1) a) Starting with the first law of thermodynamics and the definition of \(c_p \) and \(c_v \), show that

\[
(c_p - c_v) = p + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p .
\]

Here \(c_p \) and \(c_v \) are the specific heat capacities per mole at constant pressure and volume respectively, and \(U \) and \(V \) are the energy and volume of one mole.

b) Use the above result plus the expression

\[
p + \left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_V\]

to find \(c_p - c_v \) for a van der Waals gas with equation of state

\[
(p + \frac{a}{V^2}) (V - b) = RT .
\]

Here \(a \) and \(b \) are constants.

c) Use this result to show that as \(V \to \infty \) at constant \(p \), you obtain the ideal gas result for \(c_p - c_v \).

2) The rotational motion of a diatomic molecule is specified by two angular variables\(\theta \) and \(\phi \) and the corresponding canonical conjugate momenta, \(p_\theta, p_\phi \). Assuming the form of the kinetic energy of the rotational motion to be

\[
\varepsilon_{rot} = \frac{1}{2I} P_\theta^2 + \frac{1}{2I \sin^2(\theta)} P_\phi^2
\]

a) Derive the classical formula for the rotational partition function, \(r(T) \),

\[
r(T) = \frac{2kT}{\hbar^2}
\]

b) Calculate the Helmholtz free energy \(F_{rot} \).

c) Calculate the corresponding entropy and specific heat.

The following may be helpful

\[
\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}
\]

\[
\int \frac{dx}{\sin^2(ax)} = -\cot(ax)/a
\]

3) Assume that the neutron density in a neutron star is 0.1/fm\(^3\) (that is 0.1 neutron per cubic Fermi). Assuming \(T=0 \) and ignoring any gravitational forces calculate the ratio of neutrons to protons to electrons.
Hint: determine their Fermi energy. The electron, neutron and protons masses are 0.511 MeV/c², 939.6 MeV/c² and 938.3 MeV/c². The constant \(hc = 1240 \text{ MeV} \cdot \text{fm} \). You should be able to work out "by hand" an approximate value.

4) A \(\pi - \mu \) atom consists of a pion and a muon bound in a Hydrogen-like atom.

a) What are the energy levels for such an atom compared to those for Hydrogen?

b) \(\pi - \mu \) atoms are produced in \(K_L \) decays (\(K_L \rightarrow \pi - \mu + \nu \)). If the \(K_L \) has \(\beta = 0.8 \) what are the minimum and maximum energies of the \(\pi - \mu \) atom expressed in terms of the \(K \), \(\pi \) and \(\mu \) masses with \(m_e = 0 \)?

c) Approximately what fraction of \(K_L \) decays will produce a \(\pi - \mu \) atom (hint: use the Heisenberg uncertainty principle)?

5) a) You are familiar with the quarter-wave thin film coating that acts as a “reflection-reducer”. For the moment, let us look at a simpler thin film—the air gap between two pieces of glass such as you would find in a Newton’s rings experiment. Why do we get constructive interference in the reflected when the thickness is one-fourth of the wavelength of light or some odd multiple of a quarter wavelength? Why isn’t it constructive at one-half wavelength of the light? For assistance, I present two of the Fresnel equations (in two forms) for reflected light.

\[
\begin{align*}
r_\parallel &= \frac{n_2 \cos \theta_2 - n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = \frac{\tan(\theta_2 - \theta_1)}{\tan(\theta_1 + \theta_2)} \\
r_\perp &= \frac{n_2 \cos \theta_2 - n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = \frac{-\sin(\theta_2 - \theta_1)}{\sin(\theta_1 + \theta_2)}
\end{align*}
\]

Where the parallel and perpendicular symbols refer to the plane of incidence, and \(i, t \) refer to incident and transmitted media, \(\theta \)'s are angles of incidence and transmission, and \(n \)'s are indices of refraction.

b) In light of the previous, to get destructive reflection in a thin film-i.e.-a quarter-wave film, such as the one illustrated below, what condition must prevail among the indices of refraction for the three media (\(n_0 \) may be taken as \(= 1.0 \) for air.)

c) The destructive interference described in part b) will generally not be complete. Find the value of \(n_2 \) as a function of \(n_1 \) which gives completely destructive interference at normal incidence.
6) In a big-bang theory of the universe, the radiation energy initially confined in a small region adiabatically expands in a spherically symmetric manner. Here the radiation (photon) pressure is expressed as $p = U/V$, and the black body radiation energy density is $u = U/V = aT^4$. The radiation cools down as it expands.

a) Derive a relation between the temperature T and the radius R of the spherical volume of radiation, based purely on thermodynamic considerations.

b) For the above problem, show the total entropy of a photon gas is expressed as $S = \frac{4}{3} aT^3 V$.