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1. Introduction

Many 3-D landform evolution computer models
have been developed in recent years (Willgoose,
2005 and references therein). These models can be
divided into two primary categories: physically
based and rule-based. The physically based models
(e.g., Ahnert, 1987; Willgoose et al., 1991; Howard,
1994; Tucker and Slingerland, 1994; Braun and
Sambridge, 1997; Tucker et al, 2001) generally
integrate local transport processes over the system
scale and solve directly for the effects of water
discharge by solving hydrodynamic equations, or by
using contributing area as a proxy for discharge.
Models in this category are generally complicated,
time-consuming to run, and can be hard for
students to grasp. The rule-based cellular automata
models (e.g., Chase, 1992; Murray and Poala, 1994;
Luo, 2001; Haff, 2001; Crave and Davy, 2001;
Coulthard et al., 2002; Luo et al., 2004) can be
advantageous, especially for educational purposes,
because they are simple to implement but still
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maintain a close analogy between model structure
and the physical systems being modeled.

The web-based interactive landform simulation
model (WILSIM) is a rule-based model and has
proved to be a useful tool in helping students
visualize and understand the basic concepts and
processes of landform evolution over geologic time
(Luo et al., 2004; Luo et al., 2005). It adopts a
simple cellular automata (CA) algorithm (Chase,
1992) and is implemented as a Java applet. At each
time step (or iteration), a rainfall event (termed
precipiton) is randomly dropped onto a cell of a
topographic grid and routed to the lowest of its
neighboring cells. The precipiton continues to flow
downhill and, along the way, it erodes bedrock
material and carries the sediment with it until it
lands in a pit, reach the edges, or its carrying
capacity is exceeded. This simple process is repeated
(iterated) many times to simulate the first-order
features of landform evolution. The Java applet
implementation allows for the widest possible
accessibility via a standard web browser and
interactive user exploration of different scenarios,
which is ideal for educational purposes (Luo et al.,
2004). In the linear version of the model, the
amount of erosion is simply proportional to local
slope and erodibility at any given cell, and the
precipitons (i.e., rainfall events) are independent of
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Fig. 1. A 5 x 5 grid illustrating how contributing area « is derived. (a) each number indicates elevation of that cell; (b) arrow indicates flow
direction of each cell based on which neighboring cell is lowest; circle indicates a sink; (¢} number indicates contributing area of each cell,
i.e., number of cells flowing into a given cell. For example, cell C2 has B1, B2, and B3 flowing into it, so contributing area of cell C2 is
equal to sum of contributing areas of B1 (3), B2 (2), and B3 (1), plus that of itself (1), soa=3+2+1+1=7.

each other. Despite its simplicity, the linear version
of WILSIM is capable of generating the first-order
features of landform evolution. However, it does
not explicitly simulate the nonlinear behavior of
sediment erosion and transportation and precludes
the simulation of interactions between storm events.
This short note reports an improvement over these
limitations by incorporating nonlinear rules into the
model and compares the results with those from the
linear version. For the basics of the CA algorithm
and the details of the linear version of WILSIM,
please refer to Luo et al. (2004) and Chase (1992).
The nonlinear version of WILSIM can be accessed
at the same URL as before: www.niu.edu/landform.

2. Nonlinear rules
2.1. The nonlinear rules

Unlike the linear version, where the amount of
erosion is simply proportional to the slope and
erodibility, in the nonlinear version of the model,
the amount of erosion is calculated as follows:

1 m

P,=exd™ " x5,

)

where P, is the maximum possible erosion?, e is the
erodibility of material in the current cell, s is the
local slope of the current cell, a is the contributing
area to the current cell, and m and n are exponent
coefficients.

This formulation is similar to Haff’s (2001),
however, the emphasis is different. Haff’s model is
focused on predicting the erosion and sedimentation

>The actual amount of erosion depends on the carrying
capacity. The actual erosion cannot exceed the carrying capacity,
which is proportional to discharge and slope (Chase, 1992).

pattern based on present day topography and in his
model dropping precipitons (in his term waterbots)
onto every cell and following them off the grid
constitutes one iteration (Haff, 2001). The focus of
WILSIM is to simulate the evolution of landform
over geologic time, and one iteration consists of
dropping one precipiton onto the grid and following
it downhill until it stops or leaves the grid.

