Morphometric analysis of ice-walled lake plains in Northern Illinois: Implications of lake elongation by wind-induced dual-cycle currents

Kory Allred a,⁎, Wei Luo a, Mike Konen a, B. Brandon Curry b

a Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
b Illinois State Geological Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, 615 E. Peabody Dr., Champaign, IL 61820, USA

A R T I C L E I N F O
Article history:
Received 31 August 2013
Received in revised form 19 May 2014
Accepted 26 May 2014
Available online 3 June 2014

Keywords:
Ice-walled lake plain
Morphometry
Orientation
Illinois
Glacier
Quaternary

A B S T R A C T
Ice-walled lake plains (IWLPs) are rounded, flat-topped mounds that formed in stagnant ice environments along the margins of the Laurentide Ice Sheet. We conducted detailed morphometric and statistical analyses of the size, shape, and orientation of more than 400 IWLPs identified from aerial photos aided with LiDAR data in DeKalb County, Illinois, USA. Lake elongation theories include extraterrestrial impact (e.g. the Carolina Bays), ice flow dynamics and crevasses, and wind induced currents that preferentially erode the shorelines perpendicular to the dominant wind direction. The results indicate that elliptical IWLPs with a perimeter greater than 3050 m have preferred orientations roughly normal to the paleo-wind direction as indicated by contemporaneous parabolic dunes located 50 km to the west. The orientations of the IWLPs with a perimeter less than 1220 m are scattered and show no apparent trend. The IWLP orientation is not related to ice flow dynamics or glacial crevasses because no statistically significant relationship exists with regard to the ice flow as proxied by the moraine direction. The orientation of large IWLPs in DeKalb County are consistent with wind-induced lake elongation observed in modern permafrost thaw lakes, suggesting that the prevailing wind also played an important role in controlling the orientation of IWLPs during the last glacial period and led to the preferred orientation we see today.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ice-walled lake plains (IWLPs) are rounded (in map view), flat-topped mounds (some with mildly depressed centers) that formed in stagnating, supraglacial environments along the margins of the Laurentide Ice Sheet during the last glaciation (Clayton and Cherry, 1967; Eyles et al., 1999; Clayton et al., 2008; Young and Joseph, 2009). The lakes, when they were active, were surrounded by dead-ice permafrost. IWLPs formed as the bounding, dead ice melted, leaving the sediment previously at the bottom of an ice-walled lake higher than the surroundings (i.e., creating an inverse topography), often within or near hummocky terrain (Clayton et al., 2008; Fig. 1). In Illinois for example, the IWLPs are located within the same morainic system as hummocky terrain. The IWLPs vary in size (typically from 10 m to 10 km across) and relief (typically between 2 and 25 m) and occur in areas adjacent to the Great Lakes and Alberta, including the Dakotas, Minnesota, Wisconsin, and Illinois. IWLPs are most abundant atop wide recessional moraines and morainal reentrant, but also on the glacier side of the recessional moraines and near the edge of terminal moraines (Fig. 1).

Supraglacial development of the IWLPs is evidenced by the positive-relief mounds along with the rhythmically bedded lake sediment composition. In Illinois, low-relief IWLPs are composed of the following sedimentary facies, from bottom to top, including: 1) poorly sorted sand and gravel or sand, 2) rhythmically bedded silt and very-fine sand (often containing fossils of pill clams, ostracods, tundra plants, and wood fragments reworked from paleosols), 3) sand and gravel or loose, sandy diamicton, and 4) a mantle of loess (Clayton et al., 2008; Curry et al., 2011). The successions rest on diamicton which, in places, diapirically intrudes the successions (Eyles et al., 1999; Curry, unpublished data).

In Illinois, the oldest dated IWLPs began forming on the Ransom Moraine about 22,000 cal. yr BP (calibrated years before present); the youngest IWLPs, located on the Deerfield Moraine (a Lake Border Moraine near Wadsworth, IL) began forming about 17,000 cal. yr BP, implying a period of over 5000 years to complete the IWLP formation (Fig. 2; Curry and Petras, 2011). Outside of Illinois, the youngest documented IWLPs began forming on the Algona Moraine just southwest of Minneapolis at about 14,500 cal. yr BP (Jennings et al., 2011). Younger dates are associated with IWLPs in North Dakota, but the ages are from analyses of fossils from the upper parts of the rhythmic lacustrine layers, whereas the ages from Illinois and Minnesota IWLPs are from basal stratigraphic positions, and thus provide a minimum age of...
when the ice became stagnant. Dates obtained from artifacts at both the top and bottom of the IWLP give a range of dates for the presence of the ice, giving temporal data to glaciers in the area.

