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Outline of X-Ray Scattering 
 
1. X-ray Sources and Detectors 

a. X-ray tubes 
b. Synchrotron sources 
c. X-ray detectors (… to be written …) 

2. X-ray interactions with matter  
a. Photo-electric absorption 
b. Elastic scattering of x-rays 
c. Diffraction from crystals 

3. Small angle scattering  
a. Formalism 
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i. Colloids 
ii. Fractals 

iii. Polymers 
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4. X-ray Specular Reflectivity 
a. The Fresnel formalism 
b. Rough surfaces 
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5. Surface Diffuse X-ray Scattering (… to be written …) 
6. Coherent scattering  (… to be written …)  
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X-ray sources 

X-ray Tubes1 

 
Figure 1 
 
The figure above shows a schematic of an x-ray tube.  Electrons are accelerated from a 
large negative potential, through vacuum, onto a metal anode.  Only a small fraction of 
the energy turns into x-rays and consequently the anode must be water cooled to remove 
the heat. When a high energy electron impinges on atoms in a metal there are two chief 
mechanisms by which x-rays are generated.  A continuous spectrum of x-rays is 
generated by Brehmsstrahlung, which results from the acceleration of the electrons when 
they pass close to the atomic nuclei.  The Brehmsstrahlung spectrum begins at close to 
zero energy and goes up to a maximum energy limited by the energy of the incident 
electron (corresponding to a single acceleration event, where the electron loses all its 
energy to a single photon). The other mechanism of electron energy loss is the production 
of characteristic x-rays which occurs when an electron knocks out an inner 1s electron (K 
shell) from an atom. When a higher quantum state electron falls down to fill the hole, an 
x-ray is emitted whose energy is given by the difference of the two atomic levels.  The 
most common electron to fill the hole is the 2p electron (resulting in a k x-ray) although 
there is also a fairly high probability for 3p electrons to fall into the hole as well 
(resulting in a k x-ray).  The energy of this process can be modeled surprisingly well 

using the energy level formula from the Bohr model, with a slight modification to 
account for the presence of the remaining 1s electron:    
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Here Z is the atomic number and Ry is the Rydberg constant given by  
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The factor of Z2 from the Bohr formula is reduced to  2
1Z  as an approximation of the 

shielding of the nucleus due to the other 1s electron.  Electron-electron interactions can 

                                                 
1 Parts of this section are based on lectures given by Professor Peter Pershan at Harvard University in 1988.  
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only be partially represented by this shielding approximation, and to some extent the 
success of this formula is fortuitous.  For example a similar formula to describe the 
energies of the k x-rays is not available. A handy source for tabulated x-ray  energies is 

given in the “X-ray Data Booklet”, which can be found on the web at  http://xdb.lbl.gov .  

The k x-ray line is split into two lines by spin-orbit coupling.  These lines are called 
(somewhat unimaginatively)  k and k For Cu the magnitude of this splitting is 20 eV, 
which is quite small compared to the 8 keV energy of  the k-alpha  x-ray.  It is possible to 
make an estimate of the k - kspliting from the quantum formula for the energy level 
of an orbital in the presence of spin-orbit coupling.  The  formula below gives the energy 
shift to an orbital due to spin orbit coupling, it is derived in chapter 17 of Gasiorowicz  
[1] ; 
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Here  is the fine structure constant, n is the principle quantum number of the electron 
orbit and j is the total angular momentum.   
 
We now consider the factor which determines how many x-ray will be emitted by an x-
ray tube.  This calculation is also of relevance to understanding the energy loss of any 
charged particle and is also of relevance in understanding electron microscopy, particle 
detection, and radiation damage. Most of the energy lost by a high energy electron does 
not go to create x-rays.  Rather, the energy loss is primarily due to ionization of valence 
electrons, while the production of x-rays is mostly an incidental effect.  
  
The energy transferred from a high energy electron to the valence electrons of a nearby 
atom can be estimated using the impulse approximation.  
 
In this approximation neither the incident nor the scattered electron is assumed to move 
during the time of the interaction.   We take the distance between the two electrons at 
closest approach to be b , called the impact parameter.  The time of interaction is then 
approximately  /T b v   where v is the velocity.  This gives the momentum transferred 
to each electron via the total impulse 
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Here we use the classical electron radius 2 2 15
0 0/ 4 2.82 10er e m c m    .  A more exact 

calculation differs by a factor of two from this result (See Homework Problem 4) 
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Using the latter result, the energy lost to the Z electrons in the atom is given by 
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To calculate the total amount of radiation by an electron we need to calculate the average 
of the radiation over collisions with all the atoms in the material occuring at various 
impact parameters. 

  
Figure 2 
Take the density of atoms to be N .  The energy lost per unit length of the electron’s path 
is given by  
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Now consider the energy loss to Brehmsstrahlung. For details see Segre[2] . The method 
is to calculate the acceleration induced by the electric force on the electron when it passes 
close to an atomic nucleus. From the acceleration we can then estimate the power 
radiated. To simplest approximation we can assume that the change in the trajectory of 
the electron is negligible.  Denote the distance of closest approach of the electron to the 
nucleus by the impact parameter b.  The maximum acceleration is 
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The Larmor formula gives the peak radiated power 

(9) 
2 3 2 3

0 0
4

2 2

3 3rad

r ma r Z mc
P

c b
  . 

A crude estimation of the total power radiated can be made by multiplying the peak 
power, by the total time over which the electron is close to the nucleus /T b v  , with 
v the velocity of the electron. This gives  
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 The radiation will be emitted over a range of frequencies.  The simplest approximation is 
a uniform distribution of power per unit frequency from  = 0 up to  = 1/T. This 
quantity is called the spectral density of radiation.  To obtain this we divide eq. (10) by 

1/ /T v b     yeilding: 
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Here I have used 2 / 2E mv .   To obtain the total radiated energy per unit length per 
unity frequency interval we use the same procedure as before to obtain 
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 We can combine the results of eq.(7) and eq. (12) to calculate the total Brehmsstrahlung 
radiated. We calculate the energy loss per unit distance using the ionization formula, and 
we then calculate the radiation produced per unit distance using the Brehmsstrahlung 
formula and integrate over the total energy of the electron. This gives    
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Note, that the above formula is a bit of a cheat since minb and maxb are not exactly the same 
for the ionization and Brehmsstrahlung processes, and thus would not exactly cancel in 
the evaluation of the integral in eq. (13).  However, since the error occurs in a log term, it 
should be small. Note the significance that the Brehmsstrahlung radiation increases as the 
Z of the target increases.  
 
We can further approximate the Brehmsstrahlung radiation in the limit of the electron 
energy much larger than the frequency being measured.  In this case eq. (13) reduces to 
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This can be re-written in terms of the efficiency of the x-ray generator for 
Brehmsstrahlung, defined as the number of photons-out (per energy interval d ) per 
electrons in.  The number of photons is equal to the energy radiated divided by the energy 
per photon ( h ) giving: 
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The measured experimental value is 91 10 /ZVd  which is in excellent agreement.   
 
