Phys 680
Introduction to Nanoscience

Esen Ercan Alp

Text Book: Introduction to Nanoscience, S. M. Lindsay, Oxford, 2010

1. Quantum mechanical introduction to nanoscience
 a. Principles of quantum mechanics of confined systems
 b. Wave-particle duality observed by photons (Young), by electrons (Hitachi) and by large nanoparticles like \(C_{60} \)

2. Statistical mechanics:
 a. Boltzman Distribution
 b. Partition function
 c. Quantum gases
 d. Chemical kinetics,
 e. Fluctuations in nanosystems
 f. Brownian Motion
 g. Einstein-Smoluchowski equation
 h. Diffusion

3. Tools of the Nanoscience:
 a. Atomic Force Microscopy
 b. Optical Tweezers
 c. Scanning Tunneling Microscopy

4. Nanomanufacturing methods
 a. Litography
 b. Molecular Beam Epitaxy
 c. Focused ion beam milling
 d. Self-assembly
 e. Confined systems like vesicles and micelles

5. Nanobiotechnology

Grading:

Homework: 30 %
Mid-Term: 30 %
Term-paper: 30 %
Class attendance and participation: 10 %