NORTHERN ILLINOIS UNIVERSITY

PHYSICS DEPARTMENT

Physics 374 – Junior Physics Lab					Spring 2024

Python Tutorial #2

Variables & Arithmetic

In this lab, we will perform some basic math functions to get an understanding of variables.

In programming languages like Basic, C++, and Fortran, you usually need to declare them at the beginning of your program. However, since Python is a completely object oriented programming language, there is no need to declare variables (all variables are objects).

The webpage https://www.learnpython.org/en/Variables_and_Types has a nice tutorial on variables (use a Chrome browser). Below are various examples of variables and :

Variables assigned to integers:

Variables assigned to real numbers (floating point numbers):

Variables assigned to character strings:

We can also make a list of variables. Below is a list assigned to the variable :

d = [1, 15.3, “Hello”]

You can refer to an element in the list by specifying an index number:

print()

 1
retrieves the 1st element in the list, 1, and assigns it to the variable x. To retrieve the 3rd element in the list do:

print()

 Hello

Note, the 1st element of the list starts with the index “0” (not the index “1”).

Do the tutorial in the webpage: https://www.learnpython.org/en/Variables_and_Types. I found that the tutorial works using the Chrome browser. Notice in the tutorial that adding, subtracting, multiplying use the same operations we are used to:

The following code when executed in Phyton yields 16.3:

print()

 16.3

The following code when executed in Phyton yields “Hello World”:

print()

 Hello World

For strings, the “+” operator operates as a concatenation operator.

Loops & Debugging

The best way to see how loops work is to examine them using the debugger. First, create a Python project called Loop.py. Inside this program put the following code:

x = [10, 20, 30, 40, 50] # Creating a list object
for i, val in enumerate(x): # For loop, i=index, val=element in list x
 print(x[i]) # Print the ith element in the list

The variable is a list object containing 5 elements. The for loop works as follows: when the program gets to the 2nd line of the code, the index is set to 0 and is set to 10 (since). Then, when the program gets to the 3rd line, it prints which has the value of 10 since . Then the program goes back to the 2nd line, sets to 1 and to 20 (since). Then when it gets to the 3rd line it prints which has the value of 20 since . Then the program goes back to the 2nd line and sets to 2 and so forth iteratively setting the index to 0, 1, 2, 3, 4 until all the elements in the list are printed. This is the function of a loop: iteratively repeating calculations or functions until a flag tells it to stop (in this case the “flag” is provided by the internal Python function enumerate—it knows when it reaches the end of the list).

Lets examine how the for loop works using the debugger. First, set a breakpoint at the 3rd line of the code by either clicking your mouse in the border region of the window or by going to DebugNew Breakpoint in the menu.

[image:]

Loops must be indented after the for statement. Indentation lets Python know you are making a for loop.
breakpoint

After making the breakpoint, run the code by pressing the green arrow Start button. The program will halt at the breakpoint.
[image:]

The Step Into button allows one to step through the code line by line.

By pressing the Step Into button (or going to DebugStep Into in the menu), you will be able to step through the code line by line. By hovering your cursor over a variable, you will be able to see the value assigned to the variable (see below, we see that initially that —hovering over shows that it is 10).

[image:]

When you 1st press Step Into, you will see that the program goes back to the 2nd line (and is still 0). Press Step Into and the program steps to the 3rd line and sets to 1 and to 20. Pressing Step Into iteratively and you will see increment from 0 to 4.

Another way to see the values of variables is to use the Watch window (see below).
[image:]

Type and into the Watch fields to see their values
Watch monitors values of variables.

Now when you press Step Into, you see the variables change dynamically.