Now, consider the production of characteristic radiation. Production of characteristic 
radiation is best defined in terms of a cross section.  Here we are most interested in the 
cross section to produce k radiation k .  The cross section is defined as the number of 

k electrons produced per second by an atom subject to an incident flux of 2/  e /m s .   
This is given by[3]  
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Here ~ 0.35kb is an empirical constant. Eq. (16) could also be derived approximately 

using eq.(7) (see problem 6). In the present case we have a single electron incident on an 
array of scatterers.  If we consider an electron with velocity v incident on a section of the 
material of thickness dx then this is equivilent to an electron subject to a flux of scattering 
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targets given by N v   .  By symmetry the cross section for a beam of electrons 

scattering from an atom is the same as that for a beam of atoms scattering from an 
electron.  We thus have the number of k x-rays produced per second given by  
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The number of k x-rays per unit length is then 
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The total number of k-alpha photons produced by an electron from the time it enters the 
anode with energy E until the time it comes to rest is then given by, 
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Since /dE dx  as given in eq. (7) depends on minb and maxb evaluation of the integral in eq. 
(19) requires estimates for these values.  The maximum impact parameter is 
approximately the distance at which the energy transferred is just enough to ionize an 
electron, IE . This gives  
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The minimum impact parameter is given by the value of a collision in which the all the 
energy of the electron is lost.   This gives  
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Putting this relation into eq. (19) gives 
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Since / /k I kE E E E , we can make the approximation 
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The integral in equation (19) can now be evaluated.  The result is 
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Here / kU E E  and k is the fluorescence yield.  The latter factor is needed because 

sometime instead of emitting an x-ray the atom can conserve energy by emitting a high 
energy electron termed an Auger electron. 
 

 
Figure 2 Flourescence Yields (from the x-ray data booklet) 
 
The actual flux is reduced by the absorption of the emitted x-rays within the anode of the 
x-ray tube. This depends on the depth at which electrons are absorbed, the takeoff angle 
of the x-rays and the absorption coefficient of the target material.    
 
Problems 

1. X-ray energies. 
a. Compare the approximate energy of the k  lines based on eq. (1) with 

the exact values found in the x-ray data booklet for the elements Al, 
Cu, Sn and Au.  

b. Try to extend the shielding approximation to make an estimate of the 
k  energies.  As before, compare your estimates with the tabulated 

values for Al, Cu, Sn and Au.   
c. Discuss qualitatively why the shielding approximation works well for 

the k but not the k .   

2. Hyperfine Structure. 
a. Due to the hyperfine splitting the energy of the atomic orbitals depends 

on the total angular momentum quantum number j.  In the absence of a 
magnetic field the energy of an atomic state only depends on the 
magnitude of j and not its projection mj .  Use this to argue that the 
k x-ray line should be split into two peaks, k  and the k . 

b.  Use eq (3)  to estimate the energy of the  k - k  splitting for Al, 
Cu, Sn and Au and compare your result with the tabulated values.  

3. In a simple resonance model for the k-alpha transition the line width of the 
transition, is determined by the Q-factor of the resonance.  While for a simple 
harmonic oscillator the Q-factor is determined by friction, in an atomic 
transition, this friction actually comes about from  the radiative-reaction force 
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(see J. D. Jackson chapter 17, [4]).  Based on this model, the line-width is 

given by  
2

2E E

E mc


  Use this formula to estimate the line-widths for the k-

alpha lines of Al, Cu, Sn and Au.   
4. A more exact calculation of eq. (4) would employ an integral over the 

impulse.  Assume that the path of the incident electron is un-deviated by the 
force of the atomic electron (a reasonable approximation for a high energy 
incident electron) and also assume that the atomic electron does not move 
over the time of the collision, thus all the longitudinal components of the force 

cancel out.  Show that 
2

02mc r
P FdT

bv
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   .  Hint:  Transform into an 

integral over the path of the incident electron rather than over time, and then 
use Gausses Law to evaluate an equivalent integral over the surface of a 
cylinder with radius b. 

5. Consider a collision of an electron with energy E with an atom at fixed impact 
parameter b.  Calculate the ratio of energy lost to ionization to the energy lost 
to Brehmsstrahlung radiation integrated over all frequencies.  

6. Use equation (7) to derive a formula for the cross section k that is given in 
equation (16).  How close does this come? 

7. Rewrite eq. (13) Å in terms of bremdE

d
 and sketch a plot of the intensity of 

Brehmsstrahlung radiation as a function of wavelength.  
8. Derive eq’s (20) and (21).  
9. An electron beam with a current of 30 mA and energy of 40 keV impinges on 

a thick molybdenum target. Calculate the number of k x-rays that would be 
expected to hit a detector subtending a solid angle of 71 10  steradians. 
Compare this with the actual measured flux for a molybdenum x-ray tube 
operated under similar conditions of 5~ 5 10  phot/sec. Note that this 
calculation ignores the possibility of absorption of x-rays on their way out of 
the metal which would reduce the flux.    
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Synchrotron sources 

Bending magnets 
 Synchrotron radiation occurs when a relativistic electron beam undergoes circular 
acceleration in a magnetic field. This  radiation can be described using classical 
electromagnetic theory and a full treatment can be found in Jackson [4].  In the present 
context we will present a simplified derivation of the most important results of 
synchrotron radiation based on the discussion from chapter 2 of Als-Nielson [5].   
 
In a synchrotron, electrons are accelerated to relativistic velocities and then confined in a 
circular orbit by the action of bending magnets.  The acceleration from the circular 
motion causes the electrons to emit radiation, and relativistic effects shift the frequency 
of this radiation into the x-ray regime. 
 
We begin our estimation of the amount of radiation emitted by a synchrotron source with 
the force on an electron in a magnetic field.  This is given by:  
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Assuming circular motion this simplifies to  
(27) 2 /evB mv r . 
The orbital frequency can then be calculated in a straightforward way, 
(28) 0 / / /cv r eB m      . 

Here we have defined /c eB m  , which is referred to as the cyclotron frequency. 

 
Because the electron moves with relativistic velocities the observed frequency of the 
radiation is actually much higher.  Recall the Lorentz transformations between two 
inertial reference frames given by 

(29) 
2

( )

( / )

'

x x vt

t t vx c

y y

z z




  

  
 


. 

The transformation of velocity in the x  and y directions can be found from taking 
differentials of eq. (29) 
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Now consider a light wave emitted at angle  in the rest frame of a moving electron.   In 
the lab frame the x and y components of its velocity can be calculated using eq  (30), for 
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each of the components. For velocities very close to the speed of light 1 1  the angle 
in the lab frame can be approximated as shown below:

 
Figure 4 
From this one can see that the radiation emitted by a relativistically moving object is 
compressed into a cone of opening angle 1/  .   
 
