Solve 3 out of 4 problems. (40 points each. Total of 120 points)

Do not just quote a result, show your work clearly step by step.

1. [40 points]
 (a) Find the force on a square loop placed as shown in Fig 1, near an infinite straight wire. Both the loop and the wire carry a steady current I. [20 points]
 (b) Suppose the current $I(t)$ in the long straight wire in Fig 1 is changing slowly according to $I(t) = I_0 \cos(\omega t)$. Find the current induced in the square loop as a function of time, if it has resistance R. [20 points]

2. [40 points] A capacitor is made of two plane parallel plates of width a and length b separated by a distance d ($d \ll a$, b), as in Fig. 2. The capacitor has a dielectric slab of relative dielectric constant K between the two plates.
 (a) The capacitance is connected to a battery of emf V. The dielectric slab is partially pulled out of the plates such that only a length x remains between the plates. Calculate the force on the dielectric slab which tends to pull it back into the plates. [20 points]
 (b) With the dielectric slab fully inside, the capacitor plates are charged to a potential difference V and the battery is disconnected. Again, the dielectric slab is pulled out such that only a length x remains inside the plates. Calculate the force on the dielectric slab which tends to pull it back into the plates. [20 points]
3. [40 points] A soap film of thickness a and permittivity ε is suspended in empty space (Fig. 3). The permittivity of the soap film is very large compared to that of vacuum, $\varepsilon \gg \varepsilon_0$. Two charged ions, each of charge $+Q$, are located a distance R apart, in the midplane of the film. Find the force between the ions in the three limiting cases:
 (a) if $R \ll a$ [13 points]
 (b) if $a \ll R \ll \varepsilon a$ [14 points]
 (c) if $\varepsilon a \ll R$ [13 points]

4. [40 points] Consider the following idealized situation with an infinitely long, thin, conducting wire along the z axis. For $t < 0$ it is current-free, but at $t = 0$ a constant current density \vec{J} is applied simultaneously over the entire length of the wire. Consequently, the wire carries the current
 \[
 \vec{J} = \begin{cases}
 0, & t < 0; \\
 |\vec{J}| \hat{z}, & t \geq 0.
 \end{cases}
 \] (1)
 It is assumed that the conductor can be kept uncharged, i.e. $\rho = 0$.
 (a) Determine scalar and vector potentials induced everywhere in space, $\phi(\vec{x},t)$ and $\vec{A}(\vec{x},t)$ as functions of time. [10 points]
 (b) Determine the magnetic and electric fields induced everywhere in space, $\vec{B}(\vec{x},t)$ and $\vec{E}(\vec{x},t)$ as functions of time. [20 points]
 (c) Calculate the total power radiated per unit wire length. Comment on the unphysical behavior at $t = 0$ and its explanation for realistic systems. [10 points]