Reading Data Files

This section will show how to read data from files into arrays. Note that the variable in the last example was a list of objects, not an array of objects. One cannot multiply lists like you can do for arrays (or matrices). Unfortunately, Python 3.7 does not have built-in support for arrays. We must install a module that does, such as numpy. Install numpy by using pip (see Python Tutorial #1):

py -m pip install Numpy

Numpy is a Python module containing a library of high-level mathematical operations for multi-dimensional arrays and matrices. It contains all the support scientists and engineers need for arrays and matrices. To use numpy, you will need to import it with the line:

import numpy as np

The designation np is a short name alias for numpy. To create the array (instead of the list used in the last section), we would write the code

x = np.array([10, 20, 30, 40, 50])

The designation np is attached to the name array to inform Phyton to look in the numpy library for the array structure.

Numpy also has a nice library function for reading data files commonly used by scientists and engineers: loadtxt. See documentation on the webpage at:

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

for more on the loadtxt routine. The webpage https://numpy.org/ is also a good place to find out more about other numpy library routines.

Finding the Mean of a Set of Grades

We are now ready to read in Bevington’s grades file called grades.txt. Create a Python project called Grades.py and insert the following code:

import numpy as np # the alias for "numpy" will be "np"
x, y = np.loadtxt('grades.txt', unpack=True) # unpack=True transposes columns
print(x) # of data into rows of data and
print(y) # places it into the arrays x and y

Make certain the grades.txt file is in the same folder as the Grades.py file.

When you run the program you should see that the arrays and contain the data in grades.txt.

Now we are ready to find the mean of the grades given in Bevington. The formula for the mean is

So, to find the mean we must sum all the data points and divide by the total number of points. Using enumerate in the for loop (as in the section on Loops & Debugging), insert the following code in your Grades.py code.

import numpy as np # the alias for "numpy" will be "np"

x, y = np.loadtxt('grades.txt', unpack=True) # unpack=True transposes columns
print(x) # of data into rows of data and
print(y) # places it into the arrays x and y

Sum = 0.0 # initial value of Sum is zero
for i, val in enumerate(y): # For loop, i=index, val=element in array y
 Sum = Sum + y[i] # sum up all elements (grades) in array y
 print(y[i]) # Print the ith element in the array y

Mean = Sum/(i+1) # Calculate the Mean of the Grades data
print(Mean) # Print the Mean

You do not need the print(x), print(y), or the print(y[i]) statements—I left them in for debugging purposes (you can comment them out with the # symbol). Notice that we had to divide the sum with (i+1) since the i index starts at 0 for enumerate and for arrays in general (not at 1 as given in the formula above for the mean).
[image:]

Notice how Visual Studio outlines the for loop so that you can clearly see it.

Homework

Extend the Grades.py code to also calculate and print out the standard deviation

And the standard error of the mean

Upload to Blackboard your source code (*.py) of your Python programs Loop.py and Grades.py. You will see an assignment on Blackboard called Python Tutorial #2.
image2.wmf
b

oleObject53.bin

image35.png
D Fie FEdt View Project Buid Debug Test Analyze Tools Edtensions Window Help Search (Ctrl-0)
e - B-aEd 9 Debug ~ AnyCPU - P Stat- M G _ Python37 (64-bit)

import numpy as np # the alias for "numpy” will be "np”

xogj00L.

X, y = np.loadtxt('grades.txt', unpack=True) # unpack=True Ttransposes colums
print(x) #

of data into rows of data and
print(y) #

places it into the arrays x and y

Sum = 0.0 # initial value of sum is zero

Efor i, val in enumerate(y): # For loop, i=index, val=element in array y
Sum = Sum + y[i] # sum up all elements (grades) in array y
print(y[il) # Print the ith element in the array y

Mean = Sum/(i+1) # Calculate the Mean of the Grades data
print(Mean) # Print the Mear|

image36.wmf
(

)