Now consider an electron radiating as it moves along a circular orbit.  

 
Figure 5 
 Its radiation will only be seen for a short time when its cone of radiation is emitted 
within an angle 1/ of the horizon. Thus the observer will see a short pulse of light. In 
order to calculate the width of the pulse one has to be careful to include the fact that the 
light itself propagates at finite speed.  (This is similar to the calculation employed in the 
derivation of the Doppler shift.) Thus, we calculate the difference in arrival times 
between light emitted from when the electron just emerges from the horizon, to light 
emitted from when the electron just sets again below the horizon.  Between these two 
events, the electron has moved a distance 0/ed c   closer to the observer while the 

light beam emitted at the beginning of this time has moved a distance 0/ld c    closer.  

Thus the difference in arrival times is given by: 
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For the Advanced Photon Source 14000  , so the duration of this pulse is extremely 
short.  In order to make up a very short radiation pulse, one need to include Fourier 
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components up to 1/ T   .  Hence the spectrum of radiation is boosted to frequencies 
of order 3

0  .  Typically the radiation spectrum obtain from a synchrotron is scaled in 

terms of the critical frequency given by  
(32) 3
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For the APS the critical energy 19.5keVc cE   . (Note that the expression given in 

some earlier versions of Jackson differs slightly from the conventional definition, e.g. 
3

03crit   ,  however later editions have corrected the nomenclature to agree with the 

above definition).   
 
The radiated power as a function of angle and frequency is a complicated function.  
However the limit of the total power integrated over all angles, as a function of frequency 
for crit  is relatively simple 
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This is the energy emitted per unit frequency per revolution of the electron around the 
ring. Thus the power falls off exponentially with frequency above the critical frequency. 
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Figure 6 
The spectrum obtained from an Advanced Photon Source bending magnet.  This curve 
was obtained from http://www-cxro.lbl.gov/optical_constants/bend2.html   .   
 
The radiation from a synchrotron bending magnet differs from that of an x-ray tube in 
several important respects.  The radiation is a continuous spectrum as opposed to sharp 
lines from the characteristic radiation.  This can be important for applications involving 
absorption or resonant scattering.  The radiation is collimated to an angle of order 1/ . 
The overall intensity of radiation is higher than that which can be produced by an x-ray 
tube chiefly because nearly all the energy used to create the x-rays goes into the x-rays 
themselves, rather than heat. One can still do quite a lot of diffraction experiments with 
an x-ray tube flux (typically around 106 photons/s ) and the additional flux from 
synchrotrons is often more useful for specialized experiments such as diffuse scattering, 
very high resolution scattering, or scattering from micro-crystals.  
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Undulators  
 Magnets that are specially tailored to produce x-rays can produce more radiation 
than a uniform magnetic field. 

 
Figure 7 

This is typically done by arranging a series of alternating north and south magnetic poles.  
The electrons, rather than only emitting one pulse of radiation, will emit radiation each 
time they pass through a region of intense magnetic field.  If the magnets are not close 
enough together, the radiation emitted from one set of magnet poles will not have a 
definite phase relationship with the radiation emitted from the other magnets.  In this 
case, the net effect of such an arrangement is to produce the same spectrum as given by a 
bending magnet, then the radiation sums incoherently.  The intensity of radiation is 
approximately N times the equivalent intensity from a bending magnet.  This type of 
arrangement is called a wiggler, but wigglers are seldom used on modern synchrotron 
sources.  
 
Much better performance can be obtained by arranging the magnets so as to scatter in 
phase. Since the electron beam must move slower than the light waves, the radiation from 
subsequent magnets must suffer a phase delay.  The trick is to arrange the magnet spacing 
so that this phase delay is an integral number of wavelengths. This  type of arrangement 
is called an undulator. 

 
Figure 8 

Consider the path of an electron shown above.  The distance u is the spacing between 

the poles of the magnet.  The electron travels a slightly longer path, s, which follows the 
sinusoidal deflections induced by the magnets.  The condition that the radiation from the 
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two magnet section is in phase requires that the time delay between the arrival of the light 
from the point A in fig. 8 and the arrival of the electron at point B be a multiple of the 
period of the light. The time for light to reach point B from point A is given by 
(34) /light uT c   

The arrival time of the electron at point B is given by 
(35) /electronT s v   

The path length s can be determined from the maximum angle of deflection K (see 
Problem (10) and is given by  

(36)  2 21 / 4us K    

The condition for the radiation from the two magnets to be in phase is given by 

(37)  2 21 / 4 /u uK n        

 Here, n  is an integer. The required magnet spacing, u , can then be solved for,  

(38) 
 

2

2

2

1 / 2
u

K

 


 

Here I have used the approximation 1  , so that 
  

  2

1 1 1
1

1 2

 


 
 

  


 

 
The angle K can be derived from the curvature of an electron in a magnetic field and is 
given by (see problem 13)  

(39) 
u

eB
K

k mc
 . 

Here 2 /u uk    
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Figure 3 
From http://www.aps.anl.gov/Facility/Technical_Publications/techbulletins/tb45.pdf  
  
The figure above shows the spectrum on-axis from an APS undulator A. of the (The APS 
creatively decided to name the first series of undulators  “A”).  Note that for a given 
magnet spacing there are also several harmonics which result from the condition that the 
phase difference is a multiple number of wavelengths. 
 
The total power emitted by an undulator is the same as that emitted by a wiggler; 
however it is concentrated around the energies of the harmonics. At the harmonics it is of 
order N2 larger than the bending magnet intensity. 
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Problems.  

10. For a particle in circular motion, the total power radiated is given 

by
2 2

4
3

0

1 2

4 3

q a
P

c



 . Here, a is the acceleration in the laboratory frame of 

reference.   Use this formula to estimate E , the total energy emitted by an 
electron in a single pass by an observer. Next estimate the spectral power, 

/dE d  under the assumption that 
 dE

d




 is constant out to c and zero 

above c .  
11. At the Advanced Photon Source the energy of the electron beam is 7.0 GeV 

and the critical photon energy is 19.5 keV.  Based on this, calculate the 
magnetic field within the bending magnets at the APS.   

12. At the Advanced photon source the frequency with which electrons orbit the 
entire synchrotron, 1.7 MHz.  Using the magnetic field strength from problem 
11 calculate the orbital frequency expected.  Explain why this number differes 
from the 1.7 MHz and why you not necessarily expect these values to be the 
same?  (Hint, think about the details of how a synchrotron is constructed). 

