Problem 1: (40 points)

1. **Phase diagram, the critical point:** The equation of state of van der Waals gas is \(P = \frac{a}{v^2} \left(v - b\right) = RT \), where \(a \) and \(b \) are characteristic constants for a given gas, and \(P, v, T \) and \(R \) are pressure, specific volume, temperature and gas constant, respectively. When we regard the above van der Waals equation as \(P = P(v, T) \)

(a) what are the three conditions at the critical point in the critical isotherm \((T = T_C)\) on a \(P-v \) diagram? [15 points]

(b) Express the critical specific volume, \(v_C \), the critical temperature, \(T_C \), and the critical pressure, \(P_C \), at the critical point, in terms of the constants \(a \) and \(b \). [25 points]

Problem 2: (40 points)

A metal ring is dipped into a soapy solution (index of refraction \(n_s \)) and held in a vertical plane so that a wedge-shaped film formed under the influence of gravity. At near-normal illumination with blue-green light (wavelength \(\lambda_{bg} \)) from an argon laser, one can see \(N \) fringes per cm. Determine the wedge angle of the soap film. (Note: assume that the wedge angle is very small).
Problem 3: (40 points)

2. A pi-mu atom consists of a pion and a muon bound in a Hydrogen-like atom.

(a) What are the energy levels for such an atom compared to those for Hydrogen expressed in terms of the electron, pion, and muon masses? [20 points]

(b) The pi-mu atoms are produced in K_L decays

$$K_L \rightarrow \text{pi-mu atom} + \text{neutrino}.$$

If the K_L has $\beta = 0.8$, what are the minimum and maximum energies of the pi-mu atom in the moving frame of the K_L? (express these energies in terms of the particle masses) [20 points]

Problem 4: (40 points)

Briefly explain or describe 4 of the following 6 phenomena (in no more than 200 words for each phenomena): [10 points each]

(a) Electromagnetic structures of the neutron and proton

(b) The laser

(c) C, P, T, and CP symmetry (and any possible well known violations)

(d) The transistor

(e) The J/ψ particle

(f) Superconductivity
Problem 5: (40 points)

A system consisting of \(N \) (a very large number) identical weakly interacting particles is in equilibrium with a heat bath. The total number of individual states available to each particle is \(2N \). Of these, \(N \) states are degenerate with energy 0, and \(N \) states are degenerate with energy \(\varepsilon \).

\[
\begin{align*}
\varepsilon & \quad \text{\(N \) states} \\
0 & \quad \text{\(N \) states}
\end{align*}
\]

It is found by observation that the total energy of the system is \(\frac{1}{3} N \varepsilon \). Find the temperature of the heat bath under three different assumptions:

(a) That the particles are bosons. [10 points]

(b) That the particles are fermions. [10 points]

(c) That the particles obey the (unphysical) Boltzmann distribution. [10 points]

(d) You should find from Parts (a), (b), and (c) that

\[
T(\text{boson}) > T(\text{Boltzmann}) > T(\text{fermion})
\]

Explain why this is so. [10 points]