Problem 1. A particle of mass \(M \) is constrained to move on a smooth horizontal plane. A second particle of mass \(m \) is attached to it by hanging from a string passing through a hole in the plane as shown, and is constrained to move in a vertical line in a uniform gravitational field of acceleration \(g \). All motion is frictionless and the string is massless.

(a) Find the Lagrangian for the system and derive the equations of motion. [15 points]

(b) Consider solutions in which \(M \) moves in a circle with a constant speed \(v_0 \). Find the radius of the circle \(r_0 \) in terms of the other quantities. [12 points]

(c) Show that the solution in part (b) is stable and find the angular frequency of small oscillations about the stable circular orbit. [13 points]

Problem 2. Consider pointlike particles of mass \(m \) which approach a sphere of mass \(M \) and radius \(R \). The particles are attracted to the sphere in accordance with Newton’s law. When they are very far away, the particles have velocity \(v_\infty \). You may assume that \(m \ll M \). Find the effective cross-section (with units of area) for the particles to strike the sphere. [40 points]
Problem 3. Consider an infinite number of identical pendulums of mass M in a uniform gravitational field with acceleration g, each hanging by a massless string of length ℓ, and coupled to each other with massless springs of spring constant K as shown. In the equilibrium position, the springs are at their natural length, a. The masses move only in the plane of the page, and with only a small displacement from equilibrium.

(a) Denote the small horizontal displacement of the jth mass from equilibrium as $u_j(t) = u(x, t)$, where $x = ja$ is the equilibrium position. Derive a wave equation of motion for $u(x, t)$ for this system as a second-order differential equation in x and t, in the long wavelength approximation. [25 points]

(b) Find the dispersion relation (a relation between the angular frequency and the wavenumber). What is the minimum angular frequency? [15 points]
Problem 4. A lawn-mower engine contains a piston of mass m that moves along \dot{z} in a field of constant gravitational acceleration $\vec{g} = g\hat{z}$. The center of mass of the piston is connected to a flywheel of moment of inertia I at a distance R from its center by a rigid and massless rod of length ℓ, as shown. The system has only one degree of freedom but two natural coordinates, ϕ and z.

(a) Express the Lagrangian in terms of $q_1 = z$, $q_2 = \phi$. [5 points]

(b) Write the constraint equation that connects the two coordinates. [5 points]

(c) From the above results, write down the two coupled equations of motion using the method of “undetermined multipliers”. Then eliminate the undetermined multiplier to obtain a single equation of motion (it can still involve both coordinates). [15 points]

(d) Find $p_\phi(z, \phi, \dot{\phi})$. [15 points]

Hint: A constraint equation of the form $C(q_i) = 0$ leads to Lagrange equation(s) of motion for the configuration variables q_i that include additional terms $-\lambda \frac{\partial C}{\partial q_i}$, where $\lambda(q_i, t)$ is the undetermined multiplier.