13. Path length for an electron through an undulator.  
a. Show that the path length, s traveled by the electron between one 

maxima and the next is approximately equal to  2 21 / 4u K   where 

/K  is the maximum angular deflection of the curve, and the shape of 
the curve is assumed to be a cosine wave.   

b. Show that the maximum angular deflection is related to the 
effective radius of curvature, , via: 21/ uAk  where A is the 

amplitude of the sinusoidal oscillation of the electron.  Use this result 

to show that  
u

eB
K

k mc
  Hint:  If you need help see section 2.4 of Als-

Nielson, but you should be able to do this on your own!  
14. Derive equation (38) from equation (37) using the approximations discussed 

in the text.  
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X-ray Interactions with Matter 

Dielectric Polarizability for X-rays 
We begin the discussion of x-ray interactions with matter by deriving an expression for 
the dielectric constant of a material.  The following section is based on Chapter 8 of 
Griffiths [6].   
 
Approximate an electron bound in a solid as a harmonic oscillator with resonance 
frequency  and damping coefficient .  In the presence of an electromagnetic wave, the  
electron experiences a force, and satisfies the equation of a damped driven oscillator  
(40) 2

0 0
i tmy m y m y qE e       . 

We use here the usual complex representation of an electromagnetic wave. Using the 
ansatz 0

i ty y e  yields the solution 

(41) 0
0 2 2

0

/

( )

qE m
y

i  


 
 

This results in an oscillating electric dipole moment, p qy , given by  

(42) 
2

0
2 2

0

/

( )

i tq E e m
p

i



  




 

. 

More generally, a density of N identical atoms per unit volume each with Z electrons, 
each with resonant frequency j has a dipole moment density given by2 

(43) 
2

0

2 2
1

/

( )

i tZ
j

N
j j

f q E e m
P

i




  






  . 

 
Here fj is the oscillator strength of each electron in the atom.  The oscillator strength of 
each electron  is approximately 1. An exact calculation can be made using a proper 
quantum treatment. From this expression and using the definition 0P E  together with 

0 (1 )     we arrive at 

(44) 
2

0 2 2
10

/
1

( )

Z
jN

j j

f q m

i

 
   

 
     

  

Consider the limit (not always valid) that the frequency of the incident x-ray frequency is 
much larger than any of the resonance frequencies.  In this case we can make the 
approximation  

(45) 2 2 2

1 1

/ ( ) /
Z Z

j j j
j j

f i f   
 

 
      

 
   

  
                                                 
2 This is only true in the limit that the susceptibility is much less than one.  However this is an excellent 
approximation for the case of x-rays. 
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 The “f-sum” rule from atomic physics gives the result that 
1

Z

j
j

f Z


 .  This in this limit 

the dielectric constant simplifies to  

(46)  
2

2
0 0 02

0

1 1 /N
N

Zq
Zr

m

     
 

 
    

 
  

In general, the x-ray frequency is not so large that the effects of resonances can be 
neglected.  In this case, one writes for an atom collectively 

(47) 
1

'( ) ''( )
Z

j
j

f Z f if 


    

 
 . 
then eq. (46) becomes  
(48)  2

0 0/ 1 '( ) ''( ) /N r Z f E if E         

 
The factors f  and f are referred to as the anomalous scattering factors and can be 
looked up in tables.   With the proper choice of f  and f eq. (48) is completely general, 
and the assumption of a harmonic oscillator potential is no longer required.  In general, 
f  and f are small compared to Z , so that one can write an effective electron density  

(49)  '( ) ''( )e N Z f E if E    , 

which is close to the actual electron density. We can then re-write eq. (48) more 
compactly  
(50) 2

0 0/ 1 /er       
 
 

The Far Field Scattering Pattern 
We now consider how this oscillating dielectric constant causes the scattering of x-rays.  
An EM wave satisfies the wave equation 

(51) 2 2 2/E E t   
 

. 
If we ignore polarization, we can approximate this as a scalar wave equation given by  
(52) 2 2 2/ t      . 

Making the ansatz    , i tE r t r e  
 

 and using the definition  

(53) 2 2k   
eq. (52)  becomes 
(54) 2 2 0k    . 
For now, we will assume that magnetic effects can be ignored ( 0  ).  We can then 
substitute eq. (50) into eq.(53) to give 

(55)   2 2 2 2
01 / /ek r c     

 This gives  

(56)   2 2
0 04 0ek r r      


. 
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Let us represent the differential operator 2 2
0k  by L  and the also write  04 ef r r 


.  

In the absence of f we have 0 0L  and we would like to find a solution to L f  .  

If we can find the Green function which satisfies ( , ) ( )LG r r r r  
   

then the solution to 
the full equation will be  

(57)   3( , ) ( )G r r f r r d r     
    

 

 
The Green function for eq. (56) is well known from electrodynamics and is given by 

(58) ( , )
4

ik r re
G r r

r r

  

 


 
 

  . 

The scattered field from eq. (56) can be found using the Green function for eq. (54).  
Even knowing the Green function, it is still not possible to solve eq. (58) since it is an 
integral equation involving  on both sides.  However, we can find an approximate 

solution using the first Born approximation by taking 0 0
ik rE e   
 

within the integral.  

The result for the scattered field is then given by   

(59) 3
0 0 0( ) ( )

ik r r
ik r

s e

e
r r r E e d r

r r
  

 
  


 

   
   

Here, k  is the wavevector of the scattered radiation with magnitude 2 /k k     . We 
now take the origin of r


and r


to be within the sample and note that the position 

r


represents the position where we are measuring the electric field, which we call the 
detector position (see fig. 4).  We then have in the exponential: 

(60) 2 22 /k r r r r r r k r k r r r k r k r                   
      

 

In the denominator we can take r r r 
 

, yielding  

(61)   3
0 0 0( ) ( )

i k
r

r

e

ik
ke

r r E e r d r
r

  
  


    
    

 

The first term 0 represents the unscattered radiation and is generally not seen in the 

detector.  The second term represents the scattered electric field which we represent with 

s .   

In order to account for the polarization of light we need to multiply this result by a factor 
P to account for polarization.  This factor is determined as follows: Take ̂ to be the 
polarization direction of the incident x-ray beam and take ˆ /n r r


to be the direction of 

the scattered radiation.  Then  

(62) 
2

ˆˆP n   

For the case of an unpolarized incident beam the polarization factor then becomes 

(63) 
21 cos )(

2
P


  

Where  is the scattering angle.   
 
The final result is then:  
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(64) 0
3

0( ) ( )
ikr

iq r
s e

e
R r PE e r d r

r
    

   
 . 

 
Here we have defined a new variable, q


, defined by the difference between the incident 

and outgoing wavevectors of light,  
(65) out inq k k k k   

   
 

The angle  defines the angle between the direction of polarization  and the direction of 
the scattered light wave. 

 

 
 
 
This is the central result of x-ray scattering, the scattered x-ray intensity is proportional to 
the Fourier transform of the electron density. This result forms the basis by which the 
structure of materials can be extracted from the x-ray scattering.  
 