Curry et al. (2010) and Curry and Petras (2011) addressed the sediment architecture, fossil content, and age of IWLPs through soil boring analysis and classified them into three basic geometries based on their aerial shape: circular, elliptical, and complex. However, we found no literature that considered the spatial distribution and orientation of IWLPs. Cursory observation of IWLPs in the DeKalb region suggested a preferred orientation roughly normal to wind-direction as indicated by sand dunes on the Green River Lowland within Whiteside, Lee, and Rock Island counties, Illinois (Miao et al., 2010; Fig. 2). Our investigation is a morphometric exploration (shape, size, ellipticity, and orientation) of the hypothesis that prevailing wind directions account for the orientations of the long-axes of IWLPs.

The Carolina Bays are a collection of thousands of commonly orient- ed circular or elliptical lakes along the Atlantic seaboard of North America (Kaczorowski, 1977; Grant et al., 1998; Firestone et al., 2007; Pinter and Ishman, 2008, Firestone, 2009). One hypothesis regarding their formation is a continental-scale extraterrestrial impact event occurring over North America from which either some ejecta reached the Earth surface or a massive shockwave was sent across the continent, and created the lakes. This event is termed the Younger Dryas impact hypothesis (YDIH) because it has been attributed as the cause of the Younger Dryas cooling approximately 12,900 cal yr. BP (Firestone et al., 2007; Pinter et al., 2011). This hypothesis is highly controversial and has been the cause of much debate. Evidence in favor of the impact includes a sediment layer composed of magnetic grains and spherules, megafaunal remains, carbon remnants, increased radioactivity and several elliptical lakes throughout North America that are all approximately oriented with the Great Lakes where the proposed impact was thought to occur (Firestone, 2009). However, little evidence exists that signifies that an impact was the cause of the Carolina Bays and other oriented lakes. Very little meteoric material has been gathered from the lake rims; there is a considerable variation in the lake orientations, both locally and regionally, and the Carolina Bays did not form instantaneously, but rather over multiple periods of erosion (Pinter et al., 2011).

Other previous studies have attributed the common orientation of some modern lakes in periglacial and permafrost environments (e.g., those found in parts of Alaska and Canada) to wave action and currents created by the prevailing wind (Cooke, 1954; Livingstone, 1954; Rex, 1961; Carson and Hussey, 1962; Cote and Burn, 2002; Hinkel et al., 2005). Instead of the wave energy creating surface and rip currents which would direct energy parallel to the prevailing winds, the wave energy is split as it approaches the far shore, establishing a two-cell circulation in the lake (Fig. 3). In this scenario, maximum littoral drift is approximately 50° away from the prevailing wind direction (Rex, 1961; Cote and Burn, 2002). This mechanism preferentially erodes the shorelines perpendicular with the wind, elongating the lake in the direction normal to the prevailing wind (Fig. 3). It has been demonstrated theoretically (Livingstone, 1954), reproduced in laboratory (Kaczorowski, 1977), and supported by empirical evidence in the field in Alaska and Canada (Livingstone, 1954; Carson and Hussey, 1962). More recently, Cote and Burn (2002) measured the location and morphology of 578 lakes and basins in Canada using digital base maps. They used GIS tools to find best fit ellipses of the lakes and basins and found that their orientation was almost exactly normal to the prevailing wind direction. Hinkel et al. (2005) used image processing techniques to automatically detect 13,214 thaw lakes and 6539 drained thaw lake basin in Alaska. They concluded that the close relationship between the orientations of the thaw lakes and drained thaw lake basins may be indicative of the current and paleowind direction, respectively, although they do no attempt to interpret or derive that direction. Therefore, a part of the intent of this research is to investigate this wind driven mechanism for IWLP formation since, to the best of our knowledge, it has not been established for IWLPs formed during the last glacial period.