2.2. How to determine the contributing area a

The contributing area of a cell is defined here as
the number of cells flowing into that cell. In the
implementation, before each iteration of erosion
and deposition of a precipiton starts, the program
loops through the grids twice: the first time to
determine the flow direction of each cell in the
topographic grid by finding the lowest neighboring
cell of each cell [i.e., follows the D8 algorithm
(O’Callaghan and Mark, 1984; Jenson and Dom-
ingue, 1988)], and the second time to follow the flow
direction and sum up the number of cells that flow
into each cell [i.e., the contributing area « in Eq. (1)].
Fig. 1 schematically illustrates this process.

Once the flow direction and contributing area for
each cell are determined, a precipiton, randomly
dropped onto the grid, simply moves downhill
continuously following the flow direction of the cell
it is in and conducts erosion and deposition along
the way as in the linear version except that the
amount of erosion is now governed by Eq. (1).
Before a new precipiton is dropped, the flow
direction and contributing area need to be updated
as the erosion and deposition from the current
precipiton can change the elevation and thus change
the flow direction and contributing area.
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Since the initial topographic grid in the model
always starts with a slightly tilted plane and water
flows downhill, the flow directions for cells higher
than the target cell (i.e., the cell that the current
precipiton first falls in) would not be changed by the
current precipiton (region A in Fig. 2). Thus only
flow directions for the cells lower than the target cell
(region B in Fig. 2) will need to be updated for the
next precipiton. Because we can not predetermine
where the new precipiton will go in region B, every
cell in region B will be updated. Compared with
updating the entire grid, this approach nonetheless
reduces the number of calculations considerably
and speeds up the simulation processing time.

By incorporating the contributing area into the
calculation of erosion, the precipitons are no longer
independent, because the erosion of previous pre-
cipitons would increase the contributing area
(especially for cells in the valleys), which will in
turn have a direct and explicit impact on the erosion
of the current and future precipitons according to
Eq. (1). Since contributing area can be considered a
proxy of discharge, the erosion is, in essence,
nonlinearly related to a long-term average of the
discharge (averaged over many iterations). This is in
fact what happens in the real world in valley
development and subsequent incision.

When m=n=11n Eq. (1), P.=cxexs, (ie.,
the amount of erosion is directly proportional to
slope and erodibility), it becomes the linear case.
The new model thus incorporates both the linear
and nonlinear components. The previous linear
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Fig. 2. Schematic diagram showing which part of topographic
grid (cells) needs to be updated for flow direction after an
iteration of erosion and deposition is completed before a new
iteration starts. Only cells lower than target cell needs to be
updated.

version of the model is faster since it simply deals
with a 3 x 3 local neighborhood and does not
require the two additional loops before each
iteration to determine flow direction and contribut-
ing area. However, the nonlinear model more
effectively reproduces the natural evolution of
fluvial landscapes including increased resolution
for specific patterns of erosion and deposition.

3. What’s new in the graphical user interface (GUI)?
3.1. The exponent coefficients m and n

The nonlinear exponents m and »n are located
under the OPTIONS tab, Erodibility subtab (Fig. 3).
The default values for m and n are 1.2, but they may
be changed by clicking on the button next to n value
or m value and dragging the slider to the right as
shown in Fig. 3.

3.2. Fractal dimension

To show the changes in roughness of the
topographic surface as it evolves over time, we
added the FRACTAL tab to display a graph of
fractal dimension. Simply speaking, fractal dimen-
sion is a number used to measure the roughness or
complexity of an object (Chase, 1992), and the
roughness or complexity remains more or less the
same (self-similar) at different magnification scales
(e.g., a shoreline will have similar complexity at
varying magnification scales). For a line, the fractal
dimension ranges between 1 (a perfectly smooth
line) and 2 (a line that is so jagged that it fills the
2-D plane). For a surface, the fractal dimension

e
B3
X%

Fig. 3. Diagram showing where nonlinear parameters » and m
can be changed in GUL
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ranges between 2 (a relatively smooth surface) and 3
(a space-filling surface). In general, the larger the
fractal dimension value, the rougher the surface.
The fractal dimension presented here is computed
using the cubic covering method discussed in Voss
(1986) and Zhou and Xie (2003). It is displayed at
every 10% increment of the total iterations (see
Figs. 4(c) and (d)).

4. Comparison of results: linear vs. nonlinear model

Here, we present the results from an example
scenario with the following parameters: constant
erodibility, constant climate, and varied tectonic
uplift. That is, the erodibility of the surface was
uniform across the grid, the rainfall rate remained
constant throughout the simulation duration, and
the top 60% of the topographic grid (row 40 and
above) was being uplifted. Results from both the
linear and nonlinear versions were shown in 3-D
snapshots, 2-D profiles, hypsometric curves, and
fractal dimension plots to demonstrate the improve-
ment of the nonlinear model (Fig. 4).