Absorption 
For a plane wave moving in the x-direction the electric field can be written as  

(66)  0( ) expx i kx t       

d  

Sample 

Incident Wave  
0

i k r t
E e

 
 

 

Detector 

Scattered Wave    i k r t

sE r e
 

 
 

  3
0

0

( )
ikr

s iq r
e

E r e
r P e r d r

E r
   

     

r


  r




Figure 4 

ink


 
outk


 

q


 

Figure 5 Definition of the scattering wavevector 
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The dielectric constant will generally not be a real number as can be seen from eq. (49) 
for the effective electron density. If we write 
(67)    Re Imk k i k   

then the electric field intensity is  given by  
(68)  *

0( ) ( ) ( ) ( ) exp 2 Im( )x x x x k x       

The intensity decays exponentially with an absorption length given by 1/ 2 Im( )k  . 

Since /k c    we obtain 

(69) 02 N r f    . 

 
One can also describe absorption in terms of a cross section.  This is especially useful 
when trying to make contact between x-ray scattering and neutron scattering. In terms of 
an absorption cross section, a, we can use the relation / a NdI dx I    to obtain  

(70) 0/ 2a N r f       

 

(69)  
Figure 6 
Above are shown the anomalous atomic scattering factors for the element copper.  Note 
that the dispersion near the Cu k-alpha edge near 10,000 eV does not look at all like a 
simple harmonic oscillator resonance such as would be expected from (44).  This is 
because instead of going from one bound quantum state to another bound state, the final 
state is the continuum.  In addition, since the energy is quantized, there is no absorption 
below the edge.  Note that, in this figure, 2 ''f f and 1 'f f Z   .  

 
Absorption is frequently expressed in terms of mass-absorption coefficients (sometimes 
known as the mass attenuation coefficient which can be looked up in table on the web 
http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html, or in the x-ray data book.  
In this case one defines  
(71)    
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So that we have  
(72) 02 /AN r f A    

Here A is the atomic weight and AN is Avogadros number. It is straightforward to 

generalize this notion to compound materials 
(73) tot i i

i

m   

Here im is the mass fraction of element i in the compound.   
 
As can be seen from Figure 6 the absorption cross section has a large jump across the x-
ray ionization threshold for a particular orbital.  This jump is referred to as the edge.  
Above a K-edge the absorption typically decreases as 3

a E  while the absorption at 

the k-edge for different elements goes approximately as Z4. Thus heavy elements absorb 
x-rays much more strongly than lighter ones.  
 

Scattering from Atoms 
An x-ray detector measures the flux of photons *I E EA A   , e.g. the integral of the 
square of the electric field over the detector area.  The value of the electric field (under 
the assumption that the detector is far away from the sample) can be found from the Born 
approximation via Eq. (64).   , which is then given by 

(74) 
 2 2

2
0 3

2
0

cos( )
( )iq r

e

rq
e r d r

r





 

 
  

 

Here the wavevector transfer is defined by eq. (65). 
 
Scattering measurements are typically defined in terms of differential scattering cross 
sections /d d   with   the solid angle of the detector.  The differential scattering cross 
section is defined as the ratio of the scattered intensity sN (photons/sec) measured in solid 

angle d  to the flux 0 (photons/s/m2) incident on the sample.   

(75) 0s

d
I

d


  


 

For an isolated atom the scattering cross section is obtained from eq. (74) and (75) 

(76) 
2

2 3
0 ( )iq r

e

d
Pr e r d r

d

 
 

   
 

Here,      *
e r r r  
  

 is the atomic electron density distribution.  The integral in eq. 

(76) is referred to as the atomic form factor defined by   
(77) 3 ( )iq r

ef e r d r 
   

. 

For small q , the exponential can be approximated as unity, and we obtain f Z ; for 
larger q , f is generally less than Z .  Values of the atomic form factors as a function of q  
can be found in tables. See, for example the web page 
http://www.isis.rl.ac.uk/ISISPublic/reference/Xray_scatfac.htm.   The total scattering 
cross section from an isolated atom is given by the integral over eq. (76) over all angles.  
In the limit of small q  one obtains,  
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(78) 2 2

08 / 3tot r Z   
 

Compton Scattering. 
In addition to elastic scattering and absorption electrons will also scatter inelastically 
through Compton scattering.  The distinction between elastic scattering and Compton 
scattering is that the energy of elastic (or Thompson) scattered electrons is un-modified, 
while Compton scattered electrons have their wavelength changed via 

(79)  ( / ) 1 cosh mc        

Here  is the scattering angle.  Compton scattered photons can not interfere 
constructively and typically is seen as a diffuse background on scattering patterns.  The 
intensity of the Compton scattering is related to the intensity of the coherent scattering  

(80) 2

1

Z

compton j
j

f Z f


  . 

The form factor for each individual electron in the atom is given by the integral over that 
electrons density, 
(81) 3 ( )iq r

j jf e r d r 
   

. 

 
Problems. 
 

15. Derive eq. (69) 
16. Calculate the absorption length of 8-keV x-rays in a) Copper and b) GaAs 

using eq. (69) 
17. Calculate how much NaCl would have to be dissolved in Water to double the 

absorption length at 8 keV. 
18. Derive eq. (78) 
19.  (From chapter 1 of [7].  Suppose that the electron density for the three 

electrons in neutral Li can be represented by hydrogen-like expression of the 
form  

 
 2 /

3

r ae

a






  

Where for each K electron 0.20Ka  Å and for the L electron 1.60La  Å.  
Calculate the atomic form factor using eq. (81).  Note that for a spherically 

symmetric atom you can re-write eq. (81) as  2

0

sin( )
4e

qr
f r r dr

qr
 

  . 
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Small Angle X-ray Scattering 
 
In a material that consists of many  atoms with inter-atomic correlations the integral 
expressed in eq. (76) can be generalized to include all electrons within the material.  Thus 
the general cross section is given by   

(82)  2
0 ( )e

d
Pr V S q

d

 



. 

Here V is the sample volume, e is the average sample electron density and the structure 
factor is defined by  

(83) 
2

31
( ) ( )iq r

e
e

S q e r d r
V




 
   

 

Here the local density e is related to the averaged density by ( )e e r
r  . For the case 

of identical atoms, the atomic form factor f  can be factored out giving: 

(84) 
2

2
3( ) ( )iq r

N
e

f
S q e r d r

V



 
   

. 