Evidence exists to suggest that during the end of the Quaternary period, sand dunes were mobilized across the northern Midwest states and their formation was influenced by the prevailing winds of the period (Arbogast and Packman, 2004; Rawling III et al., 2008). Miao
et al. (2010) have recently studied, amongst other factors, the age and orientation of the dunes in the Green River Lowland in northwestern Illinois (Fig. 2). They found an average lineal orientation of N65°W, indicating a northwest to southeast wind, and an approximate age of 17,500 ± 570 yr BP. The west-northwesterly dune orientation represents the dominant paleo-wind direction at that time (Anderson and Miao, 2011). In addition, the Illinois type paha (i.e., elongated ridges composed of till and capped with loess) located in Whiteside and Rock Island counties (Flemal et al., 1972) have the same orientation and formed during the same time period (Rodbell et al. 1997), verifying the dominant paleo-wind direction. Furthermore, the wind direction and timing are also consistent with the findings of Muhs and Bettis (2000) where loess geochemical and particle-size data were utilized to infer a northwesterly wind during the LGM (last glacial maximum).

The purpose of this study is to address the two research questions: (1) is there a common preferred orientation of the IWLPs in Northern Illinois and, (2) if there is a common orientation, what are the causational mechanisms? The first question is addressed by investigating the morphological properties (ellipticity and size) of a selected field of IWLPs. The second question is addressed by comparing the orientations of IWLPs with structures of glacial origin and process such as moraine orientation, likely crevasse patterns, and extraterrestrial impact, as well as prevailing wind direction. Answers to these questions will bring further understanding to the origin of the IWLPs and the environment in which they were formed. The hypotheses considered, a summary of them, and how this study is related, is presented in Table 1.

2. Study area, data, and methodology

2.1. Landform delineation and ellipse derivation

We focused our study area on DeKalb County, Illinois (Fig. 2) where we have access to high resolution aerial photos and Light Detection and Ranging (LiDAR) data, acquired by the county government in 2009. These high resolution data allow for a very good spatial resolution (~1.5 m) and increased three dimension capabilities, which are instrumental for the delineation of IWLPs, as they are often subtle and hard to identify from traditional topographic maps. The LiDAR point clouds were processed to build a gridded digital elevation model (DEM), which can then be used to derive several views of the terrain, including a shaded relief map and a slope view. With these different views and aerial photo imported into ArcGIS as layers that can be turned on and off, we visually identified and digitally mapped IWLPs as closed features with positive relief, flat tops (some with slightly depressed centers) and light toned rims and darker interiors, along with an abrupt change in slope (Curry et al., 2010). Fig. 4 shows a few examples of digitized IWLPs along with the aerial photo.

The best fit ellipse for each IWLP was derived using the Zonal Geometry tool in ArcGIS, which also calculates the major and minor axis lengths and the major axis orientation, along with other information, and stores them in a linked GIS database table. The orientation of each IWLP is represented by the major axis orientation of the best fit ellipse and ranges from 0 to 180°, which is measured counterclockwise from due east. To be consistent with common usage, we converted all of the IWLP orientations to bearings. For example, a major axis with an
orientation of 35° would have a bearing of N55°E, and an orientation of 130° would represent a bearing of N40°W. Although the bearings used give a direction, our intent in using them is only to follow similar angular notation from previous authors (e.g. Flemal et al., 1972; Miao et al., 2010) and not to imply single directionality of the landforms or wind. In this study, our focus is to investigate the mechanisms that may have caused that preferred orientation of the IWLPs; the bearing notation is only used as a mean to identify the orientation and should generally not be viewed as a direction in a vector sense.

2.2. Statistical analysis

The metric we used to analyze orientation of angular data is the Ajne–Stephens Test (Stephens, 1969). It is based on a statistic presented by Ajne (1968) which tests for the uniformity of circular distribution (i.e., what is the maximum number of points that can be encompassed in a chosen semi-circle) and is useful in determining whether a preferred orientation exists in angular data. It works by evaluating the distances between the data on a unit circumference (circumference = 1) as opposed to the distribution on a unit circle (radius = 1) such that the former simplifies the equation. The Ajne–Stephens Statistics is calculated as follows:

\[A_n = \frac{1}{2} - \frac{n}{4} + \frac{2}{n} \sum_{j=2}^{n-1} \left| \frac{1}{2} + x_j x_i \right| \]

where \(A_n \) is the Ajne–Stephens Test statistic, \(n \) is the number of observations, and \(x_i \) is the azimuthal angle of the \(i \)-th observation divided by 360°. We selected this metric because it makes no assumption about the distribution of the data. Where the calculated \(A_n \) is greater than the critical value, strong clustering of the data is suggested. The null hypothesis of this test is that the IWLPs do not exhibit a preferred orientation and are randomly distributed in their orientation. The alternative hypothesis is that the IWLPs do have a preferred orientation.