Both versions produced the escarpment created
from tectonic uplift, with the alluvial fans emanat-
ing from the escarpment, and the drainage networks
developed in the plateau through headward erosion.
However, the headward erosion in the nonlinear
model extended further upstream as compared with
that in the linear model. It also formed a more
integrated drainage network (higher link frequency)
on the uplifted plateau and larger alluvial fans at the
base of the escarpment (Figs. 4(a) and (b)). This is
because in the nonlinear model the precipitons are
inter-related and the erosion is nonlinearly related
to a long-term average of the discharge (averaged
over many iterations). Thus, the erosion in the
nonlinear model is more effective in reproducing
natural forms of fluvial incision in which steeper
slopes created by erosion further promote capturing
and development of a larger and more integrated
drainage area.

The larger erosional power in the nonlinear
model is also shown in the row profiles at row 45
(5 rows upslope from the uplifting escarpment at
row 40) (Fig. 4(c) and (d)). In the linear model, as
the uplift progressed, vertical incision into bedrock
rarely cut down below its initial bedrock elevation
(at around 21 elevation units). However, the bed-
rock erosion in the nonlinear model cut down 2
units below its original bedrock elevation, forming
steeper V-shaped valleys. On the other hand,

sediments also accumulated on the lower valley
floors in the nonlinear model, contrary to earlier
expectations (Luo et al., 2004). The maximum
sediment thickness in the valleys for the nonlinear
model (~6 elevation units) is larger than that for the
linear version (~5 elevation units), probably be-
cause of the large amount of sediments eroded from
the uplands (due to a much larger catchment area in
the nonlinear model) that are transported and
deposited here.

The hypsometric curves shown here are based on
the entire topographic grid, not on a specific
watershed like traditional hypsometric curves.
However, they can still effectively portray the
relative amount of erosion of the entire grid. The
curves clearly show more headward extension and
escarpment retreat in the nonlinear model. Hypso-
metric curve results also revealed one of the
limitation of relative hypsometry, i.e., it is sensitive
to local peaks (higher elevation plateau remnants).
The local peaks created by continued tectonic uplift
throughout the simulation actually forced the lower
part of the curve to move downward (relatively)
through time, making it appear to have more
erosion in the lower part of the landform (the
nonuplifting stable part of the landform).

The fractal dimension plot (Fig. 4(c)) shows that
the nonlinear model is rougher (higher fractal
dimension value) than its linear counterpart at the
same simulation interval. This is again consistent
with expectations and results from snapshots,
profiles, and hypsometric curves. Sensitivity tests
show that the higher the value of n, the rougher the
resulting landform; the higher the value of m, the
smoother the resulting landform. This is because the
contributing area a is an integer greater than or
equal to 1, and the slope s is often less than 1 (the
difference between the current cell and its lowest
neighbor divided by the cell size).

5. Summary

The nonlinear version of WILSIM integrates the
simplicity of a CA algorithm and the complexity of
nonlinear processes for sediment erosion, transport,
and deposition to simulate landform evolution more
realistically. Incorporating nonlinear rules into the
CA-based Java applet brings the model closer to
reality (observed natural landforms) while main-
taining its easy accessibility and interactiveness for
educational purposes. In the nonlinear version, the
amount of erosion at any given cell is a power
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Fig. 4. (a) Snapshots of linear version results for a scenario of constant climate, uniform erodibility and tectonic uplift at row 40; (b}
Snapshots of nonlinear version results for same scenariol; (c) row profile at row 45, hypsometric curve and fractal dimension plot of linear
version results as it evolves over time; (d) row profile at row 45, hypsometric curve and fractal dimension plot for nonlinear version results.

function of slope and discharge, which is related to
the contributing area (represented by the number of
cells flowing into the cell under consideration, i.e.,
precipitons are no longer independent but inter-
related). This new model represents two major
improvements over the previous linear version, i.e.,
(1) it explicitly simulates the nonlinear processes of

surficial erosion, sediment transport, and sediment
deposition in the natural world and (2) the
precipitons are interdependent through the contri-
buting area. Compared with the linear model, the
nonlinear version generally creates a rougher land-
scape, more integrated drainage network, and
steeper valley slopes.



W. Luo et al. | Computers & Geosciences 32 (2006) 1512—1518

1517

7,
7%

X

,,,///_{:{(/X/////;f

gt e s

R Thng s
[ S
{¢d

¥ ferdt e

Hypenmetic Curen

SRR

{d)

% TR vsmienx

Fig. 4. (Continued)
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