In this case ( )S q


now represents the structure factor per atom.  For materials with 
multiple different atoms the atomic form factor has to remain inside the integral.  
Sometimes, to make connection with neutron scattering, this equation is also written in 
terms of the “scattering length density” 
(85) 0 cos( )b Nr f    

 
 
In this case b is analogous to e . In most actual x-ray experiments the incident intensity 

is not measured, but rather the incident flux 0I (photons/sec).  In this case one typically 

integrates over the area of the beam 0A and normalizes by the volume of the sample, 

0V A  , with  thickness of the sample to obtain; 

(86) 0

1
s

d
I I

V d

    
 

The volume normalized cross section is sometimes referred to as 
1 d d

V d d

      
 

 
The differential scattering cross section per unit volume is then simply related to the 
structure factor via; 

(87) 2
0

1
( )e

d
Pr S q

V d

     


 

 
 
. 
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As a practical example, consider scattering from a colloidal suspension of particles of 
identical shape in water.  If the particles are sufficiently large, then most of the scattering 
will be confined to small angles, and in this case 1P  and Eq. (87) simplifies to  

(88) 
2 2

2 30
0

1
( ) ( )iq r

e

rd
r S q e r d r

V d V

       
   

 

Let 0 denote the electron density of the water.  We can then write  

(89)  
22 33 3 3 3

0 0

1 1
( ) ( ) 2 ( )iq r iq r iq r

eS q e d r e d r e d r q
V V

              
         

 

If we ignore scattering along the direct beam direction, 0q 


, then we obtain 

(90)  
2

3

0

1
( ) iq rS q e r d r

V



 

 
   

 

 
Equation (90) is the starting point for the analysis of small angle scattering.  This result 
applies the general scattering from all materials which have structure on large enough 
length scales that the scattering is confined to small angles.   
 
In order to make further progress it is necessary to make assumptions about the system. If 
all the particles are identical, then we can write the density of particle i as  

(91)    
,i p ir r r

 
  

 
 

Here ir


 is the position of the center of mass of particle i . The symbol 
, 

 represents 

the averaging over all possible rotations of the particle. The function  p r 
 gives the 

electron density of an individual particle.  If we make the assumption that the correlations 
between the positions of particles are independent of their relative rotations (which will 
become more accurate for dilute suspensions, but is frequently NOT a good assumption 
for concentrated solutions) then we can approximate Eq. (90) as the product  

(92)     2
( ) p pS q N S q F q
  

 

Where the inter-particle structure factor  pS q


is defined by  

(93) 
2

1
( ) iiq r

p
ip

S S q e
N

  
 

 

And the particle form-factor (analogous to, but distinct from, the atomic form factor) is 
given by  

(94)  
22 3

,

( )iq rF q e r d r
 

 
   

 

In most experiments, one should average over all possible particle orientations.  In this 
case the density depends only on the magnitude of r and we can write 

(95) 
 2

3 ( )sin
( ) ( ) 4iq r r r qr

F q r e d r dr
qr


  

   
  

. 
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In many cases, it is the particle form factor which is of chief interest.  Note that since the 
form factor is averaged over orientation, this will only depend on the magnitude of the 
scattering vector. For a number of simple shapes the form factor can be calculated 
explicitly.  For a sphere of radius a, we have  

(96) 
   

 3

sin cos
( ) 3

qa qa qa
F q V

qa


       
  

 

Form factors are usually written in terms of a normalized form factor ( )q  such that 

(97) 0( ) ( ) /q F q V    

This separates the form factor into a shape dependent part and a size dependent part. It 
can be shown that for any solid shape the form factor is related to the distribution of end 
to end vectors within the material.  The form factors for most simple shapes can be 
looked up.  A good summary is given in the International Tables for X-ray 
Crystallography.  
 
. 
 
Some useful limiting relationships can also be derived for either small or large q. As 

0q     2
eF q N .  For q small the form factor approaches the Guinnier approximation 

(98) 
2 2 /32 2 2

0
( ) gq R

eq
F q V e 

   

Here gR is the radius of gyration given by  

(99) 
 
 

2 3

2

3

e

g

e

r r d r
R

r d r




 


 

For large q, we have the limit 

 
 2

0 0
4

21 e
particlesq

rd S

V d q V

  


   
 (100) 

(Add a proof of this …) 
 
Here /S V is the ratio of surface area to volume and particles is the number of particles per 

unit volume. 
 
(Put in a worked example of how to calculate the scattering from a suspension of 
spheres.) 
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Object F(Q) Reference
Gaussian Random Chain (Debeye form 
factor)  2 2

4

2
1x

g

N
e x

x
x qR

  


 

[8] 

Rigid Rod  
 

 2
2

0

sin2
sin / 2

/ 2

x xN N
x

x x x

x qL





  

[8] 

Sphere    
3

sin cos
3

x x x
N

x

x qa

    
 
  

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In addition to the structure of the particles themselves, the small angle scattering can also 
be affected by correlations between different particles. Consider the case of a mono-
atomic liquid.  We can define a pair correlation function,  1 2,g r r

 
which is the joint 

probability of finding particles at 1r


 and 2r


.  

(101)    2
1 2 1 2 1 2, ,NP r r g r r dV dV   

 

 
For an isotropic media, only the magnitude of the separation 1 2r r r 

 
matters, we can 

write  1 2, ( )g r r g r
 

. In this case ( ) 1
r

g r   and 

0
( ) 0

r
g r 

 
Figure 7 
 
Frequently one also defines the function ( ) ( ) 1h r g r  , which removes the constant term 
from the Fourier transform. Figure 14 shows the expected ( )g r for a simple monotonic 
liquid, such as liquid Xenon.  The structure factor of scattering from this liquid will then 
be given by  

(102) 
( )

( ) 1
g q

S q
V

    


 

Here we define the Fourier transform  

(103) 
2

3

0

( ) sin( )
( ) ( )iq r g r r qr

g q e g r d r dr
qr



  
     

The extra factor of 1 in the structure factor comes from the contribution of single atom 
scattering.  
 

Types of SAXS spectrometers   
 Below are shown two typical x-ray spectrometers used to measure small-angle 
scattering.  
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Typical resolutions from q=1 nm-1 to q=0.01-1 for pinhole and to q=0.001 for Bonse-Hart. 
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Thermal fluctuations 
Consider an isotropic fluid, at large length scales the structure due to the individual 
particles will average out, however there will still be variations in density due to thermal 
fluctuations.  One way to characterize the magnitude of fluctuations is to ask what the 
response would be to an externally imposed force field.  This is an exact analogy of the 
dielectric susceptibility in a material.  The mechanical susceptibility is the 
compressibility. 
(104) / v    
Here v  is an external potential. However, if the force is non-uniform, one can define a q 
dependent susceptibility, typically defined in Fourier space as  
(105) ( ) ( ) / ( )q q v q      
 
One of the primary results of the fluctuation-dissipation theorem of thermodynamics is 
that the structure factor is related to the susceptibility via 
(106) ( ) ( ) /b particleS q k T q    

In the limit of 0q  this implies 

(107)  
0

( ) B particleq
S q k T   

Here  is the isothermal compressibility.  (For details on this derivation, and for more 
details on x-ray scattering from colloids see chapters 11 and 14 of Hunter [9].)  
 