Linear regression is also utilized to compare the morphometric variables and orientation attributes. With multiple linear regression specifically, several explanatory parameters are compared to one response variable so that a common intercept is calculated, but the “slope” of the trend line is given as the sum of the corresponding coefficients for each variable. This type of analysis shows how much each independent variable \((x_1, x_2, \ldots, x_n) \) contributes to the dependent variable \(y \) when they are assumed to work together and is given by the equation

\[y = C + ax_1 + bx_2 + \ldots + cx_n \]

where \(C \) is an intercept and \(a, b, \ldots \) are coefficients.

The results of the regression analysis are then interpreted to verify whether the assumption holds for each of the parameters. Linear

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Summary</th>
<th>Supporting evidence for this research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-cycle lake erosion</td>
<td>Wind-induced currents preferentially erode lake shores in a direction perpendicular to the dominant wind direction</td>
<td>The orientation of the landforms is approximately normal to parabolic dunes found in the region that formed concurrently. The landforms are grouped adjacent to the moraines in Northern Illinois.</td>
</tr>
<tr>
<td>powered by wind</td>
<td>Supra-glacial lakes are influenced by and the result of the ice flow direction or crevasses that occur at the margins of the glacier</td>
<td>• The Carolina Bays formation hypothesis is debated but possibly applicable to all oriented lakes in North America. • The landforms are somewhat oriented towards the Great Lakes, similar to other oriented lakes explained by this phenomenon.</td>
</tr>
<tr>
<td>Ice-flow directionality</td>
<td>An extra-terrestrial impact occurred over North America either sending ejecta to the Earth’s surface or a massive shockwave was created that formed elliptical lakes with a common orientation</td>
<td></td>
</tr>
<tr>
<td>or ice crevasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-terrestrial impact</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Identification of a) a small symmetrical IWLP, b) a multi-lobate IWLP, and c) a large elliptical IWLP. Images are centered at a) 41.876°N, 88.567°W, b) 42.049°N, 88.567°W, and c) 41.885°N, 88.729°W.
regression is a common analysis technique to find the effect of one variable on another. For example, Arp et al. (2011) used a linear regression to show the effects of shoreline erosion and lake temperature on the thermokarst lake depth. They used multiple linear regression to show the collective effect of precipitation and evapotranspiration on the lake area and specific conductance as a proxy for water quality. Similar to Arp et al. (2011), linear regression is an applicable technique in this study because it shows the relationship between the orientation and two other lake and environmental characteristics being the size and ellipticity.

3. Results

In total, 443 landforms were classified as IWLPs in DeKalb County (Fig. 2). For this study, we mapped as many IWLPs as possible, and two other lake and environmental characteristics being the size and thermokarst lake depth. They used multiple linear regression to show the collective effect of precipitation and evapotranspiration on the lake area and specific conductance as a proxy for water quality. Similar to Arp et al. (2011), linear regression is an applicable technique in this study because it shows the relationship between the orientation and two other lake and environmental characteristics being the size and ellipticity.

To verify that the decreased standard deviation was not simply an effect of the decreasing sample size, a bootstrap analysis was applied to each of the groups outlined in Table 1. Bootstrapping is a common statistical technique to test how well a sample represents a population. It works by randomly resampling the data points with replacement to create a “mega” dataset, then resamples it many times to create subsets drawn from the “mega” dataset. For example, for n data points, one point is randomly selected, recorded into a larger dataset, and then put back, permitting the selection of one data point several times. The larger dataset is then resampled to create the subsets. The mean and standard deviation of each resampled set can be calculated. When a large number (i.e., hundreds or thousands) of resampled datasets are utilized, the mean of means and of standard deviations can be derived (Diaconis and Efron, 1983; Thompson, 1995). The standard deviation results of the bootstrapping with 1000 repetitions are comparable or better than the values calculated from the sample data (Table 1). Although bootstrapping may not be applicable to extremely small datasets, the orientations of the three IWLPs greater than 3050 m (N20.2°E, N18.3°E, and N47.9°E) show a trend that is reflected by the average.

