Problem 1. Object 1 (mass m) is attached to object 2 (mass $3m$) by a spring of unstretched length L and spring constant k. As shown in the figure, the two masses are constrained to move on a circle with radius R. The spring is also constrained to be on the circle. Ignore gravity and friction.

(a) Find the kinetic energy of the system in terms of the coordinates θ_1 and θ_2. [6 points]
(b) Find the potential energy of the system in terms of the coordinates θ_1 and θ_2. [6 points]
(c) Find the Lagrangian of the system. [2 points]
(d) Find the two Lagrange equations of motion for coordinates θ_1 and θ_2. [9 points]
(e) Use the equations of motion to find the general solution for the motion of the two objects. [9 points]
(f) At time $t = 0$, both masses are at rest, $\theta_2 = 0$, and the spring is at twice its natural, unstretched length. Find the subsequent motion. [8 points]
Problem 2. A point particle of mass m moves subject to a 3-dimensional central potential:

$$V(r) = -\frac{k}{r^n}$$

where k and n are positive constants.

(a) If the particle has angular momentum L, what is the radius R for which the orbit is circular? [10 points]

(b) Suppose the motion is close to the circular orbit mentioned in part (a). Writing $r(t) = R + \delta r(t)$ and assuming that $\delta r(t)$ is small, find an equation of motion for $\delta r(t)$. Write your equation in a form that does not involve the angular momentum L. [15 points]

(c) Solve this equation for δr. For what values of n are the circular orbits stable? [15 points]

Problem 3. A point particle of mass m is fixed to the bottom end of a thin wire suspended from a fixed point on the ceiling. The thin wire has total mass M and length L. The acceleration due to gravity is g. At time $t = 0$, the point m is given a very small tap.

(a) Find the tension in the wire and the speed of waves in the wire as a function of y, the distance from m. [16 points]

(b) Find the total time needed for the perturbation to reach the top end of the wire (the ceiling). [24 points]

Problem 4. A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coefficient of friction μ (this means that the frictional force is equal to the normal force multiplied by μ). The acceleration due to gravity is g. At time $t = 0$, the ball is struck impulsively on center, causing it to go instantaneously from rest to a horizontal speed v_0 with no initial rotation.

(a) Find the horizontal speed, and the angular velocity of the ball about its center, as a function of t. [16 points]

(b) Find the distance travelled by the ball until it begins to roll without slipping. [24 points]

[Hint: the moment of inertia of the sphere about its center is $\frac{2}{5}MR^2$.]