 
 

Scattering from a dilute polymer solution 
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A polymer in solution can be modeled as a segmented chain where the position of each 
segment executes a random walk with respect to the polymer.  (For a reference see 
chapter 1 of Doe and Edwards [10]) 

 
 
The total length of the chain will then be given by the vector sum of all the displacements 

(108)  
2

2 2 2

1 1

cos
N N

i i i j ij
i i i j

R r r rr Nb
  

     
 

 

Hence R Nb .   How will this scatter?  Let 
2

( )f q represent the form factor of each 

monomer unit.  The structure factor will be given by  

(109)      2

, 1 , 1 , 1

sin1
exp exp

N N N
m n

n m n
n m n n m m nangleangle

q r r
iq r iq r r

N q r r  


       

 
        

 
If we expand this for small q we obtain 
(110)  

(111) 2 21 1
( ) 1

3 gS q q R
N
   
 

 

With  

(112) 
2

2
2

, 1

1

2

N

g n m
n m

R r r
N 

   
 

In fact, the structure factor of the polymer chain can be solved exactly (see [10]) to give  
(113) 2 2( ) ( )gS q Nf q R  

With  

(114) 
 

2

2 1
( )

xe x
f x

x

  
  

Referred to as the Debye function.   
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A real polymer will not yield this structure factor because there is an additional constraint 
that the chains not cross.  This makes the radius of gyration a little larger than expected.  
In fact, one finds a result closer to 0.588

gR N .  Interestingly, however, in a very dense 

melt, we obtain the result of eq. (108) again.  This is because there is no way for a chain 
to distinguish its own members from those of its neighbors, and therefore the excluded 
volume effect is cancelled out.  It is, however, not possible to measure the structure factor 
of a single chain within a melt using x-ray scattering since there is no what to isolate 
which chain does the scattering.  However, with neutron scattering it is possible to 
deuterate a few selected chains, and hence measure the structure factor of individual 
chains within a melt.  
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Problems 

20. Show that 2( )S q Z


 for a gas, when the positions of the atom centers are 
uncorrelated. 

21. Consider a point a distance y away from a uniform beam of x-rays of intensity 
I.  Assume that the result of problem 18 applies and further that the atomic 
structure factor of the gas can be ignored.  Use eq. (76) to show that the 
intensity scattered into a detector of area dA is given by 2 2

02 /Z r IdA y where 

 is the number density of gas atoms.  
22. A typical x-ray beam at the APS contains Consider 1015 photons/s .  Consider 

the passage of this beam through air (assumed to be N2 gas). 
a. Use the results of problem 19 to calculate the number of photons/sec 

scattered into a 1 cm2 detector located 1m from the an infinitely long 
pencil of beam. 

b. Assume that you were, foolishly, sitting inside an x-ray enclosure 1 m 
from this beam.  Suppose that the x-ray beam was completely 
absorbed within 1 mm of the surface of your skin, and assume that 
approximately 0.01 J of radiation per gm of material will give a lethal 
dose of radiation to your skin.  How long would it take to acquire a 
lethal dose of radiation under these circumstances?  

23. Show that   3( ) iq r
avgS q e g r d r 

   
 where the correlation function is defined 

by       3
2 N N

V
g r r r r d r

N
    

 
.  Note that ( )g r


is defined so that it 

becomes unity for un-correlated atoms. 
24. Derive eq. (95)   
25. Show that Eq. (100) is the limit of Eq. (96) at large q when averaged over a 

period of the oscillations.  
26. Consider a colloidal suspension interacting with an external field. Using the 

Boltzmann distribution one can show that the local particle density at position 
r in an external field v(r) can be written as (r)= exp(-W(r)/kT).  Here W(R) 
is the free energy (relative to a point where v(r)=0) of putting a molecule at r.  
The quantity W(R) has two contributions: (a) the direct interaction between 
the molecule and the external field, i.e. v(r) and (b) the effect which the 
presence of a molecule at r will have on the local density of molecules around 
r.  The resulting excess of molecules (which may be positive or negative ) due 
to (b) also interacts with the external field and contributes to W(R).  For a 
weak external field this second contribution has the form 

  ( ) 1 ( )g v d   r r' r' r'where  ( ) 1 ( )g v d  r r' r' r'  is the excess 

number of molecules at the volume element dr' locate at r' given that there is 
a molecule at r, and ( )g r is the correlation function. Assuming that v/kT << 1 

show that 
2( )

( ) [ ( ') 1] ( ') '
v

r g v d
kT kT

          
r

r r r r . 

27.  Show that the Fourier transform of the equation in exercise 14 results in Eq. 
(106). 
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28.  Show that Eq. (114) and (113) are consistent with Eq. (111).  

29. Show that equation (112) can be re-written as 
2

1

1 N

g n cm
n

R r r
N 

   
. 
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Surface Scattering 
 

 
 
We consider the scattering of x-rays from a flat interface between the vacuum and a 
material.  For a reference to the treatment detailed here see Sinha [11]. Initially, let us 
assume that the surface is perfectly flat.  We start with eq. (88) for the differential 
scattering cross section.  Let the surface be at 0z  .  The electron density is described by 
a Heavyside function    e z z   .  Here  is the density deep within the material. 

Substition of this density profile gives for the integral in eq. (88), 

(115)    3( ) expiq r
e x y ze r d r dxdydz z i q x q y q z  


     

   
. 

Using the relationship that 

(116)  2iqxe dx q




  

 We can rewrite eq. (115) as 

(117) 3 2( ) 4 ( ) ( ) ( ) ziq ziq r
e x ye r d r q q z e dz     







 
   

. 

We can simplify this further using the integration by parts and the relationship that  
(118) ( ) / ( )d z dz z  . 
This gives 

(119) 
2

3 2 4 ( ) ( )( )
( ) 4 ( ) ( )

ziq z
x yiq r

e x y

q qz e
e r d r q q dz

iq iq

       







  
   

 

 

,r rE k


 
,i iE k


 

,t tE k  



'  


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Hence we have  

(120) 
4 2 2 22 22

030 0
2

16 ( ) ( )1
( ) x yiq r

e
z

q qr rd
e r d r

V d V V q

          
   

 

 
In order to eliminate the delta functions we need to integrate this differential cross section 
over the area of the detector. The actual measured intensity is given by 

(121) 0
0

0

( )
Id d

I q d d
d A d

 
    

    

We can write the solid angle in terms of the q-vector as shown in the diagram below. 
 

 

(122) 
 2 sin

x ydq dq
d

k 
   

 
  
In order to make further progress we must evaluate an integral of the form 

(123)  
/ 2

2

/ 2

(0) ?
x x

x x

q q

x x

q q

q dq 




    

However, in reality the sample is not infinite, so actually 

(124) 
/ 2

0
finite sample size

/ 2

1 1 1
(0)

2 2 2 2

x

x

x

L
iq x i x x

L

L
e dx e dx dx dx

   

  

   

         

Thus 
(125)

 
 

4 2 2 2 2 2 4
02 20 0 0 0

0 0 2 2 2 2
0 0

16 ( ) ( ) 16 1

4 sin
x y sample

x y
z z

q q AI I rd
d r dq dq

A d q A V q k

     
 


  

   

Using  0/ sinsampleA A  , and  2 sinzq k   gives 

(126) 
42 2 2

0 0
4

0

16
( )

2
scat c

z z

I r q
R

I q q

 
 

    
 

 

Here we have defined (for reasons that will become clear later) 

  



 2/ sinx yd d d dq dq k    

ik


 

rk


 
i rq k k 
 
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(127) 2
0 016cq r  

 
Since  2 sinzq k   equation (126) predicts that the scattering falls off as the fourth 

power of the angle for small angles.  In addition, equation (127) predicts that the absolute 
magnitude of the scattering is proportional to the square of the electron density.  However 
it can be seen that for very small angles the reflectivity is predicted to go above unity, 
which is not possible.  The problem with the above derivation lies in the Born 
approximation, since this is only valid when the scattering is much smaller than the 
incident intensity.  We will go on to derive a more exact solution shortly.   
 