2

1

1

1

N

Si

i

xx

N

s

=

=-

-

å

oleObject54.bin

image37.wmf
S

m

N

s

s

=

oleObject55.bin

oleObject2.bin

image3.wmf
1

a

=

oleObject3.bin

image4.wmf
15

b

=

oleObject4.bin

image5.wmf
1.2

a

=

oleObject5.bin

image6.wmf
15.3

b

=

oleObject6.bin

image7.wmf
"Hello"

a

=

oleObject7.bin

image8.wmf
"Hi"

b

=

oleObject8.bin

image9.wmf
d

oleObject9.bin

image10.wmf
[0]

xd

=

oleObject10.bin

image11.wmf
x

oleObject11.bin

image12.wmf
[2]

xd

=

oleObject12.bin

oleObject13.bin

oleObject14.bin

oleObject15.bin

image13.wmf
xab

=+

oleObject16.bin

oleObject17.bin

image14.wmf
"Hello"

a

=

oleObject18.bin

image15.wmf
"World"

b

=

oleObject19.bin

oleObject20.bin

oleObject21.bin

image16.wmf
x

oleObject22.bin

image17.wmf
i

oleObject23.bin

image18.wmf
val

oleObject24.bin

image19.wmf
[0]10

x

=

oleObject25.bin

image20.wmf
[]

i

x

oleObject26.bin

image21.wmf
0

i

=

oleObject27.bin

oleObject28.bin

oleObject29.bin

image22.wmf
[1]20

x

=

oleObject30.bin

oleObject31.bin

image23.wmf
1

i

=

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

image24.wmf
®

oleObject36.bin

image25.png
04 Fle Edt View Project Buld Debug Test Anabze Tools Extensions Window Help Search (Cir

©-0 H-Ed 9 - Debug - AnyCPU - b Start- A [@_ Python37 (64-bit)
g Loopay = X
g

x = [10, 20, 30, 40, 501 # Creating a 1ist object

for i, val in enumerate(x): _# For loop, i=index, val=element in Tist x

image26.png
D Fie FEdt View Project Buid Debug Test Analyze Tools Edtensions Window Help Search (Ctrl-0) P
°- 2 (D - O - |[Debug | [AnyCPU » Continue - 78 @ . Python37 (64-bit =] IEREE)
Process: [27276] Loop.py - e - Thread: (1] MainThread - Y Stack Frame: <module> -
x = [10, 20, 30, 40, 50] # Creating a 1ist object
for i, val in enumerate(x): # For loop, i=index, val=element in Tist x

oleObject37.bin

oleObject38.bin

oleObject39.bin

image27.png
b File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search

© - M-I R Any CPU P Continue - Python 3.7 (6
Process: [27276] Loop.py = [T Ufecscle frents - Thead: [1] MainThread - Y

x = [10, 20, 30, 40, 50] # Creating a 1list object

for i, val in enumerate(x): # For loop ndex, val=element in 1ist x »

oleObject40.bin

oleObject41.bin

oleObject42.bin

oleObject43.bin

image28.png
D Fie FEdt View Project Buid Debug Test Analyze Tools Edtensions Window Help Search (Ctrl-0) P Loop

@-0 |- |9 - -|[obug -|[AnycPU P Continue - f (@ . Python 37 (64-bit) S# B m
Process: [18806] Loop.py. = 71 Uiecyele Fuents - Thread: (1] MainThread - Y Stack Frame: <module>
Looppy #
x = [10, 20, 30, 40, 50] # Creating a 1ist object
for i, val in enumerate(x): _# For loop, i=index, val=element in list x
° element 1

100% ~ @ Noissues found ‘
Search (Ctl+E) » Search Depn
Name Value Type -
e ° int
© val 1 int

Autos Locals Watch 1

image1.wmf
a

oleObject44.bin

oleObject45.bin

image180.wmf
i

oleObject47.bin

image190.wmf
val

oleObject48.bin

image29.wmf
x

oleObject46.bin

image30.wmf
x

oleObject1.bin

oleObject49.bin

image31.wmf
x

oleObject50.bin

image32.wmf
x

oleObject51.bin

image33.wmf
y

oleObject52.bin

image34.wmf
1

1

N

avei

i

xxx

N

=

º=

å

