and Nuclear Labs
Frank-Hertz Experiment
Electron charge to mass ratio
Radioactive Decay
Some Independent Project Lab Ideas (feel free to come up with your own)

a) Comparison of the spectrum of a fluorescent light bulb with an incandescent light bulb using the spectrometer.
b) Electronic measurement of light intensity using a photodiode.
c) Observation of the Meissner effect in a superconductor.
d) Automation of an experiment using the Labview software and an interface board.
e) Observation of magnetic domains.
f) Measurement of the spectrum of a star using the observatory.
g) Measurement of the flux or energy spectrum of cosmic rays.
h) Measurement of the spectrum of beta particles.
i) Observation of alpha-decay tracks in a cloud chamber.
j) Measurement of Compton scattering of x-rays.
k) Measurement of electron diffraction with electron microscope. (Need to obtain permission from Dr. Ito)