Before considering the exact solution consider the case of a non-sharp interface described 
by a density profile ( )z .  In this situation eq. (119) becomes 

(128)
2

3 2 4 ( ) ( )( ) ( )
( ) 4 ( ) ( )

z ziq z iq z
x yiq r

e x y

q qd z e d z e dz
e r d r q q dz

dz iq iq dz

       
 




 

   
   

 

And thus the differential scattering cross section becomes  

(129) 

24

0

1 ( )

2

ziq z
scat c

z

I q d z e dz

I q dz






 

 
  
 

 . 

Here  4 sin /zq    thus we see that a measurement of the reflectivity as a function of 

angle yields the Fourier transform of the derivative of the density profile normal to the 
surface.  For the case of a rough surface, the calculation is more complicated, but the 
result is essentially that the intensity is a measure of the average density profile over the 
coherence length of the x-rays on the surface. In addition a rough surface will scatter 
some intensity outside the specular condition.  This can be described in the context of the 
distorted wave Born approximation which requires the more exact treatment of the wave 
solution given below.  
 
As a simple example consider a surface with a density profile described by an error 
function, e.g. 

(130) 
2 2/ 2

2

1 ( ) 1

2

zd z
e

dz


 




  

Such a profile can result from random roughness such as capillary waves on a liquid or 
steps on the surface of a solid, or alternately it can represent a truly diffuse profile such as 
the interface between two polymers which slightly intermix. In this case eq. (129) give 

(131) 
2 2

4

0 2
zqscat c

z

I q
e

I q
 

  
 

 

 
Thus for a surface with a Guassian derivative interfacial profile, the scattering intensity 
falls off as 4

zq  multiplied by a Gaussian falloff.  
 
In order to do better than the Born approximation, one can try to find an exact solution to 
Maxwell’s equations in the presence of an interface. We present here a simplified 
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derivation of Fresnel’s laws of reflection and refraction, for the case of grazing incidence 
where polarization can be ignored.   
 
Consider the reflection of an electromagnetic wave from the vacuum onto a material with 
index of refraction 1n . One can show from Huygen’s principle that the angle of reflection 

is equal to the angle of incidence    and that the transmitted beam is refracted 
according to Snell’s law (where we define the angle   with respect to the surface rather 
than with respect to the surface normal as is typically done for light)  
(132)    1cos cos 'n   

In addition, there is an angle where  cos ' would have to be greater than unity.  Angles 

less than this correspond to total external reflection.  We can calculate what this angle is 
by expanding the cosine term and using 2 2 2

0 01 / 2 1 / 2N en Zq m r         .  This can 

also be written in terms of its real and imaginary components 1n i    . If we ignore 

the absorption term  we can rewrite (132) for small angles as 

(133) 
 

2 2

1

2 2
1

'
1 1 1

2 2

' 2

 

  

   
      

   
 

 

The critical angle thus occurs for  

(134) 02 /c er       

We can re-write eq. (132) in terms of the sine of the angle as  

(135) 
  

     

2 2
1

2 2

1 sin ( ) 1 sin '

sin ' sin sin c

n 

  

  

 
 

Since the z-component of the wavevector  0 sinzk k   we then have for the magnitude 

of the wavevector inside the material 2 2
1 0z z ck k k   , here    2 /c ck     

 
We can now derive the expected intensities from matching the boundary conditions 
across the interface. The z-dependence of the electric fields at the interface is given 

0
0

zik zE e for the incident wave,  0 0
0

z zik z ik z
rE e E re   for the reflected wave and 

0
tz tzik z ik z

tE e tE e for the transmitted wave.  The condition of continuity of the fields and 

their derivatives then gives for the amplitudes of the waves: 

(136) 0 1

0

z z

z zi

k k
r

k k





 

and 

(137) 0

0 1

2 z

z z

k
t

k k



 

The intensity of the transmitted and reflected waves are then given by  
2

r  and 
2

t .  In 

the limit of 
2

1r   we obtain  
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(138) 
4

2

2
c

z

q
r

q

 
  
 

 

 
For the case of an interface with a density profile given by  z it can be shown using the 

distorted wave Born approximation that a better approximation than eq. (131) is  

(139) 

2 22

0 1

0 0
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scat z z
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    

 
 
Here FR is the Fresnel reflectivity.  Note that this is still an approximation and will not be 
accurate for small angles where multiple scattering becomes important.   
 
An analogy between reflectivity and the 1-D Schrodinger equation. The 1-D wave 
equation for reflectivity can also be found from the scaler wave equation (eq. (54) 

2 2 0k    ).  Let us asume we have a dielectric medium and a wave which only 
varies in the z direction, e.g. ( , , ) ( )n x y z n z  and also that the wave has no variation in 
the y-direction, yielding  a two-dimensional problem. We attempt a trial solution of the 
form:  
 0 )cos(( , ) ( ) ik xx z z e    (140) 
Substituting into eq. (54) and taking out the common exponent we find 

 
2

2 2
2

2
0

( )
( ) cos ( () ) 0

d z
z k z

dz
k     (141) 

For x-rays, the index of refraction can be given in terms of the density of electrons, e , 

via 2 2
0 01 4 /ern k    (using eq. (50) and noting that 2n   )  thus  2 2

0 04 ek k r   .  

We can then rewrite eq.  (141) as: 

  2
2

2 0

( )
4 ( ) 0z e

d z
k z

d
r

z
      (142) 

This is identical to the 1-D Schrodinger equation with 02
4

2
er

mV  


.   
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Problems 
 

30. Prove Eq. (122) in the limit of small angles.  
31. Consider a surface of a material with average density 2 and a Gaussian 

surface width given by 2 .  A thin layer of material of thickness d and density 

1 sits on top of this layer and the interface of this layer with the air is 
characterized by a Gaussian width 1 .  Calculate the reflectivity as a function 
of zq in the limit of the first Born approximation. 

32. Derive eqns. (136) and (137) from the continuity conditions. 
33. Generalize eqns. (136) and (137) for the case where the incident wave is 

traveling through a medium with index 0n  

34. Derive the limit of eq. (138) 
35. Derive eq. 132. 
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