Problem 1:

(a) Find $\sigma_x^2\sigma_p^2$ for an eigenstate, $|n\rangle$, of a harmonic oscillator with natural frequency ω.

An exact expression, not a lower bound, is desired. $\sigma_x^2 = \langle (x - \langle x \rangle)^2 \rangle$ is the variance associated with a measurement of the position, and $\sigma_p^2 = \langle (p_x - \langle p_x \rangle)^2 \rangle$ is the variance associated with a measurement of the momentum.

(b) Compare your answer to that which would be found for a classical harmonic oscillator of the same energy but undetermined phase where

$$x(t) = x_0 \sin(\omega t + \phi)$$
$$p(t) = p_0 \cos(\omega t + \phi).$$
Problem 2:

Consider the “hydrogen atom problem” in two dimensions. The electron is constrained to move in a plane and feels a potential \(V(r) = -\frac{Z e^2}{r} \) due to a charge \(+Ze \) at the origin. (This mathematical model has a physically realizable analog in the physics of semiconductors.)

(a) Find the eigenfunctions and eigenvalues for the \(z \)-component of angular momentum

\[
\hat{L}_z = x\hat{p}_y - y\hat{p}_x = -i\hbar \frac{\partial}{\partial \phi}
\]

(b) The time independent Schrödinger equation for this problem is

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(r) \right) \psi(r,\phi) = E\psi(r,\phi)
\]

where \(\mu \) is the reduced mass. Show that it is satisfied by a \(\psi \) which is a product of radial and angular functions: \(\psi(r,\phi) = R(r)\Phi(\phi) \). Find \(\Phi(\phi) \) and write down the equation determining \(R(r) \).

(c) What condition must be satisfied in order for \(R(r) = \alpha e^{-\frac{r}{r_0}} \) to be a solution of the radial equation? When this condition is satisfied find \(r_0 \) and the associated energy eigenvalue \(E \) in terms of \(\hbar, \mu, Z, \) and \(e \). \((\alpha \) is a normalization constant which you need not find.)

(d) Let \(R(r) = r^{\frac{3}{2}} u(r) \). Find the equation which determines \(u(r) \). Comment on the form of this equation.

(e) A complete solution of the problem would show that the total degeneracy of the \(n^\text{th} \) bound state energy eigenvalue is \(2n - 1 \). Draw an energy level diagram in which the levels are separated into different angular momentum “ladders”. Indicate the degeneracy and number of radial nodes associated with each of these “sub-levels” for the lowest 4 values of \(E \).
Problem 3:

A quantum mechanical particle of mass m moves in one dimension in a potential consisting of two negative delta-function spikes, located at $x = \pm a$:

$$V(x) = -\lambda[\delta(x - a) + \delta(x + a)],$$

where λ is a positive constant.

(a) Prove that the basis of bound state wave functions can be chosen so that they are each either even or odd under reflection $x \to -x$.

(b) Derive a (transcendental) equation for the binding energy of an even bound state. By sketching the functions involved, show that there is one and only one even bound state for each value of λ.

(c) Derive the transcendental equation for an odd bound state. Show that there is a minimum value of λ for there to be an odd bound state, and determine that value.
Problem 4:

An atom that is otherwise spherically symmetric has an electron with orbital angular momentum \(\ell = 2 \) and spin \(s = 1/2 \).

(a) Using the raising and lowering operator formalism for general angular momenta, e.g.

\[
J_-|j, m\rangle = (J_x - i J_y)|j, m\rangle = \sqrt{(j + m)(j - m + 1)}\hbar|j, m - 1\rangle,
\]

construct the properly normalized linear combinations of \(|\ell, m_\ell, s, m_s\rangle\) eigenstates that have total angular momentum eigenvalues:

(i) \(j = 5/2, \ m_j = 5/2 \)

(ii) \(j = 5/2, \ m_j = 3/2 \)

(iii) \(j = 3/2, \ m_j = 3/2 \).

(b) In an external magnetic field in the \(z \) direction of magnitude \(B \), the magnetic interaction Hamiltonian is:

\[
H_{mag} = \frac{eB}{2mc}(L_z + 2S_z).
\]

What energy corrections are induced for the states of part (a), for a weak field \(B \)?