Furthermore, the rose diagrams of the IWLP orientations in Fig. 5 also show that there is a considerable amount of clustering of orientations near the expected mean of the largest IWLPs. Therefore, while the standard deviation for the whole group is relatively large, the orientations of the landforms with large sizes are grouped closer together than smaller ones.

4. Discussion

To address the question of what influenced the common IWLP orientation, we first postulate that they are related to the glacial structure such as flow direction or crevasses that occur supraglacially. Crevasses

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear regression results for IWLP orientation as a function of size (perimeter), ellipticity (L/W), and moraine orientation.</td>
</tr>
<tr>
<td>Coefficients</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Perimeter *</td>
</tr>
<tr>
<td>Length/width</td>
</tr>
<tr>
<td>Moraine orientation</td>
</tr>
</tbody>
</table>

* Statistically significant at 95% confidence level.
The lake elongation mechanism (Fig. 3) was operative when the lakes had dominant wind direction during the time period. If the wind induced average orientation of S65°E with a standard deviation of 11°, implying a not statistically significant orientation based on wind induced elongation theory as IWLP size increases. The orientation of the dominant paleo-wind direction in the study area can be derived from local sand dunes and was found to be consistent with the expected orientation based on wind induced lake elongation theory, the mean orientation of larger IWLPs becomes closer to the expected direction, if the size of the IWLPs are considered along with decreasing standard deviation as the IWLP size increases (Table 3 and Fig. 5). Therefore, the largest IWLPs are indeed oriented in a direction roughly perpendicular to the prevailing paleo-wind, consistent with the wind induced lake elongation theory, whereas the orientations of smaller IWLPs are more variable (Figs. 5 and 6). The frequency distribution of the perimeter (not shown) reveals that there are many smaller IWLPs, which may contribute more to the mean orientation. This may indicate that smaller lakes are at an earlier stage of the development and have not developed into an orientation fully perpendicular to the prevailing wind direction.

The result mentioned above suggests that the preferred orientation of lakes takes time to form and a critical size of lake is necessary before the convection cells become powerful enough to circulate water and melt the ends in an elliptical fashion. As the wind blew across the ice-walled lake, the wave action eroded the shore (i.e., melting the ice) at the ends perpendicular to the wind direction, elongating the lake over time. This also refutes the extraterrestrial impact theory since the lake elongation is a time consuming process. Moreover, bedrock topography and the dynamic horizontal and vertical velocities of a glacier (Hooke, 1986) were active, the IWLPs would be expected to orient 90° from the prevailing paleo-wind direction, which would be N25°E.

Although the overall mean orientation of all elliptical IWLPs is N3°W, 28° off from the orientation expected based on the wind induced lake elongation theory, the mean orientation of larger IWLPs becomes closer to the expected direction, if the size of the IWLPs are considered along with decreasing standard deviation as the IWLP size increases (Table 3 and Fig. 5). Therefore, the largest IWLPs are indeed oriented in a direction roughly perpendicular to the prevailing paleo-wind, consistent with the wind induced lake elongation theory, whereas the orientations of smaller IWLPs are more variable (Figs. 5 and 6). The frequency distribution of the perimeter (not shown) reveals that there are many smaller IWLPs, which may contribute more to the mean orientation. This may indicate that smaller lakes are at an earlier stage of the development and have not developed into an orientation fully perpendicular to the prevailing wind direction.

The result mentioned above suggests that the preferred orientation of lakes takes time to form and a critical size of lake is necessary before the convection cells become powerful enough to circulate water and melt the ends in an elliptical fashion. As the wind blew across the ice-walled lake, the wave action eroded the shore (i.e., melting the ice) at the ends perpendicular to the wind direction, elongating the lake over time. This also refutes the extraterrestrial impact theory since the lake elongation is a time consuming process. Moreover, bedrock topography and the dynamic horizontal and vertical velocities of a glacier (Hooke, 2005) contributed to the formation of supra-glacial lakes (Selmes et al., 2013). As those that were able to persist were elongated, they also grew to cover more area. The orientations of the smaller IWLPs deviate more from the expected direction simply because they have not had enough time to elongate in any preferred direction. Along those lines, we propose one scenario where several small IWLS are formed,

![Fig. 5. Orientation distribution of the elliptical IWLPs larger than various perimeter lengths.](image)

<table>
<thead>
<tr>
<th>Perimeter (m) greater than</th>
<th>Count</th>
<th>Average orientation</th>
<th>Std. dev.</th>
<th>Bootstrap std. dev</th>
<th>A_μ</th>
<th>Critical A_μ (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3050</td>
<td>3</td>
<td>N29°E</td>
<td>16.4°</td>
<td>11.3°</td>
<td>1.90</td>
<td>0.475</td>
</tr>
<tr>
<td>2750</td>
<td>6</td>
<td>N16.5°E</td>
<td>24.7°</td>
<td>21.7°</td>
<td>4.16</td>
<td>0.630</td>
</tr>
<tr>
<td>2135</td>
<td>21</td>
<td>N17.1°E</td>
<td>29.1°</td>
<td>27.9°</td>
<td>15.57</td>
<td>0.648</td>
</tr>
<tr>
<td>1830</td>
<td>26</td>
<td>N16.8°E</td>
<td>27.7°</td>
<td>26.8°</td>
<td>19.33</td>
<td>0.650</td>
</tr>
<tr>
<td>1220</td>
<td>58</td>
<td>N6.8°E</td>
<td>38.4°</td>
<td>37.9°</td>
<td>43.39</td>
<td>0.653</td>
</tr>
<tr>
<td>610</td>
<td>166</td>
<td>N1.2°W</td>
<td>44.1°</td>
<td>43.8°</td>
<td>123.73</td>
<td>0.654</td>
</tr>
</tbody>
</table>
which grow to coalesce, and are affected by the prevailing wind so that they elongate in a direction perpendicular to it, which is analogous to the process involving modern thaw lakes in permafrost (Fig. 7).

One limitation of this research is that we relied on our ability to visually identify the IWLPs from aerial photos and LiDAR data, and then we manually digitized (traced) the edge of the IWLPs. Both practices can introduce uncertainty. Future work may include an automated approach to delineate and extract the boundaries of the IWLPs more objectively. In addition, it will also be interesting to examine other areas with IWLPs to see if our findings will hold and to determine the critical lake size above which the wind induced elongation will occur. Alternatively, in regions where elliptical lakes are grouped, their orientation may help to determine the paleo-wind direction, assisting in climate model studies and similar research.

5. Conclusion

We have conducted a detailed morphometric analysis of over 400 IWLPs in DeKalb after manually digitizing them based on aerial photos and LiDAR data. Statistical tests show that there is a preferred common orientation of the largest IWLPs. Regression analysis indicates that it is unlikely that the IWLP orientation is related to the glacial structure such as flow direction or crevasses. The wind-induced lake elongation theory derived from modern thaw lakes in periglacial environment states that the lakes in such environment elongate in a direction orthogonal from the prevailing wind. However, to the best of our knowledge, this mechanism for oriented lakes has not been tested in IWLPs, which were formed during the last glacial period. Our morphometric and statistical analyses show that although the mean orientation of IWLPs is somewhat off from the expected direction based on the wind-induced lake elongation theory, the orientations are found to be related to their size. The larger the IWLPs, the closer their mean orientation to the expected value, suggesting that it took time for the wind-induced elongation process to work and a critical size of lake is needed before the convection cells become powerful enough to circulate water and melt the ends, forming the elliptical shaped lakes with preferred orientation. Thus, in our study area the paleo-environment and associated wind conditions played a significant role in elongating the ice-walled lakes during the last glacial period, similar to the contemporary thaw lakes studied in permafrost in the Arctic.
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.geomorph.2014.05.022.

Acknowledgments

We would like to thank the anonymous reviewers for careful reviews, which helped improve the quality of the paper. We would also like to thank Dr. Andrew Krmeneck for suggesting the Anej–Stephens Test for orientation data and bootstrap analysis technique.

References

Rawling III, J.E., Hanson, P.R., Young, A.R., Attig, J.W., 2008. Late Pleistocene dune construction in the Central Sand Plain of Central Wisconsin, USA. Geomorphology 100, 494–505.

